JP2009250922A - Health condition measuring instrument - Google Patents

Health condition measuring instrument Download PDF

Info

Publication number
JP2009250922A
JP2009250922A JP2008102362A JP2008102362A JP2009250922A JP 2009250922 A JP2009250922 A JP 2009250922A JP 2008102362 A JP2008102362 A JP 2008102362A JP 2008102362 A JP2008102362 A JP 2008102362A JP 2009250922 A JP2009250922 A JP 2009250922A
Authority
JP
Japan
Prior art keywords
gas
hydrogen sulfide
response characteristic
gas sensor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008102362A
Other languages
Japanese (ja)
Inventor
昌生 ▲ルイ▼
Masao Rui
Akemi Takeshita
朱美 竹下
Yoshinori Takezaki
義則 竹崎
Hiroshi Hashimoto
博 橋本
Satoko Noguchi
聡子 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2008102362A priority Critical patent/JP2009250922A/en
Publication of JP2009250922A publication Critical patent/JP2009250922A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a health condition measuring instrument for accurately measuring hydrogen sulfide, in defecation gas with coexisting gases, such as, hydrogen existing therein. <P>SOLUTION: This health condition measuring instrument is equipped with a plurality of gas sensors for measuring the gas concentrations of gases concurring produced with defecation. The gas sensors each have a first response characteristic as to hydrogen sulfide among the gases and a second response characteristic as to coexisting gases other than hydrogen sulfide among the gases, the respective gas sensors are different from each other in at least either the first or the second response characteristic, and this measurement instrument is equipped with an operation part for calculating the concentration of hydrogen sulfide concurring with defecation by using the first response characteristic of each of the gas sensors. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、硫化水素を精度よく測定することができる健康状態測定装置に関する。 The present invention relates to a health condition measuring apparatus that can accurately measure hydrogen sulfide.

排便時に併発するガス(以下排泄ガスと呼ぶ)を検出し、その検出結果に基づいて、人間の健康状態を判断する技術が知られている。例えば、特許文献1には、ガスセンサを用いて放屁に含まれる有臭ガスを検出し、そのガスセンサからの信号値を直接或いは匂い分析などの適当な処理を行って表示することが開示されている。また、例えば、特許文献2には、脱臭体に吸着された臭気成分を酸化させてその酸化電流から臭気成分濃度を測定する技術が開示されている。  2. Description of the Related Art There is known a technique for detecting a gas (hereinafter referred to as excretion gas) that occurs at the time of defecation and determining a human health state based on the detection result. For example, Patent Document 1 discloses that a gas sensor is used to detect odorous gas contained in the release, and a signal value from the gas sensor is displayed directly or by performing appropriate processing such as odor analysis. . For example, Patent Document 2 discloses a technique for oxidizing an odor component adsorbed on a deodorizing body and measuring the odor component concentration from the oxidation current.

特許文献3は、腸内状態報知装置およびその方法に関する本出願人の発明である。この装置では、排泄ガス中の水素ガスをガスセンサで測定し、ガスセンサから出力された信号値に対応した腸内状態情報を腸内健康度判定用付属情報から抽出してユーザに報知するものである。腸内状態情報としては、腸内に存在する種々の菌の総数、ビフィズス菌の数、悪玉菌の数、腸内菌の総数のうちのビフィズス菌数の割合、又は、腸内菌の総数のうちの悪玉菌数の割合等を採用している。   Patent Document 3 is the applicant's invention relating to an intestinal state notification device and method. In this apparatus, hydrogen gas in excreted gas is measured by a gas sensor, and intestinal state information corresponding to the signal value output from the gas sensor is extracted from the intestinal health degree determination auxiliary information and notified to the user. . The intestinal state information includes the total number of various bacteria present in the intestine, the number of bifidobacteria, the number of bad bacteria, the ratio of the number of bifidobacteria in the total number of enteric bacteria, or the total number of enteric bacteria. The ratio of the number of bad bacteria is used.

また、本出願人の発明である特許文献4では、排泄ガスの測定結果を腸内状態指標、例えば腸内細菌バランスに換算して使用者に報知する技術が開示されている。   Moreover, in patent document 4 which is an invention of the present applicant, a technique for converting a measurement result of excretion gas into an intestinal state index, for example, an intestinal bacterial balance, and notifying a user is disclosed.

特開平9−43182号公報。JP-A-9-43182. 特開平8−211048号公報。JP-A-8-211048. 特開2005−315836号公報。Japanese Patent Laying-Open No. 2005-315836. 特開2007−89857号公報。JP 2007-89857 A.

ところで、腸内状態を正確に推定するにはターゲットとするガス成分を精度良く測定することが重要である。特に有臭ガス、例えば硫化水素を測定して腸内状態を推定する場合、数ppmレベルの濃度を正確に測定することが求められる。硫化水素センサの例として定電位電解型センサと半導体型センサが挙げられ、中でも半導体型センサは長寿命で安価との利点がある。
しかし、これらの硫化水素センサはターゲット成分に対する特異性が低い難点がある。例えば硫化水素センサが水素に対しても一定の応答を示すが、排便ガスの中には水素ガスの濃度レベルが硫化水素の数十倍、場合には数千倍に達するので、そのまま使用しても硫化水素の濃度を推測することができないという問題がある。
By the way, in order to accurately estimate the intestinal state, it is important to accurately measure the target gas component. In particular, when an intestinal state is estimated by measuring odorous gas such as hydrogen sulfide, it is required to accurately measure a concentration of several ppm level. Examples of hydrogen sulfide sensors include a constant potential electrolytic sensor and a semiconductor sensor. Among them, a semiconductor sensor has advantages such as long life and low cost.
However, these hydrogen sulfide sensors have a drawback of low specificity to the target component. For example, a hydrogen sulfide sensor shows a certain response to hydrogen, but in the defecation gas, the hydrogen gas concentration level is several tens of times higher than that of hydrogen sulfide, and in some cases several thousand times higher. However, there is a problem that the concentration of hydrogen sulfide cannot be estimated.

本発明は、水素など共存ガスが存在する排便ガス中の硫化水素を精度よく測定することができる健康状態測定装置を提供することを目的とする。 An object of the present invention is to provide a health condition measuring apparatus capable of accurately measuring hydrogen sulfide in a defecation gas in which a coexisting gas such as hydrogen exists.

