JP2009244350A - Multi-tone photomask, method of manufacturing the same, and pattern transfer method - Google Patents

Multi-tone photomask, method of manufacturing the same, and pattern transfer method Download PDF

Info

Publication number
JP2009244350A
JP2009244350A JP2008088064A JP2008088064A JP2009244350A JP 2009244350 A JP2009244350 A JP 2009244350A JP 2008088064 A JP2008088064 A JP 2008088064A JP 2008088064 A JP2008088064 A JP 2008088064A JP 2009244350 A JP2009244350 A JP 2009244350A
Authority
JP
Japan
Prior art keywords
semi
film
light
transmittance
photomask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008088064A
Other languages
Japanese (ja)
Other versions
JP5215019B2 (en
Inventor
Noboru Yamaguchi
昇 山口
Masayuki Miyoshi
将之 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2008088064A priority Critical patent/JP5215019B2/en
Priority to TW098106951A priority patent/TW201001058A/en
Priority to CN2009101297527A priority patent/CN101546116B/en
Publication of JP2009244350A publication Critical patent/JP2009244350A/en
Priority to KR1020120046172A priority patent/KR20120050954A/en
Application granted granted Critical
Publication of JP5215019B2 publication Critical patent/JP5215019B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/34Phase-edge PSM, e.g. chromeless PSM; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-tone photomask of which the variation of in-plane transmittance can be reduced, and to provide a method of manufacturing the same. <P>SOLUTION: In the method of manufacturing the multi-tone photomask, a light-shielding film and a semi-transmissive film transmitting a portion of exposure light are formed on a transparent substrate and are respectively patterned as prescribed to form a transfer pattern including a light-shielding part, a semi-transmissive part transmitting a portion of exposure light, and a light-transmissive part. In this method, the semi-transmissive film and the light-shielding film are patterned by wet etching to form the transfer pattern, and at least part of the semi-transmissive film of the transfer pattern is subjected to surface modification treatment to change an exposure light transmittance of the semi-transmissive film, whereby a transmittance in-plan distribution range of the semi-transmissive part existing in the transfer pattern is reduced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、フォトリソグラフィ工程において使用される多階調フォトマスク及びその製造方法、並びにパターン転写方法に関する。   The present invention relates to a multi-tone photomask used in a photolithography process, a manufacturing method thereof, and a pattern transfer method.

従来より、液晶装置等の電子デバイスの製造においては、フォトリソグラフィ工程を利用し、エッチングされる被加工層上に形成されたレジスト膜に対して、所定のパターンを有するフォトマスクを用いて所定の露光条件下で露光を行ってパターンを転写し、該レジスト膜を現像することによりレジストパターンを形成する。そして、このレジストパターンを階調マスクとして被加工層をエッチングする。   2. Description of the Related Art Conventionally, in the manufacture of electronic devices such as liquid crystal devices, a photolithographic process is used to form a predetermined pattern using a photomask having a predetermined pattern on a resist film formed on a layer to be etched. Exposure is performed under exposure conditions to transfer the pattern, and the resist film is developed to form a resist pattern. Then, the layer to be processed is etched using this resist pattern as a gradation mask.

近年、3階調以上の多階調マスクの有用性が、電子デバイスメーカによって認識され、このような多階調フォトマスクの用途が広がってきている。この3階調以上の多階調フォトマスクにおいては、露光光の一部を透過する半透光膜で構成された半透光部を有する。このような多階調フォトマスクとしては、特許文献1に開示されているものがある。
特開2007−271696号公報
In recent years, the usefulness of multi-tone masks with three or more gray levels has been recognized by electronic device manufacturers, and the use of such multi-tone photo masks has been expanding. This multi-gradation photomask having three or more gradations has a semi-transparent portion composed of a semi-transparent film that transmits part of the exposure light. As such a multi-tone photomask, there is one disclosed in Patent Document 1.
JP 2007-271696 A

一方、このような多階調フォトマスクは、液晶表示装置製造用の大型フォトマスクとして用いられてきている。この用途のフォトマスクにおいては、フォトマスクにおける面内での透過率のばらつきを小さくすることにより、該マスク使用時に、被転写体上に形成されるレジスト残膜値を一定にすることが重要である。それによって、該被転写体の加工精度や安定性が大きく向上するからである。しかしながら、特許文献1に開示されている技術においては、フォトマスクの個体間での透過率のばらつきを小さくすることを行っているが、フォトマスクにおける面内での透過率のばらつきを小さくするという課題について解決するものではない。   On the other hand, such a multi-tone photomask has been used as a large photomask for manufacturing a liquid crystal display device. In photomasks for this purpose, it is important to keep the resist residual film value formed on the transferred object constant when using the mask by reducing the in-plane transmittance variation in the photomask. is there. This is because the processing accuracy and stability of the transferred object are greatly improved. However, in the technique disclosed in Patent Document 1, the variation in transmittance between individual photomasks is reduced, but the variation in transmittance in the plane of the photomask is reduced. It does not solve the problem.

本発明はかかる点に鑑みてなされたものであり、フォトマスクにおける面内での透過率のばらつきを小さくすることができる多階調フォトマスク及びその製造方法を提供することを目的とする。   The present invention has been made in view of this point, and an object of the present invention is to provide a multi-tone photomask that can reduce in-plane transmittance variation in the photomask and a method of manufacturing the same.

本発明の多階調フォトマスクは、透明基板上に、遮光膜と、露光光の一部を透過する半透光膜とをそれぞれ形成し、それぞれの膜に所定のパターニングを施すことによって、遮光部、露光光の一部を透過する半透光部、透光部を含む転写パターンを形成してなる多階調フォトマスクにおいて、前記半透光膜の少なくとも一部分において、少なくとも表面部分が改質され、かつ、前記転写パターン中に存在する半透光部の透過率面内分布レンジが2%以内であることを特徴とする。   The multi-tone photomask of the present invention forms a light shielding film and a semi-transparent film that transmits a part of the exposure light on a transparent substrate, and performs a predetermined patterning on each film, thereby shielding the light. A multi-tone photomask formed with a transfer pattern including a part, a semi-transparent part that transmits part of exposure light, and a translucent part, and at least a surface part of the semi-transparent film is modified The transmissivity in-plane distribution range of the semi-translucent portion existing in the transfer pattern is within 2%.

本発明の多階調フォトマスクにおいては、前記半透光膜は、金属シリサイドを含む材料で構成されていることが好ましい。   In the multi-tone photomask of the present invention, the semi-transparent film is preferably made of a material containing metal silicide.

本発明の多階調フォトマスクにおいては、前記半透光膜は、実質的に窒素を含まない材料で構成されていることが好ましい。   In the multi-tone photomask of the present invention, it is preferable that the semi-transparent film is made of a material that does not substantially contain nitrogen.

本発明の多階調フォトマスクの製造方法は、透明基板上に、遮光膜と、露光光の一部を透過する半透光膜とが形成されたフォトマスクブランクを用意し、それぞれの膜に所定のパターニングを施すことによって、遮光部、露光光の一部を透過する半透光部、及び透光部を含む転写パターンを形成する多階調フォトマスクの製造方法において、前記半透光膜及び前記遮光膜にそれぞれエッチングによるパターニングを施して、前記転写パターンを形成するパターン形成工程と、前記転写パターンにおける半透光膜の少なくとも一部に対して表面改質処理を行って、前記半透光膜の露光光透過率を変化させ、前記転写パターン中に存在する半透光部の透過率面内分布レンジを減少させる表面改質工程と、を有することを特徴とする。上記エッチングに関し、少なくとも前記半透光膜のエッチングは、ウェットエッチングを適用するときに、本発明の効果が顕著である。   The method for producing a multi-tone photomask of the present invention comprises preparing a photomask blank in which a light-shielding film and a semi-transparent film that transmits part of exposure light are formed on a transparent substrate, In the method of manufacturing a multi-tone photomask for forming a light-shielding portion, a semi-transparent portion that transmits a part of exposure light, and a transfer pattern including the translucent portion by performing predetermined patterning, the semi-transparent film And patterning by etching each of the light shielding film to form the transfer pattern, and performing surface modification treatment on at least a part of the semi-transparent film in the transfer pattern, A surface modification step of changing the exposure light transmittance of the optical film to reduce the transmittance in-plane distribution range of the semi-translucent portion existing in the transfer pattern. With regard to the above-described etching, at least the etching of the semi-transparent film has a remarkable effect when the wet etching is applied.

