JP2009203498A - High frequency-induction heating method, heating apparatus and bearing - Google Patents

High frequency-induction heating method, heating apparatus and bearing Download PDF

Info

Publication number
JP2009203498A
JP2009203498A JP2008044942A JP2008044942A JP2009203498A JP 2009203498 A JP2009203498 A JP 2009203498A JP 2008044942 A JP2008044942 A JP 2008044942A JP 2008044942 A JP2008044942 A JP 2008044942A JP 2009203498 A JP2009203498 A JP 2009203498A
Authority
JP
Japan
Prior art keywords
heat
heating
treated product
induction heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008044942A
Other languages
Japanese (ja)
Inventor
Daisuke Watanuki
大輔 渡貫
Hideyuki Tobitaka
秀幸 飛鷹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008044942A priority Critical patent/JP2009203498A/en
Publication of JP2009203498A publication Critical patent/JP2009203498A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide heat-treatment with which a hardened layer to the optional hardened layer depth is precisely formed by utilizing a high frequency-induction heating. <P>SOLUTION: This high frequency-induction heating method is performed, by which an article to be heat-treated composed of an axial symmetrical iron is heated with the high frequency-induction heating and after adjusting the hardening layer depth on the surface, the quenching is performed. After exceeding the A1 point in the length x1[mm] depth needed to the hardened layer with the heating, and further, after heating until the time satisfying formula (1), Σ(from t=0 to t1) (T-log<SB>B</SB>t+A)>200000, becomes the time t1, and then, the heating is completed to perform the quenching. Wherein, in above formula (1): T is the absolute temperature [K] at the position x1 of the article to be heat-treated; t is the time [sec] after exceeding the A1 point at the position x1 of the article to be heat-treated; and A is a correcting constant (10-20). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鋼製の部品、特に軸受部品に好適な高周波誘導加熱による熱処理方法、及びそれに使用可能な加熱装置、その熱処理を施した軸受に関する。   The present invention relates to a heat treatment method using high-frequency induction heating suitable for steel parts, particularly bearing parts, a heating apparatus usable for the heat treatment method, and a bearing subjected to the heat treatment.

誘導加熱による熱処理は、低コスト・低熱処理変形、短時間でクリーンな熱処理が可能であるとして、ギアやシャフト類をはじめとして多くの鋼からなる機械部品に適用されている。
しかし、軸受の分野においては、誘導加熱による熱処理は、車軸支持用軸受など限定された用途でのみ使用されてきている。限定の理由は、同じ形式で、ある程度の数量が生産される必要があるためであった。そしてそれは、一つの誘導加熱コイルは、特定の形状の被熱処理品専用に設計・作製され、誘導加熱コイルと被熱処理品の位置、出力、加熱時間は固定して熱処理するという方式であるためである。
Heat treatment by induction heating is applied to machine parts made of many steels such as gears and shafts, because low-cost, low-heat treatment deformation and clean heat treatment are possible in a short time.
However, in the field of bearings, heat treatment by induction heating has been used only for limited applications such as axle support bearings. The reason for the limitation was that some quantity had to be produced in the same format. This is because one induction heating coil is designed and manufactured exclusively for a heat-treated product with a specific shape, and the position, output, and heating time of the induction heating coil and the heat-treated product are fixed and heat-treated. is there.

また、現在、風車減速機や鉄鋼圧延機で用いられるような大型・超大型軸受において、靭性や特に長寿命が要求される場合では、軸受鋼ではなく浸炭鋼が用いられ、これに長時間の浸炭あるいは浸炭窒化を施して硬化層を形成している。
このような浸炭軸受は、心部硬度が低く靭性を高めることができるといった利点がある。しかし浸炭あるいは浸炭窒化処理で必要な硬化層深さを表面に得るためには、非常に長時間の熱処理が必要であることから、熱処理歪も大変に大きなものとなっている。こうした点について、生産性とコストの両面で向上させる方法が求められている。
Also, in large and super large bearings currently used in windmill reducers and steel rolling mills, when toughness and especially long life are required, carburized steel is used instead of bearing steel, Carburizing or carbonitriding is performed to form a hardened layer.
Such a carburized bearing has an advantage that the core hardness is low and the toughness can be increased. However, in order to obtain the necessary hardened layer depth on the surface by carburizing or carbonitriding, a very long heat treatment is required, so that the heat treatment strain is also very large. In this regard, a method for improving both productivity and cost is required.

一方、誘導加熱によって大型の機械部品を熱処理する方法も模索されてきている。大径薄肉であるほど大きくなるリングについて、熱処理変形を抑制して表面焼入れする技術として特許文献1に記載のものがある。また、特許文献2や特許文献3に記載のように、リング状の被熱処理品に対して、U字型や馬蹄形といった形状のコイルで加熱する方法がある。この場合は全体を均一に加熱し、ずぶ焼きすることになる。また、特許文献4に記載の方法では、ずぶ焼きの品質を高めるために、複数点で温度を測定し、その温度差が小さくなった時点で焼入を行う技術が示されている。更に、特許文献5の方法では、さらにずぶ焼きの品質を高めるために、加熱部から離れた位置の温度から炭素の拡散長を計算し、十分に炭素がマトリックス中に溶け込んだ時点で焼入れするという方法を取っている。
特開平11−140543号公報 特開2005−325409号公報 特開2006−179359号公報 特開2005−310645号公報 特開2006−152429号公報
On the other hand, a method for heat-treating a large machine part by induction heating has been sought. Patent Document 1 discloses a technique for quenching the surface of a ring that becomes larger as the diameter and thickness of the ring are suppressed by heat treatment. In addition, as described in Patent Document 2 and Patent Document 3, there is a method of heating a ring-shaped heat-treated product with a coil having a U-shaped or horseshoe-shaped shape. In this case, the whole is heated uniformly and is baked. Moreover, in the method described in Patent Document 4, a technique is shown in which the temperature is measured at a plurality of points and the quenching is performed when the temperature difference becomes small in order to improve the quality of the soaking. Further, in the method of Patent Document 5, the diffusion length of carbon is calculated from the temperature at a position away from the heating part in order to further enhance the quality of the soaking, and it is quenched when the carbon is sufficiently dissolved in the matrix. Taking the way.
JP-A-11-140543 JP 2005-325409 A JP 2006-179359 A JP 2005-310645 A JP 2006-152429 A

大型肉厚の被熱処理品を、誘導加熱を利用して、重荷重に耐えるような深さまで焼入することができれば、生産性を大幅に向上させることができる。また任意の深さまで焼入れすることで、最も優れた強度と靭性のバランスを実現することができる。
しかし、上記従来技術では、高周波誘導加熱を利用して、任意の硬化層深さまでの硬化層を精度良く形成する熱処理方法について開示がない。
本発明は、このような点について着目してなされたもので、高周波誘導加熱を利用して、任意の硬化層深さまでの硬化層を精度良く形成する熱処理を提供することを課題としている。
Productivity can be greatly improved if a large-thickness material to be heat-treated can be quenched to a depth that can withstand heavy loads using induction heating. Moreover, the most excellent balance between strength and toughness can be realized by quenching to an arbitrary depth.
However, the above prior art does not disclose a heat treatment method for accurately forming a hardened layer up to an arbitrary hardened layer depth using high-frequency induction heating.
The present invention has been made paying attention to such points, and an object of the present invention is to provide a heat treatment for accurately forming a hardened layer up to an arbitrary hardened layer depth using high-frequency induction heating.

上記課題を解決するために、本発明のうち請求項1に記載した発明は、鋼からなる被熱処理品を高周波誘導加熱によって加熱して表面の硬化層深さを調整した後で焼入れを行う高周波誘導加熱方法において、
加熱によって、硬化層が必要とされる深さx1[mm]においてA1点を越えてから、さらに下記(1)式を満足する時間t1となるまで加熱した後に、加熱を終了して焼入れを行うことを特徴とするものである。
In order to solve the above-mentioned problems, the invention described in claim 1 of the present invention is a high-frequency method in which a heat-treated product made of steel is heated by high-frequency induction heating to adjust the depth of the hardened layer on the surface and then quenched. In the induction heating method,
After heating, when the cured layer exceeds the point A1 at the required depth x1 [mm] and further reaches the time t1 that satisfies the following expression (1), the heating is finished and quenching is performed. It is characterized by this.

Figure 2009203498
Figure 2009203498

ただし、
T :被熱処理品の位置x1における絶対温度[K]
t :被熱処理品の位置x1においてA1点を超えてからの時間[sec]
A :補正定数
次に、請求項2に記載した発明は、請求項1に記載した構成に対し、上記被熱処理品は軸対称形状の被熱処理品であり、誘導加熱コイルを、被熱処理品の軸方向及び周方向に複数配置すると共に各コイルの出力を個別に調整可能に設定し、上記被熱処理品を軸回転させながら加熱を行い、熱処理中の表面から予測される温度分布から、被熱処理品内部の必要とされる深さx1[mm]において、(1)式を満足するA1点を超えてからの最小の加熱時間t1を求め、必要とされる深さx1[mm]でA1点を超えてから上記加熱時間t1を経過したと判定すると加熱を終了し、その後に冷媒を被熱処理品に噴射冷却して焼入れを行うことを特徴とするものである。
次に、請求項3に記載した発明は、請求項2に記載した構成に対し、上記加熱は、被熱処理品の硬化層を形成する表面が目標とする焼入れ温度まで加熱した後は、表面温度をその焼入れ温度に保持するように各誘導加熱コイルの出力を調整することを特徴とするものである。
However,
T: Absolute temperature [K] at position x1 of the heat-treated product
t: Time after exceeding the point A1 at the position x1 of the heat-treated product [sec]
A: Correction constant Next, in the invention described in claim 2, the heat-treated product is an axially symmetric heat-treated product with respect to the configuration described in claim 1, and the induction heating coil is replaced with the heat-treated product. A plurality of coils are arranged in the axial direction and the circumferential direction, and the output of each coil is set to be individually adjustable. The heat-treated product is heated while rotating the shaft, and the heat treatment is performed from the temperature distribution predicted from the surface during the heat treatment. At the required depth x1 [mm] inside the product, the minimum heating time t1 after exceeding the point A1 that satisfies the equation (1) is obtained, and the point A1 at the required depth x1 [mm]. When it is determined that the heating time t1 has passed since the time exceeded, the heating is terminated, and then the coolant is jet-cooled onto the heat-treated product for quenching.
Next, the invention described in claim 3 is the structure described in claim 2, wherein the heating is performed after the surface to form the cured layer of the heat-treated product is heated to a target quenching temperature. The output of each induction heating coil is adjusted so as to keep the temperature at the quenching temperature.

次に、請求項4に記載した発明は、軸対称形状の鋼からなる被熱処理品を高周波誘導加熱で加熱する加熱装置であって、
上記被熱処理品を軸回転可能に支持する支持装置と、それぞれが被熱処理品における硬化層を形成する表面に対向配置して、当該被熱処理品の軸方向及び周方向に沿って複数個配置する複数の誘導加熱コイルと、上記誘導加熱コイルに個別に高周波電力を出力する電源装置と、上記被熱処理品の複数箇所の温度を検出する温度検出手段と、被熱処理品に向けて冷媒を噴射可能な冷却手段と、上記温度検出手段の検出値に基づき上記各誘導加熱コイルに供給する高周波電力を個別に調整して誘導加熱を制御するコントローラと、を備え、
上記加熱は、被熱処理品を軸回転させながら実施され、上記コントローラは、温度検出手段の検出値に基づき、熱処理中の上記表面温度から予測される温度分布から、被熱処理品内部の必要とされる深さx1[mm]において、(1)式を満足するA1点を超えてからの最小の加熱時間t1を算出し、
温度検出手段の検出値に基づき必要とされる深さx1[mm]でA1点を超えたと判定したら、その判定後さらに加熱時間t1だけ経過後に加熱を終了し、冷却手段による冷媒に噴射による焼入れに移行させることを特徴とする加熱装置を提供するものである。
Next, the invention described in claim 4 is a heating device that heats a heat-treated product made of axisymmetric steel by high-frequency induction heating,
A support device that supports the heat-treated product so as to be axially rotatable, and each of the support devices are arranged to face the surface of the heat-treated product on which a hardened layer is formed, and a plurality of the devices are arranged along the axial direction and the circumferential direction of the heat-treated product A plurality of induction heating coils, a power supply device that individually outputs high-frequency power to the induction heating coils, temperature detection means for detecting temperatures at a plurality of locations of the heat-treated product, and coolant can be injected toward the heat-treated product A cooling means, and a controller for controlling induction heating by individually adjusting the high frequency power supplied to each induction heating coil based on the detection value of the temperature detection means,
The heating is performed while rotating the article to be heat-treated, and the controller needs the inside of the article to be heat-treated based on the temperature distribution predicted from the surface temperature during the heat treatment based on the detection value of the temperature detecting means. The minimum heating time t1 after exceeding the point A1 satisfying the expression (1) at the depth x1 [mm] to be calculated,
If it is determined that the required depth x1 [mm] exceeds the A1 point based on the detected value of the temperature detecting means, the heating is finished after the heating time t1 after the determination, and the refrigerant by the cooling means is quenched by injection. The present invention provides a heating device characterized in that it is shifted to the above.

Figure 2009203498
Figure 2009203498

ただし、
T :被熱処理品の位置x1における絶対温度[K]
t :被熱処理品の位置x1においてA1点を超えてからの時間[sec]
A :補正定数
次に、請求項5に記載した発明は、外輪、内輪、転動体の少なくとも一つの軸受部品を上記被熱処理品として、請求項1〜請求項3のいずれか1項に記載した高周波誘導加熱方法で熱処理を施したことを特徴とする軸受を提供するものである。
However,
T: Absolute temperature [K] at position x1 of the heat-treated product
t: Time after exceeding the point A1 at the position x1 of the heat-treated product [sec]
A: Correction constant Next, the invention described in claim 5 is described in any one of claims 1 to 3, in which at least one bearing component of an outer ring, an inner ring, and a rolling element is the heat-treated product. The present invention provides a bearing that is heat-treated by a high-frequency induction heating method.