上記課題を解決するため請求項1記載の本発明による健康状態測定装置は、排便時に併発するガスのガス濃度を測定する複数のガスセンサを備える健康状態測定装置であって、前記ガスセンサはそれぞれ前記ガスのうち硫化水素に対する第1応答特性と、前記ガスのうち硫化水素以外の共存ガスに対する第2応答特性を有し、それぞれの前記ガスセンサで前記第1応答特性どうしと前記第2応答特性どうしの少なくとも一方が異なり、それぞれの前記ガスセンサの前記第1応答特性を用いて排便時に併発する硫化水素の濃度を演算する演算部を備えることを特徴とする。
上記課題を解決するため請求項2記載の本発明による健康状態測定装置は、排便時に併発するガスのガス濃度を測定する複数のガスセンサを備える健康状態測定装置であって、前記複数のガスセンサの間に硫化水素除去部を備え、前記硫化水素除去部の上流側に位置する第1ガスセンサは、前記ガスのうち硫化水素に対する第1応答特性と、前記ガスのうち硫化水素以外の共存ガスに対する第2応答特性を有し、前記硫化水素除去部の下流側に位置する第2ガスセンサは、前記ガスのうち硫化水素以外の共存ガスに対する第2応答特性を有し、それぞれの前記ガスセンサで前記第2応答特性どうしが異なり、前記第1ガスセンサの前記第1応答特性、第1ガスセンサの前記第2応答特性および前記第2ガスセンサの前記第2応答特性を用いて排便時に併発する硫化水素の濃度を演算する演算部を備えることを特徴とする。
また、上記課題を解決するため請求項3記載の本発明による健康状態測定装置は、排便時に併発するガスのガス濃度を測定する複数のガスセンサを備える健康状態測定装置であって、前記複数のガスセンサの間に硫化水素除去部を備え、前記硫化水素除去部の上流側に位置する第1ガスセンサは、前記ガスのうち硫化水素に対する第1応答特性と、前記ガスのうち硫化水素以外の共存ガスに対する第2応答特性を有し、前記硫化水素除去部の下流側に位置する第2ガスセンサは、前記ガスのうち硫化水素以外の共存ガスに対する第2応答特性を有し、それぞれの前記ガスセンサで前記第2応答特性どうしが同一であり、前記第1ガスセンサの前記第1応答特性を用いて排便時に併発する硫化水素の濃度を演算する演算部を備えることを特徴とする。
In order to solve the above-mentioned problem, the health condition measuring device according to the present invention as claimed in claim 1 is a health condition measuring device comprising a plurality of gas sensors for measuring the gas concentration of the gas coexisting at the time of defecation, wherein each of the gas sensors is the gas sensor. First response characteristic for hydrogen sulfide and second response characteristic for coexisting gas other than hydrogen sulfide among the gases, and at least one of the first response characteristic and the second response characteristic in each gas sensor. One of them is different, and it is characterized by comprising a calculation unit for calculating the concentration of hydrogen sulfide that is generated at the time of defecation by using the first response characteristic of each of the gas sensors.
In order to solve the above-mentioned problem, a health condition measuring apparatus according to the present invention as claimed in claim 2 is a health condition measuring apparatus comprising a plurality of gas sensors for measuring the gas concentration of the gas coexisting at the time of defecation, between the plurality of gas sensors. The first gas sensor that is provided with a hydrogen sulfide removal unit and is located upstream of the hydrogen sulfide removal unit has a first response characteristic with respect to hydrogen sulfide in the gas and a second response with respect to a coexisting gas other than hydrogen sulfide in the gas. The second gas sensor that has a response characteristic and is located downstream of the hydrogen sulfide removing unit has a second response characteristic with respect to a coexisting gas other than hydrogen sulfide in the gas, and the second response is detected by each gas sensor. Using the first response characteristic of the first gas sensor, the second response characteristic of the first gas sensor, and the second response characteristic of the second gas sensor. Characterized in that it comprises a calculator for calculating the concentration of hydrogen sulfide comorbid during flights.
In order to solve the above-mentioned problem, the health condition measuring apparatus according to the present invention as claimed in claim 3 is a health condition measuring apparatus comprising a plurality of gas sensors for measuring the gas concentration of the gas simultaneously generated during defecation, wherein the plurality of gas sensors The first gas sensor, which is provided with a hydrogen sulfide removing unit between them and located upstream of the hydrogen sulfide removing unit, has a first response characteristic for hydrogen sulfide in the gas and a coexisting gas other than hydrogen sulfide in the gas. The second gas sensor having a second response characteristic and located on the downstream side of the hydrogen sulfide removing unit has a second response characteristic with respect to a coexisting gas other than hydrogen sulfide in the gas. The two response characteristics are the same, and a calculation unit that calculates the concentration of hydrogen sulfide that accompanies defecation using the first response characteristic of the first gas sensor is provided. That.

排便ガス中の硫化水素以外の共存ガスによる影響を除去し、硫化水素を精度よく測定することができる。 The influence of coexisting gases other than hydrogen sulfide in the defecation gas can be removed, and hydrogen sulfide can be accurately measured.

本発明を実施するための最良の形態を説明するのに先立って、本発明の作用効果について説明する。 Prior to describing the best mode for carrying out the present invention, the function and effect of the present invention will be described.

本発明による第一の健康状態測定装置は、排便時に併発するガスのガス濃度を測定する複数のガスセンサを備える健康状態測定装置であって、前記ガスセンサはそれぞれ前記ガスのうち硫化水素に対する第1応答特性と、前記ガスのうち硫化水素以外の共存ガスに対する第2応答特性を有し、それぞれの前記ガスセンサで前記第1応答特性どうしと前記第2応答特性どうしの少なくとも一方が異なり、それぞれの前記ガスセンサの前記第1応答特性を用いて排便時に併発する硫化水素の濃度を演算する演算部を備えることを特徴とする。
本発明によれば、硫化水素に対する第1応答特性と硫化水素以外のガスに対する第2応答特性を有する性能の異なる二つのセンサの出力から、排泄ガス中の硫化水素の濃度を精度良く測定して健康状態を推定する健康状態測定装置を提供することができる。
本発明による第2の健康状態測定装置は、排便時に併発するガスのガス濃度を測定する複数のガスセンサを備える健康状態測定装置であって、前記複数のガスセンサの間に硫化水素除去部を備え、前記硫化水素除去部の上流側に位置する第1ガスセンサは、前記ガスのうち硫化水素に対する第1応答特性と、前記ガスのうち硫化水素以外の共存ガスに対する第2応答特性を有し、前記硫化水素除去部の下流側に位置する第2ガスセンサは、前記ガスのうち硫化水素以外の共存ガスに対する第2応答特性を有し、それぞれの前記ガスセンサで前記第2応答特性どうしが異なり、前記第1ガスセンサの前記第1応答特性、第1ガスセンサの前記第2応答特性および前記第2ガスセンサの前記第2応答特性を用いて排便時に併発する硫化水素の濃度を演算する演算部を備えることを特徴とする。
本発明によれば、2つのガスセンサの間に硫化水素除去部を備えるので、排泄ガス中の硫化水素の濃度を精度良く測定して健康状態を推定する健康状態測定装置を提供することができる。
本発明による第3の健康状態測定装置は、排便時に併発するガスのガス濃度を測定する複数のガスセンサを備える健康状態測定装置であって、前記複数のガスセンサの間に硫化水素除去部を備え、前記硫化水素除去部の上流側に位置する第1ガスセンサは、前記ガスのうち硫化水素に対する第1応答特性と、前記ガスのうち硫化水素以外の共存ガスに対する第2応答特性を有し、前記硫化水素除去部の下流側に位置する第2ガスセンサは、前記ガスのうち硫化水素以外の共存ガスに対する第2応答特性を有し、それぞれの前記ガスセンサで前記第2応答特性どうしが同一であり、前記第1ガスセンサの前記第1応答特性を用いて排便時に併発する硫化水素の濃度を演算する演算部を備えることを特徴とする。
本発明によれば、硫化水素以外の成分に対して同一の応答特性を備えるガスセンサを使用することにより、硫化水素に対する応答特性のみ利用して硫化水素濃度を演算するので、演算部を簡略化することができる。
A first health condition measuring apparatus according to the present invention is a health condition measuring apparatus including a plurality of gas sensors that measure gas concentrations of gas that is generated at the time of defecation, wherein each of the gas sensors has a first response to hydrogen sulfide in the gas. And a second response characteristic with respect to a coexisting gas other than hydrogen sulfide in the gas, and at least one of the first response characteristic and the second response characteristic is different in each gas sensor, and each of the gas sensors And a calculation unit that calculates the concentration of hydrogen sulfide that accompanies defecation using the first response characteristic.
According to the present invention, the concentration of hydrogen sulfide in excreted gas is accurately measured from the outputs of two sensors having different performances having a first response characteristic for hydrogen sulfide and a second response characteristic for a gas other than hydrogen sulfide. A health condition measuring apparatus for estimating a health condition can be provided.
The second health condition measuring device according to the present invention is a health condition measuring device comprising a plurality of gas sensors for measuring the gas concentration of the gas coexisting during defecation, comprising a hydrogen sulfide removing unit between the plurality of gas sensors, The first gas sensor located on the upstream side of the hydrogen sulfide removing unit has a first response characteristic with respect to hydrogen sulfide in the gas and a second response characteristic with respect to a coexisting gas other than hydrogen sulfide in the gas. The second gas sensor located on the downstream side of the hydrogen removal unit has a second response characteristic with respect to a coexisting gas other than hydrogen sulfide among the gases, and the second response characteristic differs between the gas sensors. Using the first response characteristic of the gas sensor, the second response characteristic of the first gas sensor, and the second response characteristic of the second gas sensor, the concentration of hydrogen sulfide that occurs at the time of defecation Characterized in that it comprises a calculator for calculating.
According to the present invention, since the hydrogen sulfide removing unit is provided between the two gas sensors, it is possible to provide a health condition measuring apparatus that accurately measures the concentration of hydrogen sulfide in excreted gas and estimates the health condition.
A third health condition measuring device according to the present invention is a health condition measuring device comprising a plurality of gas sensors for measuring the gas concentration of the gas coexisting during defecation, comprising a hydrogen sulfide removing unit between the plurality of gas sensors, The first gas sensor located on the upstream side of the hydrogen sulfide removing unit has a first response characteristic with respect to hydrogen sulfide in the gas and a second response characteristic with respect to a coexisting gas other than hydrogen sulfide in the gas. The second gas sensor located on the downstream side of the hydrogen removal unit has a second response characteristic with respect to a coexisting gas other than hydrogen sulfide among the gases, and the second response characteristics are the same among the gas sensors, A calculation unit is provided that calculates the concentration of hydrogen sulfide that accompanies defecation using the first response characteristic of the first gas sensor.
According to the present invention, by using a gas sensor having the same response characteristic for components other than hydrogen sulfide, the hydrogen sulfide concentration is calculated using only the response characteristic for hydrogen sulfide, thus simplifying the calculation unit. be able to.