この方法によれば、面内での半透光部の透過率のばらつきが小さい多階調フォトマスクを得ることができる。また、この方法においては、種々の要因で透過率が低い領域に対して選択的に表面改質処理を施すことができるので、透過率の不適切な部分のみを修正することができ、有効に面内ばらつきを抑えることができる。したがって、表面改質処理は、前記フォトマスク面内の選択された部分に対し、他の部分と異なる処理を行うことを含むことが好ましい。   According to this method, it is possible to obtain a multi-tone photomask with a small variation in transmissivity of the semi-transparent portion in the plane. In addition, in this method, the surface modification treatment can be selectively applied to a region where the transmittance is low due to various factors, so that only an inappropriate portion of the transmittance can be corrected. In-plane variation can be suppressed. Therefore, it is preferable that the surface modification process includes performing a process different from the other parts on the selected part in the photomask surface.

本発明の多階調フォトマスクの製造方法においては、表面改質工程は、前記半透光膜の耐薬性を高める処理を含むことが好ましい。また、本発明の多階調フォトマスクの製造方法においては、前記表面改質処理は、前記転写パターン中の半透光部に対して所定のエネルギーを照射する処理であることが好ましい。   In the method for producing a multi-tone photomask of the present invention, it is preferable that the surface modification step includes a process for increasing the chemical resistance of the semi-translucent film. In the method of manufacturing a multi-tone photomask according to the present invention, it is preferable that the surface modification process is a process of irradiating a semi-transparent part in the transfer pattern with a predetermined energy.

本発明の多階調フォトマスクの製造方法においては、前記表面改質処理は、前記転写パターン中の半透光部に対して加熱を施す処理であることが好ましい。   In the multi-tone photomask manufacturing method of the present invention, it is preferable that the surface modification process is a process of heating the semi-translucent portion in the transfer pattern.

本発明の多階調フォトマスクの製造方法においては、前記パターン形成工程後に、前記複数の半透光部の透過率を測定する工程を有し、前記表面改質工程において、前記測定結果に基づいて、前記転写パターンの複数の半透光部の透過率の面内分布レンジを減少させ、好ましくは2%以下とするように半透光膜の少なくとも一部に対して表面改質処理を行うことが好ましい。なお、前記透過率の測定は、後述する実効透過率の測定であることが好ましい。   In the method of manufacturing a multi-tone photomask of the present invention, the method includes a step of measuring transmittances of the plurality of semi-translucent portions after the pattern forming step, and based on the measurement result in the surface modification step. Then, the surface modification treatment is performed on at least a part of the semi-transparent film so that the in-plane distribution range of the transmissivity of the plurality of semi-transparent parts of the transfer pattern is reduced, and preferably 2% or less. It is preferable. In addition, it is preferable that the measurement of the said transmittance | permeability is a measurement of the effective transmittance | permeability mentioned later.

本発明のパターン転写方法は、上記多階調フォトマスクを用い、露光機による露光光を照射することによって前記多階調フォトマスクの転写パターンを被加工層に転写することを特徴とする。この場合において、前記露光光としてi線〜g線の波長帯を含む露光光を用いることが好ましい。   The pattern transfer method of the present invention is characterized in that the transfer pattern of the multi-tone photomask is transferred to a layer to be processed by irradiating exposure light from an exposure machine using the multi-tone photomask. In this case, it is preferable to use exposure light including a wavelength band of i-line to g-line as the exposure light.

本発明の多階調フォトマスクは、露光光の一部を透過する半透光膜及び遮光膜にそれぞれウェットエッチングによるパターニングを施して、前記転写パターンを形成し、前記転写パターンにおける半透光膜の少なくとも一部に対して表面改質処理を行って、前記半透光膜の露光光透過率を変化させることにより得られる。更には耐薬性を高めることが可能である。この多階調フォトマスクによれば、フォトマスクにおける面内での透過率のばらつきを小さくすることができる。   In the multi-tone photomask of the present invention, the translucent film and the light-shielding film that transmit part of the exposure light are patterned by wet etching to form the transfer pattern, and the translucent film in the transfer pattern It is obtained by subjecting at least a part of the surface modification treatment to change the exposure light transmittance of the semi-translucent film. Furthermore, chemical resistance can be increased. According to this multi-tone photomask, the in-plane transmittance variation of the photomask can be reduced.

以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
多階調のフォトマスクにおいては、半透光部の材料として金属シリサイドを用いることが知られている。しかしながら、この材料は所定の薬剤に対する耐薬性、耐光性などが必ずしも高くない場合がある。液晶表示装置製造用などの大型フォトマスクで使用している多階調フォトマスクでは、半透光膜の材料として、例えばMoSixが有効に使用できるが、その場合、マスク製造工程や欠陥修正工程において用いられる薬液によっては耐薬性が十分とはいえず、フォトマスクブランクの段階で、所望の透過率を有する半透光膜を成膜しても、その後の現像や洗浄の過程で、透過率が変化する問題がある。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
In a multi-tone photomask, it is known to use metal silicide as a material for a semi-translucent portion. However, this material may not necessarily have high chemical resistance, light resistance, etc. for a given drug. In a multi-tone photomask used in large photomasks for liquid crystal display manufacturing, for example, MoSix can be used effectively as a material for a semi-transparent film, but in that case, in the mask manufacturing process or defect correction process Depending on the chemical used, the chemical resistance may not be sufficient, and even if a semi-transparent film having a desired transmittance is formed at the stage of the photomask blank, the transmittance will be increased in the subsequent development and cleaning processes. There are changing problems.

もともとMoSixは、成膜法によって多少の差はあるが、酸やアルカリに対する耐薬性が必ずしも大きくなく、例えばアルカリへの接触によって表面がわずかに溶出し、これによって膜の透過率が変化(増大)することがある。通常、フォトマスクの製造においては、洗浄工程で酸やアルカリを用い、また、レジストの現像工程でアルカリを用いる。これらの工程は、フォトマスクの製造中のフォトリソグラフィごとに行う(例えば、通常の3階調のフォトマスクであれば少なくとも2回)。したがって、酸、アルカリへの接触ごとに、MoSixの表面がダメージを受けることが完全には防止できない。特に、二層目のフォトリソグラフィでは、MoSixがレジスト現像液に接触するため、これによるダメージが懸念される。   Originally, MoSix has a slight difference depending on the film forming method, but the chemical resistance to acid and alkali is not necessarily large. For example, the surface is slightly eluted by contact with alkali, and this changes (increases) the transmittance of the film. There are things to do. Usually, in the production of a photomask, acid or alkali is used in the cleaning process, and alkali is used in the resist development process. These steps are performed for each photolithography during the manufacture of the photomask (for example, at least twice for a normal three-tone photomask). Therefore, it is not possible to completely prevent the surface of MoSix from being damaged every time it comes into contact with acid or alkali. In particular, in the photolithography of the second layer, since MoSix contacts the resist developer, there is a concern about damage due to this.

一方、液晶表示装置等製造用の大型フォトマスクにおいては、サイズが大きいため、真空チャンバ中でドライエッチングを行うことは容易でない。このため、パターニングに際しては、ウェットエッチングが有利である。したがって、半透光膜の材料としては、ウェットエッチングによって適切なエッチング時間で正確にパターンが形成される必要がある。すなわち、半透光膜の材料として薬液耐性が非常に高い材料を用いると、ウェット処理の速度を減少させるなどの不都合がある。   On the other hand, a large photomask for manufacturing a liquid crystal display device or the like has a large size, so that it is not easy to perform dry etching in a vacuum chamber. For this reason, wet etching is advantageous for patterning. Therefore, as a material of the semi-translucent film, it is necessary to form a pattern accurately with an appropriate etching time by wet etching. That is, when a material having a very high chemical resistance is used as the material of the semi-translucent film, there is a disadvantage that the speed of the wet processing is reduced.