例えば、加熱は、まず被熱処理品表面が所定の温度に達するまで加熱を行う。所定の焼入温度T1に達した後は、表面においてその温度を保つだけの熱量を加え続け、心部へと伝熱させてゆく。十分にγマトリクス中に炭素の移動が起こった時に、十分な熱処理品質を得ることができると考えられる。目標の焼入深さx1[mm]における炭素の移動距離は、(1)式で表されると想定される。つまり、目標焼入深さで式1が満足した時点で、焼入を開始することで、任意の深さで十分な熱処理品質を得ることができる(後述の実施例を参照)。   For example, the heating is first performed until the surface of the heat-treated product reaches a predetermined temperature. After reaching the predetermined quenching temperature T1, heat is applied to keep the temperature on the surface, and the heat is transferred to the core. It is considered that sufficient heat treatment quality can be obtained when carbon migration occurs sufficiently in the γ matrix. It is assumed that the moving distance of carbon at the target quenching depth x1 [mm] is expressed by equation (1). That is, when Equation 1 is satisfied at the target quenching depth, sufficient quenching quality can be obtained at any depth by starting quenching (see examples described later).

また、誘導加熱する表面から深さ方向の必要とされる位置x1において、加熱開始から加熱終了までにいたる温度を計算により求める。すなわち、被熱処理品に加える熱量や表面温度の計測値などから、伝熱計算などによって、目的とする深さ位置x1での温度は推定可能である。
また、補正定数Aは、鋼の組織状態等による加熱による硬化変化速度の違いを補正する定数である。例えば、鋼の組織状態(球状化状態、パーライト、調質)によって設定され、10〜20の値をとる。例えば、この値は、経験値や実験などによって特定する。
Further, the temperature from the start of heating to the end of heating is obtained by calculation at a required position x1 in the depth direction from the surface to be heated by induction. That is, the temperature at the target depth position x1 can be estimated from the amount of heat applied to the heat-treated product, the measured value of the surface temperature, and the like by heat transfer calculation.
The correction constant A is a constant for correcting the difference in the rate of change in hardening due to heating due to the structural state of the steel. For example, it is set according to the structure state of steel (spheroidized state, pearlite, tempered), and takes a value of 10-20. For example, this value is specified by experience values or experiments.

本発明によれば、高周波誘導加熱を利用して、短時間で任意の硬化層深さまでの硬化層を精度良く形成する熱処理を提供することが可能となる。
特に、硬化層の深さを適切に調整して、芯部に硬度が低く靭性を有する部分を確実に残して、表面硬度と靭性のバランスの適正化が要請されるような、軌道輪などの部品への適用に効果的である。
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the heat processing which forms a hardened layer to arbitrary hardened layer depth accurately in a short time using a high frequency induction heating.
In particular, the depth of the hardened layer is adjusted appropriately, leaving a portion with low hardness and toughness in the core, and a balance between surface hardness and toughness is required, such as a bearing ring. It is effective for application to parts.

次に、本発明の実施形態をついて図面を参照しつつ説明する。
図1は、本実施形態に係る加熱装置の配置構成についての一例を示す被熱処理品の軸方向から見た模式図である。図2は、図1のA−A断面図である。
なお、本実施形態では、軸受部品である内輪を被熱処理品(ワーク1)として、その外径面の表層に必要とされる深さx1まで焼入れを行うことで、硬化層を形成する場合を例示する。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view seen from the axial direction of a heat-treated product showing an example of the arrangement configuration of the heating device according to the present embodiment. 2 is a cross-sectional view taken along the line AA in FIG.
In the present embodiment, the inner ring, which is a bearing component, is used as a heat-treated product (work 1), and a hardened layer is formed by quenching to a depth x1 required for the outer surface of the outer diameter surface. Illustrate.

図1に示すように、内輪からなるワーク1を固定支持する支持装置2と、ワーク1の外径面に対向配置する複数の誘導加熱コイル3と、その複数の誘導加熱コイル3に個別に高周波電力を供給する電源装置4と、ワーク1の外径面の温度を測定する温度検出手段5と、ワーク1外径面に向けて冷媒を噴射する冷却手段7と、上記温度検出手段5の検出値に基づき上記各誘導加熱コイル3に供給する高周波電力を個別に調整して誘導加熱を制御など加熱処理の制御をするコントローラ6と、を備える。   As shown in FIG. 1, a supporting device 2 that fixes and supports a work 1 composed of an inner ring, a plurality of induction heating coils 3 that are arranged to face the outer diameter surface of the work 1, and a plurality of induction heating coils 3 that are individually high frequency. Power supply device 4 for supplying electric power, temperature detection means 5 for measuring the temperature of the outer diameter surface of the work 1, cooling means 7 for injecting a refrigerant toward the outer diameter surface of the work 1, and detection by the temperature detection means 5 A controller 6 for controlling the heating process such as controlling the induction heating by individually adjusting the high frequency power supplied to each induction heating coil 3 based on the value.

上記誘導加熱コイル3は、図1のように、周方向に沿って複数個分散して配置する。図1では、ワーク1の軸を挟んで2組の誘導加熱コイル3が配置されている。各組の誘導加熱コイル3は、図2に示すように、ワーク1の軸と平行に複数個並べて配置されている。図2では、3個並べる場合を例示しており、加熱範囲に隙間が無いように設定する。各組のコイル3を、ワーク1の軸方向に並ぶ複数のコイル3で構成することで、軸方向に沿ったそれぞれの場所に応じて入力電力を調整して温度分布を制御可能とするためである。これによって、軸方向に長さの異なる被被熱処理品や鍔状やテーパ状の形状の異なる被被熱処理品の熱処理により対応可能となる。また、誘導加熱コイル3を軸方向に分割することで、巨大な高周波電源を必要としなくなるためである。   As shown in FIG. 1, a plurality of the induction heating coils 3 are arranged in a distributed manner along the circumferential direction. In FIG. 1, two sets of induction heating coils 3 are arranged across the axis of the workpiece 1. As shown in FIG. 2, a plurality of induction heating coils 3 in each group are arranged side by side in parallel with the axis of the workpiece 1. FIG. 2 illustrates the case where three are arranged, and the heating range is set so that there is no gap. By configuring each set of coils 3 with a plurality of coils 3 arranged in the axial direction of the workpiece 1, the temperature distribution can be controlled by adjusting the input power according to the respective locations along the axial direction. is there. As a result, it is possible to cope with the heat treatment of the heat-treated products having different lengths in the axial direction and the heat-treated products having different bowl-shaped or tapered shapes. Further, by dividing the induction heating coil 3 in the axial direction, a huge high frequency power source is not required.