以下に添付図面に基づいて本発明の実施形態を具体的に説明する。まず第一の実施例を図1から図2に基いて説明する。 Embodiments of the present invention will be specifically described below with reference to the accompanying drawings. First, a first embodiment will be described with reference to FIGS.

図1は、本発明の健康状態測定装置を搭載した人体洗浄装置組込タイプ洋式便器の一例を示す(部分透視)外観図である。 FIG. 1 is an external view (partial perspective view) showing an example of a Western-style toilet with a built-in human body cleaning device equipped with the health condition measuring device of the present invention.

便器1の便座2と便鉢3周縁の頂部との間に設けたスペースを利用して脱臭ファン用排気通路4が設置されている。脱臭ファン用排気通路4内には、脱臭ファン5、およびふたつのガスセンサからなるガスセンサ7が取り付けられている。 The exhaust passage 4 for a deodorizing fan is installed using the space provided between the toilet seat 2 of the toilet bowl 1 and the top of the toilet bowl 3 periphery. A deodorizing fan 5 and a gas sensor 7 including two gas sensors are attached in the exhaust passage 4 for the deodorizing fan.

また、制御部8および演算部9は一体化して便座2の後部内に組み込まれ、さらに、制御部8により算出された結果である腸内状態指標データの表示部10が、人体洗浄装置の操作パネル11に組み込まれている。ガスセンサ7と演算部9とのデータ交換は結線により、また制御部8と表示部10とのデータ交換は赤外線により行っている。なお、演算部9はガス濃度を演算する演算機能の外に、データ記憶部およびガスセンサ7を制御するガスセンサ制御部を備えている。また、制御部8は得られた硫化水素濃度を含めた測定結果から腸内状態指標に変換する機能を担う。 In addition, the control unit 8 and the calculation unit 9 are integrated and incorporated in the rear part of the toilet seat 2, and the display unit 10 of intestinal state index data, which is a result calculated by the control unit 8, operates the human body washing apparatus. It is incorporated in the panel 11. Data exchange between the gas sensor 7 and the calculation unit 9 is performed by connection, and data exchange between the control unit 8 and the display unit 10 is performed by infrared rays. In addition to the calculation function for calculating the gas concentration, the calculation unit 9 includes a data storage unit and a gas sensor control unit for controlling the gas sensor 7. Further, the control unit 8 has a function of converting the obtained measurement result including the hydrogen sulfide concentration into an intestinal state index.

図2は本発明の健康状態測定装置の第1実施例を示す概念図である。脱臭ファン用排気通路4内に、風上側から順に脱臭ファン5、ガスセンサ21、ガスセンサ22が配置されている。 FIG. 2 is a conceptual diagram showing a first embodiment of the health condition measuring apparatus of the present invention. A deodorizing fan 5, a gas sensor 21, and a gas sensor 22 are arranged in this order from the windward side in the exhaust passage 4 for the deodorizing fan.