ところで、多階調フォトマスクにおいては、フォトマスクを透過する露光光の光量を、部分的に選択的に減少させることによって、被転写体上のレジスト膜に、所定の段差のあるレジストパターンを形成する。このようにすることで、液晶表示装置などの電子デバイス製造工程におけるフォトリソグラフィ工程を簡略化して、2回のフォトリソグラフィ工程を1枚のマスクを用いて行うことができる利点がある。しかしながら、このためには、得ようとする電子デバイスの加工工程(現像、エッチング工程)で必要なレジスト段差を予め算定し、これに応じたレジスト残膜値を安定性よく実現することが肝要である。すなわち、このような所望のレジスト残膜値を作りこむための、多階調フォトマスクの露光光透過率も、正確に制御しなければならない。これは、3階調フォトマスクだけでなく、4階調以上の多階調フォトマスクにおいて益々重要になる。   By the way, in a multi-tone photomask, a resist pattern having a predetermined level difference is formed on a resist film on a transfer object by partially selectively reducing the amount of exposure light transmitted through the photomask. To do. By doing so, there is an advantage that the photolithography process in the manufacturing process of an electronic device such as a liquid crystal display device can be simplified and two photolithography processes can be performed using one mask. However, for this purpose, it is important to calculate in advance the resist step required in the processing steps (development and etching steps) of the electronic device to be obtained, and to realize the resist residual film value corresponding to this in a stable manner. is there. That is, the exposure light transmittance of the multi-tone photomask for creating such a desired resist residual film value must also be accurately controlled. This becomes more important not only in a three-tone photomask but also in a multi-tone photomask having four or more tones.

さらに、洗浄工程、現像工程、レジスト剥離工程などのウェット処理工程は、上述のように大型の基板上に形成された転写パターンに対して等しい条件で施すことが理想であるが、益々大型化している基板のサイズを鑑みると、必ずしも容易ではなく、この過程で面内の不均一が生じた場合には、製品仕様を充足できなくなることもあり得る。   Furthermore, it is ideal that the wet processing steps such as the cleaning step, the development step, and the resist stripping step are performed under the same conditions on the transfer pattern formed on the large substrate as described above, but the size is further increased. Considering the size of the substrate, it is not always easy, and if in-plane non-uniformity occurs in this process, the product specifications may not be satisfied.

そこで、本発明では、パターニング後の半透光部(例えば、MoSixによって形成)に対して所定の表面改質処理を施すことによって、透過率を変化させる。さらに所望の透過率を有するフォトマスクの耐薬性を高め、その後の処理によって、透過率の変動が生じないようにすることができる。この場合において、パターニング後に透過率の検査を行い、該透過率検査の結果に基づき、面内の所定の部分に対して他の部分とは異なる選択的に表面改質処理を施すことができる。   Therefore, in the present invention, the transmittance is changed by applying a predetermined surface modification treatment to the semi-transparent portion (for example, formed of MoSix) after patterning. Furthermore, the chemical resistance of a photomask having a desired transmittance can be increased, and the subsequent treatment can prevent the transmittance from changing. In this case, the transmittance is inspected after patterning, and based on the result of the transmittance inspection, a surface modification process can be selectively performed on a predetermined portion in the plane different from other portions.

ここで、本発明者らは、半透光膜の材料としてMoSixを用い、この半透光膜に対してエネルギーを照射し、又は加熱するといった手段により、表面を改質したときの透過率の変化を調べた。ここでは、エネルギーを照射する処理として、波長172nm、出力40mW/cm2、照射距離3mmの条件での真空紫外線照射処理(VUV処理)を行い、加熱処理として、ハロゲンヒータを用いて透明基板温度を250℃、300℃、400℃に昇温して10分間加熱する処理を行った。その結果を図1に示す。図1から分かるように、半透光膜に対してエネルギーを照射したり、加熱したりすることにより、光透過率が増加した。 Here, the present inventors use MoSix as the material of the semi-transparent film, and the transmittance when the surface is modified by means such as irradiating energy to the semi-transparent film or heating. We examined changes. Here, as a process for irradiating energy, a vacuum ultraviolet ray irradiation process (VUV process) is performed under the conditions of a wavelength of 172 nm, an output of 40 mW / cm 2 , and an irradiation distance of 3 mm, and as a heating process, a transparent substrate temperature is set using a halogen heater. The temperature was raised to 250 ° C., 300 ° C., and 400 ° C. and heated for 10 minutes. The result is shown in FIG. As can be seen from FIG. 1, the light transmittance was increased by irradiating the semi-translucent film with energy or heating it.

そこで、本発明者らは、半透光膜及び遮光膜を成膜したフォトマスクブランクを用意し、それぞれの膜に、ウェットエッチングによる所定のパターニングを施して転写パターンを形成したフォトマスクを作製した。この転写パターンは、同一の半透光部が規則的に配列した繰り返しパターンを有したものを用いた。この転写パターンにおける半透光膜の一部に対して選択的に上記表面改質処理を行うことにより、半透光部の透過率の面内ばらつきを減少させる実験を行った。   Therefore, the present inventors prepared photomask blanks on which a semi-transparent film and a light-shielding film were formed, and produced a photomask in which a transfer pattern was formed by performing predetermined patterning on each film by wet etching. . As this transfer pattern, a pattern having a repeated pattern in which the same semi-transparent portions were regularly arranged was used. An experiment was conducted to reduce in-plane variation in transmittance of the semi-translucent portion by selectively performing the surface modification treatment on a part of the semi-transparent film in the transfer pattern.

図2(a)は、表面改質処理前の、上記転写パターンが形成されたフォトマスクの光透過率分布(i線〜g線に対する)を示す。ここで個々のバブルの大きさは、白バブルが透過率の低い側への変動率、網掛けバブルが透過率の高い側への変動率(相対値)を表す。ここで、白バブルの部分に対し、その透過率の変動率を反映させて選択的に、上記VUV処理を行い、ついで加熱処理を行った。その結果、図2(b)に示すように、透過率の面内分布を減少させることができた。ここで、最終的に、露光光透過率の面内分布を2%以下にすることができた。尚、ここでは行った透過率の測定については後述する。   FIG. 2A shows the light transmittance distribution (for i-line to g-line) of the photomask on which the transfer pattern is formed before the surface modification treatment. Here, the size of each bubble represents the fluctuation rate of the white bubble toward the low transmittance side, and the shaded bubble represents the fluctuation rate (relative value) of the high transmittance side. Here, the VUV treatment was selectively performed on the white bubble portion, reflecting the variation rate of the transmittance, and then the heat treatment was performed. As a result, as shown in FIG. 2B, the in-plane distribution of transmittance could be reduced. Here, finally, the in-plane distribution of the exposure light transmittance could be reduced to 2% or less. Note that the transmittance measurement performed here will be described later.

なお、上記表面改質処理において、VUV処理と加熱処理は、局所的に個々に単独で行っても良いし、同時に行ってもよい。又は、VUV処理を、局所的、又は全体的に、所望の透過率範囲となるように、複数回行っても良い。この場合、複数回の処理の間に透過率測定を行っても良い。さらに、マスク面全体の光透過率増加及び/又は耐薬性を高める目的で、VUV処理又は加熱処理をフォトマスク全面に対して行ってもよい。さらに、同時に両処理を全面に行っても良い。   In the surface modification treatment, the VUV treatment and the heat treatment may be locally performed individually or simultaneously. Or you may perform VUV processing in multiple times so that it may become a desired transmittance | permeability range locally or entirely. In this case, transmittance measurement may be performed during a plurality of processes. Furthermore, for the purpose of increasing the light transmittance and / or improving the chemical resistance of the entire mask surface, VUV treatment or heat treatment may be performed on the entire photomask. Further, both processes may be performed on the entire surface at the same time.

VUV処理には、特に光透過率を増加させる効果が顕著であり、加熱処理には、光透過率の増加と、耐薬性の増加の効果が顕著である。好ましい態様としては、例えば、VUV処理を、面内の所定の位置に行い、ついで全面に加熱処理を行って、所望の光透過率とするとともに、光透過率がそれ以上変動しないようにすることができる。または、VUV処理を、面内の所定の位置に行い、次いで、全面にVUV処理と加熱処理を行っても良い。なお、加熱処理は、半透光膜の耐薬性を上げる効果が高く、表面改質処理の最後に行うことが好ましい。表面処理条件としては、加熱処理の温度は、100℃〜500℃程度、VUV処理の出力は、20W/cm2〜100W/cm2(照射距離1mm〜20mm)とすることができる。 The effect of increasing the light transmittance is particularly remarkable in the VUV treatment, and the effect of increasing the light transmittance and chemical resistance is remarkable in the heat treatment. As a preferable mode, for example, the VUV treatment is performed at a predetermined position in the surface, and then the entire surface is subjected to the heat treatment so as to obtain a desired light transmittance, and the light transmittance is not further changed. Can do. Alternatively, the VUV treatment may be performed at a predetermined position in the surface, and then the VUV treatment and the heat treatment may be performed on the entire surface. Note that the heat treatment is highly effective in increasing the chemical resistance of the translucent film, and is preferably performed at the end of the surface modification treatment. As surface treatment conditions, the temperature of the heat treatment can be about 100 ° C. to 500 ° C., and the output of the VUV treatment can be 20 W / cm 2 to 100 W / cm 2 (irradiation distance 1 mm to 20 mm).