ここで、各組の誘導加熱コイル3は、3個以上から構成されることが好ましい。すなわち、ワーク1の軸方向端部位置を加熱するコイル3と、ワーク1の中央部側を加熱するコイル3とは別コイル3であることが好ましい。軸方向中央部側よりも端部側の放熱が大きいことに対応して、より適切に対応可能とするためである。
また、コイル3は接線方向とラジアル方向の位置と角度が可変である。各コイル3の出力は軸方向の位置と角度が同じコイル3ごとに別個に制御できる。あるいは全く別個に制御できる。そして複数のコイル3をワーク1表面全体が加熱されるように配置する。
Here, it is preferable that each set of induction heating coils 3 includes three or more. That is, the coil 3 that heats the axial end position of the workpiece 1 and the coil 3 that heats the central portion of the workpiece 1 are preferably separate coils 3. This is because it is possible to more appropriately cope with the fact that the heat radiation on the end portion side is larger than the central portion side in the axial direction.
The coil 3 is variable in position and angle in the tangential direction and radial direction. The output of each coil 3 can be controlled separately for each coil 3 having the same axial position and angle. Alternatively, it can be controlled completely separately. And the some coil 3 is arrange | positioned so that the whole workpiece | work 1 surface may be heated.

上記温度検出手段5は、例えば放射温度計で構成され、検出した温度信号をコントローラ6に出力する。この温度検出手段5は、図2に示すように、ワーク1の軸方向(幅方向)に沿って複数個配置されていて、ワーク1表面の軸方向に沿った温度分布制御をより精度良く可能となっている。
冷却手段7は、冷却空気などの冷媒をワーク1表面に向けて噴出する装置である。例えば、冷却手段7は、なるべく多くの面積をカバーできる冷却ジャケットで構成してワーク1の表面全体を一気に冷却可能に構成する。
支持装置2は、ワーク1の内径面に挿入されて当該ワーク1の内径面に当接するチャック部2aと、そのチャック部2aで支持したワーク1を軸回転させる駆動部2bとを備える。
The temperature detection means 5 is composed of, for example, a radiation thermometer, and outputs the detected temperature signal to the controller 6. As shown in FIG. 2, a plurality of the temperature detecting means 5 are arranged along the axial direction (width direction) of the workpiece 1, and temperature distribution control along the axial direction of the surface of the workpiece 1 can be performed with higher accuracy. It has become.
The cooling means 7 is a device that ejects a coolant such as cooling air toward the surface of the work 1. For example, the cooling means 7 is constituted by a cooling jacket that can cover as much area as possible so that the entire surface of the workpiece 1 can be cooled at once.
The support device 2 includes a chuck portion 2a that is inserted into the inner diameter surface of the workpiece 1 and contacts the inner diameter surface of the workpiece 1, and a drive portion 2b that rotates the workpiece 1 supported by the chuck portion 2a.

次に、コントローラ6の処理について、図3を参照しつつ説明する。
コントローラ6は、処理開始信号を入力すると、まず、支持装置2を作動させてワーク1を当該支持装置2に固定させて、ワーク1を軸回転させる(ステップS10)。
この状態で、電源装置4を作動させ各誘導加熱コイル3に個別に高周波電力を出力して誘導加熱を開始する(ステップS20)。このとき、温度検出手段5からの検出信号に基づき、ワーク1表面の加熱が均一となるように各コイル3の出力を制御する。
Next, the process of the controller 6 will be described with reference to FIG.
When the processing start signal is input, the controller 6 first operates the support device 2 to fix the workpiece 1 to the support device 2 and rotates the workpiece 1 about its axis (step S10).
In this state, the power supply device 4 is operated, high frequency power is individually output to each induction heating coil 3, and induction heating is started (step S20). At this time, based on the detection signal from the temperature detection means 5, the output of each coil 3 is controlled so that the heating of the surface of the workpiece 1 is uniform.

加熱につれてワーク1の表面の温度が昇温する。そして、ワーク1表面温度が、目的とする焼入れ温度T1に達したか否かを判定し(ステップS30)、表面温度が目標とする焼入れ温度T1に達したと判定した場合には、ワーク1の表面において、その温度を保つだけの熱量をワーク1に加え続けるように、各誘導加熱コイル3の出力を、温度検出手段5の検出信号を参照しつつ制御する(ステップS40)。これによってワーク1の芯部に向けて伝熱されていく。   The temperature of the surface of the workpiece 1 increases as the heating is performed. Then, it is determined whether or not the surface temperature of the workpiece 1 has reached the target quenching temperature T1 (step S30), and when it is determined that the surface temperature has reached the target quenching temperature T1, On the surface, the output of each induction heating coil 3 is controlled with reference to the detection signal of the temperature detection means 5 so as to continue to apply the amount of heat sufficient to maintain the temperature to the workpiece 1 (step S40). As a result, heat is transferred toward the core of the work 1.

なお、上記加熱処理において、各温度検出手段5の検出値に数十度といった大きな差が生じないよう、各コイル3の出力を調整する。また、熱が逃げやすい端面では出力を上げ、また、コイル3の重なった部分で高温となる場合は全体の投入電力自体を絞る。
同期をとって、時間ごとの表面温度の履歴に基づき、ワーク1内部の温度勾配を推定して硬化層を形成するための必要とする深さx1での絶対温度Tを推定する。このような熱処理中の上記表面温度から予測される温度分布から、必要とされる深さx1でA1点を超える時間と、下記(1)式を満足する最小の加熱時間t1を求める(ステップS50)。
In the heat treatment, the output of each coil 3 is adjusted so that a large difference of several tens of degrees does not occur in the detection value of each temperature detection means 5. Further, the output is increased at the end face where heat easily escapes, and when the temperature is high at the overlapping portion of the coil 3, the entire input power itself is reduced.
In synchronization, the absolute temperature T at the depth x1 required for forming the hardened layer is estimated by estimating the temperature gradient inside the workpiece 1 based on the history of the surface temperature for each time. From the temperature distribution predicted from the surface temperature during such heat treatment, a time exceeding the A1 point at the required depth x1 and a minimum heating time t1 satisfying the following expression (1) are obtained (step S50). ).

Figure 2009203498
Figure 2009203498

ただし、
T :被熱処理品の位置x1における絶対温度[K]
t :被熱処理品の位置x1においてA1点を超えてからの時間[sec]
A :補正定数
補正定数Aは、鋼の組織状態(球状化状態、パーライト、調質)によって選定され、10〜20の値をとる。
そして、表面から必要とされる深さx1において、A1点を超えたと判定すると、その判定後さらに加熱時間t1だけ経過したか否かを判定し(ステップS60)、加熱時間t1だけ経過したと判定した場合には、コイル3への出力を停止して加熱を終了する(ステップS70)。その後に、冷却装置に作動指令を出力してワーク1に冷媒を出力して焼入れを行う(ステップS80)。
However,
T: Absolute temperature [K] at position x1 of the heat-treated product
t: Time after exceeding the point A1 at the position x1 of the heat-treated product [sec]
A: Correction constant The correction constant A is selected according to the structure state of the steel (spheroidized state, pearlite, tempered), and takes a value of 10-20.
Then, when it is determined that the point A1 has been exceeded at the required depth x1 from the surface, it is further determined whether or not only the heating time t1 has elapsed after the determination (step S60), and it is determined that only the heating time t1 has elapsed. If so, the output to the coil 3 is stopped and the heating is terminated (step S70). After that, the operation command is output to the cooling device, the refrigerant is output to the work 1, and quenching is performed (step S80).

次に、その作用効果を説明する。
軸対称形状のワーク1を軸回転しながら誘導加熱することで、周方向に沿って均一に加熱することが出来る。また、軸方向に沿って複数のコイル3に分割して配置することで、軸方向に長さの異なる被被熱処理品や鍔状やテーパ状の形状の異なる被熱処理品であっても、軸方向にも均一に加熱することが可能となる。
このとき、ワーク1の温度を検出し、各コイル3の出力を調整することで、より精度良く加熱制御を行うことが可能となる。
また、目的とする必要とする深さ位置でA1点を超えてからの加熱時間t1を上記(1)式に基づき算出することで、精度良く必要とする深さ位置まで硬化層を加熱することが可能となる。
Next, the effect is demonstrated.
By inductively heating the axially symmetric workpiece 1 while rotating the shaft, the workpiece 1 can be heated uniformly along the circumferential direction. In addition, by dividing and arranging the plurality of coils 3 along the axial direction, even if the heat-treated product having a different length in the axial direction or the heat-treated product having a bowl-like shape or a tapered shape has a shaft It becomes possible to heat evenly in the direction.
At this time, by detecting the temperature of the workpiece 1 and adjusting the output of each coil 3, it becomes possible to perform heating control with higher accuracy.
Moreover, the cured layer is heated to the required depth position with high accuracy by calculating the heating time t1 after exceeding the A1 point at the required required depth position based on the above equation (1). Is possible.

また、軸方向に沿って誘導加熱コイル3を複数に分割することで、高周波電力を発生する電源装置4を大型化することを回避可能となる。
以上のことから、リング形状等の軸対称形状でかつ肉厚の部材の焼入れ処理が短時間で可能となり、生産性向上につながる。
具体的には、環状部材からなるワーク1の任意の深さx1まで十分に炭素が溶け込んで、その結果均質な焼入れ熱処理品質を得ることができる。
また、深く焼入れする必要の無い部分、たとえば軸受部材ならば外輪外径・内輪内径などは、任意の硬化層深さとすることができるので、浅く焼入れすることで靭性を向上させるといったことができる。
Further, by dividing the induction heating coil 3 into a plurality along the axial direction, it is possible to avoid increasing the size of the power supply device 4 that generates high-frequency power.
From the above, quenching of an axially symmetric shape such as a ring shape and a thick member is possible in a short time, leading to an improvement in productivity.
Specifically, carbon is sufficiently dissolved to an arbitrary depth x1 of the workpiece 1 made of an annular member, and as a result, uniform quenching heat treatment quality can be obtained.
In addition, a portion that does not need to be deeply quenched, for example, an outer ring outer diameter and an inner ring inner diameter in the case of a bearing member, can have any hardened layer depth.

すなわち、本実施形態の加熱方法では、大型肉厚の被熱処理品を、重荷重に耐えるような必要な深さまで焼入することができるので、生産性を大幅に向上させることができる。また目的とする任意の深さまで精度良く焼入れすることで、最も優れた強度と靭性のバランスを実現することができる。一般に、軸受部品の場合には、芯部を焼入れせずに所定の靭性を持たせると共に転動体などの他の転動部品と摺接する表面を硬くする必要があるが、本実施形態を採用することにより、その強度と靭性のバランスを精度良く実現可能となる。   That is, in the heating method of the present embodiment, a large-thickness material to be heat-treated can be quenched to a necessary depth that can withstand heavy loads, so that productivity can be greatly improved. Moreover, the most excellent balance between strength and toughness can be realized by quenching with high precision to any desired depth. In general, in the case of bearing parts, it is necessary to give a predetermined toughness without quenching the core part and to harden the surface in sliding contact with other rolling parts such as rolling elements, but this embodiment is adopted. As a result, the balance between strength and toughness can be realized with high accuracy.

本実施形態の熱処理方法をとることで、肉厚が違う被熱処理品であったり、さまざまな形状の鋼製部材について、同じ加熱装置によって、均一かつ任意の深さまで硬化処理が可能となる。
ここで、上記実施形態では、被熱処理品として内輪を例示したが、これ限定されない。軸対称形状となっている軸受部品である外輪や転動体(ころ等)であっても良い。また、軸受部品に限定されず、軸部品などの機械部品であっても良い。
また、被熱処理品は、軸対称形状でなくても良い。
By adopting the heat treatment method of the present embodiment, it is possible to carry out a hardening process uniformly and to an arbitrary depth by using the same heating device for heat-treated products having different thicknesses or various shapes of steel members.
Here, in the said embodiment, although the inner ring | wheel was illustrated as a to-be-heat-processed goods, this is not limited. It may be an outer ring or a rolling element (roller or the like) which is a bearing component having an axially symmetric shape. Further, the present invention is not limited to bearing parts, and may be mechanical parts such as shaft parts.
Further, the heat-treated product may not have an axisymmetric shape.

(変形例)
被熱処理品として内輪若しくは外輪である軌道輪について、転動体と摺接する軌道面側を上記(1)式に基づく時間だけ誘導加熱し、その後、軌道面とは反対側の面についても軌道面側よりも深さを浅く設定して上記(1)式に基づく時間だけ誘導加熱し、その後に冷却して焼入れを行う。
この場合には、軌道面側に深い硬化層が形成され、被軌道面側に浅い硬化層が形成され、その2つの硬化層の間の芯部に非硬化層が形成される。
(Modification)
For a raceway ring that is an inner ring or an outer ring as a heat-treated product, the raceway surface that is in sliding contact with the rolling element is induction-heated for a time based on the above formula (1), and then the surface opposite to the raceway side is also on the raceway side The depth is set shallower than that, induction heating is performed for a time based on the above formula (1), and then cooling is performed for quenching.
In this case, a deep hardened layer is formed on the track surface side, a shallow hardened layer is formed on the tracked surface side, and a non-hardened layer is formed at the core between the two hardened layers.

被熱処理品である被熱処理品として、高炭素クロム軸受鋼からなる、断面形状が矩形で肉厚40[mm]のリング形状の部品を対象として、上記実施形態で説明した加熱装置によって焼入れ処理を行った。
必要とする深さである、所定の焼入深さx1=20[mm]まで焼入熱処理を施す場合とする。また、定数Aは、調質のため20とした。
As a heat-treated product that is a heat-treated product, a ring-shaped part having a rectangular cross-sectional shape and a wall thickness of 40 [mm] made of high-carbon chromium bearing steel is subjected to quenching treatment by the heating device described in the above embodiment. went.
It is assumed that the quenching heat treatment is performed up to a predetermined quenching depth x1 = 20 [mm], which is a necessary depth. The constant A was set to 20 for tempering.

図4に、深さ方向でみた温度分布の変化を示す。横軸は、被熱処理品の外径面からの深さ方向の位置を、縦軸は、表層の温度から計算された温度を示している。そして、加熱処理の経過につれて(a)→(b)→(c)→(d)と変化することを示すものである。すなわち、図4(a)は加熱開始し、表面付近の発熱部だけが温度上昇している状態である。図4(b)は表面がほぼ焼入時の温度に到達しており、ここからは表面がこの温度を維持するのに必要なだけの出力に各誘導加熱コイル3の出力を調整する。図4(c)は、硬化層をつけたい深さx1がオーステナイト変態点を越えて、母相中に炭素の拡散が始まる状態である。図4(d)は、さらに熱拡散が進み、オーステナイト変態点を越えた状態である。   FIG. 4 shows changes in temperature distribution in the depth direction. The horizontal axis indicates the position in the depth direction from the outer diameter surface of the heat-treated product, and the vertical axis indicates the temperature calculated from the surface layer temperature. And it shows that it changes with (a)-> (b)-> (c)-> (d) with progress of heat processing. That is, FIG. 4A shows a state in which heating is started and only the heat generating portion near the surface is rising in temperature. In FIG. 4B, the surface has almost reached the temperature at the time of quenching, and from here the output of each induction heating coil 3 is adjusted to an output that is necessary for the surface to maintain this temperature. FIG. 4 (c) shows a state where the depth x1 where the hardened layer is to be applied exceeds the austenite transformation point and carbon diffusion begins in the matrix. FIG. 4D shows a state where the thermal diffusion further proceeds and exceeds the austenite transformation point.

また、上記(1)式の左辺を拡散パラメータDと呼称した場合において、上記図4の(a)から(d)の温度勾配の各時点で、深さ方向でみた拡散パラメータDの分布を図5に示す。図5では、横軸に表面からの深さ位置をとり、縦軸に拡散パラメータDをとる。
図5(a)においては、どの点も変態点A1を越えていないので、拡散パラメータDは全域でゼロである。 図5(b)の時点では、表面のA1点を超えた領域では拡散パラメータDが増加を始めている。図5(c)の時点では、硬化層をつけたいx1[mm]の位置で、変態点A1は越えているが、拡散パラメータDはこれから増加が始まるところであり、この時点で焼き入れてもx1位置で十分な硬さを得ることはできない。図5(d)では、x1位置でもD>200000という敷居を越えており、この時点で焼入を開始する。
続いて、必要とする深さx1位置に注目して説明する。
X1位置における温度変化と、Dの値を表1に示す。
In addition, when the left side of the equation (1) is referred to as a diffusion parameter D, the distribution of the diffusion parameter D viewed in the depth direction at each time point of the temperature gradient from (a) to (d) in FIG. As shown in FIG. In FIG. 5, the horizontal axis represents the depth position from the surface, and the vertical axis represents the diffusion parameter D.
In FIG. 5A, since no point exceeds the transformation point A1, the diffusion parameter D is zero in the entire area. At the time shown in FIG. 5B, the diffusion parameter D starts to increase in the region beyond the point A1 on the surface. At the time of FIG. 5 (c), the transformation point A1 is exceeded at the position of x1 [mm] where the hardened layer is to be applied, but the diffusion parameter D is about to start increasing. It is not possible to obtain sufficient hardness at the position. In FIG. 5D, the threshold of D> 200000 is exceeded even at the x1 position, and quenching is started at this point.
Next, the description will be made by paying attention to the required depth x1 position.
Table 1 shows the temperature change at the X1 position and the value of D.

Figure 2009203498
今回の出力履歴における必要とされる深さx1での温度上昇は、図6に示されたパターンであった。すなわち、A1変態点を越える21秒後から拡散パラメータDの増加が始まる。そして、このとき、必要とされる深さx1において、変態点A1を越えたあとの時間と拡散パラメータDとの関係は、図5に示すパターンとなっていた。図7によれば、A1変態点を超えてから9秒後に拡散パラメータD=200000を越えることが分かる。
以上から、上記加熱パターンにおいては、加熱開始から30秒後にD>200000を満たす。
以上のことに基づき、外径面からの必要とする深さx1=20[mm]とし、その深さx1での拡散パラメータD=203372(>200000)となった時点で焼入れを行った場合を実施例1とする。
Figure 2009203498
The temperature rise at the required depth x1 in the current output history was the pattern shown in FIG. That is, the increase of the diffusion parameter D starts from 21 seconds after the A1 transformation point. At this time, the relationship between the time after the transformation point A1 and the diffusion parameter D at the required depth x1 is the pattern shown in FIG. According to FIG. 7, it can be seen that the diffusion parameter D = 200000 is exceeded 9 seconds after the A1 transformation point is exceeded.
From the above, in the heating pattern, D> 200000 is satisfied 30 seconds after the start of heating.
Based on the above, the case where the required depth x1 from the outer diameter surface is set to 20 [mm], and quenching is performed when the diffusion parameter D = 203372 (> 200000) at the depth x1. It is assumed Example 1.

この場合の表面の深さ方向での硬さの分布の結果を図8に示す。
更に、実施例2として、実施例1の加熱に引き続いて、内径面側も浅く(硬化層を2mm形成するように)加熱した後に、焼入処理した場合を示す。
この場合の表面の深さ方向での硬さの分布の結果を図9に示す。
一方、外径面からの必要とする深さx1=20[mm]とし、その深さx1での拡散パラメータD<200000となった時点で焼入れを行った場合を比較例1とする。
The result of the hardness distribution in the depth direction of the surface in this case is shown in FIG.
Further, as Example 2, a case where the inner surface side is also shallowed (to form a hardened layer of 2 mm) following the heating of Example 1 and then subjected to a quenching treatment is shown.
The result of the hardness distribution in the depth direction of the surface in this case is shown in FIG.
On the other hand, the required depth x1 = 20 [mm] from the outer diameter surface is set as Comparative Example 1 when quenching is performed when the diffusion parameter D <200000 at the depth x1.

この場合の表面の深さ方向での硬さの分布の結果を、図10に示す。
ここで、2つの実施例および比較例ともに、453Kにて低温焼き戻しを行っている。
以上のことから、目的としている必要とする深さx1において、拡散パラメータD>200000となるまで加熱することで、確実に必要とする深さx1まで硬化層を形成することが可能となることが分かる。これに対し、D<200000で焼入した比較例では、目標の硬化層深さが得られていなかった。
The result of the hardness distribution in the depth direction of the surface in this case is shown in FIG.
Here, low-temperature tempering is performed at 453 K in both the two examples and the comparative example.
From the above, it is possible to reliably form a hardened layer to the required depth x1 by heating until the diffusion parameter D> 200000 at the target required depth x1. I understand. On the other hand, in the comparative example quenched at D <200000, the target cured layer depth was not obtained.

ここで、実施例2の加熱方法は、軸受の軌道輪への適用に好適である。たとえばラジアル軸受においては内輪外径と外輪内径は、大きなせん断応力が加わるため、大きな硬化層深さが必要となる。反対に内輪内径や外輪外径は転動疲労を受けないため、深い硬化層は必要とされない。しかし、靭性という面を考えた場合、硬さの低い組織を軸受の中心部分により多く持っていた方がよい。そこで、実施例2のように、表面から中心近くまでの深い硬化層をつけたあと、裏面において浅い硬化層をつけることで、最大限の靭性をもった軸受を作るといったことも可能となる。   Here, the heating method of Example 2 is suitable for application to the bearing ring of the bearing. For example, in a radial bearing, since a large shear stress is applied to the inner ring outer diameter and the outer ring inner diameter, a large hardened layer depth is required. On the contrary, the inner ring inner diameter and the outer ring outer diameter do not suffer from rolling fatigue, so that a deep hardened layer is not required. However, when considering the aspect of toughness, it is better to have more low hardness structure in the center part of the bearing. Therefore, as in Example 2, it is possible to form a bearing having the maximum toughness by applying a deep hardened layer from the front surface to the vicinity of the center and then applying a shallow hardened layer on the back surface.

本発明に基づく実施形態に係る装置構成を示す模式図である。It is a schematic diagram which shows the apparatus structure which concerns on embodiment based on this invention. 図1におけるA−A断面図である。It is AA sectional drawing in FIG. 本発明に基づく第1実施形態に係るコントローラの処理例を示す図である。It is a figure which shows the process example of the controller which concerns on 1st Embodiment based on this invention. 表面からの温度勾配の変化を示す図である。It is a figure which shows the change of the temperature gradient from the surface. 拡散パラメータDの勾配変化を示す図である。It is a figure which shows the gradient change of the diffusion parameter D. FIG. 深さx1における電圧印加後の温度変化を示す図である。It is a figure which shows the temperature change after the voltage application in the depth x1. 深さx1における、変態後の拡散パラメータの変化を示す図である。It is a figure which shows the change of the diffusion parameter after transformation in depth x1. 実施例1での深さと硬度との関係を示す図である。It is a figure which shows the relationship between the depth in Example 1, and hardness. 実施例1での深さと硬度との関係を示す図である。It is a figure which shows the relationship between the depth in Example 1, and hardness. 従来例での深さと硬度との関係を示す図である。It is a figure which shows the relationship between the depth and hardness in a prior art example.

符号の説明Explanation of symbols

1 ワーク(被加熱部品)
2 支持装置
3 誘導加熱コイル
4 電源装置
5 温度検出手段
6 コントローラ
7 冷却手段
A 補正定数
D 拡散パラメータ
t1 変態後の加熱時間
x1 必要とされる深さ位置
1 Workpiece (heated part)
2 Supporting device 3 Induction heating coil 4 Power supply device 5 Temperature detection means 6 Controller 7 Cooling means A Correction constant D Diffusion parameter t1 Heating time after transformation x1 Required depth position

Claims (5)

鋼からなる被熱処理品を高周波誘導加熱によって加熱して表面の硬化層深さを調整した後で焼入れを行う高周波誘導加熱方法において、
加熱によって、硬化層が必要とされる深さx1[mm]においてA1点を越えてから、さらに下記(1)式を満足する時間t1となるまで加熱した後に、加熱を終了して焼入れを行うことを特徴とする高周波誘導加熱方法。
Figure 2009203498
ただし、
T :被熱処理品の位置x1における絶対温度[K]
t :被熱処理品の位置x1においてA1点を超えてからの時間[sec]
A :補正定数
In the high frequency induction heating method of performing quenching after heating the heat-treated product made of steel by high frequency induction heating and adjusting the depth of the hardened layer on the surface,
After heating, when the cured layer exceeds the point A1 at the required depth x1 [mm] and further reaches the time t1 that satisfies the following expression (1), the heating is finished and quenching is performed. A high frequency induction heating method characterized by that.
Figure 2009203498
However,
T: Absolute temperature [K] at position x1 of the heat-treated product
t: Time after exceeding the point A1 at the position x1 of the heat-treated product [sec]
A: Correction constant
上記被熱処理品は軸対称形状の被熱処理品であり、
誘導加熱コイルを、被熱処理品の軸方向及び周方向に複数配置すると共に各コイルの出力を個別に調整可能に設定し、上記被熱処理品を軸回転させながら加熱を行い、熱処理中の表面から予測される温度分布から、被熱処理品内部の必要とされる深さx1[mm]において、(1)式を満足するA1点を超えてからの最小の加熱時間t1を求め、
必要とされる深さx1[mm]でA1点を超えてから上記加熱時間t1を経過したと判定すると加熱を終了し、その後に冷媒を被熱処理品に噴射冷却して焼入れを行うことを特徴とする請求項1に記載した高周波誘導加熱方法。
The heat-treated product is an axisymmetric shaped heat-treated product,
A plurality of induction heating coils are arranged in the axial direction and circumferential direction of the heat-treated product and the output of each coil is set to be individually adjustable, and the heat-treated product is heated while rotating the shaft, from the surface during the heat treatment. From the predicted temperature distribution, in the required depth x1 [mm] inside the heat-treated product, the minimum heating time t1 after exceeding the point A1 satisfying the expression (1) is obtained,
When it is determined that the heating time t1 has passed after exceeding the A1 point at the required depth x1 [mm], the heating is terminated, and then the coolant is injected and cooled to the heat-treated product for quenching. The high frequency induction heating method according to claim 1.
上記加熱は、被熱処理品の硬化層を形成する表面が目標とする焼入れ温度まで加熱した後は、表面温度をその焼入れ温度に保持するように各誘導加熱コイルの出力を調整することを特徴とする請求項2に記載した高周波誘導加熱方法。   The heating is characterized by adjusting the output of each induction heating coil so that the surface temperature is maintained at the quenching temperature after the surface on which the cured layer of the heat-treated product is heated to the target quenching temperature. The high frequency induction heating method according to claim 2. 軸対称形状の鋼からなる被熱処理品を高周波誘導加熱で加熱する加熱装置であって、
上記被熱処理品を軸回転可能に支持する支持装置と、
それぞれが被熱処理品における硬化層を形成する表面に対向配置して、当該被熱処理品の軸方向及び周方向に沿って複数個配置する複数の誘導加熱コイルと、
上記誘導加熱コイルに個別に高周波電力を出力する電源装置と、
上記被熱処理品の複数箇所の温度を検出する温度検出手段と、
被熱処理品に向けて冷媒を噴射可能な冷却手段と、
上記温度検出手段の検出値に基づき上記各誘導加熱コイルに供給する高周波電力を個別に調整して誘導加熱を制御するコントローラと、を備え、
上記加熱は、被熱処理品を軸回転させながら実施され、
上記コントローラは、温度検出手段の検出値に基づき、熱処理中の上記表面温度から予測される温度分布から、被熱処理品内部の必要とされる深さx1[mm]において、(1)式を満足するA1点を超えてからの最小の加熱時間t1を算出し、
温度検出手段の検出値に基づき必要とされる深さx1[mm]でA1点を超えたと判定したら、その判定後さらに加熱時間t1だけ経過後に加熱を終了し、冷却手段による冷媒に噴射による焼入れに移行させることを特徴とする加熱装置。
Figure 2009203498
ただし、
T :被熱処理品の位置x1における絶対温度[K]
t :被熱処理品の位置x1においてA1点を超えてからの時間[sec]
A :補正定数
A heating device that heats a heat-treated product made of axisymmetric steel by high-frequency induction heating,
A support device for supporting the heat-treated product so as to be axially rotatable;
A plurality of induction heating coils each disposed opposite to the surface of the article to be heat-treated to form a hardened layer, and arranged in a plurality along the axial direction and the circumferential direction of the article to be heat-treated;
A power supply device that individually outputs high-frequency power to the induction heating coil;
Temperature detecting means for detecting temperatures at a plurality of locations of the heat-treated product;
A cooling means capable of injecting a refrigerant toward the heat-treated product;
A controller for controlling induction heating by individually adjusting high-frequency power supplied to each induction heating coil based on the detection value of the temperature detection means,
The above heating is performed while rotating the product to be heat-treated,
The controller satisfies the expression (1) at a required depth x1 [mm] inside the heat-treated product from the temperature distribution predicted from the surface temperature during the heat treatment based on the detection value of the temperature detecting means. Calculate the minimum heating time t1 after exceeding the A1 point,
If it is determined that the required depth x1 [mm] exceeds the A1 point based on the detected value of the temperature detecting means, the heating is finished after the heating time t1 after the determination, and the refrigerant by the cooling means is quenched by injection. A heating device characterized by being transferred to.
Figure 2009203498
However,
T: Absolute temperature [K] at position x1 of the heat-treated product
t: Time after exceeding the point A1 at the position x1 of the heat-treated product [sec]
A: Correction constant
外輪、内輪、転動体の少なくとも一つの軸受部品を上記被熱処理品として、請求項1〜請求項3のいずれか1項に記載した高周波誘導加熱方法で熱処理を施したことを特徴とする軸受。   A bearing that is heat-treated by the high-frequency induction heating method according to any one of claims 1 to 3, wherein at least one bearing component of an outer ring, an inner ring, and a rolling element is the heat-treated product.
JP2008044942A 2008-02-26 2008-02-26 High frequency-induction heating method, heating apparatus and bearing Pending JP2009203498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008044942A JP2009203498A (en) 2008-02-26 2008-02-26 High frequency-induction heating method, heating apparatus and bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008044942A JP2009203498A (en) 2008-02-26 2008-02-26 High frequency-induction heating method, heating apparatus and bearing

Publications (1)

Publication Number Publication Date
JP2009203498A true JP2009203498A (en) 2009-09-10

Family

ID=41146059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008044942A Pending JP2009203498A (en) 2008-02-26 2008-02-26 High frequency-induction heating method, heating apparatus and bearing

Country Status (1)

Country Link
JP (1) JP2009203498A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287074A (en) * 2008-05-28 2009-12-10 Nsk Ltd Induction heat treatment apparatus, induction heat treatment method and rolling bearing with annular component having undergone induction heat treatment method
JP2012149328A (en) * 2011-01-21 2012-08-09 Ntn Corp Method for manufacturing bearing ring, bearing ring and rolling bearing
JP2012149327A (en) * 2011-01-21 2012-08-09 Ntn Corp Method for manufacturing bearing ring
JP2013532233A (en) * 2010-07-02 2013-08-15 アクティエボラゲット・エスコーエッフ Machine component and surface hardening method
JP2015180783A (en) * 2015-07-02 2015-10-15 Ntn株式会社 Bearing ring and method of producing rolling bearing
JP2015193936A (en) * 2015-07-02 2015-11-05 Ntn株式会社 Bearing ring and method of producing rolling bearing
JP2015212421A (en) * 2015-07-02 2015-11-26 Ntn株式会社 Bearing ring, cylindrical roller bearing and production method of conical roller bearing
US9487843B2 (en) 2011-01-21 2016-11-08 Ntn Corporation Method for producing a bearing ring
EP3364061A1 (en) * 2017-02-20 2018-08-22 Flender GmbH Usage of an induction hardened bearing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287074A (en) * 2008-05-28 2009-12-10 Nsk Ltd Induction heat treatment apparatus, induction heat treatment method and rolling bearing with annular component having undergone induction heat treatment method
JP2013532233A (en) * 2010-07-02 2013-08-15 アクティエボラゲット・エスコーエッフ Machine component and surface hardening method
JP2012149328A (en) * 2011-01-21 2012-08-09 Ntn Corp Method for manufacturing bearing ring, bearing ring and rolling bearing
JP2012149327A (en) * 2011-01-21 2012-08-09 Ntn Corp Method for manufacturing bearing ring
US9487843B2 (en) 2011-01-21 2016-11-08 Ntn Corporation Method for producing a bearing ring
JP2015180783A (en) * 2015-07-02 2015-10-15 Ntn株式会社 Bearing ring and method of producing rolling bearing
JP2015193936A (en) * 2015-07-02 2015-11-05 Ntn株式会社 Bearing ring and method of producing rolling bearing
JP2015212421A (en) * 2015-07-02 2015-11-26 Ntn株式会社 Bearing ring, cylindrical roller bearing and production method of conical roller bearing
EP3364061A1 (en) * 2017-02-20 2018-08-22 Flender GmbH Usage of an induction hardened bearing
WO2018149655A1 (en) * 2017-02-20 2018-08-23 Flender Gmbh Use of an inductively hardened rolling bearing

Similar Documents

Publication Publication Date Title
JP2009203498A (en) High frequency-induction heating method, heating apparatus and bearing
JP2008303402A (en) High frequency induction-hardening apparatus and method for manufacturing rolling bearing, rolling bearing
JP6211364B2 (en) Heat treatment method for ring member and heat treatment equipment for ring member
JP2009287074A (en) Induction heat treatment apparatus, induction heat treatment method and rolling bearing with annular component having undergone induction heat treatment method
WO2015045824A1 (en) Heat treatment method for ring-shaped member and heat treatment equipment for ring-shaped member
JP2009197312A (en) Method for correcting deformation of annular member
EP2695954B1 (en) Annular workpiece quenching method and quenching apparatus used in the method
WO2015045822A1 (en) Method for thermally treating ring-shaped member
JP2005113186A (en) Rolling bearing ring and its producing method, and rolling bearing
JP2006291248A (en) Method and equipment for high frequency induction heat treatment, thin member and thrust bearing
EP2915886B1 (en) Heat treatment method and method for manufacturing machine part
JP2009270173A (en) Heat treatment method for bearing ring for radial bearing
JP5433932B2 (en) Annular deformation correction method
JP5277545B2 (en) Induction heat treatment method and induction heat treatment apparatus
WO2017203915A1 (en) Heat treatment method for ring-shaped member, manufacturing method for ring-shaped member, bearing ring of roller bearing, and roller bearing
JP2013216959A (en) Thermal treatment equipment for ring-shaped member
WO2017221963A1 (en) Method for manufacturing bearing parts
JP2009167484A (en) Heat-treatment apparatus for cylindrical metallic member
JP6229226B2 (en) Heat treatment method
US20190072132A1 (en) Bearing ring for roller bearing, manufacturing method of bearing ring for roller bearing, and needle roller bearing
JP2016089183A (en) Heat treatment method for workpiece
JP2008106358A (en) Method for correcting heated deformation of annular body, and hardening method of annular body
JP2014095154A (en) Heat treatment method for ring-shaped member, method for producing ring-shaped member, ring-shaped member, bearing ring of rolling bearing, and rolling bearing
JP2005310645A (en) High-frequency induction hardening device
JP2009203525A (en) Production line for rolling bearing