JP2009241246A - Semi-automatic travelling method for irregular ground movable body - Google Patents

Semi-automatic travelling method for irregular ground movable body Download PDF

Info

Publication number
JP2009241246A
JP2009241246A JP2008114506A JP2008114506A JP2009241246A JP 2009241246 A JP2009241246 A JP 2009241246A JP 2008114506 A JP2008114506 A JP 2008114506A JP 2008114506 A JP2008114506 A JP 2008114506A JP 2009241246 A JP2009241246 A JP 2009241246A
Authority
JP
Japan
Prior art keywords
movable arm
semi
distance measuring
moving body
movable body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008114506A
Other languages
Japanese (ja)
Inventor
Kazuya Yoshida
和哉 吉田
Keiji Nagatani
圭司 永谷
Fumihito Yamazaki
文仁 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008114506A priority Critical patent/JP2009241246A/en
Publication of JP2009241246A publication Critical patent/JP2009241246A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of a difficulty in remote control although traveling performance is enhanced, in a conventional traveling method employed in a movable body which not only travels by a main propulsion generating section but also travels by using a movable arm to enhance the traveling performance. <P>SOLUTION: The irregular ground movable body has the main propulsion generating section, an movable arm, and a distance measuring device. The movable body is semi-automatically moved by moving the movable arm according to the terrain by using the distance measuring device and further with taking stability against falling into consideration. Thus, an operator can autonomously create a safety movement of the irregular ground moving mechanism corresponding to the irregular ground in the direction only by giving an instruction of the movement direction of the movable body. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、不整地移動体の半自律走行に関する。  The present invention relates to semi-autonomous traveling of a rough terrain moving body.

従来、不整地を移動する移動体において、その不整地走行能力を高めるために、可動腕を搭載したものが存在した。しかしながら、走行性を高めた反面、移動体の遠隔操作が非常に困難になるという問題があった。  Conventionally, there has been a moving body that moves on rough terrain, which has a movable arm mounted thereon in order to enhance its rough terrain traveling ability. However, while driving performance is improved, there is a problem that remote control of the moving body becomes very difficult.

上記問題を解決するために、不整地移動体に事前に動作計画を行わせる方法が報告されている(例えば、非特許文献1参照。)。  In order to solve the above-mentioned problem, a method for causing the rough terrain moving body to perform an operation plan in advance has been reported (for example, see Non-Patent Document 1).

上記問題を解決するために、可動腕と地面との接触から動作を決定していく半自律不整地走行の研究が報告されている(例えば、非特許文献2参照。)。また、非特許文献3では、不整地移動体用の半自律走行法において正規化エネルギー安定余裕が示されている。
高井優介,藤村甫,奥川雅之,橋本周司 著,“サブクローラを有するレスキューロボットの自律的段差踏破制御”,ロボティクス・メカトロニクス講演会’07講演論文集,pages 2P1−J04(1)−(2),2007. Kazunori Ohno, Shouich Morimura, Satoshi Tadokoro 著, “Eiji Koyanagi, and Tomoaki Yoshida. “Semi−autonomous control system of rescue crawlerrobot having flippers for getting over unknownsteps”, Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3012−3018,2007. 広瀬茂男,塚越秀行,米田完 著.不整地における歩行機械の静的安定性評価基準.日本ロボット学会誌,16(8):48−54,1998.
In order to solve the above problem, research on semi-autonomous rough terrain traveling in which movement is determined from contact between the movable arm and the ground has been reported (for example, see Non-Patent Document 2). Non-Patent Document 3 discloses a normalized energy stability margin in the semi-autonomous traveling method for a rough terrain moving body.
Yusuke Takai, Satoshi Fujimura, Masayuki Okugawa, Shuji Hashimoto, “Autonomous stepping control of rescue robot with sub-crawler”, Proceedings of Robotics and Mechatronics Lecture '07, pages 2P1-J04 (1)-(2) , 2007. Kazunori Ohno, Shouich Morimura, Satoshi Tadokoro al., "Eiji Koyanagi, and Tomoaki Yoshida." Semi-autonomous control system of rescue crawlerrobot having flippers for getting over unknownsteps ", Proceedings of the 2007 IEEE / RSJ International Conference on Intelligent Robots and Systems, pages 3012-3018, 2007. Written by Shigeo Hirose, Hideyuki Tsukagoshi, and Yoneda. Static stability evaluation criteria for walking machines on rough terrain. Journal of the Robotics Society of Japan, 16 (8): 48-54, 1998.