さらに、表面改質処理において透過率変化が生じることを予め把握し、その分を予め勘案して、透過率上昇の表面改質処理における透過率の変動幅を決定する。さらに、表面改質処理によって、上昇する光透過率を予め想定して、半透光膜の膜透過率(組成、膜厚)を設計することも好ましい態様である。   Further, it is grasped in advance that the transmittance change occurs in the surface modification treatment, and the amount of fluctuation in the transmittance in the surface modification treatment for increasing the transmittance is determined in advance. Furthermore, it is also a preferable aspect to design the film transmittance (composition, film thickness) of the semi-translucent film in advance by assuming the light transmittance rising by the surface modification treatment.

上記の透過率測定は、膜透過率測定装置によって行うことができる。例えば、半透光膜の成膜に起因して、面内に膜厚分布が生じた場合など、同一形状の多数の半透光部が繰り返されたパターンにおいて、個々の半透光部の透過率が異なってしまう場合などには、上記測定を行い、その結果に応じて、本発明の表面改質処理を行うことができる。   The above transmittance measurement can be performed by a membrane transmittance measuring device. For example, when a film thickness distribution occurs in the surface due to the formation of a semi-translucent film, the transmission of individual semi-transparent parts is repeated in a pattern in which a large number of semi-transparent parts having the same shape are repeated. When the rates differ, the above measurement is performed, and the surface modification treatment of the present invention can be performed according to the result.

一方、実際に露光機によりマスクに露光する場合の、個々の半透光部の実効的な透過率(以下、実効透過率)は、半透光膜の膜質や膜厚のみではなく、パターン形状の影響を受けて、変化することがある。したがって、これらをすべて反映した、実効的な透過率を把握したのち、表面改質処理をおこなうことが好ましい。   On the other hand, when the mask is actually exposed by an exposure machine, the effective transmissivity of each semi-translucent portion (hereinafter referred to as effective transmissivity) is not only the film quality and film thickness of the semi-translucent film, but the pattern shape May change under the influence of Therefore, it is preferable to perform the surface modification treatment after grasping the effective transmittance reflecting all of these.

例えば、液晶表示装置製造用フォトマスクにおいて、チャネル部に対応する部分を半透光部で形成し、ソース、ドレインに相当する部分を遮光部で形成することができる。このようなパターンにおいて、遮光部と隣接する部分を有する半透光部は、露光機の光学条件下(露光機の有する解像度において)、回折の影響により、隣接部付近においては透過率が低下する。例えば、図3(a),(b)に示すように、遮光部Aに挟まれた半透光領域Bの透過光の光強度分布は、全体に下がり、ピークが低くなる。この傾向は、半透光領域Bの線幅が小さくなるほど顕著であるから、特に、ソース、ドレインに囲まれた線幅の小さいチャネル部においては、その露光光透過率は、用いた半透光膜固有の透過率より低いものとなる。要するに、実際にパターン中で用いられる半透光部の透過率は、十分に広い面積で把握された半透光膜の固有の透過率とは異なったものとなる。したがって、上記パターニング後の透過率の検査については、半透光膜の固有の透過率ではなく、実効透過率に基づいて行うことが望ましい。   For example, in a photomask for manufacturing a liquid crystal display device, a portion corresponding to a channel portion can be formed by a semi-transparent portion, and portions corresponding to a source and a drain can be formed by a light shielding portion. In such a pattern, the translucent part having a part adjacent to the light-shielding part has lower transmittance near the adjacent part due to the influence of diffraction under the optical conditions of the exposure machine (in the resolution of the exposure machine). . For example, as shown in FIGS. 3A and 3B, the light intensity distribution of the transmitted light in the semi-transparent region B sandwiched between the light shielding portions A is lowered as a whole and the peak is lowered. This tendency becomes more prominent as the line width of the semi-transparent region B becomes smaller. In particular, in the channel portion having a small line width surrounded by the source and drain, the exposure light transmittance is the same as that of the used semi-transparent light. The transmittance is lower than the inherent transmittance of the membrane. In short, the transmissivity of the semi-transparent portion actually used in the pattern is different from the intrinsic transmissivity of the semi-transparent film grasped in a sufficiently large area. Therefore, the inspection of the transmittance after the patterning is desirably performed based on the effective transmittance rather than the intrinsic transmittance of the semi-translucent film.

もちろん、透光部と隣接した半透光部においては、該半透光部の線幅が小さくなるほど、露光光の回折の影響により、実効的には、半透光膜固有の光透過率よりも高い透過率をもってしまう。   Of course, in the semi-transparent part adjacent to the translucent part, the smaller the line width of the semi-transparent part, the more effective the light transmittance inherent in the semi-transparent film due to the influence of diffraction of the exposure light. Also has a high transmittance.

したがって、本発明においては、半透光膜及び遮光膜にそれぞれウェットエッチングによるパターニングを施して、転写パターンを形成し、このパターン形成工程後に、複数の半透光部の実効透過率を測定し、この測定結果に基づいて、前記転写パターンにおける半透光膜の少なくとも一部に対して表面改質処理を行って、前記半透光膜の露光光透過率を変化させることによって、面内の分布を小さくする。さらに、耐薬性を高めるとより好ましい。すなわち、本発明の骨子は、パターン形成工程後に、複数の半透光部の実効透過率を測定し、表面改質工程において、測定結果に基づいて、転写パターンの複数の半透光部の実効透過率の面内分布レンジを2%以下とするように半透光膜の少なくとも一部に対して表面改質処理を行うことである。   Therefore, in the present invention, each of the semi-transparent film and the light-shielding film is subjected to patterning by wet etching to form a transfer pattern, and after this pattern formation step, the effective transmissivity of a plurality of semi-translucent portions is measured, Based on the measurement results, surface modification is performed on at least a part of the semi-transparent film in the transfer pattern, and the exposure light transmittance of the semi-transparent film is changed, thereby providing an in-plane distribution. Make it smaller. Furthermore, it is more preferable to increase chemical resistance. That is, the gist of the present invention is to measure the effective transmittance of the plurality of semi-translucent portions after the pattern formation step, and in the surface modification step, based on the measurement result, The surface modification treatment is performed on at least a part of the semi-translucent film so that the in-plane distribution range of the transmittance is 2% or less.

ここで、実効透過率は、膜固有の透過率に加えて、パターンにおける形状(寸法、又は線幅(CD(Critical Dimension))や露光機の光学条件(光源波長、開口数、σ値など)の要因が含まれた透過率であり、実際の露光環境を反映した透過率である。このため、パターンにおける幅が特定されており、その幅の実効透過率が指定され、光学条件が固定されると、その実効透過率に基づいて上記半透光部の半透光膜の設計(組成、膜厚、改質の度合い)決定することが可能となり、又は、膜の改質度合いを決定することが可能となる。   Here, in addition to the transmittance specific to the film, the effective transmittance is the shape (dimension or line width (CD (Critical Dimension)) of the pattern and the optical conditions of the exposure machine (light source wavelength, numerical aperture, σ value, etc.) This is the transmittance that reflects the actual exposure environment, so the width in the pattern is specified, the effective transmittance for that width is specified, and the optical conditions are fixed. Then, it becomes possible to determine the design (composition, film thickness, degree of modification) of the semi-transparent film of the semi-transparent part based on the effective transmittance, or to determine the degree of modification of the film It becomes possible.

さらに、フォトマスクを製造した後、その加工工程に用いた薬液処理によって、面内の半透光部の透過率分布が生じたときに、この分布を予め把握し、その結果に基づいて、本発明の表面改質処理を行い、面内分布を減少させることができる。   Furthermore, after the photomask is manufactured, when the transmissivity distribution of the in-plane semi-translucent portion is generated by the chemical treatment used in the processing step, this distribution is grasped in advance, and based on the result, The surface modification treatment of the invention can be performed to reduce the in-plane distribution.