演算部9が測定開始信号を同時にガスセンサ21とガスセンサ22に送信し両ガスセンサが作動し始めると、センサに接するガスのガス濃度に応じた出力信号が得られる。ガスセンサ21とガスセンサ22で得られたセンサ出力信号が演算部9に送られ、時系列的に記憶される。また、演算部9の測定終了信号によって両ガスセンサの作動が終了し、センサ出力の信号の記録が終了する。続いて、演算部9では後述の方法にしたがって記憶されたセンサの出力信号からガス濃度を求め、その結果を制御部8に送信し、そこで腸内状態指標を推算し、得られた腸内状態指標が表示部10で表示される。
次に本実施例の演算部9による硫化水素濃度の算出について詳細に説明する。
ガスセンサ21とガスセンサ22はそれぞれ硫化水素に対する第1応答特性および共存ガス(本実施例では水素)に対する第2応答特性を有する。図3はガス濃度とセンサの出力信号との関係から両センサの応答特性に示す概念図である。センサの出力信号はガス濃度と直線的な関係になるように加工されている。図示のように、ガスセンサ21は傾きがαとなる硫化水素に対する第1応答特性、および傾きがβとなる共存ガスの水素に対する第2応答特性を示す。一方、ガスセンサ22も傾きがαとなる硫化水素に対する第1応答特性、および傾きがβとなる共存ガスの水素に対する第2応答特性を示す。ガスセンサ21とガスセンサ22の出力をそれぞれV1とV2とし、硫化水素濃度および水素濃度をそれぞれ[H2S] と[H2]とすると、出力とガス濃度との間に以下の関係が成り立つ。
V1=α[H2S]+β[H2] 式1
V2=α[H2S]+β[H2] 式2
式1と式2から、硫化水素濃度[H2S]が以下の式により求まる:
[H2S]=(V1β−V2β)/(αβ−α2β) 式3
式3から、ガスセンサ21とガスセンサ22の第1応答特性と第2応答特性を用いて、センサの出力から硫化水素の濃度を算出することができる。
以下硫化水素濃度を演算する演算部9の動作に基いて本実施例における硫化水素濃度の測定をさらに説明する。
演算部9は第1演算部と第2演算部を含む。演算部9の第一演算部では前述通り記憶された測定開始から測定終了までのガスセンサ21とガスセンサ22の出力信号データから、それぞれ出力信号の最大値Vp1およびVp2を探し出す。次に、出力信号の最大値Vp1およびVp2をそのままの値、またはそれぞれのガスセンサの最小出力をベースとした相対値をそれぞれガスセンサ21およびガスセンサ22の出力V1およびV2とする。第2演算部では、ガスセンサ21とガスセンサ22の第一応答特性(図3または式3のα、α)および第2応答特性(図3または式3のβ、β)から導いたセンサ出力から硫化水素濃度へ変換する変換表が予め記憶されており、第1演算部で得られたセンサ出力から、記憶されているセンサ出力を硫化水素濃度への変換表を用いて、センサの出力信号に対応する硫化水素濃度を算出する。
以上本発明の第一実施例について説明した。本実施例ではガスセンサ21とガスセンサ22の第1応答特性どうしおよび第2応答特性どうしがともに異なっているが、両特性どうしのどちらか一方が異なるだけでもよい。例えば、第1応答特性どうしが異なり、第2応答特性どうしが同じである場合、式3が次のようになり、第1応答特性のみ用いて硫化水素の濃度を算出することができる。
[H2S]=(V1−V2)/(α−α) 式4)
また、センサの設置場所に関しても、本実施例ではガスセンサ21とガスセンサ22は脱臭ファン用排気通路内に設置しているが、両センサに接する排泄ガスの濃度が実質的に同じであることが担保されれば、他の場所、例えばトイレ装置の便鉢部や便座周辺に設置してもよい。
When the calculation unit 9 simultaneously transmits a measurement start signal to the gas sensor 21 and the gas sensor 22 and both gas sensors start to operate, an output signal corresponding to the gas concentration of the gas in contact with the sensor is obtained. Sensor output signals obtained by the gas sensor 21 and the gas sensor 22 are sent to the calculation unit 9 and stored in time series. Further, the operation of both gas sensors is ended by the measurement end signal of the calculation unit 9, and the recording of the sensor output signal is ended. Subsequently, the calculation unit 9 obtains the gas concentration from the sensor output signal stored in accordance with the method described later, and transmits the result to the control unit 8, where the intestinal state index is estimated, and the obtained intestinal state is obtained. The indicator is displayed on the display unit 10.
Next, calculation of the hydrogen sulfide concentration by the calculation unit 9 of the present embodiment will be described in detail.
Each of the gas sensor 21 and the gas sensor 22 has a first response characteristic for hydrogen sulfide and a second response characteristic for a coexisting gas (hydrogen in this embodiment). FIG. 3 is a conceptual diagram showing response characteristics of both sensors from the relationship between the gas concentration and the output signal of the sensor. The output signal of the sensor is processed so as to have a linear relationship with the gas concentration. As shown in the figure, the gas sensor 21 exhibits a first response characteristic with respect to hydrogen sulfide having an inclination of α 1 and a second response characteristic with respect to hydrogen of the coexisting gas having an inclination of β 1 . On the other hand, the gas sensor 22 also exhibits a first response characteristic for hydrogen sulfide having an inclination of α 2 and a second response characteristic for hydrogen of a coexisting gas having an inclination of β 2 . When the outputs of the gas sensor 21 and the gas sensor 22 are V 1 and V 2 , and the hydrogen sulfide concentration and the hydrogen concentration are [H 2 S] and [H 2 ], respectively, the following relationship is established between the output and the gas concentration: .
V 1 = α 1 [H 2 S] + β 1 [H 2 ] Equation 1
V 2 = α 2 [H 2 S] + β 2 [H 2 ] Equation 2
From Equation 1 and Equation 2, the hydrogen sulfide concentration [H 2 S] is determined by the following equation:
[H 2 S] = (V 1 β 2 −V 2 β 1 ) / (α 1 β 2 −α 2 β 1 ) Equation 3
From Equation 3, the concentration of hydrogen sulfide can be calculated from the output of the sensor using the first response characteristic and the second response characteristic of the gas sensor 21 and the gas sensor 22.
Hereinafter, the measurement of the hydrogen sulfide concentration in the present embodiment will be further described based on the operation of the calculation unit 9 for calculating the hydrogen sulfide concentration.
The calculation unit 9 includes a first calculation unit and a second calculation unit. The first calculation unit of the calculation unit 9 searches for the maximum values Vp1 and Vp2 of the output signals from the output signal data of the gas sensor 21 and the gas sensor 22 from the measurement start to the measurement end stored as described above. Then, as it is the value maximum value Vp1 and Vp2 of the output signal, or based on the minimum output of each gas sensor to the relative value and the output V 1 and V 2, respectively the gas sensor 21 and the gas sensor 22. In the 2nd calculating part, it derived from the 1st response characteristic ((alpha) 1 , (alpha) 2 of FIG. 3 or Formula 3) and the 2nd response characteristic ((beta) 1 , (beta) 2 of FIG. 3 or Formula 3) of the gas sensor 21 and the gas sensor 22. A conversion table for converting the sensor output to the hydrogen sulfide concentration is stored in advance, and the sensor output stored in the first calculation unit is used to convert the stored sensor output to the hydrogen sulfide concentration. The hydrogen sulfide concentration corresponding to the output signal is calculated.
The first embodiment of the present invention has been described above. In this embodiment, the first response characteristic and the second response characteristic of the gas sensor 21 and the gas sensor 22 are different from each other, but either one of the two characteristics may be different. For example, when the first response characteristics are different and the second response characteristics are the same, Equation 3 becomes as follows, and the concentration of hydrogen sulfide can be calculated using only the first response characteristics.
[H 2 S] = (V 1 −V 2 ) / (α 1 −α 2 ) Equation 4)
Further, regarding the sensor installation location, in this embodiment, the gas sensor 21 and the gas sensor 22 are installed in the exhaust passage for the deodorizing fan, but it is ensured that the concentration of excretion gas in contact with both sensors is substantially the same. If it is done, you may install in other places, for example, the toilet bowl part and toilet seat periphery of a toilet apparatus.

次に、本発明の健康状態測定装置の第2実施例について説明する。図4は本発明の健康状態測定装置の第2実施例を示す概念図である。脱臭ファン用排気通路4内に、ガスの流れの上流側から順に脱臭ファン5、第1ガスセンサ24、硫化水素除去部である脱臭カートリッジ23、および第2ガスセンサ25が配置されている。 Next, a second embodiment of the health condition measuring apparatus of the present invention will be described. FIG. 4 is a conceptual diagram showing a second embodiment of the health condition measuring apparatus of the present invention. A deodorizing fan 5, a first gas sensor 24, a deodorizing cartridge 23 that is a hydrogen sulfide removing unit, and a second gas sensor 25 are disposed in the deodorizing fan exhaust passage 4 in order from the upstream side of the gas flow.