しかしながら、上述した従来の不整地移動体に事前に動作計画を行わせる方法では、状況の変化に柔軟に対応できない可能性があるという問題がある。  However, the above-described conventional method for causing the rough terrain mobile body to perform an operation plan in advance has a problem that it may not be able to flexibly cope with a change in the situation.

本発明は、このような課題に鑑みてなされたものであり、測距装置を用いて、非接触で地形情報を獲得し、簡単な規則により不整地走行動作を実現させる方法を提供することを目的とする。  The present invention has been made in view of such a problem, and provides a method of acquiring terrain information in a non-contact manner using a distance measuring device and realizing rough terrain operation by simple rules. Objective.

本発明の不整地移動体用の半自律走行法は、測距装置により非接触で地形情報を獲得し、可動腕の動作範囲内における、可動腕の動作中心と測距点を結ぶ線分が地面とのなす角度を最大とする測距点に、可動腕が接触する角度を目標角として、可動腕の角度制御を行うものである。    According to the semi-autonomous traveling method for a rough terrain vehicle of the present invention, the terrain information is acquired in a non-contact manner by the distance measuring device, and the line segment connecting the movement center of the movable arm and the distance measurement point is within the movement range of the movable arm. The angle control of the movable arm is performed using the angle at which the movable arm contacts the distance measuring point that makes the maximum angle with the ground as the target angle.

すなわち、本発明の半自律走行法は、主推進力発生部、移動体本体、可動腕、測距装置を有する不整地移動体であって、前記主推進力発生部は、走行面に接触することにより推進力を移動体本体に持たせ、前記移動体本体は、当該主推進力発生部を搭載して、可動腕は、上記主推進力発生部を搭載して、測距装置は、上記移動体本体に搭載され、上記可動腕の動作範囲内における、可動腕の動作中心と測距点を結ぶ線分が地面とのなす角度を最大とする測距点に、可動腕が接触する角度を目標角として、可動腕の角度制御を行うことを特徴とする。  That is, the semi-autonomous traveling method of the present invention is a rough terrain moving body having a main propulsive force generating unit, a moving body main body, a movable arm, and a distance measuring device, and the main propulsive force generating unit is in contact with a traveling surface. The mobile body has a main propulsive force generating unit, the movable arm has the main propulsive force generating unit, and the distance measuring device has The angle at which the movable arm comes into contact with the distance measuring point that is mounted on the mobile body and maximizes the angle formed by the line connecting the movement center of the movable arm and the distance measuring point with the ground within the range of movement of the movable arm. The angle of the movable arm is controlled by using as a target angle.

本発明の不整地移動体用の半自律走行法によれば、下記非特許文献3において提案されている正規化エネルギー安定余裕を考慮に入れることにより、移動体の安定性も考慮に入れ不整地走行を実現させることができる。  According to the semi-autonomous traveling method for the rough terrain moving body of the present invention, by taking into account the normalized energy stability margin proposed in Non-Patent Document 3 below, the stability of the moving body is also taken into consideration. Travel can be realized.

以下、本発明を実施するための最良の形態について説明する。
まず、不整地移動体の半自律走行法にかかる(第1の)発明を実施するための最良の形態について説明する。
Hereinafter, the best mode for carrying out the present invention will be described.
First, the best mode for carrying out the (first) invention according to the semi-autonomous traveling method of the rough terrain moving body will be described.

図1は本発明の不整地移動体の半自律走行法にかかわる不整地移動体の不整地走行動作を示す側面図である。
図1において、不整地移動体は、主推進力発生部1、移動体本体2、可動腕3、測距装置4により構成される。
FIG. 1 is a side view showing the rough terrain traveling operation of the rough terrain moving body according to the semi-autonomous traveling method of the rough terrain moving body of the present invention.
In FIG. 1, the rough terrain moving body includes a main propulsive force generating unit 1, a moving body main body 2, a movable arm 3, and a distance measuring device 4.

主推進力発生装置1について説明する。主推進力発生装置は、走行面との接触により、移動体本体に推進力を発生するものである。例えば車輪、無限軌道機構、脚機構などがあるがこれに限定されるものではない。移動体本体2、および可動腕3に搭載することができる。The main propulsion generator 1 will be described. The main propulsive force generating device generates propulsive force on the movable body main body by contact with the traveling surface. For example, there are wheels, an endless track mechanism, a leg mechanism, and the like, but it is not limited thereto. The movable body 2 and the movable arm 3 can be mounted.