上記の実効透過率を測定する手段としては、露光機による露光条件を再現、又は近似させることが好ましい。そのような装置としては、例えば図4に示す装置が挙げられる。この装置は、光源1と、光源1からの光をフォトマスク3に照射する照射光学系2と、フォトマスク3を透過した光を結像させる対物レンズ系4と、対物レンズ系4を経て得られた像を撮像する撮像手段5とから主に構成されている。   As a means for measuring the above effective transmittance, it is preferable to reproduce or approximate the exposure conditions by the exposure machine. An example of such a device is the device shown in FIG. This apparatus is obtained through a light source 1, an irradiation optical system 2 that irradiates the photomask 3 with light from the light source 1, an objective lens system 4 that forms an image of light transmitted through the photomask 3, and the objective lens system 4. It is mainly comprised from the imaging means 5 which images the obtained image.

光源1は、所定波長の光束を発するものであり、例えば、ハロゲンランプ、メタルハライドランプ、UHPランプ(超高圧水銀ランプ)などを使用することができる。例えば、マスクを使用する露光機を近似する分光特性をもつ光源と使用することができる。   The light source 1 emits a light beam having a predetermined wavelength. For example, a halogen lamp, a metal halide lamp, a UHP lamp (ultra-high pressure mercury lamp), or the like can be used. For example, an exposure machine using a mask can be used with a light source having spectral characteristics approximating.

照射光学系2は、光源1からの光を導きフォトマスク3に光を照射する。この照射光学系2は、開口数(NA)を可変とするため、絞り機構(開口絞り7)を備えている。この照射光学系2は、フォトマスク3における光の照射範囲を調整するための視野絞り6を備えていることが好ましい。この照射光学系2を経た光は、マスク保持具3aにより保持されたフォトマスク3に照射される。この照射光学系2は筐体13内に配設される。   The irradiation optical system 2 guides light from the light source 1 and irradiates the photomask 3 with light. The irradiation optical system 2 includes a diaphragm mechanism (aperture diaphragm 7) in order to make the numerical aperture (NA) variable. The irradiation optical system 2 preferably includes a field stop 6 for adjusting the light irradiation range in the photomask 3. The light that has passed through the irradiation optical system 2 is irradiated onto the photomask 3 held by the mask holder 3a. The irradiation optical system 2 is disposed in the housing 13.

フォトマスク3はマスク保持具3aによって保持される。このマスク保持具3aは、フォトマスク3の主平面を略鉛直とした状態で、このフォトマスク3の下端部及び側縁部近傍を支持し、このフォトマスク3を傾斜させて固定して保持するようになっている。このマスク保持具3aは、フォトマスク3として、大型(例えば、主平面が1220mm×1400mm、厚さ13mmのもの、又はそれ以上のもの)、かつ、種々の大きさのフォトマスク3を保持できるようになっている。なお、略鉛直とは、図4中θで示す鉛直からの角度が約10度以内を意味する。フォトマスク3に照射された光は、このフォトマスク3を透過して、対物レンズ系4に入射される。   The photomask 3 is held by a mask holder 3a. The mask holder 3a supports the vicinity of the lower end portion and the side edge portion of the photomask 3 with the main plane of the photomask 3 being substantially vertical, and holds the photomask 3 in a tilted manner. It is like that. The mask holder 3a can hold the photomask 3 having a large size (for example, a main plane of 1220 mm × 1400 mm and a thickness of 13 mm or more) as the photomask 3 and various sizes. It has become. Note that “substantially vertical” means that the angle from the vertical indicated by θ in FIG. 4 is within about 10 degrees. The light irradiated to the photomask 3 passes through the photomask 3 and enters the objective lens system 4.

対物レンズ系4は、例えば、フォトマスク3を透過した光が入射され、この光束に無限遠補正を加えて平行光とする第1群(シミュレータレンズ)4aと、この第1群を経た光束を結像させる第2群(結像レンズ)4bとから構成される。シュミレータレンズ4aは、絞り機構(開口絞り7)が備えられており、開口数(NA)が可変となっている。対物レンズ系4を経た光束は、撮像手段5により受光される。この対物レンズ系4は筐体13内に配設される。   The objective lens system 4 receives, for example, a first group (simulator lens) 4a in which light that has passed through the photomask 3 is incident and this light beam is corrected to infinity to obtain parallel light, and a light beam that has passed through the first group. It is composed of a second group (imaging lens) 4b that forms an image. The simulator lens 4a is provided with a diaphragm mechanism (aperture diaphragm 7), and its numerical aperture (NA) is variable. The light beam that has passed through the objective lens system 4 is received by the imaging means 5. The objective lens system 4 is disposed in the housing 13.

この撮像手段5は、フォトマスク3の像を撮像する。この撮像手段5としては、例えば、CCDなどの撮像素子を用いることができる。   The imaging unit 5 captures an image of the photomask 3. As this imaging means 5, for example, an imaging element such as a CCD can be used.

この装置においては、照射光学系2の開口数と対物レンズ系4の開口数とがそれぞれ可変となっているので、照射光学系2の開口数の対物レンズ系4の開口数に対する比、すなわち、シグマ値(σ:コヒレンシ)を可変することができる。   In this apparatus, since the numerical aperture of the irradiation optical system 2 and the numerical aperture of the objective lens system 4 are variable, the ratio of the numerical aperture of the irradiation optical system 2 to the numerical aperture of the objective lens system 4, that is, The sigma value (σ: coherency) can be varied.

また、この装置においては、撮像手段5によって得られた撮像画像についての画像処理、演算、所定の閾値との比較及び表示などを行う演算手段11、表示手段12を有する制御手段14及び筐体13の位置を変える移動操作手段15が設けられている。このため、得られた撮像画像、又は、これに基づいて得られた光強度分布を用いて、制御手段によって所定の演算を行い、他の露光光を用いた条件下での撮像画像、又は光強度分布や透過率を求めることができる。   Further, in this apparatus, the calculation means 11 for performing image processing, calculation, comparison with a predetermined threshold value, display, and the like for the captured image obtained by the imaging means 5, the control means 14 having the display means 12, and the housing 13. A moving operation means 15 for changing the position of is provided. For this reason, using the obtained captured image or the light intensity distribution obtained based on the obtained captured image, a predetermined calculation is performed by the control means, and the captured image or light under the condition using other exposure light. The intensity distribution and transmittance can be obtained.

このような構成を有する図4に示す装置は、NAとσ値が可変となっており、光源の線源も変えることができるので、種々の露光機の露光条件を再現することができる。一般に、液晶装置製造用などの大型フォトマスクの露光装置を簡易的に近似させる場合には、i線、h線、g線による光強度を同等とした照射光を用い、露光光学系としてNAが0.08程度、照射系と対物系のNA比であるコヒレンシーσが0.8程度の条件を適用すれば良い。   In the apparatus shown in FIG. 4 having such a configuration, the NA and σ values are variable, and the source of the light source can be changed, so that the exposure conditions of various exposure machines can be reproduced. In general, when an exposure apparatus for a large-sized photomask for manufacturing a liquid crystal device or the like is simply approximated, irradiation light having the same light intensity by i-line, h-line, and g-line is used, and NA is used as an exposure optical system. A condition that the coherency σ that is the NA ratio of the irradiation system and the objective system is about 0.8 may be applied.

本発明に係る多階調フォトマスクは、半透光膜及び遮光膜を形成したフォトマスクブランクを用意し、それぞれの膜にウェットエッチングによるパターニングを施して、前記転写パターンを形成し、この転写パターンにおける半透光膜の少なくとも一部に対して表面改質処理を行って、前記半透光膜の露光光透過率を変化させることを特徴とする。さらに、上記処理によって耐薬性を高めることが好ましい。これによって、前記転写パターン中に存在する、所定の露光光透過率を得ようとする半透光部の透過率面内分布レンジが2%以内であることを特徴とする。   In the multi-tone photomask according to the present invention, a photomask blank having a semi-transparent film and a light-shielding film is prepared, and each film is subjected to patterning by wet etching to form the transfer pattern. A surface modification treatment is performed on at least a part of the semi-transparent film to change the exposure light transmittance of the semi-transparent film. Furthermore, it is preferable to improve chemical resistance by the above treatment. Accordingly, the transmissivity in-plane distribution range of the semi-translucent portion, which is present in the transfer pattern and is intended to obtain a predetermined exposure light transmissivity, is within 2%.