演算部9が測定開始信号を同時に第1ガスセンサ24と第2ガスセンサ25に送信し両ガスセンサが作動し始めると、センサに接するガスのガス濃度に応じた出力信号が得られる。ガスセンサ21とガスセンサ22で得られたセンサ出力信号が演算部9に送られ、時系列的に記憶される。また、演算部9の測定終了信号によって両ガスセンサの作動が終了し、センサ出力の信号の記録が終了する。続いて、演算部9では後述の方法にしたがって記憶されたセンサの出力信号からガス濃度を求め、その結果を制御部8に送信し、そこで腸内状態指標を推算し、得られた腸内状態指標が表示部10で表示される。
本実施例において、硫化水素除去部の上流側に配置されている第1ガスセンサ24は硫化水素に対する第1応答特性および共存ガス(本実施例では水素)に対する第2応答特性を有する。また、硫化水素除去部の下流側に配置されている第2ガスセンサ25は共存ガス(本実施例では水素)に対する第2応答特性を有する。図5はガス濃度とセンサの出力信号との関係から両センサの応答特性に示す概念図である。センサの出力信号はガス濃度と直線的な関係になるように加工されている。図示するように、第1ガスセンサ24は傾きがαとなる硫化水素に対する第1応答特性、および傾きがβとなる共存ガスの水素に対する第2応答特性を有する。一方、第2ガスセンサ25は傾きがβとなる共存ガスの水素に対する第2応答特性を有する。第一ガスセンサ24と第2ガスセンサ25の出力をそれぞれV1とV2とし、硫化水素濃度および水素濃度をそれぞれ[H2S] と[H2]とすると、出力とガス濃度との間に以下の関係が成り立つ。
V1=α[H2S]+β[H2] 式5
V2= β[H2] 式6
硫化水素除去部によって硫化水素が除去されているので、式6に示すように、第2ガスセンサ25の出力に硫化水素による寄与が含まれていない。式5と式6から、硫化水素濃度[H2S]が以下の式により求まる:
[H2S]=(V1β−V2β)/αβ 式7
硫化水素濃度を演算する演算部9は第1の実施例と同様に、第1演算部と第2演算部を含む。第1演算部では第1実施例と同様な動作で、第1ガスセンサ24および第2ガスセンサ25の出力V1およびV2を求める。第2演算部では、第1ガスセンサ24第1応答特性(図5または式7のα)および第1ガスセンサ24と第2ガスセンサ25の第2応答特性(図5または式7のβ、β)から導いたセンサ出力から硫化水素濃度へ変換する変換表が予め記憶されており、第1演算部で得られたセンサ出力V1およびV2から、記憶されているセンサ出力を硫化水素濃度への変換表を用いて、センサの出力信号に対応する硫化水素濃度を算出する。
以上本発明の第2実施例について説明した。続いて本発明の第3の実施例について説明する。
図6は本発明の健康状態測定装置の第3実施例を示す概念図である。本実施例の装置構成は図4に示す第2実施例と同様であるが、硫化水素除去部23の上流側に配置されている第1ガスセンサ26と硫化水素除去部23の下流側に配置されている第2ガスセンサ27が共存ガス(本実施例では水素)に対して同一の第2応答特性を有する点で異なる。図7はガス濃度とセンサの出力信号との関係から両センサの応答特性に示す概念図である。センサの出力信号はガス濃度と直線的な関係になるように加工されている。図示するように、第1ガスセンサ26と第2ガスセンサ27は共に傾きがβとなる共存ガスの水素に対する第2応答特性を有する。一方、第1ガスセンサ26は傾きがαとなる硫化水素に対する第1応答特性を有する。第一ガスセンサ26と第2ガスセンサ27の出力をそれぞれV1とV2とし、硫化水素濃度および水素濃度をそれぞれ[H2S] と[H2]とすると、出力とガス濃度との間に以下の関係が成り立つ。
V1=α[H2S]+β[H2] 式8
V2= β[H2] 式9
硫化水素除去部によって硫化水素が除去されているので、式9に示すように、第2ガスセンサ27の出力に硫化水素による寄与が含まれていない。式8と式9から、硫化水素濃度[H2S]が以下の式により求まる:
[H2S]=(V1−V2)/α 式10
すなわち、本実施例では、第一ガスセンサ26の硫化水素に対する第1応答特性のみ用いて硫化水素の濃度を算出する。
硫化水素濃度を演算する演算部9は第1の実施例と同様に、第1演算部と第2演算部を含む。第一演算部では第1の実施例と同様な動作で、第1ガスセンサ26および第2ガスセンサ27の出力V1およびV2を求める。第2演算部では、第1ガスセンサ26の第一応答特性(図7または式10のα)から導いたセンサ出力から硫化水素濃度へ変換する変換表が予め記憶されており、第1演算部で得られたセンサ出力V1およびV2から、記憶されているセンサ出力を硫化水素濃度への変換表を用いて、センサの出力信号に対応する硫化水素濃度を算出する。
以上、3つの実施例を用いて本発明の健康状態測定装置の構成および硫化水素濃度から腸内状態を測定する動作について説明した。
最後に、本発明の健康状態測定装置を使用した健康状態測定方法の手順を例示して説明する。
When the calculation unit 9 simultaneously transmits a measurement start signal to the first gas sensor 24 and the second gas sensor 25 and both gas sensors start to operate, an output signal corresponding to the gas concentration of the gas in contact with the sensor is obtained. Sensor output signals obtained by the gas sensor 21 and the gas sensor 22 are sent to the calculation unit 9 and stored in time series. Further, the operation of both gas sensors is ended by the measurement end signal of the calculation unit 9, and the recording of the sensor output signal is ended. Subsequently, the calculation unit 9 obtains the gas concentration from the sensor output signal stored in accordance with the method described later, and transmits the result to the control unit 8, where the intestinal state index is estimated, and the obtained intestinal state is obtained. The indicator is displayed on the display unit 10.
In the present embodiment, the first gas sensor 24 arranged on the upstream side of the hydrogen sulfide removing section has a first response characteristic for hydrogen sulfide and a second response characteristic for a coexisting gas (hydrogen in this embodiment). Further, the second gas sensor 25 arranged on the downstream side of the hydrogen sulfide removing unit has a second response characteristic with respect to the coexisting gas (hydrogen in this embodiment). FIG. 5 is a conceptual diagram showing response characteristics of both sensors from the relationship between the gas concentration and the output signal of the sensor. The output signal of the sensor is processed so as to have a linear relationship with the gas concentration. As shown in the figure, the first gas sensor 24 has a first response characteristic for hydrogen sulfide having an inclination of α 1 and a second response characteristic for hydrogen of a coexisting gas having an inclination of β 1 . On the other hand, the second gas sensor 25 has a second response characteristic against hydrogen coexistence gas inclination is beta 2. Assuming that the outputs of the first gas sensor 24 and the second gas sensor 25 are V 1 and V 2 , respectively, and the hydrogen sulfide concentration and the hydrogen concentration are [H 2 S] and [H 2 ], respectively, The relationship holds.
V 1 = α 1 [H 2 S] + β 1 [H 2 ] Equation 5
V 2 = β 2 [H 2 ] Equation 6
Since hydrogen sulfide is removed by the hydrogen sulfide removal unit, as shown in Equation 6, the contribution of hydrogen sulfide is not included in the output of the second gas sensor 25. From Equation 5 and Equation 6, the hydrogen sulfide concentration [H 2 S] is determined by the following equation:
[H 2 S] = (V 1 β 2 −V 2 β 1 ) / α 1 β 2 Formula 7
Similar to the first embodiment, the calculation unit 9 that calculates the hydrogen sulfide concentration includes a first calculation unit and a second calculation unit. The first calculation unit obtains the outputs V1 and V2 of the first gas sensor 24 and the second gas sensor 25 by the same operation as in the first embodiment. In the second arithmetic unit, the first response characteristic of the first gas sensor 24 (α 1 in FIG. 5 or Expression 7) and the second response characteristics of the first gas sensor 24 and the second gas sensor 25 (β 1 , β in FIG. 5 or Expression 7). 2 ) A conversion table for converting the sensor output derived from 2 ) into the hydrogen sulfide concentration is stored in advance, and the stored sensor output is converted into the hydrogen sulfide concentration from the sensor outputs V 1 and V 2 obtained by the first calculation unit. Using the conversion table, the hydrogen sulfide concentration corresponding to the output signal of the sensor is calculated.
The second embodiment of the present invention has been described above. Next, a third embodiment of the present invention will be described.
FIG. 6 is a conceptual diagram showing a third embodiment of the health condition measuring apparatus of the present invention. The apparatus configuration of the present embodiment is the same as that of the second embodiment shown in FIG. 4 except that the first gas sensor 26 disposed on the upstream side of the hydrogen sulfide removing unit 23 and the downstream side of the hydrogen sulfide removing unit 23 are disposed. The second gas sensor 27 is different in that it has the same second response characteristic with respect to the coexisting gas (hydrogen in this embodiment). FIG. 7 is a conceptual diagram showing response characteristics of both sensors from the relationship between the gas concentration and the output signal of the sensor. The output signal of the sensor is processed so as to have a linear relationship with the gas concentration. As shown in the figure, both the first gas sensor 26 and the second gas sensor 27 have a second response characteristic with respect to hydrogen of the coexisting gas having an inclination of β. On the other hand, the first gas sensor 26 has a first response characteristic with respect to hydrogen sulfide having an inclination of α 1 . Assuming that the outputs of the first gas sensor 26 and the second gas sensor 27 are V 1 and V 2 respectively, and the hydrogen sulfide concentration and the hydrogen concentration are [H 2 S] and [H 2 ], respectively, The relationship holds.
V 1 = α 1 [H 2 S] + β [H 2 ] Equation 8
V 2 = β [H 2 ] Equation 9
Since hydrogen sulfide is removed by the hydrogen sulfide removal unit, as shown in Expression 9, the output of the second gas sensor 27 does not include the contribution of hydrogen sulfide. From equations 8 and 9, the hydrogen sulfide concentration [H 2 S] is determined by the following equation:
[H 2 S] = (V 1 −V 2 ) / α 1 formula 10
That is, in this embodiment, the concentration of hydrogen sulfide is calculated using only the first response characteristic of the first gas sensor 26 with respect to hydrogen sulfide.
Similar to the first embodiment, the calculation unit 9 that calculates the hydrogen sulfide concentration includes a first calculation unit and a second calculation unit. The first calculation unit obtains the outputs V 1 and V 2 of the first gas sensor 26 and the second gas sensor 27 by the same operation as in the first embodiment. In the second calculation unit, a conversion table for converting the sensor output derived from the first response characteristic of the first gas sensor 26 (α 1 in FIG. 7 or Equation 10) into the hydrogen sulfide concentration is stored in advance, and the first calculation unit From the sensor outputs V 1 and V 2 obtained in step 1 , the stored sensor output is converted into the hydrogen sulfide concentration, and the hydrogen sulfide concentration corresponding to the sensor output signal is calculated.
The operation of measuring the intestinal state from the configuration and the hydrogen sulfide concentration of the health condition measuring apparatus of the present invention has been described above using the three embodiments.
Finally, the procedure of the health condition measuring method using the health condition measuring apparatus of the present invention will be exemplified and described.