移動体本体2について説明する。移動体本体は、不整地移動体の本体をなすものであり、その構造は例として軽金属製の箱型構造などがあるが、材質、構造ともにこれに限定されるものではない。The mobile body 2 will be described. The mobile body is a main body of the rough terrain mobile body, and its structure includes, for example, a light metal box type structure, but the material and the structure are not limited thereto.

可動腕3について説明する。可動体3は移動体本体に対して相対的に稼動する腕上の構造である。 例として、その構造は例として軽金属製の箱型構造などがあるが、材質、構造ともにこれに限定されるものではない。また、その運動も移動体本体に対して、回転運動などがあるが、これに限定されるものではなく、並進運動を組み合わせたものも可能である。The movable arm 3 will be described. The movable body 3 has a structure on the arm that operates relative to the movable body main body. As an example, the structure includes, for example, a light metal box type structure, but the material and the structure are not limited thereto. Further, the movement includes a rotational movement with respect to the moving body, but is not limited to this, and a combination of translational movements is also possible.

測距装置4について説明する。測距装置4は、移動体本体2に対して、走査面が地面と垂直になるように設置されている。設置位置から、前方の障害物までの距離計測を行う。例としてレーザーなどの光学式のものがあるが、これに限定されるものではない。The distance measuring device 4 will be described. The distance measuring device 4 is installed with respect to the mobile body 2 so that the scanning plane is perpendicular to the ground. Measure the distance from the installation position to the obstacle ahead. Examples include an optical type such as a laser, but are not limited thereto.

図2は本発明の不整地移動体の半自律走行法にかかわる不整地移動体の段差踏破時の幾何学的側面図である。次に、不整地移動体が段差を乗り越えるための条件について説明する。該条件は、不整地移動体の重心の底面高h(重心位置から鉛直下向きに伸ばした直線上の、移動体の底面と地面との間の距離、図2を参照)が、乗り越え対象となる段差高さHに対して、h>Hを満たすことである。この条件を満たすとき重心が主推進力発生装置1と段差の接触点を越えることができるため、接触点において右回りのモーメントが発生し、段差を登ることができる。このhは、幾何学的に移動体本体が接地する場合(図2上段)と、後可動腕3が接地する場合(図2下段)の2つの場合が存在する。

Figure 2009241246
ここで、(1)式は、移動体本体が接地する場合、(2)式は、後可動腕3が接地する場合である。なお、各パラメータは、図2内で定義されるものとする。仮に(1)式において、段差踏破が不可能となっても、後可動腕3を制御することで(2)式に移行することが可能となるため、段差踏破の議論は、(2)式のみに注目すればよい。(2)式の第3項を最大とするのは、θb−θr=90[deg]となるときであり、これは、後可動腕3が地面と垂直となる場合である。このθb=θmaxとなるときが、hを最大とする条件であるため、θmaxが定まると、不整地移動体の踏破可能な段差の高さが計算可能となる。FIG. 2 is a geometric side view at the time of stepping over a rough terrain moving body according to the semi-autonomous traveling method of the rough terrain moving body of the present invention. Next, conditions for the rough terrain moving body to get over the step will be described. The condition is that the bottom height h of the center of gravity of the moving body on rough terrain (the distance between the bottom surface of the moving body and the ground on the straight line extending vertically downward from the position of the center of gravity, see FIG. 2) is to be overcome. For the step height H, h> H is satisfied. When this condition is satisfied, the center of gravity can exceed the contact point of the main propulsive force generating device 1 and the step, so that a clockwise moment is generated at the contact point and the step can be climbed. This h has two cases: geometrically when the movable body is grounded (upper stage in FIG. 2) and when the rear movable arm 3 is grounded (lower stage in FIG. 2).
Figure 2009241246
Here, equation (1) is when the mobile body is grounded, and equation (2) is when the rear movable arm 3 is grounded. Each parameter is defined in FIG. Even if it is impossible to step through the step in the formula (1), it is possible to shift to the formula (2) by controlling the rear movable arm 3. You only need to pay attention to it. The maximum of the third term of the expression (2) is when θb−θr = 90 [deg], and this is a case where the rear movable arm 3 is perpendicular to the ground. The time when θb = θmax is a condition for maximizing h. Therefore, when θmax is determined, it is possible to calculate the height of a step that can be traversed by the rough terrain moving body.