透明基板としては、ガラス基板などを挙げることができる。また、露光光を遮光する遮光膜としては、クロム膜などの金属膜、シリコン膜、金属酸化膜、モリブデンシリサイド膜のような金属シリサイド膜などを挙げることができる。また、遮光膜としては反射防止膜を積層したものを用いることが好ましく、反射防止膜としては、クロムの酸化物、窒化物、炭化物、弗化物などを挙げることができる。露光光を一部透過させる半透光膜としては、クロムの酸化物、窒化物、炭化物、酸化窒化物、酸化窒化炭化物、又は、金属シリサイドなどを用いることができる。特に、モリブデンシリサイド化合物(MoSix、MoSiO,MoSiN、MoSiON、MoSiCONなど)膜のような金属シリサイド膜などが好ましい。ただし、適切なウェットエッチング性をもつために、半透光膜実質的に窒素を含まない材料で構成されていることが好ましい。   A glass substrate etc. can be mentioned as a transparent substrate. Examples of the light shielding film that shields the exposure light include a metal film such as a chromium film, a silicon silicide film such as a silicon film, a metal oxide film, and a molybdenum silicide film. In addition, it is preferable to use a laminated antireflection film as the light shielding film, and examples of the antireflection film include chromium oxide, nitride, carbide, fluoride and the like. As the semi-transparent film that partially transmits exposure light, chromium oxide, nitride, carbide, oxynitride, oxynitride carbide, metal silicide, or the like can be used. In particular, a metal silicide film such as a molybdenum silicide compound (MoSix, MoSiO, MoSiN, MoSiON, MoSiCON, etc.) film is preferable. However, in order to have an appropriate wet etching property, it is preferable that the translucent film is made of a material that does not substantially contain nitrogen.

このように、本発明によれば、面内での透過率のばらつきが小さい多階調フォトマスクを得ることができる。また、この方法においては、種々の要因(例えば、線幅分布に起因する透過率面内不均一、成膜時の膜厚変動に起因する透過率面内不均一、現像・エッチングなどのウェット処理に起因する面内の透過率不均一)を総合的に考慮し、透過率が低い領域に対して選択的に表面改質処理を施すことができるので、透過率を所望値に近づける修正することができ、有効に面内ばらつきを抑えることができる。さらに、その後の薬液接触による透過率の変動が抑止されるように、半透光膜の耐性を向上することができる。   As described above, according to the present invention, it is possible to obtain a multi-tone photomask having a small in-plane transmittance variation. In addition, in this method, various factors (for example, non-uniform transmittance plane due to line width distribution, non-uniform transmittance plane due to film thickness variation during film formation, wet processing such as development / etching, etc. In-plane transmittance non-uniformity due to the surface) can be comprehensively taken into account, and surface modification treatment can be selectively applied to areas with low transmittance, so that the transmittance is corrected to approach the desired value. In-plane variation can be effectively suppressed. Furthermore, the resistance of the semi-transparent film can be improved so that the change in transmittance due to the subsequent chemical contact is suppressed.

本発明のフォトマスクを製造する工程の一例を図5に示す。具体的には、例えば、図5(a)〜(g)に示す工程により行う。なお、図5に示す構造の製造方法は、これらの方法に限定されるものではない。ここでは、半透光膜24の材料をモリブデンシリサイド(MoSix)とする。また、以下の説明において、レジスト層を構成するレジスト材料、エッチングの際に用いるエッチャント、現像の際に用いる現像液などは、公知のフォトリソグラフィ及びエッチング工程において使用できるものを適宜選択する。例えば、エッチャントに関しては、被エッチング膜を構成する材料に応じて適宜選択し、現像液に関しては、使用するレジスト材料に応じて適宜選択する。   An example of the process for producing the photomask of the present invention is shown in FIG. Specifically, for example, the steps shown in FIGS. In addition, the manufacturing method of the structure shown in FIG. 5 is not limited to these methods. Here, the material of the semi-translucent film 24 is molybdenum silicide (MoSix). In the following description, a resist material constituting the resist layer, an etchant used for etching, a developer used for development, and the like that can be used in known photolithography and etching processes are appropriately selected. For example, the etchant is appropriately selected according to the material constituting the film to be etched, and the developer is appropriately selected according to the resist material to be used.

図5(a)に示すように、透明基板21上に半透光膜24、遮光膜22(表面部に反射防止膜23が形成されている)が形成されたフォトマスクブランクを用意し、このフォトマスクブランク上にレジスト層25を形成し、図5(b)に示すように、透光領域のみが露出するようにレジスト層25を露光・現像して開口部を形成する。次いで、図5(c)に示すように、このレジストパターンをマスクにして、露出した反射防止膜23、遮光膜22、半透光膜24をエッチングし、その後、図5(d)に示すように、レジスト層25を除去する。半透光膜24のエッチング前にレジストパターンを剥離し、反射防止膜23、遮光膜22をマスクとして半透光膜24をエッチングしても良い。   As shown in FIG. 5A, a photomask blank having a semi-transparent film 24 and a light-shielding film 22 (having an antireflection film 23 formed on the surface) on a transparent substrate 21 is prepared. A resist layer 25 is formed on the photomask blank, and as shown in FIG. 5B, the resist layer 25 is exposed and developed so that only the light transmitting region is exposed, thereby forming an opening. Next, as shown in FIG. 5C, using this resist pattern as a mask, the exposed antireflection film 23, light shielding film 22, and semi-transparent film 24 are etched, and thereafter, as shown in FIG. 5D. Then, the resist layer 25 is removed. The resist pattern may be peeled off before the semi-transparent film 24 is etched, and the semi-transparent film 24 may be etched using the antireflection film 23 and the light-shielding film 22 as a mask.

次いで、図5(e)に示すように、反射防止膜23の遮光領域上にレジスト層25を形成し、図5(f)に示すように、このレジストパターンをマスクにして露出した反射防止膜23、遮光膜22半透光膜をエッチングし、その後、図5(g)に示すように、レジスト層25を除去する。   Next, as shown in FIG. 5E, a resist layer 25 is formed on the light-shielding region of the antireflection film 23, and as shown in FIG. 5F, the antireflection film exposed using this resist pattern as a mask. 23, the light shielding film 22 The semi-transparent film is etched, and then the resist layer 25 is removed as shown in FIG.

次いで、このようにパターン形成されたフォトマスクについて、図4に示す装置を用いて、各半透光部の実効透過率を測定する。そして、得られた実効透過率の面内ばらつきに基づいて、実効透過率が低い半透光部の半透光膜24に対して、表面改質処理であるVUV処理を施すことにより、半透光膜24の表面を改質して改質層24aを形成する。この改質層24aについては、透過率が上昇すると共に耐薬性が向上する。これにより、面内での半透光部の透過率ばらつきが小さい多階調フォトマスクが得られる。このあとさらに、同じ部分に加熱処理を施してもよく、又は、全面に加熱処理を施してもよい。   Next, for the photomask patterned in this way, the effective transmittance of each semi-translucent portion is measured using the apparatus shown in FIG. Then, based on the obtained in-plane variation of the effective transmittance, the semi-transparent film 24 of the semi-transparent portion having a low effective transmittance is subjected to a VUV process that is a surface modification process, thereby making the semi-transparent film. The surface of the optical film 24 is modified to form a modified layer 24a. About this modified layer 24a, the transmittance | permeability rises and chemical resistance improves. As a result, a multi-tone photomask with small variations in transmissivity of the semi-transparent portion in the surface can be obtained. Thereafter, the same portion may be further subjected to heat treatment, or the entire surface may be subjected to heat treatment.

上述した多階調フォトマスクを用いて、露光機による露光光を照射することによって多階調フォトマスクの転写パターンを被加工層に転写する。この場合において、露光光としてi線〜g線の波長帯を含む露光光を用いることが好ましい。これにより、半透光領域においてパターン形状によらず、所望の厚さの残膜値のレジストパターンを得ることができる。   Using the above-described multi-tone photomask, the transfer pattern of the multi-tone photomask is transferred to the processing layer by irradiating exposure light from an exposure machine. In this case, it is preferable to use exposure light including a wavelength band of i-line to g-line as exposure light. As a result, a resist pattern having a desired film thickness can be obtained regardless of the pattern shape in the semi-transparent region.