図8は、本発明の健康状態測定装置(洋式便器に付設された衛生洗浄便座装置に内蔵)を使用した健康状態測定方法の手順を示す一例である。使用者(以後、「ユーザ」と呼ぶ。)の動作を左側に、便座装置が行う処理(健康状態測定装置の処理を含む)を右側に別けて表示した。 FIG. 8 is an example showing a procedure of a health condition measuring method using the health condition measuring apparatus of the present invention (built in a sanitary washing toilet seat apparatus attached to a Western-style toilet). The operation of the user (hereinafter referred to as “user”) is displayed on the left side, and the process performed by the toilet seat device (including the process of the health condition measuring apparatus) is displayed separately on the right side.

本図の流れの通り、ユーザはトイレ内に入室し排便をして退室するのであるが、このトイレには本発明の健康状態測定装置が取り付けてあるため、退室する前には自分の腸内のpH推定値を表示部10に表示されることで、その日の体調を知り、あるいは継続的に測定していた場合は経時的な体調の変化を知ることができる。 As shown in the flow of this figure, the user enters the toilet, defecates, and then exits, but since the health condition measuring device of the present invention is attached to this toilet, By displaying the estimated pH value on the display unit 10, it is possible to know the physical condition of the day, or to know the change in physical condition over time when continuously measured.

まずユーザが入室すると人体検知センサによって入室が検知され、2つのガスセンサからなるガスセンサ7が同時に起動される。人体検知センサを使わない場合には、ユーザが健康状態測定装置の電源を手動で入れてもよい。 First, when a user enters a room, the human body detection sensor detects the entry, and the gas sensor 7 including two gas sensors is activated simultaneously. When the human body detection sensor is not used, the user may manually turn on the health condition measuring device.

ユーザが着座すると着座センサが着座を検知し、脱臭ファン5の起動後にガスセンサ7が記録および記憶を開始する。着座センサを使わずにユーザが各センサの始動スイッチを押してもよい。ここで稼動開始時のセンサの時刻をt1とし、その時刻に対応する二酸化炭素2つのガスセンサの出力値をそれぞれV11とV21と呼ぶ。 When the user is seated, the seating sensor detects the seating, and after the deodorizing fan 5 is activated, the gas sensor 7 starts recording and storage. The user may press the start switch of each sensor without using the seating sensor. Here, the time of the sensor at the start of operation is defined as t1, and the output values of the two carbon dioxide gas sensors corresponding to the time are referred to as V11 and V21, respectively.

ユーザが排便を開始し終了するまで、ガスセンサ7は一定時間tx、たとえば1秒おきに両ガスセンサの出力信号V1x、V2xを検出し、それぞれ演算部9に書き込む。 Until the user starts and finishes defecation, the gas sensor 7 detects the output signals V1x and V2x of both gas sensors at a predetermined time tx, for example, every second, and writes them to the calculation unit 9 respectively.

排便終了後、ユーザが人体洗浄を開始する。このとき、洗浄ボタンと連動させてガスセンサ7の記録を終了させる。排便終了時の時間t2とガスセンサ7のそのときの検知データVV12とV22が記憶される。なお、排便前または排便中に洗浄ボタンが使われるケースもあることを考慮する場合は、洗浄ボタンと連動させずにユーザが手動で記憶終了させる形式としてもよい。 After defecation ends, the user starts washing the human body. At this time, the recording of the gas sensor 7 is terminated in conjunction with the cleaning button. The time t2 at the end of the defecation and the detection data VV12 and V22 at that time of the gas sensor 7 are stored. When considering that the washing button may be used before or during defecation, the user may manually terminate the storage without interlocking with the washing button.