図3は本発明の不整地移動体の半自律走行法にかかわる正規化エネルギー安定余裕の一例を示す図である。不整地移動体は、前後の可動腕3の角度を制御することが可能であるため、後可動腕3の角度θrと本体のピッチ角θbの二変数による正規化エネルギー安定余裕が計算できる。その計算結果をグラフにしたものが図3である。縦軸は、本体のピッチ角θb、横軸が後可動腕3の角度θr、各色が正規化エネルギー安定余裕を表しており、黄色に近いほど安定余裕が大きくなる。後可動腕3が地面に接地しない場合と、地面に接地する場合とでhの計算式が異なるため(式(4)、式(5)参照)、正規化エネルギー安定余裕にも不連続面が生ずる。本例では、移動体本体2のピッチ角の上限角をθmax=30[deg]と設定したので、θb=30[deg]となる軸上で下に行くほど、(つまり後可動腕3が垂直に近くなるほど)、正規化エネルギー安定余裕が小さくなる。例えば、平地における正規化エネルギー安定余裕に対し、30パーセントの余裕を考慮することを考えると、正規化エネルギー安定余裕は0.15[m]となるため、このグラフより、後可動腕3の角度θrは、−20[deg]程度に抑えることが望ましい。
以上のことから、本発明を実施するための最良の形態によれば、その時々の地形を把握しながら、移動体が走行するため、半自律的に不整地移動体を走行させることができる。
FIG. 3 is a diagram showing an example of a normalized energy stability margin related to the semi-autonomous traveling method of the rough terrain vehicle of the present invention. Since the rough terrain moving body can control the angle of the front and rear movable arms 3, the normalized energy stability margin can be calculated by two variables of the angle θr of the rear movable arm 3 and the pitch angle θb of the main body. FIG. 3 is a graph showing the calculation results. The vertical axis represents the pitch angle θb of the main body, the horizontal axis represents the angle θr of the rear movable arm 3, and each color represents the normalized energy stability margin. The closer to yellow, the greater the stability margin. Since the calculation formula of h is different between the case where the rear movable arm 3 does not touch the ground and the case where the rear movable arm 3 touches the ground (see Formula (4) and Formula (5)), there is a discontinuous surface in the normalized energy stability margin. Arise. In this example, since the upper limit angle of the pitch angle of the mobile body 2 is set to θmax = 30 [deg], the lower the axis on the axis where θb = 30 [deg] (that is, the rear movable arm 3 is vertical). The closer to, the smaller the normalized energy stability margin. For example, considering that a 30% margin is considered with respect to the normalized energy stability margin on flat ground, the normalized energy stability margin is 0.15 [m]. It is desirable to suppress θr to about −20 [deg].
From the above, according to the best mode for carrying out the present invention, since the mobile body travels while grasping the terrain at each time, the rough terrain mobile body can travel semi-autonomously.

なお、本発明は上述の発明を実施するための最良の形態に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。  The present invention is not limited to the best mode for carrying out the above-described invention, and various other configurations can be adopted without departing from the gist of the present invention.

不整地移動体の半自律走行法にかかわる不整地移動体の不整地走行動作を示す側面図である。It is a side view which shows the rough terrain traveling operation | movement of the rough terrain moving body in connection with the semi-autonomous traveling method of a rough terrain moving body. 不整地移動体の半自律走行法にかかわる不整地移動体の段差踏破時の幾何学的側面図である。It is a geometric side view at the time of stepping over the uneven ground moving body related to the semi-autonomous traveling method of the uneven ground moving body. 不整地移動体の半自律走行法にかかわる正規化エネルギー安定余裕の一例を示す図である。It is a figure which shows an example of the normalization energy stability margin in connection with the semi-autonomous traveling method of a rough terrain moving body.

符号の説明Explanation of symbols

1‥‥主推進力発生部、2‥‥移動体本体、3‥‥可動腕、4‥‥光学式測距装置、5‥‥走行面、6‥‥測距点、7‥‥段差DESCRIPTION OF SYMBOLS 1 ... Main propulsion generating part, 2 ... Mobile body, 3 ... Movable arm, 4 ... Optical distance measuring device, 5 ... Running surface, 6 ... Distance measuring point, 7 ... Step

Claims (2)

