JP2009210399A - Eddy current sensor - Google Patents

Eddy current sensor Download PDF

Info

Publication number
JP2009210399A
JP2009210399A JP2008053258A JP2008053258A JP2009210399A JP 2009210399 A JP2009210399 A JP 2009210399A JP 2008053258 A JP2008053258 A JP 2008053258A JP 2008053258 A JP2008053258 A JP 2008053258A JP 2009210399 A JP2009210399 A JP 2009210399A
Authority
JP
Japan
Prior art keywords
magnetic field
eddy current
magnetic
sensor
magnetic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008053258A
Other languages
Japanese (ja)
Other versions
JP5209994B2 (en
Inventor
Shinsuke Mochizuki
信助 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohden Co Ltd
Original Assignee
Kohden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohden Co Ltd filed Critical Kohden Co Ltd
Priority to JP2008053258A priority Critical patent/JP5209994B2/en
Publication of JP2009210399A publication Critical patent/JP2009210399A/en
Application granted granted Critical
Publication of JP5209994B2 publication Critical patent/JP5209994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Testing Of Coins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive eddy current sensor of good reproducibility using a signal processing circuit flat in frequency characteristics, small in size and simple in structure. <P>SOLUTION: The eddy current sensor includes an AC magnetic field generating coil for generating an eddy current in a detection material being a conductor by the application of an AC magnetic field and a magnetic sensor, which has sensitivity in a definite direction, for detecting the magnetic field by the eddy current. The AC magnetic field generating coil and the magnetic sensor are allowed to approach each other or arranged in a concentric circular state so that the magnetic field passes vertically with respect to the magnetism sensing direction of the magnetic sensor to detect the eddy current in the detection material passing the vicinity of the magnetic sensor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、形状、材質等により硬貨の種類を選別する必要のある装置に使用する渦電流センサに関するものである。   The present invention relates to an eddy current sensor used in an apparatus that needs to select the type of coins according to shape, material, and the like.

一般に硬貨の種類、真贋の判別には、搬送される硬貨の磁気特性をコイルにより測定する手法が用いられている。図5に示すように、コイルに交流電流を流し、発生した交流磁界31を硬貨13に印加する。磁界31が硬貨13の中を通過するとき発生する渦電流32により、渦電流による磁界33が発生してコイル内の磁場が変化するため、磁界発生用コイル若しくは別途実装された検出用コイルのインピーダンス変化をコイル両端の電圧変化として検出し、この出力から硬貨の材質、厚さ、直径等を推測し、硬貨の種類や真贋を判定することが知られている。   In general, a method of measuring the magnetic characteristics of a coin to be conveyed with a coil is used to determine the type and authenticity of the coin. As shown in FIG. 5, an alternating current is passed through the coil, and the generated alternating magnetic field 31 is applied to the coin 13. Since the eddy current 32 generated when the magnetic field 31 passes through the coin 13 generates a magnetic field 33 due to the eddy current and the magnetic field in the coil changes, the impedance of the magnetic field generating coil or the separately mounted detection coil It is known that a change is detected as a voltage change at both ends of the coil, and the material, thickness, diameter, and the like of the coin are estimated from this output to determine the type and authenticity of the coin.

例えば、特許文献1に記載の硬貨判別装置は、公衆電話機、自動販売機などに用いられ、硬貨軌道に配置した送受信コイルによって硬貨の厚さあるいは材質を判定して硬貨の真偽、種類などを判別する硬貨判別装置に関するものであり、送信コイルから発生する交番磁界によって移動する硬貨に渦電流を生じさせ、この渦電流が作り出す磁界によって受信コイルに生じる誘起電圧変化の出力波形を得て、この出力波形に基づいて硬貨の真偽、種類を判別するものである。
特開平05−217050号公報
For example, the coin discriminating apparatus described in Patent Document 1 is used in public telephones, vending machines, etc., and the thickness or material of a coin is determined by a transmission / reception coil arranged in a coin trajectory to determine the authenticity and type of the coin. The present invention relates to a coin discriminating device for discriminating, and an eddy current is generated in a coin moving by an alternating magnetic field generated from a transmitting coil, and an output waveform of an induced voltage change generated in a receiving coil by a magnetic field generated by the eddy current is obtained Based on the output waveform, the authenticity and type of the coin are discriminated.
Japanese Patent Laid-Open No. 05-217050

従来、センサの多くは特許文献1のように、コイルを用いた渦電流センサの検出出力から得た硬貨の材質、厚さ、径のデータにより硬貨の種類を判別している。
ここで、周波数fで変化する磁界Bは以下の式で表される。

Figure 2009210399
また、巻数n、断面積Sのコイルの断面に対して磁力線が垂直になるように設置したとき、コイルの両端に発生する電圧eは以下の式で表される。
Figure 2009210399
よって、磁場Bに置かれたコイルの端子間に生じる電圧の最大値V0は、前記の数式(2)にcos(ωt)=1を代入することにより、次のように表すことができる。
Figure 2009210399
Conventionally, as in Japanese Patent Application Laid-Open No. 2003-228620, many sensors determine the type of a coin based on data on the material, thickness, and diameter of the coin obtained from the detection output of an eddy current sensor using a coil.
Here, the magnetic field B changing at the frequency f is expressed by the following equation.
Figure 2009210399
Further, when the magnetic field lines are installed so as to be perpendicular to the cross section of the coil having the winding number n and the cross-sectional area S, the voltage e generated at both ends of the coil is expressed by the following expression.
Figure 2009210399
Therefore, the maximum value V0 of the voltage generated between the terminals of the coil placed in the magnetic field B can be expressed as follows by substituting cos (ωt) = 1 into the above equation (2).
Figure 2009210399

前記数式(3)より、渦電流検出に使用するコイルの出力は、巻数n、断面積S、周波数fの積に正比例し、特に低周波数の測定においては、巻数nと断面積Sを大きくする必要があるため、検出物の材質、外形寸法に対して最適な磁場を印加することが出来ず、同一のコイルで多種の周波数を測定することは困難であり、十分な感度が得られない場合があった。   From Equation (3), the output of the coil used for eddy current detection is directly proportional to the product of the number of turns n, the cross-sectional area S, and the frequency f. In particular, the number of turns n and the cross-sectional area S are increased in the low-frequency measurement. Because it is necessary to apply the optimum magnetic field to the material and outer dimensions of the object to be detected, it is difficult to measure various frequencies with the same coil, and sufficient sensitivity cannot be obtained. was there.

また、検出用コイルには常時交流磁界が印加され、検出物の有無による微弱な変化を検出するためには信号処理回路が複雑になるという問題があった。さらに、コイルの構成によっては、コイルと硬貨の間隔に出力が大きく左右されるため、種類や真贋の判定が困難であるという問題があった。   Further, an AC magnetic field is always applied to the detection coil, and there is a problem that a signal processing circuit becomes complicated in order to detect a weak change due to the presence or absence of a detection object. Furthermore, depending on the configuration of the coil, the output greatly depends on the interval between the coil and the coin, and thus there is a problem that it is difficult to determine the type and authenticity.

本発明は、上記問題点に鑑みなされたものであり、周波数特性が平坦であり、かつ小型で簡単な構造の信号処理回路で安価で再現性のよい渦電流センサを提供することを目的とするものである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an eddy current sensor that has a flat frequency characteristic, is small and has a simple structure, and is inexpensive and has good reproducibility. Is.

請求項1記載の発明は、交流磁界の印加により導電体である検出物に渦電流を発生させる交流磁界発生用コイルと、前記渦電流による磁界を検出する一定方向に感度を持った磁気センサとを有し、磁気センサの感磁方向に対して垂直に磁界が通過するように、前記交流磁界発生用コイルと磁気センサとを近接させて、又は同心円状に配置して、前記磁気センサの近傍を通過する検出物に生じる渦電流を検出するようにしたことを特徴とする渦電流センサである。   The invention according to claim 1 is an AC magnetic field generating coil for generating an eddy current in a detection object which is a conductor by applying an AC magnetic field, and a magnetic sensor having sensitivity in a certain direction for detecting the magnetic field due to the eddy current; In the vicinity of the magnetic sensor, the AC magnetic field generating coil and the magnetic sensor are arranged close to each other or concentrically so that the magnetic field passes perpendicularly to the magnetic sensing direction of the magnetic sensor. The eddy current sensor is characterized in that eddy current generated in a detection object passing through the slab is detected.

請求項2記載の発明は、交流磁界の印加により導電体である検出物に渦電流を発生させる交流磁界発生用コイルと、前記渦電流による磁界を検出する一定方向に感度を持った磁気センサとを有し、磁気センサの感磁方向と同一方向に磁界が通過するように前記交流磁界発生用コイルと磁気センサを配置して、前記交流磁界発生用コイルと磁気センサとの間の磁束線を横切るように通過する検出物に生じる渦電流を検出するようにしたことを特徴とする渦電流センサである。   According to a second aspect of the present invention, there is provided an AC magnetic field generating coil for generating an eddy current in a detection object as a conductor by applying an AC magnetic field, a magnetic sensor having sensitivity in a certain direction for detecting the magnetic field due to the eddy current, The AC magnetic field generating coil and the magnetic sensor are arranged so that a magnetic field passes in the same direction as the magnetic sensing direction of the magnetic sensor, and a magnetic flux line between the AC magnetic field generating coil and the magnetic sensor is arranged. An eddy current sensor is characterized in that an eddy current generated in a detection object that passes across is detected.

請求項3記載の発明は、請求項1又は2に加えて、渦電流を発生させる印加磁界を方形波若しくはパルス波とすることを特徴とする渦電流センサである。   According to a third aspect of the present invention, in addition to the first or second aspect, the applied magnetic field for generating the eddy current is a square wave or a pulse wave.

請求項4記載の発明は、請求項1乃至3に加えて、前記磁気センサは、異方性磁気抵抗素子を使用し、永久磁石、コイル等によるバイアス磁界を印加してなることを特徴とする請求項1乃至3記載の渦電流センサである。   According to a fourth aspect of the present invention, in addition to the first to third aspects, the magnetic sensor uses an anisotropic magnetoresistive element and applies a bias magnetic field by a permanent magnet, a coil, or the like. The eddy current sensor according to claim 1.

請求項1記載の発明によれば、磁気センサの感磁方向に対して垂直に磁界が通過するように、前記交流磁界発生用コイルと磁気センサとを近接させて、又は同心円状に配置して、前記磁気センサの近傍を通過する検出物に生じる渦電流を検出するようにしたので、検出物が無い状態では交流磁界発生用コイルが動作中であっても磁気センサからの信号はほとんど発生せず(変化せず)、検出物が通過する際に生じる渦電流によって初めて磁気センサの出力に変化が生じる構成となるため、小型で簡単な構造の信号処理回路で安価で再現性のよい渦電流センサを実現できる。   According to the first aspect of the present invention, the AC magnetic field generating coil and the magnetic sensor are disposed close to each other or concentrically so that the magnetic field passes perpendicularly to the magnetic sensing direction of the magnetic sensor. Since the eddy current generated in the detected object passing in the vicinity of the magnetic sensor is detected, almost no signal is generated from the magnetic sensor even if the AC magnetic field generating coil is operating in the absence of the detected object. (There is no change), and the eddy current generated when the detection object passes changes the output of the magnetic sensor for the first time. Therefore, the signal processing circuit has a small and simple structure and is inexpensive and highly reproducible. A sensor can be realized.

請求項2記載の発明によれば、磁気センサの感磁方向と同一方向に磁界が通過するように前記交流磁界発生用コイルと磁気センサを配置して、前記交流磁界発生用コイルと磁気センサとの間の磁束線を横切るように通過する検出物に生じる渦電流を検出するようにしたので、交流磁界発生用コイルからの磁界が検出物によって消費され差し引かれた残りの磁界を磁気センサによって検出する関係であることから、交流磁界発生用コイルと磁気センサの間のどの部分を検出物が通過したとしても磁気センサの出力に影響せず、高精度な測定を簡単な構造で実現できる。   According to a second aspect of the present invention, the AC magnetic field generating coil and the magnetic sensor are arranged so that the magnetic field passes in the same direction as the magnetic sensing direction of the magnetic sensor, and the AC magnetic field generating coil and the magnetic sensor are arranged. The eddy current generated in the detected object passing across the magnetic flux line between the two is detected, so the magnetic field from the AC magnetic field generating coil is consumed by the detected object and the remaining magnetic field is detected by the magnetic sensor. Therefore, no matter what part between the AC magnetic field generating coil and the magnetic sensor passes through the detected object, the output of the magnetic sensor is not affected, and highly accurate measurement can be realized with a simple structure.

請求項3記載の発明によれば、渦電流を発生させる印加磁界を方形波若しくはパルス波としたので、方形波を構成する基本波及び高調波を使用して、磁気センサの出力を検出物の表皮効果による基本波での渦電流による消費を低く抑え、かつ検出物の違いによる表皮効果による高調波での渦電流による消費を十分に判別できる周波数と奇数次の高調波に設定することで、一度の測定のみで検出信号の比率により温度特性等による出力変動に左右されることなく安定な検出が可能となる。   According to the invention described in claim 3, since the applied magnetic field for generating the eddy current is a square wave or a pulse wave, the fundamental wave and the harmonics constituting the square wave are used to change the output of the magnetic sensor of the detected object. By setting the frequency and odd-order harmonics so that consumption due to eddy currents at the fundamental wave due to the skin effect is kept low, and consumption due to eddy currents due to the skin effect due to differences in the detected objects can be sufficiently identified, Stable detection is possible with only one measurement without depending on the output fluctuation due to the temperature characteristic or the like depending on the ratio of the detection signal.

請求項4記載の発明によれば、前記磁気センサは、異方性磁気抵抗素子を使用し、永久磁石、コイル等によるバイアス磁界を印加して構成したので、一般的なコイルを使用したセンサにみられるセンサ感度の周波数依存性はなく、良好な周波数特性から多様な検出物に合わせた周波数設定を簡単な信号処理回路のみで高感度に安定な特性を安価に実現できる。   According to the invention of claim 4, the magnetic sensor uses an anisotropic magnetoresistive element and is configured by applying a bias magnetic field by a permanent magnet, a coil, etc., so that the sensor using a general coil is used. There is no frequency dependence of the sensor sensitivity that can be seen, and it is possible to realize high sensitivity and stable characteristics at low cost by using only a simple signal processing circuit to set the frequency according to various detection objects from good frequency characteristics.

本発明による渦電流センサは、交流磁界の印加により導電体である検出物に渦電流を発生させる交流磁界発生用コイルと、前記渦電流による磁界を検出する一定方向に感度を持った磁気センサとを有し、磁気センサの感磁方向と同一方向に磁界が通過するように前記交流磁界発生用コイルと磁気センサを配置して、前記交流磁界発生用コイルと磁気センサとの間の磁束線を横切るように通過する検出物に生じる渦電流を検出するようにしたことを特徴とするものであり、渦電流を発生させる印加磁界を方形波若しくはパルス波とし、さらに、前記磁気センサは、異方性磁気抵抗素子を使用し、永久磁石、コイル等によるバイアス磁界を印加してなることを特徴とする。   An eddy current sensor according to the present invention includes an AC magnetic field generating coil that generates an eddy current in an object to be detected by application of an AC magnetic field, a magnetic sensor having sensitivity in a certain direction for detecting the magnetic field due to the eddy current, and The AC magnetic field generating coil and the magnetic sensor are arranged so that a magnetic field passes in the same direction as the magnetic sensing direction of the magnetic sensor, and a magnetic flux line between the AC magnetic field generating coil and the magnetic sensor is arranged. An eddy current generated in a detection object that passes across is detected, the applied magnetic field that generates the eddy current is a square wave or a pulse wave, and the magnetic sensor is anisotropic. It is characterized by using a magnetoresistive element and applying a bias magnetic field by a permanent magnet, a coil or the like.

図1(a)に示すのは、本発明の渦電流センサ10の実施例1の構成を表した上面図であり、(b)は、A方向から見た場合の位置関係を表した模式図である。この図1において、11は、永久磁石によって微弱な磁界でバイアスされた異方性磁気抵抗素子からなる磁気センサであり、12は、交流磁界発生用コイルであり、13は、硬貨等の検出物である。   FIG. 1A is a top view showing the configuration of the first embodiment of the eddy current sensor 10 of the present invention, and FIG. 1B is a schematic diagram showing the positional relationship when viewed from the A direction. It is. In FIG. 1, 11 is a magnetic sensor comprising an anisotropic magnetoresistive element biased with a weak magnetic field by a permanent magnet, 12 is a coil for generating an alternating magnetic field, and 13 is a detection object such as a coin. It is.

図2は、本発明の磁気センサ11の構成の一例を示したものである。図2(a)は、異方性磁気抵抗素子を利用した磁気センサ11の基本構成を表したものであり、取付面としての基板15上に構成された4つの磁気抵抗素子18、19、20、21と、この基板15上の取付面と略平行となるように磁極面25(例えばN極)を対向させたバイアス磁石16とによって構成されている。基板15上の4つの磁気抵抗素子のうち18と21は、図中の基板15の略中心にある中心点24を通る中心線23上であってかつ中心点24に対して対称の位置に設けられており、これらの磁気抵抗素子18、21は共に中心線23に対して45°の角度方向に延伸させて設けてある。また、4つの磁気抵抗素子のうち残りの19と20は、中心点24を通ると共に中心線23に対して垂直な中心線22上であってかつ中心点24から対称の位置に設けられており、これらの磁気抵抗素子19、20は共に中心線22に対して45°の角度方向に延伸させて設けてある。なお、図2(a)におけるバイアス磁石16の形状は正方形としたが、磁極面25が基板15に向かい合っているものであればこれに限られるものではなく、例えば、円形形状のバイアス磁石16としてもよい。図2(d)に示すように、バイアス磁石16の磁極面25からは、磁気的中心26から放射状に磁気ベクトルが発生している。   FIG. 2 shows an example of the configuration of the magnetic sensor 11 of the present invention. FIG. 2A shows a basic configuration of the magnetic sensor 11 using an anisotropic magnetoresistive element, and four magnetoresistive elements 18, 19, 20 formed on a substrate 15 as an attachment surface. , 21 and a bias magnet 16 having a magnetic pole face 25 (for example, N pole) facing each other so as to be substantially parallel to the mounting surface on the substrate 15. Of the four magnetoresistive elements on the substrate 15, 18 and 21 are provided on the center line 23 passing through the center point 24 substantially at the center of the substrate 15 in the drawing and at symmetrical positions with respect to the center point 24. These magnetoresistive elements 18 and 21 are both extended in an angle direction of 45 ° with respect to the center line 23. The remaining 19 and 20 of the four magnetoresistive elements are provided on the center line 22 that passes through the center point 24 and is perpendicular to the center line 23 and is symmetrical to the center point 24. These magnetoresistive elements 19 and 20 are provided so as to extend in an angle direction of 45 ° with respect to the center line 22. Although the shape of the bias magnet 16 in FIG. 2A is square, the shape is not limited to this as long as the magnetic pole surface 25 faces the substrate 15. For example, the bias magnet 16 having a circular shape is used. Also good. As shown in FIG. 2D, magnetic vectors are generated radially from the magnetic center 26 from the magnetic pole face 25 of the bias magnet 16.

このようにして4つの磁気抵抗素子18〜21を配置した基板15は、図2(a)に示すように、中心点24とバイアス磁石16の磁極面25上の磁気的中心26とが重なるように位置関係を調整する。この状態で、図2(c)に示すように、リードフレーム17の両面に接着すると共に、モールドパッケージ14にて保持することで、磁気センサ11を構成する。
また、図2(b)に示すように、中心点24に対して向かい合う磁気抵抗素子18と21及び19と20でそれぞれハーフブリッジを構成して、これらの中点からの出力をそれぞれOutAとOutBとして取り出す。なお、本実施例ではモールドパッケージ14によって基板15とバイアス磁石16を保持する構成としたが、基板15上の中心点24とバイアス磁石16の位置関係さえ正しければ、保持方法を限定するものではない。
In the substrate 15 on which the four magnetoresistive elements 18 to 21 are arranged in this manner, the center point 24 and the magnetic center 26 on the magnetic pole surface 25 of the bias magnet 16 overlap as shown in FIG. Adjust the positional relationship. In this state, as shown in FIG. 2 (c), the magnetic sensor 11 is configured by being bonded to both surfaces of the lead frame 17 and being held by the mold package 14.
Further, as shown in FIG. 2B, the magnetoresistive elements 18 and 21 and 19 and 20 facing the center point 24 constitute half bridges, respectively, and outputs from these midpoints are OutA and OutB, respectively. Take out as. In this embodiment, the substrate 15 and the bias magnet 16 are held by the mold package 14, but the holding method is not limited as long as the positional relationship between the center point 24 on the substrate 15 and the bias magnet 16 is correct. .

本実施例における渦電流センサ10は、前記磁気センサ11の2つの出力であるOutAとOutBとの差分出力によって検出物13を判別するものであり、差分出力の波形は、図1(c)に示すようなものとなる。   The eddy current sensor 10 in this embodiment discriminates the detected object 13 based on the difference output between OutA and OutB, which are the two outputs of the magnetic sensor 11, and the waveform of the difference output is shown in FIG. As shown.

磁気センサ11近傍を検出物13が通過していくと、交流磁界発生用コイル12からの垂直方向の磁界が印加されて検出物13に渦電流が発生する。ここで、磁気センサ11の異方性磁気抵抗素子を形成した面は、交流磁界発生用コイル12からの印加磁界の方向に垂直に設置されているため、交流磁界発生用コイル12からの印加磁界の方向と異方性磁気抵抗素子の感磁方向は直交する位置関係であり、磁気センサ11は、渦電流による面方向の磁界を検出して、図1(c)に示すように、出力信号が増加する。
さらに検出物13が磁気センサ11に近づいて磁気センサ11の感磁中心と検出物13が重なる位置まで近づくと、交流磁界発生用コイル12の中心からほぼ放射線状に渦電流が発生している関係上、水平方向の磁界は減少してほぼ垂直方向の磁界のみの状態となるため、図1(c)に示すように、磁気センサ11の出力信号は減少する。
その後検出物13が磁気センサ11の感磁中心から徐々に離れていくと、図1(c)に示すように、再度水平方向の磁界が増加して出力信号も増加するが、さらに検出物が遠ざかるにつれて出力信号は減少していく。
When the detected object 13 passes through the vicinity of the magnetic sensor 11, a vertical magnetic field is applied from the AC magnetic field generating coil 12, and an eddy current is generated in the detected object 13. Here, since the surface on which the anisotropic magnetoresistive element of the magnetic sensor 11 is formed is installed perpendicular to the direction of the applied magnetic field from the alternating magnetic field generating coil 12, the applied magnetic field from the alternating magnetic field generating coil 12 is used. And the magnetic sensing direction of the anisotropic magnetoresistive element are orthogonal to each other, and the magnetic sensor 11 detects the magnetic field in the surface direction due to the eddy current and outputs an output signal as shown in FIG. Will increase.
Further, when the detected object 13 approaches the magnetic sensor 11 and approaches the position where the magnetic sensing center of the magnetic sensor 11 and the detected object 13 overlap, a relationship in which eddy currents are generated almost radially from the center of the AC magnetic field generating coil 12 is generated. In addition, since the horizontal magnetic field is reduced to a state in which only the vertical magnetic field is present, the output signal of the magnetic sensor 11 decreases as shown in FIG.
Thereafter, as the detected object 13 gradually moves away from the magnetic sensing center of the magnetic sensor 11, as shown in FIG. 1C, the horizontal magnetic field increases again and the output signal also increases. The output signal decreases as the distance increases.

本実施例における渦電流センサ10では、磁気センサ11の異方性磁気抵抗素子を形成した面と交流磁界発生用コイル12からの印加磁界の方向とが垂直となることから、検出物の無い状態では磁気センサ11を透過する磁束線は概ね垂直方向のみであるため磁気センサからの信号は非常に弱い。よって、検出物13通過時の信号の増減によって判定すればよく、容易に信号処理回路を作成できる。   In the eddy current sensor 10 according to the present embodiment, the surface of the magnetic sensor 11 on which the anisotropic magnetoresistive element is formed and the direction of the applied magnetic field from the AC magnetic field generating coil 12 are perpendicular to each other. Then, since the magnetic flux lines passing through the magnetic sensor 11 are only in the vertical direction, the signal from the magnetic sensor is very weak. Therefore, it may be determined by the increase or decrease of the signal when passing through the detected object 13, and a signal processing circuit can be easily created.

なお、図1においては1個の交流磁界発生用コイル12で構成したが、より垂直方向の印加磁界を平行磁場とするために、2個の交流磁界発生用コイル12を用いてヘルムホルツコイルのように対で使用してもよい。   In FIG. 1, the AC magnetic field generating coil 12 is used. However, in order to make the applied magnetic field in the vertical direction a parallel magnetic field, two AC magnetic field generating coils 12 are used to form a Helmholtz coil. May be used in pairs.

図3(a)に示すのは、本発明の渦電流センサ10の実施例2の構成を表した上面図であり、(b)は、B方向から見た場合の位置関係を表した模式図である。
この図3において、11は、永久磁石によって微弱な磁界でバイアスされた異方性磁気抵抗素子からなる磁気センサであり、12は、交流磁界発生用コイルであり、13は、硬貨等の検出物である。磁気センサ11は、前記実施例1と同様に、図2に示す異方性磁気抵抗素子(18〜21)を利用したものを用いる。
この実施例2は、交流磁界発生用コイル12と磁気センサ11との間を検出物13が通過するように配置したことを特徴とするものである。
FIG. 3A is a top view illustrating the configuration of the eddy current sensor 10 according to the second embodiment of the present invention, and FIG. 3B is a schematic diagram illustrating the positional relationship when viewed from the B direction. It is.
In FIG. 3, 11 is a magnetic sensor comprising an anisotropic magnetoresistive element biased with a weak magnetic field by a permanent magnet, 12 is a coil for generating an alternating magnetic field, and 13 is a detection object such as a coin. It is. As in the first embodiment, the magnetic sensor 11 uses an anisotropic magnetoresistive element (18 to 21) shown in FIG.
The second embodiment is characterized in that the detected object 13 passes between the AC magnetic field generating coil 12 and the magnetic sensor 11.

磁気センサ11と交流磁界発生用コイル12の間を検出物13が通過していくと、交流磁界発生用コイル12からの磁界が検出物13に遮蔽され渦電流が発生する。磁気センサ11に到達する交流磁界発生用コイル12からの磁界には、渦電流に転換された磁力分の欠損が生じる。   When the detected object 13 passes between the magnetic sensor 11 and the AC magnetic field generating coil 12, the magnetic field from the AC magnetic field generating coil 12 is shielded by the detected object 13, and an eddy current is generated. In the magnetic field from the AC magnetic field generating coil 12 that reaches the magnetic sensor 11, a deficiency of the magnetic force converted into the eddy current is generated.

交流磁界発生用コイル12では、流す電流波形に対応した磁界が発生する。ここで、交流磁界発生用コイル12に流す電流を方形波とすると、発生する磁界の周波数成分y(t)は、以下の数式(4)で表される。

Figure 2009210399
The AC magnetic field generating coil 12 generates a magnetic field corresponding to the current waveform to be applied. Here, assuming that the current flowing through the AC magnetic field generating coil 12 is a square wave, the frequency component y (t) of the generated magnetic field is expressed by the following formula (4).
Figure 2009210399

また、上記のような周波数成分を有する方形波を入力した場合、生じる渦電流の表皮深さdは、以下の数式(5)で表され、このとき、検出物13の厚みに対して表皮深さdが十分に深くなるように周波数を選択する。

Figure 2009210399
この数式(5)からも分かるように、表皮深さdと電気抵抗ρ(導電率σ)との関係は、一方が判明すれば他方が判明する関係にあることから、これを検出物13の判定に役立てることが可能となる。 Further, when a square wave having a frequency component as described above is input, the skin depth d of the eddy current generated is expressed by the following formula (5). At this time, the skin depth with respect to the thickness of the detected object 13 is expressed. The frequency is selected so that the depth d is sufficiently deep.
Figure 2009210399
As can be seen from this equation (5), the relationship between the skin depth d and the electrical resistance ρ (conductivity σ) is such that if one is found, the other is found. It can be used for judgment.

次に、本実施例2における磁気センサ11からの信号の処理回路について、図4を用いて説明する。図4(a)に示すブロック図において、磁気センサ11からの出力信号は増幅器27に入力されて単純に交流増幅される。ここで、磁気センサ11の出力信号としてOutAとOutBの2つを取り出している場合には、それぞれについて交流増幅を行う。増幅器27からの出力のうち一方の出力に対しては、ハイパスフィルタ(HPF)28を通した後にピーク検出回路29aで信号の最大値を検出する。増幅器27の他方の出力に対しては、そのままピーク検出回路29bを適用する。比較回路30において、ピーク検出回路29bの出力をピーク検出回路29aの出力で割ることで、検出物13による変動の比率を表す出力信号を得る。   Next, a signal processing circuit from the magnetic sensor 11 in the second embodiment will be described with reference to FIG. In the block diagram shown in FIG. 4A, the output signal from the magnetic sensor 11 is input to the amplifier 27 and simply AC amplified. Here, when two signals OutA and OutB are taken out as output signals of the magnetic sensor 11, AC amplification is performed for each of them. One of the outputs from the amplifier 27 is passed through a high pass filter (HPF) 28, and then the maximum value of the signal is detected by the peak detection circuit 29a. The peak detection circuit 29b is applied to the other output of the amplifier 27 as it is. The comparison circuit 30 divides the output of the peak detection circuit 29b by the output of the peak detection circuit 29a, thereby obtaining an output signal representing the ratio of fluctuation due to the detected object 13.

磁気センサ11の信号を増幅器27で単純に交流増幅した後にピーク検出器29bで最大値を測定し、更に基本波から前記高調波成分を分離できる簡単なハイパスフィルタ28を通した信号に対してピーク検出器29aを適用して高調波成分の最大値を測定する。
基本波形の最大値では通過時の渦電流による損失が無視できるので殆ど最大値に変化はないが、高調波成分については表皮効果による渦電流の損失が大きく発生する。すなわち、検出物13の材質、厚み等に応じて表皮効果による渦電流の損失分が異なるため、これに基づいて検出物13を判別することが可能となる。
The signal from the magnetic sensor 11 is simply AC amplified by the amplifier 27, then the maximum value is measured by the peak detector 29b, and the signal is passed through a simple high-pass filter 28 that can separate the harmonic components from the fundamental wave. The detector 29a is applied to measure the maximum value of the harmonic component.
At the maximum value of the basic waveform, loss due to eddy current at the time of passage is negligible, so there is almost no change in the maximum value, but eddy current loss due to the skin effect is greatly generated for harmonic components. That is, since the loss of eddy current due to the skin effect varies depending on the material, thickness, and the like of the detected object 13, the detected object 13 can be determined based on this.

比較回路30において、基本波のピーク検出器29bの出力をピーク検出器29aの出力で除算することにより、検出物による渦電流の変動比率の関係が得られる。この比較回路30の出力は温度等による変動要因が無くなるため、検出物13の電気抵抗の違いによって材質を良好に弁別することが可能となる。
磁気センサ11は異方性磁気抵抗素子を利用しているものであるため、周波数特性は直流から数MHz以上まで平坦であり、検出物13の厚さ、電気抵抗に応じて簡単に変更できる。
In the comparison circuit 30, by dividing the output of the peak detector 29b of the fundamental wave by the output of the peak detector 29a, the relationship of the fluctuation ratio of the eddy current due to the detected object is obtained. Since the output of the comparison circuit 30 is free from fluctuation factors due to temperature or the like, the material can be distinguished well by the difference in the electrical resistance of the detected object 13.
Since the magnetic sensor 11 uses an anisotropic magnetoresistive element, the frequency characteristic is flat from direct current to several MHz or more, and can be easily changed according to the thickness and electric resistance of the detected object 13.

本実施例2においては、図3(a)に示すように、磁気センサ11と交流磁界発生用コイル12を対向させて設置し、この間を検出物13が通過するようにして構成したが、本実施例2はこれに限定されるものではない。すなわち、検出物13が磁気センサ11と交流磁界発生用コイル12の間を通過する構成であって、かつ、検出物13に渦電流が流れた分の磁界の欠落分を磁気センサ11で検出可能な位置関係であればよい。これにより、検出装置を構成する際に渦電流センサの位置決めの自由度が高くなるため、汎用性が高まる。   In the second embodiment, as shown in FIG. 3A, the magnetic sensor 11 and the AC magnetic field generating coil 12 are installed facing each other, and the detection object 13 passes between them. Example 2 is not limited to this. That is, the detected object 13 is configured to pass between the magnetic sensor 11 and the AC magnetic field generating coil 12, and the magnetic sensor 11 can detect a missing magnetic field due to the eddy current flowing through the detected object 13. Any positional relationship may be used. Thereby, since the freedom degree of positioning of an eddy current sensor becomes high when comprising a detection apparatus, versatility increases.

前記実施例において、磁気センサ11は異方性磁気抵抗素子を利用したものとしたが、必ずしもこれに限られるものではなく、例えばホール素子を手利用することも可能である。しかし、周波数特性を考慮すると、異方性磁気抵抗素子を利用することが好ましい。
また、前記実施例においては、磁気センサ11は4つの異方性磁気抵抗素子を用いて構成しているが、これに限定されるものではなく、少なくとも1つ以上の異方性磁気抵抗素子があれば構成可能である。
In the above-described embodiment, the magnetic sensor 11 uses an anisotropic magnetoresistive element. However, the magnetic sensor 11 is not necessarily limited to this. For example, a Hall element can be used manually. However, in consideration of frequency characteristics, it is preferable to use an anisotropic magnetoresistive element.
Moreover, in the said Example, although the magnetic sensor 11 was comprised using four anisotropic magnetoresistive elements, it is not limited to this, At least 1 or more anisotropic magnetoresistive element is included. If there is, it is configurable.

(a)は、本発明の渦電流センサ10の実施例1の構成を表した上面図であり、(b)は、A方向から見た場合の位置関係を表した模式図であり、(c)は、磁気センサ11の出力波形の一例である。(A) is the top view showing the structure of Example 1 of the eddy current sensor 10 of this invention, (b) is the schematic diagram showing the positional relationship when it sees from A direction, (c ) Is an example of an output waveform of the magnetic sensor 11. 異方性磁気抵抗素子を利用した磁気センサ11の基本構成を表した説明図である。It is explanatory drawing showing the basic composition of the magnetic sensor 11 using an anisotropic magnetoresistive element. (a)は、本発明の渦電流センサ10の実施例2の構成を表した上面図であり、(b)は、B方向から見た場合の位置関係を表した模式図である。(A) is the top view showing the structure of Example 2 of the eddy current sensor 10 of this invention, (b) is the schematic diagram showing the positional relationship when it sees from a B direction. (a)は、磁気センサ11の出力信号に対する処理回路の一例を表したブロック図であり、(b)は、渦電流センサ10の出力波形の一例である。(A) is a block diagram showing an example of a processing circuit for an output signal of the magnetic sensor 11, and (b) is an example of an output waveform of the eddy current sensor 10. 検出物13における渦電流の発生の様子を表した模式図である。FIG. 6 is a schematic diagram illustrating how eddy currents are generated in a detection object 13.

符号の説明Explanation of symbols

10…渦電流センサ、11…磁気センサ、12…交流磁界発生用コイル、13…検出物、14…モールドパッケージ、15…基板、16…バイアス磁石、17…リードフレーム、18〜21…異方性磁気抵抗素子、22…中心線、23…中心線、24…中心点、25…磁極面、26…磁気的中心、27…増幅器、28…ハイパスフィルタ、29a、29b…ピーク検出回路、30…比較回路、31…交流磁界、32…渦電流、33…渦電流による磁界。 DESCRIPTION OF SYMBOLS 10 ... Eddy current sensor, 11 ... Magnetic sensor, 12 ... Coil for alternating current magnetic field generation, 13 ... Detected object, 14 ... Mold package, 15 ... Substrate, 16 ... Bias magnet, 17 ... Lead frame, 18-21 ... Anisotropy Magnetoresistive element, 22 ... center line, 23 ... center line, 24 ... center point, 25 ... magnetic pole surface, 26 ... magnetic center, 27 ... amplifier, 28 ... high-pass filter, 29a, 29b ... peak detection circuit, 30 ... comparison Circuit, 31 ... alternating magnetic field, 32 ... eddy current, 33 ... magnetic field by eddy current.

Claims (4)

交流磁界の印加により導電体である検出物に渦電流を発生させる交流磁界発生用コイルと、前記渦電流による磁界を検出する一定方向に感度を持った磁気センサとを有し、磁気センサの感磁方向に対して垂直に磁界が通過するように、前記交流磁界発生用コイルと磁気センサとを近接させて、又は同心円状に配置して、前記磁気センサの近傍を通過する検出物に生じる渦電流を検出するようにしたことを特徴とする渦電流センサ。   An AC magnetic field generating coil that generates an eddy current in a detection object that is a conductor by applying an AC magnetic field, and a magnetic sensor that has sensitivity in a certain direction for detecting the magnetic field due to the eddy current. The AC magnetic field generating coil and the magnetic sensor are placed close to each other or concentrically arranged so that a magnetic field passes perpendicularly to the magnetic direction, and vortices generated in an object passing near the magnetic sensor. An eddy current sensor characterized by detecting an electric current. 交流磁界の印加により導電体である検出物に渦電流を発生させる交流磁界発生用コイルと、前記渦電流による磁界を検出する一定方向に感度を持った磁気センサとを有し、磁気センサの感磁方向と同一方向に磁界が通過するように前記交流磁界発生用コイルと磁気センサを配置して、前記交流磁界発生用コイルと磁気センサとの間の磁束線を横切るように通過する検出物に生じる渦電流を検出するようにしたことを特徴とする渦電流センサ。   An AC magnetic field generating coil that generates an eddy current in a detection object that is a conductor by applying an AC magnetic field, and a magnetic sensor that has sensitivity in a certain direction for detecting the magnetic field due to the eddy current. The AC magnetic field generating coil and the magnetic sensor are arranged so that the magnetic field passes in the same direction as the magnetic direction, and the detected object passes across the magnetic flux line between the AC magnetic field generating coil and the magnetic sensor. An eddy current sensor characterized by detecting an eddy current generated. 渦電流を発生させる印加磁界を方形波若しくはパルス波とすることを特徴とする請求項1又は2記載の渦電流センサ。   3. The eddy current sensor according to claim 1, wherein the applied magnetic field for generating the eddy current is a square wave or a pulse wave. 前記磁気センサは、異方性磁気抵抗素子を使用し、永久磁石、コイル等によるバイアス磁界を印加してなることを特徴とする請求項1乃至3記載の渦電流センサ。   4. The eddy current sensor according to claim 1, wherein the magnetic sensor uses an anisotropic magnetoresistive element and is applied with a bias magnetic field by a permanent magnet, a coil or the like.
JP2008053258A 2008-03-04 2008-03-04 Eddy current sensor Active JP5209994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008053258A JP5209994B2 (en) 2008-03-04 2008-03-04 Eddy current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008053258A JP5209994B2 (en) 2008-03-04 2008-03-04 Eddy current sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012280946A Division JP2013101129A (en) 2012-12-25 2012-12-25 Eddy current sensor and detection object discrimination circuit

Publications (2)

Publication Number Publication Date
JP2009210399A true JP2009210399A (en) 2009-09-17
JP5209994B2 JP5209994B2 (en) 2013-06-12

Family

ID=41183714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008053258A Active JP5209994B2 (en) 2008-03-04 2008-03-04 Eddy current sensor

Country Status (1)

Country Link
JP (1) JP5209994B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013533492A (en) * 2010-07-26 2013-08-22 ラディエーション・モニタリング・デバイシーズ・インコーポレイテッド Eddy current detection
WO2014015095A1 (en) * 2012-07-20 2014-01-23 Authentec, Inc. Finger sensor including magnetic field sensing pixels and corresponding method of sensing finger characteristics
WO2014129457A1 (en) * 2013-02-19 2014-08-28 ジーエヌエス有限会社 Magnetic foreign body testing device and magnetic foreign body testing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886452A (en) * 1981-10-02 1983-05-24 ユニヴア−シテイ・カレツジ・カ−デイフ・コンサルタンツ・リミテツド Method and device for discriminating, sorting or settling electric conductive substance
JPH05217050A (en) * 1992-01-31 1993-08-27 Anritsu Corp Coin discriminating device
JPH10162189A (en) * 1996-11-27 1998-06-19 Canon Electron Inc Coin discriminating device
WO2003091657A1 (en) * 2002-04-26 2003-11-06 Azuma Systems Co., Ltd Magnetic probe
JP2004013371A (en) * 2002-06-05 2004-01-15 Mitec Corp Coin identifying device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886452A (en) * 1981-10-02 1983-05-24 ユニヴア−シテイ・カレツジ・カ−デイフ・コンサルタンツ・リミテツド Method and device for discriminating, sorting or settling electric conductive substance
JPH05217050A (en) * 1992-01-31 1993-08-27 Anritsu Corp Coin discriminating device
JPH10162189A (en) * 1996-11-27 1998-06-19 Canon Electron Inc Coin discriminating device
WO2003091657A1 (en) * 2002-04-26 2003-11-06 Azuma Systems Co., Ltd Magnetic probe
JP2004013371A (en) * 2002-06-05 2004-01-15 Mitec Corp Coin identifying device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013533492A (en) * 2010-07-26 2013-08-22 ラディエーション・モニタリング・デバイシーズ・インコーポレイテッド Eddy current detection
US9678175B2 (en) 2010-07-26 2017-06-13 Radiation Monitoring Devices, Inc. Eddy current detection
WO2014015095A1 (en) * 2012-07-20 2014-01-23 Authentec, Inc. Finger sensor including magnetic field sensing pixels and corresponding method of sensing finger characteristics
US9517022B2 (en) 2012-07-20 2016-12-13 Apple Inc. Finger biometric sensor including magnetic field finger biometric sensing pixels and related methods
WO2014129457A1 (en) * 2013-02-19 2014-08-28 ジーエヌエス有限会社 Magnetic foreign body testing device and magnetic foreign body testing method
JP2014159984A (en) * 2013-02-19 2014-09-04 Jins Co Ltd Device for inspecting magnetic contamination and method for inspecting magnetic contamination

Also Published As

Publication number Publication date
JP5209994B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5174879B2 (en) Conductive object detection device
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
JP5597788B2 (en) Measuring device for current flowing through a conductor
WO2015058733A1 (en) Contactless magnetic sensor of the magnetic or electrically conductive objects´position
CN106290553A (en) A kind of electromagnetic transducer system of novel detection defect in rope
JP2009069148A (en) Device for measuring magnetic field
JP2006300906A (en) Magneto-impedance sensor element
JP2009210406A (en) Current sensor and watthour meter
CN107202966B (en) The measurement method and system of a kind of alternate magnetic flux leakage of transformer winding
JP3352366B2 (en) Pulse signal generator
JP2013101129A (en) Eddy current sensor and detection object discrimination circuit
JP5209994B2 (en) Eddy current sensor
Tsukada et al. Integrated magnetic sensor probe and excitation wire for nondestructive detection of submillimeter defects
JP2009186433A (en) Eddy-current type sample measuring method, eddy-current sensor and eddy-current type sample measurement system
JP6388672B2 (en) Coin detection system
JP2003075475A (en) Ac current sensor
US11512982B2 (en) Electromagnetic measuring system for detecting length and angle on the basis of the magnetoimpedance effect
CN113093290B (en) Method for detecting weak secondary field signal under same-frequency strong magnetic interference background
CN204129826U (en) A kind of Detecting of coin system
CN103617669A (en) Coin detecting device
WO2020049883A1 (en) Electric current measurement apparatus and electric current measurement method
JP2009300316A (en) Electromagnetic ultrasonic sensor
JP5139822B2 (en) Magnetic field probe
JP3223991U (en) Nondestructive inspection equipment
JP2020537152A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5209994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250