演算部9の第1演算部では、まずt1〜t2の範囲でそれぞれのガスセンサの出力の最大値(V1maxまたはV2max)を検索する。そして最大値そのもの、またはセンサの最小出力をベースとした相対値をそれぞれのセンサの出力V1およびV2算出する。そして演算部9の第2演算部では予め演算部に記憶されている両ガスセンサ第1応答特性おとび第2応答特性から導かれたガスセンサの出力V1およびV2と硫化水素濃度との対応表から硫化水素濃度を算出する。 The first calculation unit of the calculation unit 9 first searches for the maximum value (V1max or V2max) of the output of each gas sensor in the range of t1 to t2. Then, the maximum value itself or a relative value based on the minimum output of the sensor is calculated as outputs V 1 and V 2 of the respective sensors. The correspondence table of the second output V 1 and V 2 and the concentration of hydrogen sulfide derived from the second response characteristic jump Contact both gas sensor first response characteristics stored in advance in the arithmetic unit gas sensor in the calculating portion of the calculation unit 9 The hydrogen sulfide concentration is calculated from

最後に、制御部8では、硫化水素濃度をそのまま腸内状態指標として、またはさらに別の腸内状態指標に変換してユーザに表示部10等により報知する。 Finally, the control unit 8 notifies the user of the hydrogen sulfide concentration as it is as an intestinal state index or further converted into another intestinal state index through the display unit 10 or the like.

ユーザが離座すると、それを着座センサが感知し脱臭ファン5が停止する。そしてユーザが退室すると人体検知センサによって退室が検知され二酸化炭素ガスセンサ7の電源が切られる。
よって使用者が通常のトイレ行為で手軽に自分の腸内状態を知ることができる。
When the user leaves the seat, the seating sensor senses it and the deodorizing fan 5 stops. When the user leaves the room, the human body detection sensor detects the room leaving and the carbon dioxide gas sensor 7 is turned off.
Therefore, the user can easily know his / her intestinal state by a normal toilet action.

本発明の健康状態測定装置を搭載した衛生洗浄便座装置を付設した洋式便器の一例を示す(部分透視)外観図1 is an external view (partial perspective) showing an example of a Western-style toilet equipped with a sanitary washing toilet seat device equipped with the health condition measuring device of the present invention. 本発明の健康状態測定装置の第1実施例を示す概念図The conceptual diagram which shows 1st Example of the health condition measuring apparatus of this invention. 第1実施例におけるガスセンサの応答特性を示す概念図The conceptual diagram which shows the response characteristic of the gas sensor in 1st Example 本発明の健康状態測定装置の第2実施例を示す概念図The conceptual diagram which shows 2nd Example of the health condition measuring apparatus of this invention. 第2実施例におけるガスセンサの応答特性を示す概念図The conceptual diagram which shows the response characteristic of the gas sensor in 2nd Example 本発明の健康状態測定装置の第3実施例を示す概念図The conceptual diagram which shows 3rd Example of the health condition measuring apparatus of this invention. 第3実施例におけるガスセンサの応答特性を示す概念図The conceptual diagram which shows the response characteristic of the gas sensor in 3rd Example 本発明の健康状態測定装置(衛生洗浄便座装置に搭載)を使用した健康状態測定方法の手順を示す一例An example showing the procedure of a health condition measuring method using the health condition measuring apparatus of the present invention (installed in a sanitary washing toilet seat apparatus)

符号の説明Explanation of symbols

1…便器、2…便座、3…便鉢、4…脱臭ファン用排気通路、5…脱臭ファン、7…ガスセンサ、8…制御部、9…演算部、10…表示部、11…操作パネル、21…ガスセンサ1、22…ガスセンサ2、23…脱臭カートリッジ、24…第1ガスセンサ、25…第2ガスセンサ、26…第1ガスセンサ、27…第2ガスセンサ。 DESCRIPTION OF SYMBOLS 1 ... Toilet bowl, 2 ... Toilet seat, 3 ... Toilet bowl, 4 ... Deodorizing fan exhaust passage, 5 ... Deodorizing fan, 7 ... Gas sensor, 8 ... Control part, 9 ... Calculation part, 10 ... Display part, 11 ... Operation panel, DESCRIPTION OF SYMBOLS 21 ... Gas sensor 1, 22 ... Gas sensor 2, 23 ... Deodorizing cartridge, 24 ... 1st gas sensor, 25 ... 2nd gas sensor, 26 ... 1st gas sensor, 27 ... 2nd gas sensor.

Claims (3)

排便時に併発するガスのガス濃度を測定する複数のガスセンサを備える健康状態測定装置であって、
前記ガスセンサはそれぞれ前記ガスのうち硫化水素に対する第1応答特性と、前記ガスのうち硫化水素以外の共存ガスに対する第2応答特性を有し、
それぞれの前記ガスセンサで前記第1応答特性どうしと前記第2応答特性どうしの少なくとも一方が異なり、
それぞれの前記ガスセンサの前記第1応答特性を用いて排便時に併発する硫化水素の濃度を演算する演算部を備えることを特徴とする
健康状態測定装置。
A health condition measuring device comprising a plurality of gas sensors for measuring the gas concentration of gas that coexists during defecation,
Each of the gas sensors has a first response characteristic to hydrogen sulfide in the gas and a second response characteristic to a coexisting gas other than hydrogen sulfide in the gas,
At least one of the first response characteristics and the second response characteristics is different for each of the gas sensors,
It is provided with the calculating part which calculates the density | concentration of the hydrogen sulfide which accompanies at the time of a defecation using the said 1st response characteristic of each said gas sensor.
Health condition measuring device.
排便時に併発するガスのガス濃度を測定する複数のガスセンサを備える健康状態測定装置であって、
前記複数のガスセンサの間に硫化水素除去部を備え、
前記硫化水素除去部の上流側に位置する第1ガスセンサは、
前記ガスのうち硫化水素に対する第1応答特性と、前記ガスのうち硫化水素以外の共存ガスに対する第2応答特性を有し、
前記硫化水素除去部の下流側に位置する第2ガスセンサは、
前記ガスのうち硫化水素以外の共存ガスに対する第2応答特性を有し、
それぞれの前記ガスセンサで前記第2応答特性どうしが異なり、
前記第1ガスセンサの前記第1応答特性、前記第1ガスセンサの前記第2応答特性および前記第2ガスセンサの前記第2応答特性を用いて排便時に併発する硫化水素の濃度を演算する演算部を備えることを特徴とする
健康状態測定装置。
A health condition measuring device comprising a plurality of gas sensors for measuring the gas concentration of gas that coexists during defecation,
A hydrogen sulfide removing unit is provided between the plurality of gas sensors,
The first gas sensor located upstream of the hydrogen sulfide removing unit is
A first response characteristic to hydrogen sulfide of the gas and a second response characteristic to a coexisting gas other than hydrogen sulfide of the gas;
The second gas sensor located downstream of the hydrogen sulfide removing unit is
A second response characteristic to a coexisting gas other than hydrogen sulfide among the gases,
The second response characteristics differ between the gas sensors,
An arithmetic unit is provided for calculating a concentration of hydrogen sulfide that is generated at the time of defecation using the first response characteristic of the first gas sensor, the second response characteristic of the first gas sensor, and the second response characteristic of the second gas sensor. A health condition measuring device characterized by that.
排便時に併発するガスのガス濃度を測定する複数のガスセンサを備える健康状態測定装置であって、
前記複数のガスセンサの間に硫化水素除去部を備え、
前記硫化水素除去部の上流側に位置する第1ガスセンサは、
前記ガスのうち硫化水素に対する第1応答特性と、前記ガスのうち硫化水素以外の共存ガスに対する第2応答特性を有し、
前記硫化水素除去部の下流側に位置する第2ガスセンサは、
前記ガスのうち硫化水素以外の共存ガスに対する第2応答特性を有し、
それぞれの前記ガスセンサで前記第2応答特性どうしが同一であり、
前記第1ガスセンサの前記第1応答特性を用いて排便時に併発する硫化水素の濃度を演算する演算部を備えることを特徴とする
健康状態測定装置。
A health condition measuring device comprising a plurality of gas sensors for measuring the gas concentration of gas that coexists during defecation,
A hydrogen sulfide removing unit is provided between the plurality of gas sensors,
The first gas sensor located upstream of the hydrogen sulfide removing unit is
A first response characteristic to hydrogen sulfide of the gas and a second response characteristic to a coexisting gas other than hydrogen sulfide of the gas;
The second gas sensor located downstream of the hydrogen sulfide removing unit is
A second response characteristic to a coexisting gas other than hydrogen sulfide among the gases,
In each of the gas sensors, the second response characteristics are the same,
A health condition measuring apparatus comprising: a computing unit that computes a concentration of hydrogen sulfide that occurs simultaneously during defecation using the first response characteristic of the first gas sensor.
JP2008102362A 2008-04-10 2008-04-10 Health condition measuring instrument Pending JP2009250922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008102362A JP2009250922A (en) 2008-04-10 2008-04-10 Health condition measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008102362A JP2009250922A (en) 2008-04-10 2008-04-10 Health condition measuring instrument