以下の主推進力発生部、移動体本体、可動腕、測距装置を有する不整地移動体の半自律走行法
(イ)走行面に接触することにより推進力を移動体本体に持たせる主推進力発生部
(ロ)上記主推進力発生部を搭載した移動体本体
(ハ)上記主推進力発生部を搭載した可動腕
(ニ)上記移動体本体に搭載された測距装置
上記可動腕の動作範囲内における、可動腕の動作中心と測距点を結ぶ線分が地面とのなす角度を最大とする測距点に、可動腕が接触する角度を目標角として、可動腕の角度制御を行う半自律走行法
Semi-autonomous traveling method of rough terrain moving body having the following main propulsive force generating part, moving body main body, movable arm, and distance measuring device (a) Main propulsion that gives the moving body main body a propulsive force by contacting the traveling surface (B) A movable body equipped with the main propulsive force generating section (c) A movable arm equipped with the main propulsive force generating section (d) A distance measuring device mounted on the movable body main body The angle control of the movable arm is performed by setting the angle at which the movable arm contacts the distance measuring point that makes the maximum angle formed by the line segment connecting the movement center of the movable arm and the distance measuring point within the movement range to the ground as the target angle. Semi-autonomous driving method
移動体の転倒の安定性を考慮に入れることを特徴とする請求項1記載の半自律走行法  The semi-autonomous traveling method according to claim 1, wherein the stability of the falling of the moving body is taken into consideration.
JP2008114506A 2008-03-31 2008-03-31 Semi-automatic travelling method for irregular ground movable body Pending JP2009241246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114506A JP2009241246A (en) 2008-03-31 2008-03-31 Semi-automatic travelling method for irregular ground movable body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114506A JP2009241246A (en) 2008-03-31 2008-03-31 Semi-automatic travelling method for irregular ground movable body

Publications (1)

Publication Number Publication Date
JP2009241246A true JP2009241246A (en) 2009-10-22

Family

ID=41303761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114506A Pending JP2009241246A (en) 2008-03-31 2008-03-31 Semi-automatic travelling method for irregular ground movable body

Country Status (1)

Country Link
JP (1) JP2009241246A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105595924A (en) * 2014-06-04 2016-05-25 南通大学 Method for effectively achieving transition of stair cleaning robot from stair to middle platform to stair
EP3109009A1 (en) 2015-06-22 2016-12-28 Ricoh Company, Ltd. Robot, information processing system, carrier medium and method
JP2018039074A (en) * 2016-09-07 2018-03-15 学校法人千葉工業大学 Attic inspection method of architectural structure
KR20210001012U (en) * 2019-11-01 2021-05-11 엠투엠글로벌(주) Electric Cart for transporting goods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105595924A (en) * 2014-06-04 2016-05-25 南通大学 Method for effectively achieving transition of stair cleaning robot from stair to middle platform to stair
EP3109009A1 (en) 2015-06-22 2016-12-28 Ricoh Company, Ltd. Robot, information processing system, carrier medium and method
US10059004B2 (en) 2015-06-22 2018-08-28 Ricoh Company, Ltd. Robot, information processing system, and storage medium
JP2018039074A (en) * 2016-09-07 2018-03-15 学校法人千葉工業大学 Attic inspection method of architectural structure
KR20210001012U (en) * 2019-11-01 2021-05-11 엠투엠글로벌(주) Electric Cart for transporting goods
KR200494408Y1 (en) 2019-11-01 2021-10-12 엠투엠글로벌(주) Electric Cart for transporting goods

Similar Documents

Publication Publication Date Title
EP2734343B1 (en) Movable platform
WO2009063318A1 (en) Mobile robot and mobile robot danger zone indicating method
US20080059015A1 (en) Software architecture for high-speed traversal of prescribed routes
JP4670807B2 (en) Travel route creation method, autonomous mobile body, and autonomous mobile body control system
JP2007193495A (en) Mobile vehicle
JP2009008648A (en) Three-dimensional distance measuring device and caster-type robot
JP2007316799A (en) Autonomous mobile robot having learning function
JP2008142841A (en) Mobile robot
JP2009241246A (en) Semi-automatic travelling method for irregular ground movable body
JP2014034230A (en) Parking support device and target route generating method
Nagatani et al. Semi-autonomous traversal on uneven terrain for a tracked vehicle using autonomous control of active flippers
JP2018005771A (en) Autonomous mobile body and autonomous mobile body movement control technique
JP4899165B2 (en) Control device for legged mobile robot
JP2012166315A (en) Robot
KR101245754B1 (en) Autonomy drive robot, and method for establishing route
JP5781126B2 (en) Obstacle determination device, autonomous mobile device, and obstacle determination method
JP2010064501A (en) Wheel traveling body
EP3378695A1 (en) Moving body
JP5358961B2 (en) Method for controlling scanning speed of mobile robot and laser range sensor
JP2012003365A (en) Travelling route planning method for unmanned mobile vehicle
JP2016062441A (en) Omnidirectional transfer vehicle
JP5110437B2 (en) vehicle
JP5895682B2 (en) Obstacle detection device and moving body equipped with the same
KR20130105700A (en) Inverted pendulum type mobile object
JP2016009246A (en) Environmental map generation controller, mobile body and environmental map generation method