本発明は上記実施の形態に限定されず、適宜変更して実施することができる。例えば、上記実施の形態においては、透明基板上に、半透光膜と遮光膜をこの順に形成したフォトマスクブランクを用いた場合について説明しているが、透明基板上に遮光膜パターンを形成したのちに、半透光膜を被覆し、パターン加工してなるフォトマスクであっても良い。また、上記実施の形態における部材の個数、サイズ、処理手順などは一例であり、本発明の効果を発揮する範囲内において種々変更して実施することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。   The present invention is not limited to the above embodiment, and can be implemented with appropriate modifications. For example, in the above embodiment, a case where a photomask blank in which a semi-transparent film and a light shielding film are formed in this order on a transparent substrate is described, but a light shielding film pattern is formed on the transparent substrate. The photomask may be formed by coating a semi-transparent film and patterning it later. In addition, the number, size, processing procedure, and the like of the members in the above embodiment are merely examples, and various changes can be made within the range where the effects of the present invention are exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.

表面改質処理と透過率変動量との間の関係を示す図である。It is a figure which shows the relationship between a surface modification process and the transmittance | permeability fluctuation amount. (a),(b)は、表面改質前後のフォトマスクの面内ばらつきを示す図である。(A), (b) is a figure which shows the in-plane dispersion | variation in the photomask before and behind surface modification. (a),(b)は、半透光領域の透過率を説明するための図である。(A), (b) is a figure for demonstrating the transmittance | permeability of a semi-transparent area | region. 実効透過率を測定するための装置を示す図である。It is a figure which shows the apparatus for measuring an effective transmittance | permeability. (a)〜(g)は、本発明の実施の形態に係る多階調フォトマスクの製造方法を説明するための図である。(A)-(g) is a figure for demonstrating the manufacturing method of the multi-tone photomask which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 光源
2 照射光学系
3 フォトマスク
4 対物レンズ系
5 撮像手段
11 演算手段
12 表示手段
13 筐体
14 制御手段
15 移動操作手段
21 透明基板
22 遮光膜
23 反射防止膜
24 半透光膜
24a 改質層
25 レジスト層
DESCRIPTION OF SYMBOLS 1 Light source 2 Irradiation optical system 3 Photomask 4 Objective lens system 5 Imaging means 11 Calculation means 12 Display means 13 Case 14 Control means 15 Moving operation means 21 Transparent substrate 22 Light-shielding film 23 Antireflection film 24 Semi-translucent film 24a Modification Layer 25 Resist layer

Claims (12)

透明基板上に、遮光膜と、露光光の一部を透過する半透光膜とをそれぞれ形成し、それぞれの膜に所定のパターニングを施すことによって、遮光部、露光光の一部を透過する半透光部、透光部を含む転写パターンを形成してなる多階調フォトマスクにおいて、前記半透光膜の少なくとも一部分において、少なくとも表面部分が改質され、かつ、前記転写パターン中に存在する半透光部の透過率面内分布レンジが2%以内であることを特徴とする多階調フォトマスク。   A light-shielding film and a semi-transparent film that transmits part of the exposure light are formed on the transparent substrate, respectively, and each film is subjected to predetermined patterning, thereby transmitting the light-shielding part and part of the exposure light. In a multi-tone photomask formed with a semi-transparent portion and a transfer pattern including the translucent portion, at least a surface portion of at least a part of the semi-transparent film is modified and is present in the transfer pattern. A multi-tone photomask characterized in that the transmissivity in-plane distribution range of the semi-translucent portion is within 2%. 前記半透光膜は、金属シリサイドを含む材料で構成されていることを特徴とする請求項1記載の多階調フォトマスク。   2. The multi-tone photomask according to claim 1, wherein the semi-transparent film is made of a material containing metal silicide. 前記半透光膜は、実質的に窒素を含まない材料で構成されていることを特徴とする請求項2記載の多階調フォトマスク。   3. The multi-tone photomask according to claim 2, wherein the semi-translucent film is made of a material that does not substantially contain nitrogen. 透明基板上に、遮光膜と、露光光の一部を透過する半透光膜とが形成されたフォトマスクブランクを用意し、それぞれの膜に所定のパターニングを施すことによって、遮光部、露光光の一部を透過する半透光部、及び透光部を含む転写パターンを形成する多階調フォトマスクの製造方法において、前記半透光膜及び前記遮光膜にそれぞれエッチングによるパターニングを施して、前記転写パターンを形成するパターン形成工程と、前記転写パターンにおける半透光膜の少なくとも一部に対して表面改質処理を行って、前記半透光膜の露光光透過率を変化させ、前記転写パターン中に存在する半透光部の透過率面内分布レンジを減少する表面改質工程と、を有することを特徴とする多階調フォトマスクの製造方法。   Prepare a photomask blank in which a light-shielding film and a semi-transparent film that transmits part of the exposure light are formed on a transparent substrate, and apply a predetermined pattern to each film, thereby creating a light-shielding portion and exposure light. In the method of manufacturing a multi-tone photomask for forming a translucent part that transmits part of the light-transmitting part and a transfer pattern including the translucent part, patterning by etching is performed on each of the semi-transparent film and the light shielding film, A pattern forming step for forming the transfer pattern; and at least a part of the semi-transparent film in the transfer pattern is subjected to a surface modification process to change an exposure light transmittance of the semi-transparent film, and the transfer And a surface modification step of reducing a transmittance in-plane distribution range of the semi-transparent portion existing in the pattern. 前記表面改質処理は、前記フォトマスク面内の選択された部分に対して、他の部分と異なる処理を施すことを含むことを特徴とする請求項4記載の多階調フォトマスクの製造方法。   5. The method of manufacturing a multi-tone photomask according to claim 4, wherein the surface modification treatment includes performing a treatment different from that of other portions on a selected portion in the photomask surface. . 前記表面改質工程は、前記半透光膜の耐薬性を高める処理を含むことを特徴とする請求項4又は請求項5記載の多階調フォトマスクの製造方法。   6. The method for manufacturing a multi-tone photomask according to claim 4, wherein the surface modification step includes a process for increasing chemical resistance of the semi-translucent film. 前記表面改質処理は、前記転写パターン中の半透光部に対して所定のエネルギーを照射する処理を含むことを特徴とする請求項5又は請求項6記載の多階調フォトマスクの製造方法。   7. The method of manufacturing a multi-tone photomask according to claim 5, wherein the surface modification treatment includes a treatment of irradiating a semi-translucent portion in the transfer pattern with a predetermined energy. . 前記表面改質処理は、前記転写パターン中の半透光部に対して加熱を施す処理を含むことを特徴とする請求項4から請求項7のいずれかに記載の多階調フォトマスクの製造方法。   The multi-tone photomask manufacturing method according to claim 4, wherein the surface modification process includes a process of heating a semi-translucent portion in the transfer pattern. Method. 前記パターン形成工程後に、前記複数の半透光部の透過率を測定する工程を有し、前記表面改質工程において、前記測定結果に基づいて、前記転写パターンの複数の半透光部の透過率の面内分布レンジを減少するように半透光膜の少なくとも一部に対して表面改質処理を行うことを特徴とする請求項4から請求項8のいずれかに記載の多階調フォトマスクの製造方法。   After the pattern formation step, the method has a step of measuring the transmittance of the plurality of semi-translucent portions, and in the surface modification step, based on the measurement result, the transmission of the plurality of semi-translucent portions of the transfer pattern 9. The multi-tone photo according to claim 4, wherein the surface modification treatment is performed on at least a part of the semi-transparent film so as to reduce an in-plane distribution range of the rate. Mask manufacturing method. 前記表面改質工程は、前記半透光部の透過率の面内分布を、2%以下とするものであることを特徴とする請求項9記載の多階調フォトマスクの製造方法。   10. The method for manufacturing a multi-tone photomask according to claim 9, wherein in the surface modification step, an in-plane distribution of transmittance of the semi-translucent portion is set to 2% or less. 請求項1から請求項3のいずれかに記載の多階調フォトマスク又は請求項4から請求項10の製造方法による多階調フォトマスクを用い、露光機による露光光を照射することによって前記多階調フォトマスクの転写パターンを被加工層に転写することを特徴とするパターン転写方法。   Using the multi-tone photomask according to any one of claims 1 to 3 or the multi-tone photomask according to the manufacturing method according to claim 4 to 10, the multi-tone photomask is irradiated with exposure light from an exposure machine. A pattern transfer method comprising transferring a transfer pattern of a gradation photomask to a layer to be processed. 前記露光光としてi線〜g線の波長帯を含む露光光を用いることを特徴とする請求項11記載のパターン転写方法。   The pattern transfer method according to claim 11, wherein exposure light including a wavelength band of i-line to g-line is used as the exposure light.
JP2008088064A 2008-03-28 2008-03-28 Multi-tone photomask, manufacturing method thereof, and pattern transfer method Expired - Fee Related JP5215019B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008088064A JP5215019B2 (en) 2008-03-28 2008-03-28 Multi-tone photomask, manufacturing method thereof, and pattern transfer method
TW098106951A TW201001058A (en) 2008-03-28 2009-03-04 Multi-tone photomask and method of manufacturing the same, and pattern transfer method
CN2009101297527A CN101546116B (en) 2008-03-28 2009-03-26 A masstone photomask, a method for manufacturing the same and a pattern transfer method
KR1020120046172A KR20120050954A (en) 2008-03-28 2012-05-02 Multi-gray scale photomask and manufacturing method thereof, and pattern transfer method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008088064A JP5215019B2 (en) 2008-03-28 2008-03-28 Multi-tone photomask, manufacturing method thereof, and pattern transfer method