Publications (1)

Publication Number Publication Date
JP2009250922A true JP2009250922A (en) 2009-10-29

Family

ID=41311779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008102362A Pending JP2009250922A (en) 2008-04-10 2008-04-10 Health condition measuring instrument

Country Status (1)

Country Link
JP (1) JP2009250922A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160223549A1 (en) * 2015-01-30 2016-08-04 Toto Ltd. Biological information measurement system
US20160223552A1 (en) * 2015-01-30 2016-08-04 Toto Ltd. Biological information measurement system
US20160223548A1 (en) * 2015-01-30 2016-08-04 Toto Ltd. Biological information measurement system
US20160223550A1 (en) * 2015-01-30 2016-08-04 Toto Ltd. Biological information measurement system
WO2016121247A1 (en) * 2015-01-30 2016-08-04 Toto株式会社 Biological information measurement system
JP2016143171A (en) * 2015-01-30 2016-08-08 Toto株式会社 Biological information measurement system
CN105832288A (en) * 2015-01-30 2016-08-10 Toto株式会社 Body information detection system
JP2016145806A (en) * 2015-01-30 2016-08-12 Toto株式会社 Biological information measurement system
JP2016145800A (en) * 2015-01-30 2016-08-12 Toto株式会社 Biological information measurement system
JP2016145810A (en) * 2015-01-30 2016-08-12 Toto株式会社 Biological information measurement system
JP2016145808A (en) * 2015-01-30 2016-08-12 Toto株式会社 Biological information measurement system
JP2016145797A (en) * 2015-01-30 2016-08-12 Toto株式会社 Biological information measurement system
JP2016145807A (en) * 2015-01-30 2016-08-12 Toto株式会社 Biological information measurement system
JP2017062221A (en) * 2015-01-30 2017-03-30 Toto株式会社 Biological information measurement system
JP2018500552A (en) * 2014-11-27 2018-01-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Gas sensor system and gas sensing method
WO2023145501A1 (en) * 2022-01-27 2023-08-03 京セラ株式会社 Gas detection device and gas detection system

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018500552A (en) * 2014-11-27 2018-01-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Gas sensor system and gas sensing method
JP2016145800A (en) * 2015-01-30 2016-08-12 Toto株式会社 Biological information measurement system
US20160223550A1 (en) * 2015-01-30 2016-08-04 Toto Ltd. Biological information measurement system
JP2016145808A (en) * 2015-01-30 2016-08-12 Toto株式会社 Biological information measurement system
WO2016121247A1 (en) * 2015-01-30 2016-08-04 Toto株式会社 Biological information measurement system
JP2016143171A (en) * 2015-01-30 2016-08-08 Toto株式会社 Biological information measurement system
CN105842300A (en) * 2015-01-30 2016-08-10 Toto株式会社 Biological information measurement system
CN105842301A (en) * 2015-01-30 2016-08-10 Toto株式会社 Biological information measurement system
CN105832288A (en) * 2015-01-30 2016-08-10 Toto株式会社 Body information detection system
JP2016145811A (en) * 2015-01-30 2016-08-12 Toto株式会社 Biological information measurement system
US20160223549A1 (en) * 2015-01-30 2016-08-04 Toto Ltd. Biological information measurement system
JP2016145810A (en) * 2015-01-30 2016-08-12 Toto株式会社 Biological information measurement system
US20160223548A1 (en) * 2015-01-30 2016-08-04 Toto Ltd. Biological information measurement system
JP2016145806A (en) * 2015-01-30 2016-08-12 Toto株式会社 Biological information measurement system
JP2016145797A (en) * 2015-01-30 2016-08-12 Toto株式会社 Biological information measurement system
JP2016145807A (en) * 2015-01-30 2016-08-12 Toto株式会社 Biological information measurement system
JP2017062221A (en) * 2015-01-30 2017-03-30 Toto株式会社 Biological information measurement system
US20160223552A1 (en) * 2015-01-30 2016-08-04 Toto Ltd. Biological information measurement system
KR101929916B1 (en) * 2015-01-30 2018-12-17 토토 가부시키가이샤 Biological information measurement system
CN110811549A (en) * 2015-01-30 2020-02-21 Toto株式会社 Body information detection system
US10571470B2 (en) 2015-01-30 2020-02-25 Toto Ltd. Biological information measurement system
JP2020056796A (en) * 2015-01-30 2020-04-09 Toto株式会社 Biological information measurement system
WO2023145501A1 (en) * 2022-01-27 2023-08-03 京セラ株式会社 Gas detection device and gas detection system

Similar Documents

Publication Publication Date Title
JP2009250922A (en) Health condition measuring instrument
JP4756460B2 (en) Intestinal state notification device and method
JP5131646B2 (en) Biological information measuring device
JP4385402B2 (en) Intestinal state notification device and method
TWI591571B (en) Biological information measurement system
EP1793891A4 (en) Monitoring, analysis, and regulation of eating habits
JPWO2012165182A1 (en) Biogas detection device and biogas detection method
WO2006091946A3 (en) Reflex tester and method for measurement
JP2009270951A (en) Device for measuring intestinal condition
JP4915568B2 (en) Biological information detection apparatus and sleep environment control system
JP2010175432A (en) Health condition measurement apparatus
JP2005292049A (en) Excretory gas measuring apparatus and method
JP2009288054A (en) Health state measuring device
JP7112134B2 (en) BIOGAS DETECTION DEVICE, METHOD, AND PROGRAM
JP2009250647A (en) Health condition measuring instrument
JP2010002252A (en) Health condition measuring instrument
JP4915339B2 (en) Health condition measuring apparatus and measuring method
JP4849036B2 (en) Health condition measuring apparatus and measuring method
WO2016121247A1 (en) Biological information measurement system
JP2009271038A (en) Device for measuring health condition
JP4992694B2 (en) Health condition measuring device
JP2005152328A (en) Testing apparatus for apnea syndrome
JP6001192B2 (en) Aldehyde-degrading enzyme activity genotype determination device, squamous cell carcinoma occurrence risk determination device, and program
JP5067225B2 (en) Subject state determination device
WO2016098149A1 (en) Substance concentration detection device and substance concentration detection method