Publications (2)

Publication Number Publication Date
JP2009244350A true JP2009244350A (en) 2009-10-22
JP5215019B2 JP5215019B2 (en) 2013-06-19

Family

ID=41193314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008088064A Expired - Fee Related JP5215019B2 (en) 2008-03-28 2008-03-28 Multi-tone photomask, manufacturing method thereof, and pattern transfer method

Country Status (4)

Country Link
JP (1) JP5215019B2 (en)
KR (1) KR20120050954A (en)
CN (1) CN101546116B (en)
TW (1) TW201001058A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044149A (en) * 2008-08-11 2010-02-25 Hoya Corp Multi-gradation photomask, pattern transfer method, and manufacturing method of display unit using multi-gradation photomask
JP2012018342A (en) * 2010-07-09 2012-01-26 Shin Etsu Chem Co Ltd Transfer method of resist pattern and manufacturing method of photo mask
JP2012531620A (en) * 2009-06-25 2012-12-10 エルジー イノテック カンパニー リミテッド Method for manufacturing halftone mask
JP2019090911A (en) * 2017-11-14 2019-06-13 アルバック成膜株式会社 Mask blank, half tone mask and method for manufacturing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5856991B2 (en) 2012-05-21 2016-02-10 富士フイルム株式会社 Chemically amplified resist composition, negative chemically amplified resist composition, resist film using the same, resist-coated mask blanks, photomask manufacturing method and pattern forming method, and electronic device manufacturing method
JP6157832B2 (en) * 2012-10-12 2017-07-05 Hoya株式会社 Electronic device manufacturing method, display device manufacturing method, photomask manufacturing method, and photomask
JP2015212720A (en) * 2014-05-01 2015-11-26 Hoya株式会社 Method of producing multi-gradation photo mask, the multi-gradation photo mask, and method of producing display device
CN108140341A (en) * 2015-07-09 2018-06-08 夏普株式会社 Active-matrix substrate, display device and manufacturing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162726A (en) * 2000-09-12 2002-06-07 Hoya Corp Method of manufacturing phase shift mask blank and phase shift mask
JP2002351048A (en) * 2001-05-28 2002-12-04 Toshiba Corp Production method of photomask
JP2007199700A (en) * 2005-12-26 2007-08-09 Hoya Corp Mask blank and photomask
JP2007271696A (en) * 2006-03-30 2007-10-18 Hoya Corp Gray tone mask blank and photomask
JP2007279440A (en) * 2006-04-07 2007-10-25 Toshiba Corp Halftone phase shift mask and its manufacturing method
JP2008026822A (en) * 2006-07-25 2008-02-07 Toshiba Corp Method for manufacturing photomask and method for manufacturing semiconductor device
WO2009048089A1 (en) * 2007-10-12 2009-04-16 Ulvac Coating Corporation Process for producing gray tone mask
JP2009192927A (en) * 2008-02-15 2009-08-27 Hoya Corp Multilevel grayscale photomask and pattern transfer method using the same
JP2009237569A (en) * 2008-03-06 2009-10-15 Hoya Corp Multi-tone photomask and pattern transfer method using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162726A (en) * 2000-09-12 2002-06-07 Hoya Corp Method of manufacturing phase shift mask blank and phase shift mask
JP2002351048A (en) * 2001-05-28 2002-12-04 Toshiba Corp Production method of photomask
JP2007199700A (en) * 2005-12-26 2007-08-09 Hoya Corp Mask blank and photomask
JP2007271696A (en) * 2006-03-30 2007-10-18 Hoya Corp Gray tone mask blank and photomask
JP2007279440A (en) * 2006-04-07 2007-10-25 Toshiba Corp Halftone phase shift mask and its manufacturing method
JP2008026822A (en) * 2006-07-25 2008-02-07 Toshiba Corp Method for manufacturing photomask and method for manufacturing semiconductor device
WO2009048089A1 (en) * 2007-10-12 2009-04-16 Ulvac Coating Corporation Process for producing gray tone mask
JP2009192927A (en) * 2008-02-15 2009-08-27 Hoya Corp Multilevel grayscale photomask and pattern transfer method using the same
JP2009237569A (en) * 2008-03-06 2009-10-15 Hoya Corp Multi-tone photomask and pattern transfer method using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044149A (en) * 2008-08-11 2010-02-25 Hoya Corp Multi-gradation photomask, pattern transfer method, and manufacturing method of display unit using multi-gradation photomask
JP2012531620A (en) * 2009-06-25 2012-12-10 エルジー イノテック カンパニー リミテッド Method for manufacturing halftone mask
JP2012018342A (en) * 2010-07-09 2012-01-26 Shin Etsu Chem Co Ltd Transfer method of resist pattern and manufacturing method of photo mask
JP2019090911A (en) * 2017-11-14 2019-06-13 アルバック成膜株式会社 Mask blank, half tone mask and method for manufacturing same
JP7037919B2 (en) 2017-11-14 2022-03-17 アルバック成膜株式会社 Mask blank, halftone mask and its manufacturing method

Also Published As

Publication number Publication date
JP5215019B2 (en) 2013-06-19
CN101546116B (en) 2012-06-20
CN101546116A (en) 2009-09-30
KR20120050954A (en) 2012-05-21
TW201001058A (en) 2010-01-01

Similar Documents

Publication Publication Date Title
JP5215019B2 (en) Multi-tone photomask, manufacturing method thereof, and pattern transfer method
JP5254581B2 (en) Photomask and photomask manufacturing method
JP5064116B2 (en) Photomask inspection method, photomask manufacturing method, and electronic component manufacturing method
JP4945418B2 (en) Photomask inspection apparatus, photomask inspection method, photomask manufacturing method for liquid crystal device manufacturing, and pattern transfer method
JP5160286B2 (en) Multi-tone photomask, pattern transfer method, and thin film transistor manufacturing method
JP5363767B2 (en) Photomask manufacturing method, pattern transfer method, and database
TWI596425B (en) Method of manufacturing a photomask, photomask, pattern transfer method and method of manufacturing a display
JP5097520B2 (en) Gray-tone mask inspection method, gray-tone mask manufacturing method for liquid crystal device manufacturing, and pattern transfer method
JP5097521B2 (en) Photomask inspection apparatus, photomask inspection method, photomask manufacturing method for liquid crystal device manufacturing, and pattern transfer method
KR101173731B1 (en) Multi-gray scale photomask and manufacturing method thereof
JP5336226B2 (en) Multi-tone photomask manufacturing method
JP5185158B2 (en) Multi-tone photomask evaluation method
TWI459442B (en) Imaging devices, methods of forming same, and methods of forming semiconductor device structures
JP5538513B2 (en) Multi-tone photomask, pattern transfer method, and thin film transistor manufacturing method
JP5108551B2 (en) Multi-tone photomask and pattern transfer method using the same
KR101161919B1 (en) Multi-gray scale photomask and manufacturing method thereof, and pattern transfer method
JP5185154B2 (en) Multi-tone photomask inspection method
JP2009237569A (en) Multi-tone photomask and pattern transfer method using the same
TWI422964B (en) Multi-tone photomask
KR101045135B1 (en) Multi-gray scale photomask and manufacturing method thereof, and pattern transfer method
JP2009258693A (en) Multi-tone photomask and pattern transfer method using the same
JP2012123409A (en) Test mask
TW202008075A (en) Photomask and method for forming the same
KR20090029436A (en) Method for fabricating phase shift mask in semicondutor device
JP2009150937A (en) Multi-level gradation photomask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130228

R150 Certificate of patent or registration of utility model

Ref document number: 5215019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees