JP2009198902A - Sound absorbing structure, sound absorbing structure group, acoustic chamber, method of adjusting sound absorbing structure and noise reduction method - Google Patents

Sound absorbing structure, sound absorbing structure group, acoustic chamber, method of adjusting sound absorbing structure and noise reduction method Download PDF

Info

Publication number
JP2009198902A
JP2009198902A JP2008041772A JP2008041772A JP2009198902A JP 2009198902 A JP2009198902 A JP 2009198902A JP 2008041772 A JP2008041772 A JP 2008041772A JP 2008041772 A JP2008041772 A JP 2008041772A JP 2009198902 A JP2009198902 A JP 2009198902A
Authority
JP
Japan
Prior art keywords
vibrating body
sound absorbing
absorbing structure
sound
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008041772A
Other languages
Japanese (ja)
Inventor
Yasuhito Tanase
廉人 棚瀬
Yasutaka Nakamura
康敬 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2008041772A priority Critical patent/JP2009198902A/en
Priority to US12/388,282 priority patent/US20090223738A1/en
Priority to CN2009100053807A priority patent/CN101515453B/en
Priority to EP09002472A priority patent/EP2093754A2/en
Publication of JP2009198902A publication Critical patent/JP2009198902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To change the frequency of absorbed sound without substantially changing the overall weight of the sound absorbing structure. <P>SOLUTION: A sound absorbing structure 1 is constituted of a housing 10 and a vibration member 20. The vibration member 20 is composed of a first member 21 made of a synthetic resin having elasticity and a second member 22 whose surface density is smaller than the surface density of the first member 21 and made of a synthetic resin having elasticity, wherein the first member 21 is fixed into a center hole of the second member 22 so as to form a single board of the vibration member 20. Since the surface density of the center portion of the vibration member 20 is higher than the surface density of the peripheral portion of the vibration member, the frequency of absorbed sound further decreases compared with when the vibration member 20 is formed of the same material into a plate shape and is increased in weight to change the frequency of absorbed sound. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、音を吸音する技術に関する。   The present invention relates to a technique for absorbing sound.

特許文献1に開示された吸音構造のように、板状(または膜状)の振動体と、この振動体の背後の空気層により音を吸収する吸音構造(以下、板・膜振動型吸音構造という)がある。この板・膜振動型吸音構造においては、振動体の質量成分と、空気層のバネ成分によってバネマス系が形成され、振動体が弾性を有して屈曲振動をする場合には、屈曲振動による屈曲系の性質が加わる。   As in the sound absorbing structure disclosed in Patent Document 1, a sound absorbing structure that absorbs sound by a plate-like (or film-like) vibrating body and an air layer behind the vibrating body (hereinafter referred to as a plate / membrane vibrating type sound absorbing structure) Called). In this plate / membrane vibration type sound-absorbing structure, a spring mass system is formed by the mass component of the vibrating body and the spring component of the air layer. System properties are added.

特開2006−11412号公報JP 2006-11412 A

板・膜振動型吸音構造においては、振動体を密度の大きなものにすると吸音される音の周波数が低くなり、吸音される音を低いものにすることができる。しかしながら、振動体の密度を大きくすると振動体全体では質量が大きくなり、ひいては、吸音構造全体が重くなる。吸音構造全体が重くなると、軽量化が求められる用途については使用することが難しくなり、また、壁面などに配置する場合には、吸音構造を支える構造を吸音構造の重さに耐えうる丈夫な構造に必要があり、簡便に配置することが難しくなる。   In the plate / membrane vibration type sound absorbing structure, if the vibrating body has a high density, the frequency of the sound to be absorbed becomes low, and the sound to be absorbed can be made low. However, when the density of the vibrating body is increased, the mass of the entire vibrating body increases, and as a result, the entire sound absorbing structure increases. When the entire sound absorbing structure becomes heavy, it becomes difficult to use it for applications that require weight reduction, and when it is placed on a wall surface, the structure that supports the sound absorbing structure can withstand the weight of the sound absorbing structure. Therefore, it is difficult to arrange easily.

本発明は、上述した背景の下になされたものであり、振動体や吸音構造全体の質量を大きく変更することなく吸音する音を変更可能とする技術を提供することを目的とする。   The present invention has been made under the above-described background, and an object of the present invention is to provide a technique that can change sound absorption without greatly changing the mass of the vibrating body or the entire sound absorbing structure.

上述した課題を解決するために本発明は、中空で開口部を備えた筐体と、板状または膜状の振動体とを有し、前記開口部が前記振動体で塞がれて前記筐体と前記振動体とで空気層が形成されており、前記振動体においては、前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の密度が、振幅の節または極小となる位置の密度と異なることを特徴とする吸音構造を提供する。
この発明では、前記振動体においては、前記振動体が屈曲振動したときに振幅が極大となる位置を含む所定領域の密度が、前記所定領域以外の部分の密度と異なっていてもよい。
In order to solve the above-described problems, the present invention includes a hollow housing having an opening and a plate-like or membrane-like vibrating body, and the opening is closed by the vibrating body. An air layer is formed between the body and the vibration body, and in the vibration body, the density of at least a part of the region other than the position where the vibration body is bent and vibrated or other than the position where the amplitude is minimized is The sound absorbing structure is characterized in that it has a density different from the density of the nodes or minimum positions.
In the present invention, in the vibrating body, the density of a predetermined region including a position where the amplitude becomes maximum when the vibrating body bends and vibrates may be different from the density of a portion other than the predetermined region.

また、本発明は、中空で開口部を備えた筐体と、板状または膜状の振動体とを有し、前記開口部が前記振動体で塞がれて前記筐体と前記振動体とで空気層が形成されており、前記振動体においては、前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の厚さが、振幅の節または極小となる位置の厚さと異なることを特徴とする吸音構造を提供する。
この発明では、前記振動体においては、前記振動体が屈曲振動したときに振幅が極大となる位置を含む所定領域の厚さが、前記所定領域外の部分の厚さと異なっていてもよい。
The present invention also includes a hollow housing having an opening and a plate-like or membrane-like vibrating body, the opening being closed by the vibrating body, and the housing and the vibrating body. In the vibrating body, the thickness of at least a part of the region other than the position where the amplitude node or the minimum is obtained when the vibrating body vibrates flexibly is the amplitude node or the minimum. The sound absorbing structure is characterized by being different from the thickness of the position.
In this invention, in the vibrating body, the thickness of the predetermined region including the position where the amplitude becomes maximum when the vibrating body is flexibly vibrated may be different from the thickness of the portion outside the predetermined region.

また、本発明は、中空で開口部を備えた筐体と、板状または膜状の振動体と、付加部材とを有し、前記開口部が前記振動体で塞がれて前記筐体と前記振動体とで空気層が形成されており、前記振動体においては、前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部に前記付加部材を有することを特徴とする吸音構造を提供する。
この発明では、前記振動体においては、前記振動体が屈曲振動したときに振幅が極大となる位置を含む所定領域に付加部材を有していてもよい。
また、この発明においては、前記振動体の前記所定領域の表面に付加部材が固定されていてもよい。
また、この発明においては、前記振動体の前記所定領域の部分に付加部材が混入されていてもよい。
The present invention also includes a hollow casing having an opening, a plate-like or membrane-like vibrating body, and an additional member, and the opening is closed by the vibrating body. An air layer is formed with the vibrating body, and the vibrating body has the additional member in at least a part of a region other than a position where an amplitude node or a local minimum when the vibrating body vibrates. A sound absorbing structure is provided.
In this invention, the vibrating body may have an additional member in a predetermined region including a position where the amplitude becomes maximum when the vibrating body is flexibly vibrated.
Moreover, in this invention, the additional member may be fixed to the surface of the predetermined region of the vibrating body.
Moreover, in this invention, the additional member may be mixed in the part of the said predetermined area | region of the said vibrating body.

また、本発明は、上記付加部材を有する吸音構造を複数組み合わせた吸音構造群であって、組み合わされた複数の吸音構造の各付加部材の質量が各々異なる吸音構造群を提供する。
また、本発明は、上記のいずれか一の吸音構造を複数組み合わせた吸音構造群を提供する。
この本発明においては、組み合わされた複数の吸音構造の各空気層のサイズが各々異なっていてもよい。
また、この本発明においては、組み合わされた複数の吸音構造の各空気層の厚みが各々異なっていてもよい。
また、本発明は、上記のいずれか一の吸音構造または上記のいずれか一の吸音体群を有する音響室を提供する。
The present invention also provides a sound absorbing structure group obtained by combining a plurality of sound absorbing structures having the additional member, wherein the additional members of the plurality of combined sound absorbing structures have different masses.
The present invention also provides a sound absorbing structure group in which any one of the above sound absorbing structures is combined.
In the present invention, the sizes of the air layers of the plurality of combined sound absorbing structures may be different from each other.
Moreover, in this invention, the thickness of each air layer of the some sound absorption structure combined may differ, respectively.
In addition, the present invention provides an acoustic chamber having any one of the above sound absorbing structures or any one of the above sound absorbing bodies.

また、本発明は、中空で開口部を備えた筐体と、板状または膜状の振動体とを有し、前記開口部が前記振動体で塞がれて前記筐体と前記振動体とで空気層が形成されており、前記振動体においては、前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の密度が、振幅の節または極小となる位置の密度と異なる吸音構造の調整方法であって、前記振動体において前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の密度を変更して吸音構造の共振周波数を調整する吸音構造の調整方法を提供する。   The present invention also includes a hollow housing having an opening and a plate-like or membrane-like vibrating body, the opening being closed by the vibrating body, and the housing and the vibrating body. In the vibrating body, the density of at least a part of the region other than the position where the amplitude node or the minimum is obtained when the vibrating body is flexibly vibrated becomes the amplitude node or the minimum. A method for adjusting a sound absorbing structure different from a density of a position, wherein the sound absorbing structure is configured by changing a density of at least a part of a region other than a position where an amplitude node or a minimum is obtained when the vibrating body is flexurally vibrated in the vibrating body. A method for adjusting a sound absorbing structure that adjusts the resonance frequency of the sound absorber is provided.

また、本発明は、中空で開口部を備えた筐体と、板状または膜状の振動体とを有し、前記開口部が前記振動体で塞がれて前記筐体と前記振動体とで空気層が形成されており、前記振動体においては、前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の厚さが、振幅の節または極小となる位置の厚さと異なる吸音構造の調整方法であって、前記振動体において前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の厚さを変更して吸音構造の共振周波数を調整する吸音構造の調整方法を提供する。   The present invention also includes a hollow housing having an opening and a plate-like or membrane-like vibrating body, the opening being closed by the vibrating body, and the housing and the vibrating body. In the vibrating body, the thickness of at least a part of the region other than the position where the amplitude node or the minimum is obtained when the vibrating body vibrates flexibly is the amplitude node or the minimum. A method of adjusting a sound absorbing structure different from a thickness of a position, wherein a thickness of at least a part of a region other than a position where an amplitude node or a local minimum is obtained when the vibrating body is flexibly vibrated in the vibrating body is changed. A method for adjusting a sound absorbing structure for adjusting a resonance frequency of the sound absorbing structure is provided.

また、本発明は、中空で開口部を備えた筐体と、板状または膜状の振動体と、付加部材とを有し、前記開口部が前記振動体で塞がれて前記筐体と前記振動体とで空気層が形成されており、前記振動体においては、前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部に前記付加部材を有する吸音構造の調整方法であって、前記前記付加部材を変更して吸音構造の共振周波数を調整する吸音構造の調整方法を提供する。   The present invention also includes a hollow casing having an opening, a plate-like or membrane-like vibrating body, and an additional member, and the opening is closed by the vibrating body. An air layer is formed with the vibrating body, and the vibrating body includes the additional member in at least a part of a region other than a position where an amplitude node or a minimum is obtained when the vibrating body vibrates. There is provided a method for adjusting a sound absorbing structure, wherein the additional member is changed to adjust a resonance frequency of the sound absorbing structure.

また、本発明は、中空で開口部を備えた筐体と、板状または膜状の振動体とを有し、前記開口部が前記振動体で塞がれて前記筐体と前記振動体とで空気層が形成されており、前記振動体が振動して騒音を低減する騒音低減方法であって、前記振動体においては、前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の密度を、振幅の節または極小となる位置の密度と異ならせることを特徴とする騒音低減方法を提供する。   The present invention also includes a hollow housing having an opening and a plate-like or membrane-like vibrating body, the opening being closed by the vibrating body, and the housing and the vibrating body. An air layer is formed, and the vibration body vibrates to reduce noise, wherein the vibration body has a position where an amplitude node or a minimum is obtained when the vibration body is flexibly vibrated. The noise reduction method is characterized in that the density of at least a part of the region other than the above is made different from the density of the amplitude node or the minimum position.

また、本発明は、中空で開口部を備えた筐体と、板状または膜状の振動体とを有し、前記開口部が前記振動体で塞がれて前記筐体と前記振動体とで空気層が形成されており、前記振動体が振動して騒音を低減する騒音低減方法であって、前記振動体においては、前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の厚さを、振幅の節または極小となる位置の厚さと異ならせることを特徴とする騒音低減方法を提供する。   The present invention also includes a hollow housing having an opening and a plate-like or membrane-like vibrating body, the opening being closed by the vibrating body, and the housing and the vibrating body. An air layer is formed, and the vibration body vibrates to reduce noise, wherein the vibration body has a position where an amplitude node or a minimum is obtained when the vibration body is flexibly vibrated. The noise reduction method is characterized in that the thickness of at least a part of the region other than the above is made different from the thickness of the amplitude node or the minimum position.

また、本発明は、中空で開口部を備えた筐体と、板状または膜状の振動体と、付加部材とを有し、前記開口部が前記振動体で塞がれて前記筐体と前記振動体とで空気層が形成されており、前記振動体が振動して騒音を低減する騒音低減方法であって、前記振動体においては、前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部に前記付加部材を配置することを特徴とする騒音低減方法を提供する。   The present invention also includes a hollow casing having an opening, a plate-like or membrane-like vibrating body, and an additional member, and the opening is closed by the vibrating body. An air layer is formed with the vibration body, and the vibration body vibrates to reduce noise, wherein the vibration body has an amplitude node or vibration when the vibration body is flexibly vibrated. A noise reduction method is provided, wherein the additional member is arranged in at least a part of a region other than the position where the position is minimized.

本発明によれば、振動体や吸音構造全体の質量を大きく変更することなく吸音する音を変更可能となる。   According to the present invention, it is possible to change the sound absorbing sound without greatly changing the mass of the vibrating body or the entire sound absorbing structure.

図1は、本発明の一実施形態に係る吸音構造1の外観図、図2は、吸音構造1の分解斜視図、図3は吸音構造1のA−A線断面図である。なお、図面においては、本実施形態の構成を分かりやすく図示するために、吸音構造1の寸法を実際の寸法とは異ならせてある。   FIG. 1 is an external view of a sound absorbing structure 1 according to an embodiment of the present invention, FIG. 2 is an exploded perspective view of the sound absorbing structure 1, and FIG. 3 is a cross-sectional view taken along line AA of the sound absorbing structure 1. In the drawings, the dimensions of the sound absorbing structure 1 are different from the actual dimensions in order to easily illustrate the configuration of the present embodiment.

図に示したように、吸音構造1は、吸音構造1を構成する部材として筐体10と振動体20を有している。合成樹脂で形成されている筐体10は、正方形の角管の一方の開口部を閉じた形状となっており、筐体10の底面となる底面部11と、筐体10の側壁となる側壁12を有している。   As shown in the figure, the sound absorbing structure 1 includes a housing 10 and a vibrating body 20 as members constituting the sound absorbing structure 1. The casing 10 formed of a synthetic resin has a shape in which one opening of a square square tube is closed, and includes a bottom surface portion 11 serving as a bottom surface of the casing 10 and a sidewall serving as a sidewall of the casing 10. 12.

振動体20は、弾性を有する合成樹脂で形成された板状で正方形の第1部材21と、第2部材22とで構成されており、力を加えると変形し、弾性により復元力を発生して振動する部材である。第2部材22は、第1部材21より面密度が小さく弾性を有する合成樹脂で形成され、中央部分に正方形の孔を有している。本実施形態においては、第1部材21と第2部材22の厚さは同じであり、第1部材21が第2部材22の孔に固着されて板状の振動体20が形成されている。
なお、本実施形態においては、振動体20を構成する部材の素材は合成樹脂としているが、振動体20を構成する部材の素材は合成樹脂に限定されず、弾性を有し板振動が生じるのであれば紙、金属、繊維板など他の素材であってもよい。
また、本実施形態においては、振動体20における第1部材21の領域は、振動体20が屈曲振動したときに振幅が極大となる位置を含む領域となっている。なお、第1部材21の領域は、振動体20が屈曲振動したときに振幅が極大となる位置を含むのであれば、図に示した広さに限定されず任意に変更することができる。
The vibrating body 20 is composed of a plate-like square first member 21 and a second member 22 formed of a synthetic resin having elasticity, and deforms when a force is applied, and generates a restoring force due to elasticity. This is a member that vibrates. The second member 22 is formed of a synthetic resin having a smaller surface density than the first member 21 and having elasticity, and has a square hole in the central portion. In the present embodiment, the first member 21 and the second member 22 have the same thickness, and the first member 21 is fixed to the hole of the second member 22 to form the plate-like vibrating body 20.
In this embodiment, the material of the member constituting the vibrating body 20 is a synthetic resin. However, the material of the member constituting the vibrating body 20 is not limited to the synthetic resin, and has elasticity and plate vibration occurs. Other materials such as paper, metal, and fiberboard may be used.
In the present embodiment, the region of the first member 21 in the vibrating body 20 is a region including a position where the amplitude becomes maximum when the vibrating body 20 undergoes bending vibration. The region of the first member 21 is not limited to the area shown in the drawing and can be arbitrarily changed as long as it includes a position where the amplitude becomes maximum when the vibrating body 20 undergoes bending vibration.

底面部11を側壁12に固着して筐体10を構成し、振動体20を筐体10の開口部に接着して固定することにより吸音構造1の内部(振動体20の背後)に区画された空気層30が形成され、吸音構造1においては、振動体20の質量成分と空気層30のバネ成分によってバネマス系の吸音メカニズムが形成される。また、吸音構造1においては振動体20が弾性を有して屈曲振動をするため、屈曲振動による屈曲系の吸音メカニズムが加わる。なお、空気層30は、筐体10に多少の開口部を設けて密閉されていなくてもよい。
そして、吸音構造1においては、音波が振動体20に到達すると、音波の音圧と吸音構造1の空気層30内の圧力との差により振動体20が振動し、音波のエネルギーは、この振動により消費されて音が吸音される。
ここで、吸音構造1は、バネマス系と屈曲系の両方の吸音メカニズムが形成されているため、吸音される音の周波数と吸音率との関係を見ると、バネマス系の共振周波数における吸音率及び屈曲系の共振周波数における吸音率が高くなる。
The bottom surface portion 11 is fixed to the side wall 12 to form the housing 10, and the vibrating body 20 is bonded and fixed to the opening of the housing 10 to be partitioned inside the sound absorbing structure 1 (behind the vibrating body 20). The air layer 30 is formed, and in the sound absorbing structure 1, a spring mass sound absorbing mechanism is formed by the mass component of the vibrating body 20 and the spring component of the air layer 30. In the sound absorbing structure 1, since the vibrating body 20 has elasticity and bends and vibrates, a bending-type sound absorbing mechanism by bending vibration is added. Note that the air layer 30 may not be sealed by providing some openings in the housing 10.
In the sound absorbing structure 1, when the sound wave reaches the vibrating body 20, the vibrating body 20 vibrates due to the difference between the sound pressure of the sound wave and the pressure in the air layer 30 of the sound absorbing structure 1. The sound is absorbed and consumed.
Here, since the sound absorbing structure 1 has both a spring mass system and a flexural sound absorbing mechanism, the relationship between the sound absorption frequency and the sound absorption coefficient indicates that the sound absorption coefficient at the resonance frequency of the spring mass system and The sound absorption coefficient at the resonance frequency of the bending system is increased.

図4は、空気層30の縦と横の大きさが100mm×100mmで厚さが10mmの筐体10に振動体20(大きさが100mm×100mm、厚さ0.85mm)を固着し、第1部材21(大きさ20mm×20mm、厚さ0.85mm)の面密度を変化させた時の吸音構造1の垂直入射吸音率のシミュレート結果を示したグラフである。なおシミュレーション手法は、JIS A 1405-2(音響管による吸音率及びインピーダンスの測定−第2部:伝達関数法)に従って、上記吸音構造を配置した音響管内の音場を有限要素法と境界要素法とを併用して求め、その伝達関数より吸音特性を算出した。
具体的には、図5に示したように、第1部材21の面密度を、(1)399.5[g/m]、(2)799[g/m]、(3)1199[g/m]、(4)1598[g/m]、(5)2397[g/m]とし、第2部材22の面密度を799[g/m]として振動体20の平均面密度を、(1)783[g/m]、(2)799[g/m]、(3)815[g/m]、(4)831[g/m]、(5)862.9[g/m]とした場合のシミュレーション結果である。
なお、(2)の場合は、第1部材21の面密度と第2部材22の面密度が同じ、即ち、振動体20全体が同じ素材で形成されている場合をシミュレートしたものであり、固有振動が1×1のモードに対応する共振周波数として400Hzにピークが表れている(図5、条件(2)の共振周波数(屈曲系)の欄)。
FIG. 4 shows an example in which a vibrating body 20 (size: 100 mm × 100 mm, thickness: 0.85 mm) is fixed to a casing 10 having a vertical and horizontal size of 100 mm × 100 mm and a thickness of 10 mm. It is the graph which showed the simulation result of the normal incidence sound absorption coefficient of the sound-absorbing structure 1 when changing the surface density of 1 member 21 (size 20mm * 20mm, thickness 0.85mm). The simulation method is finite element method and boundary element method according to JIS A 1405-2 (Measurement of sound absorption coefficient and impedance by sound tube-Part 2: Transfer function method). The sound absorption characteristics were calculated from the transfer function.
Specifically, as shown in FIG. 5, the surface density of the first member 21 is (1) 399.5 [g / m 2 ], (2) 799 [g / m 2 ], (3) 1199. [G / m 2 ], (4) 1598 [g / m 2 ], (5) 2397 [g / m 2 ], and the surface density of the second member 22 is 799 [g / m 2 ]. The average surface density is (1) 783 [g / m 2 ], (2) 799 [g / m 2 ], (3) 815 [g / m 2 ], (4) 831 [g / m 2 ], ( 5) A simulation result in the case of 862.9 [g / m 2 ].
In the case of (2), the surface density of the first member 21 and the surface density of the second member 22 are the same, that is, the case where the entire vibrating body 20 is formed of the same material is simulated. A peak appears at 400 Hz as a resonance frequency corresponding to a mode in which the natural vibration is 1 × 1 (FIG. 5, column of resonance frequency (bending system) in condition (2)).

シミュレート結果を見ると、図4に示したように、300[Hz]〜500[Hz]の間と、700[Hz]付近において吸音率が高くなっている。
700[Hz]付近で吸音率が高くなっているのは、振動体20のマス(mass:質量)と空気層30のバネ成分によって形成されるバネマス系の共振によるものである。吸音構造1においては上記バネマス系の共振周波数での吸音率をピークとして音が吸音されており、第1部材21の面密度を大きくしても、振動体20全体のマスは大きく変わらないので、バネマス系の共振周波数も大きく変わらないことが分かる。
また、300[Hz]〜500[Hz]の間で吸音率が高くなっているのは、振動体20の屈曲振動によって形成される屈曲系の共振によるものである。吸音構造1においては屈曲系の共振周波数での吸音率が低音域側のピークとして表れており、第1部材21の面密度を大きくしていくと屈曲系の共振周波数だけが低くなっていることが分かる。一般に、屈曲系の共振周波数は、振動体の弾性振動を支配する運動方程式で決定され、振動体の密度(面密度)に反比例する。また、前記共振周波数は、固有振動の腹(振幅が極大値となる場所)の密度により大きく影響される。このため、上記シミュレーションでは、1×1の固有モードの腹となる領域を第1部材21で異なる面密度に形成したので、屈曲系の共振周波数が変化したものである。
Looking at the simulation results, as shown in FIG. 4, the sound absorption coefficient is high between 300 [Hz] and 500 [Hz] and in the vicinity of 700 [Hz].
The reason why the sound absorption coefficient is high in the vicinity of 700 [Hz] is due to resonance of the spring mass system formed by the mass of the vibrating body 20 and the spring component of the air layer 30. In the sound absorbing structure 1, sound is absorbed with the sound absorption coefficient at the resonance frequency of the spring mass system as a peak, and even if the surface density of the first member 21 is increased, the mass of the entire vibrating body 20 does not change greatly. It can be seen that the resonance frequency of the spring mass system does not change greatly.
Moreover, the sound absorption coefficient between 300 [Hz] and 500 [Hz] is high due to the resonance of the bending system formed by the bending vibration of the vibrating body 20. In the sound absorbing structure 1, the sound absorption coefficient at the resonance frequency of the bending system appears as a peak on the low frequency range side, and only the resonance frequency of the bending system decreases as the surface density of the first member 21 increases. I understand. In general, the resonance frequency of the bending system is determined by an equation of motion that governs the elastic vibration of the vibrating body, and is inversely proportional to the density (surface density) of the vibrating body. The resonance frequency is greatly influenced by the density of antinodes (places where the amplitude becomes a maximum value) of the natural vibration. For this reason, in the above simulation, the region that becomes the antinode of the 1 × 1 eigenmode is formed with different areal densities by the first member 21, so that the resonance frequency of the bending system is changed.

このように、シミュレーション結果は、第1部材21の面密度を第2部材22の面密度より大きくすると吸音率のピークとなる周波数の内、低音域側の吸音率のピークが更に低音域側へ移動することを表している。従って、第1部材21の面密度を変更することにより吸音率のピークとなる周波数の一部を更に低音域側または高音域側に移動(シフト)させることができることを表している。
上述した吸音構造1においては、第1部材21の面密度を変えるだけで吸音される音のピークの周波数を変える(シフトさせる)ことができるため、振動体20全体を同じ素材で板状に形成し、振動体20全体の質量を重くして吸音する音を変更する場合と比較して、吸音構造1全体の質量を大きく変えることなく吸音される音を低くできる。
Thus, the simulation result shows that the peak of the sound absorption coefficient on the low frequency side is further lowered to the low frequency side of the frequency at which the sound absorption coefficient peaks when the surface density of the first member 21 is larger than the surface density of the second member 22. It represents moving. Therefore, it is shown that by changing the surface density of the first member 21, a part of the frequency at which the sound absorption coefficient peaks can be moved (shifted) further to the low sound range side or the high sound range side.
In the sound absorbing structure 1 described above, since the frequency of the sound absorption sound can be changed (shifted) simply by changing the surface density of the first member 21, the entire vibrating body 20 is formed into a plate shape with the same material. And compared with the case where the sound which absorbs sound by changing the mass of the whole vibration body 20 is changed, the sound absorbed can be made low, without changing the mass of the whole sound-absorbing structure 1 largely.

[変形例]
以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、他の様々な形態で実施可能である。例えば、上述の実施形態を以下のように変形して本発明を実施してもよい。
[Modification]
As mentioned above, although embodiment of this invention was described, this invention is not limited to embodiment mentioned above, It can implement with another various form. For example, the present invention may be implemented by modifying the above-described embodiment as follows.

本発明において振動体20は、弾性を有する弾性体で形成されているのであれば、板状以外に膜の形状(フィルム状やシート状)であってもよい。なお、板状とは、直方体(立体)に対して相対的に厚さが薄く2次元的な広がりをもつことを意味し、膜状(フィルム状、シート状)とは、板状よりもさらに相対的に厚さが薄く、張力により復元力を発生することを意味する。   In the present invention, as long as the vibrating body 20 is formed of an elastic body having elasticity, the vibrating body 20 may have a film shape (film shape or sheet shape) in addition to the plate shape. The plate shape means that the thickness is relatively thin with respect to a rectangular parallelepiped (solid) and has a two-dimensional extension, and the film shape (film shape, sheet shape) is more than the plate shape. It means that the thickness is relatively thin and a restoring force is generated by tension.

上述した実施形態においては、第1部材21の形状は正方形となっているが、第1部材21の形状は、長方形、台形、多角形、円形、楕円形など、他の形状であってもよい。第1部材21の形状が正方形でなくとも、振動体20が屈曲振動したときに振幅が極大となる部分の面密度が第2部材22の面密度より大きければ、振動体20全体を同じ素材で形成した場合と比較して吸音する音が低くなる。   In the embodiment described above, the shape of the first member 21 is a square, but the shape of the first member 21 may be other shapes such as a rectangle, a trapezoid, a polygon, a circle, and an ellipse. . Even if the shape of the first member 21 is not square, if the surface density of the portion where the amplitude is maximized when the vibrating body 20 is bent and vibrated is larger than the surface density of the second member 22, the entire vibrating body 20 is made of the same material. Compared with the case where it forms, the sound which absorbs sound becomes low.

上述した実施形態においては、振動体20が屈曲振動したときに振幅が極大となる部分に、第2部材22より面密度の大きい部材を配置しているが、図6に示した吸音構造1Aのように、振動体20全体を同じ素材とし、屈曲振動したときに振幅が極大となる部分(図6では中央部分)を含む第1領域23の厚さを、周縁部分より厚くするようにしてもよい。
図7は、空気層の縦と横の大きさが100mm×100mm、厚さ10mmの筐体10に面密度800[g/m]の振動体20(大きさ100mm×100mm)を固着し、第1領域23の厚さを(1)周縁部分と同じ(厚さ0.85mm)、(2)周縁部分の2倍、(3)周縁部分の3倍、(4)周縁部分の4倍、(5)周縁部分の5倍と変えた時の吸音構造1Aの垂直入射吸音率の測定結果を示したグラフである(測定は、JIS A 1405-2(音響管による吸音率及びインピーダンスの測定−第2部:伝達関数法)による)。
In the above-described embodiment, a member having a surface density larger than that of the second member 22 is disposed in a portion where the amplitude becomes maximum when the vibrating body 20 undergoes bending vibration. However, the sound absorbing structure 1A illustrated in FIG. As described above, the entire vibrating body 20 is made of the same material, and the thickness of the first region 23 including the portion (the central portion in FIG. 6) in which the amplitude becomes maximum when bending vibration is made thicker than the peripheral portion. Good.
FIG. 7 shows a vibrating body 20 (size: 100 mm × 100 mm) having a surface density of 800 [g / m 2 ] fixed to a casing 10 having a vertical and horizontal size of 100 mm × 100 mm and a thickness of 10 mm. The thickness of the first region 23 is (1) the same as the peripheral part (thickness 0.85 mm), (2) twice the peripheral part, (3) three times the peripheral part, (4) four times the peripheral part, (5) It is a graph showing the measurement result of the normal incidence sound absorption coefficient of the sound absorbing structure 1A when changed to 5 times the peripheral part (measurement is JIS A 1405-2 (measurement of sound absorption coefficient and impedance by an acoustic tube) Part 2: Transfer function method)).

図7のグラフに示したように、吸音構造1Aでは、200[Hz]〜500[Hz]の間においては、振動体20の屈曲系の共振周波数での吸音率をピークとして音が吸音されており、第1領域23の厚さを厚くしていくと屈曲系の共振周波数も低くなっていることが分かる。   As shown in the graph of FIG. 7, in the sound absorbing structure 1 </ b> A, sound is absorbed between 200 [Hz] and 500 [Hz] with the sound absorption coefficient at the resonance frequency of the bending system of the vibrating body 20 as a peak. It can be seen that as the thickness of the first region 23 is increased, the resonance frequency of the bending system is also lowered.

このように、測定結果は、屈曲振動したときに振幅が極大となる部分を含む第1領域23の厚さを他の部分より厚くすると、吸音される音が低くなることを表しており、また、第1領域23の厚さを変更することにより、吸音される音を変えることができることを表している。
また、上述した吸音構造1Aにおいては、第1領域23の厚さを変えるだけで吸音される音を変えることができるため、振動体20全体を同じ素材で板状に形成し、振動体20全体の質量を重くして吸音する音を変更する場合と比較して、吸音構造1A全体の質量を大きく変えることなく、吸音される音を低くできる。なお、第1領域23の厚さを厚くする場合、周縁部分から滑らかに厚みが厚くなるようにしてもよい。また、第1領域23の領域は、振動体20が屈曲振動したときに振幅が極大となる位置を含むのであれば、図に示した広さに限定されず任意に変更することができる。
As described above, the measurement result indicates that the sound absorbed is reduced when the thickness of the first region 23 including the portion where the amplitude becomes maximum when bending vibration is made thicker than the other portions, and This indicates that the sound absorbed can be changed by changing the thickness of the first region 23.
Further, in the sound absorbing structure 1A described above, since the sound to be absorbed can be changed simply by changing the thickness of the first region 23, the entire vibrating body 20 is formed into a plate shape with the same material, and the entire vibrating body 20 is formed. As compared with the case of changing the sound to be absorbed by increasing the mass of the sound, the sound to be absorbed can be lowered without largely changing the mass of the entire sound absorbing structure 1A. Note that when the thickness of the first region 23 is increased, the thickness may be increased smoothly from the peripheral portion. Moreover, the area | region of the 1st area | region 23 will not be limited to the area shown in the figure, but can be arbitrarily changed if the area | region where an amplitude becomes maximum when the vibrating body 20 carries out bending vibration is included.

本発明に係る吸音構造においては、図8に示した吸音構造1Bのように振動体20を板状部材24と付加部材25とで構成してもよい。板状部材24は、弾性を有する素材を板状に形成した正方形の部材であり、付加部材25は、板状で矩形の部材であり、板状部材24に固着して一体化される。
振動体20においては、板状部材24が屈曲振動したときに振幅が極大となる位置を含む第1領域23に付加部材25が貼り付けられている。なお、付加部材25は振動体20を筐体10に取り付けた時に空気層30に面する側に貼り付けてもよいし、空気層30に面する側と反対側に貼り付けてもよい。
In the sound absorbing structure according to the present invention, the vibrating body 20 may be composed of the plate-like member 24 and the additional member 25 as in the sound absorbing structure 1B shown in FIG. The plate member 24 is a square member in which a material having elasticity is formed into a plate shape, and the additional member 25 is a plate-like and rectangular member, and is fixed to and integrated with the plate member 24.
In the vibrating body 20, the additional member 25 is attached to the first region 23 including a position where the amplitude becomes maximum when the plate-like member 24 undergoes bending vibration. The additional member 25 may be attached to the side facing the air layer 30 when the vibrating body 20 is attached to the housing 10, or may be attached to the side opposite to the side facing the air layer 30.

この構成においては、上述した実施形態または変形例と同様に、振動体20の中心領域の質量は、振動体20全体を同じ素材で板状に形成したときの中心領域の質量より重くなるため、振動体20全体を同じ素材で板状に形成したときと比較して、屈曲系の共振周波数が低くなり、また、付加部材25の重さを変更することにより吸音される音を変えることができる。   In this configuration, the mass of the central region of the vibrating body 20 is heavier than the mass of the central region when the entire vibrating body 20 is formed in a plate shape with the same material, as in the above-described embodiment or modification. Compared with the case where the entire vibrating body 20 is formed of the same material in a plate shape, the resonance frequency of the bending system is lowered, and the sound absorbed can be changed by changing the weight of the additional member 25. .

なお、付加部材25を使用する場合、本発明に係る吸音構造においては、図9に示したように板状部材24において振動体20が屈曲振動したときに振幅が極大となる位置を含む領域の内部に付加部材25を混入して振動体20を構成してもよい。また、板状部材24において振動体20が屈曲振動したときに振幅が極大となる位置を含む領域の内部に部材を混入する場合、混入する部材は板状に限らず、板状部材24より密度の大きい粒状の部材を複数混入してもよいし、板状部材24より密度の大きい線状の部材を複数混入してもよい。   When the additional member 25 is used, in the sound absorbing structure according to the present invention, as shown in FIG. 9, in the plate-like member 24, the region including the position where the amplitude becomes maximum when the vibrating body 20 undergoes flexural vibration. The vibrating member 20 may be configured by mixing the additional member 25 therein. In addition, when a member is mixed in a region including a position where the amplitude becomes maximum when the vibrating body 20 undergoes flexural vibration in the plate-shaped member 24, the mixed member is not limited to the plate shape, and the density is higher than that of the plate-shaped member 24. A plurality of granular members may be mixed, or a plurality of linear members having a higher density than the plate-like member 24 may be mixed.

上述した実施形態または変形例に係る吸音構造は、音響特性を制御する各種の音響室に配置することが可能である。ここで各種音響室とは、防音室、ホール、劇場、音響機器のリスニングルーム、会議室等の居室、各種輸送機器の空間、スピーカや楽器などの筐体などである。
なお、上述した実施形態または変形例に係る吸音構造を配置する場合、図10に示したように大きさの同じ吸音構造を複数組み合わせた吸音体群を配置してもよい。また、図1の吸音構造1を複数組み合わせる場合には、組み合わせる吸音構造毎に第1部材21の面密度を異ならせ、複数の吸音構造で複数の周波数の音を吸音するようにしてもよい。
また、図6の吸音構造を複数組み合わせる場合には、組み合わせる吸音構造毎に第1領域23の厚さを異ならせ、複数の吸音構造で複数の周波数の音を吸音するようにしてもよく、また、図8または図9の吸音構造を複数組み合わせる場合には、組み合わせる吸音構造毎に付加部材25の質量を異ならせ、複数の吸音構造で複数の周波数の音を吸音するようにしてもよい。また、吸音構造を複数組み合わせる場合には、組み合わせる吸音構造毎に空気層30の縦と横のサイズを一定にして厚さを異ならせてもよく、空気層30の厚さを一定にして空気層30の縦と横のサイズを各々異ならせてもよい。また、空気層30の厚さとサイズの両方を各々異ならせてもよい。
The sound absorbing structure according to the embodiment or the modification described above can be disposed in various acoustic chambers that control acoustic characteristics. Here, the various acoustic rooms include a soundproof room, a hall, a theater, a listening room for audio equipment, a room such as a conference room, a space for various transportation equipment, a housing for speakers, musical instruments, and the like.
In addition, when arrange | positioning the sound-absorbing structure which concerns on embodiment mentioned above or a modification, you may arrange | position the sound-absorbing body group which combined multiple sound-absorbing structures of the same magnitude | size as shown in FIG. Further, when a plurality of sound absorbing structures 1 in FIG. 1 are combined, the surface density of the first member 21 may be varied for each sound absorbing structure to be combined, so that sounds having a plurality of frequencies can be absorbed by the plurality of sound absorbing structures.
In addition, when combining a plurality of sound absorbing structures in FIG. 6, the thickness of the first region 23 may be different for each sound absorbing structure to be combined, and a plurality of sound absorbing structures may absorb sound of a plurality of frequencies. When a plurality of sound absorbing structures shown in FIG. 8 or FIG. 9 are combined, the mass of the additional member 25 may be varied for each sound absorbing structure to be combined, and a plurality of sound absorbing structures may be used to absorb sounds of a plurality of frequencies. In addition, when a plurality of sound absorbing structures are combined, the thickness of the air layer 30 may be different for each sound absorbing structure to be combined with the vertical and horizontal sizes constant, and the thickness of the air layer 30 may be constant. The vertical and horizontal sizes of 30 may be different from each other. Further, both the thickness and the size of the air layer 30 may be different from each other.

また、複数の空気層30が形成されるように筐体10の内部を図11に示したように仕切部材13で格子状に区切り、振動体20において各空気層に対向する部分であって振動体20が屈曲振動したときに振幅が極大となる位置を含む領域に付加部材25を貼り付けるようにしてもよい。なお、この構成においては、付加部材25毎に質量を異ならせるようにしてもよい。この構成においても複数の周波数の音を吸音することができる。   Further, as shown in FIG. 11, the inside of the housing 10 is divided into a lattice shape by the partition member 13 so that a plurality of air layers 30 are formed, and the vibration body 20 is a portion facing each air layer and vibrating. You may make it affix the additional member 25 to the area | region including the position where an amplitude becomes maximum when the body 20 carries out bending vibration. In this configuration, the mass of each additional member 25 may be different. Even in this configuration, it is possible to absorb a plurality of frequencies.

本発明においては、振動体20の振幅が極大となる部分を含むのであれば、振動体20の中央部分ではなく他の部分に第1部材21や付加部材25、第1領域23の領域などがあってもよい。
また、振動体20の振幅が極大となる部分を除き、極大となる部分周辺に第1部材21や付加部材25があってもよく、振動体20の振幅が極大となる部分の周辺の厚さが極大となる部分より厚くなっていてもよい。
また、振動体20の振幅の節または極小となる部分を除いた部分の少なくとも一部に第1部材21や付加部材25があってもよく、振動体20の振幅の節または極小となる部分の周辺の厚さが節又は極小となる部分より厚くなっていてもよい。
In the present invention, the first member 21, the additional member 25, the region of the first region 23, and the like are not in the central portion of the vibrating body 20, as long as it includes a portion where the amplitude of the vibrating body 20 is maximized. There may be.
In addition, the first member 21 and the additional member 25 may be provided around the portion where the amplitude of the vibrating body 20 is maximized, and the thickness around the portion where the amplitude of the vibrating body 20 is maximized. It may be thicker than the portion where becomes maximum.
In addition, the first member 21 and the additional member 25 may be provided in at least a part of a portion excluding the node or the minimum portion of the amplitude of the vibrating body 20. The peripheral thickness may be thicker than a node or a local minimum.

上述した実施形態においては、振動体20は、筐体10に接着されて固定支持されており、接着部位においては変位(移動)も回転も拘束されているが、振動体20は、筐体10に対して変位が拘束され、回転が許容されている単純支持状態であってもよい。
また、変位が許容されている支持状態や自由支持など他の支持状態であってもよい。
In the above-described embodiment, the vibrating body 20 is fixedly supported by being bonded to the casing 10, and displacement (movement) and rotation are restricted at the bonded portion. A simple support state in which the displacement is restricted and the rotation is allowed may be employed.
Further, other support states such as a support state in which displacement is allowed and a free support may be used.

また、本発明に係る吸音構造においては、上述した実施形態に係る振動体の構成と変形例に係る振動体の構成とを組み合わせて振動体を構成してもよい。   In the sound absorbing structure according to the present invention, the vibrating body may be configured by combining the configuration of the vibrating body according to the above-described embodiment and the configuration of the vibrating body according to the modification.

本発明において、第1部材21と第2部材22の密度を異ならせることにより、振動体20が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の密度が、振幅の節または極小となる位置の密度と異なる構成にあっては、密度が異なる複数の第1部材21を準備し、第2部材22に固着する第1部材21を交換することにより、吸音構造におけるバネマス系の吸音メカニズムの共振周波数や屈曲系の吸音メカニズムの共振周波数を調整し、吸音構造における吸音率のピークとなる周波数を調整してもよい。
また、振動体20が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の厚さが、振幅の節または極小となる位置の厚さと異なる構成にあっては、第1領域23の厚さを削って薄くする、または振動体20と同じ素材の部材を第1領域23に付加して厚さを厚くすることにより、吸音構造におけるバネマス系の吸音メカニズムの共振周波数や屈曲系の吸音メカニズムの共振周波数を調整し、吸音構造における吸音率のピークとなる周波数を調整してもよい。
また、振動体20が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部に付加部材25を有する構成にあっては、密度が異なる複数の付加部材25を準備し、板状部材24に固着する付加部材25を交換することにより、吸音構造におけるバネマス系の吸音メカニズムの共振周波数や屈曲系の吸音メカニズムの共振周波数を調整し、吸音構造における吸音率のピークとなる周波数を調整してもよい。
このような吸音構造の調整方法によれば、バネマス系の吸音メカニズムの共振周波数や屈曲系の吸音メカニズムの共振周波数の調整、吸音構造における吸音率のピークとなる周波数の調整を容易に行うことができる。
In the present invention, by making the density of the first member 21 and the second member 22 different, the density of at least a part of the region other than the position where the vibration body 20 undergoes flexural vibration other than the node or the minimum of the amplitude In the structure different from the density of the position of the node or the local minimum, by preparing a plurality of first members 21 having different densities and replacing the first member 21 fixed to the second member 22, The resonance frequency of the sound absorption mechanism of the spring mass system and the resonance frequency of the sound absorption mechanism of the bending system may be adjusted to adjust the frequency at which the sound absorption coefficient peaks in the sound absorption structure.
If the thickness of at least a part of the region other than the position where the amplitude or node is minimized when the vibrating body 20 undergoes flexural vibration is different from the thickness of the position where the amplitude or node is minimized, The resonance frequency of the sound absorption mechanism of the spring mass system in the sound absorption structure can be reduced by thinning the thickness of the first region 23 or by adding a member made of the same material as the vibrating body 20 to the first region 23 to increase the thickness. The resonance frequency of the sound absorption mechanism of the bending system may be adjusted to adjust the frequency at which the sound absorption coefficient peaks in the sound absorption structure.
In addition, in the configuration having the additional member 25 in at least a part of the region other than the position where the amplitude or node is minimized when the vibrating body 20 undergoes bending vibration, a plurality of additional members 25 having different densities are prepared, By exchanging the additional member 25 fixed to the plate-like member 24, the resonance frequency of the sound absorption mechanism of the spring mass system in the sound absorption structure and the resonance frequency of the sound absorption mechanism of the bending system are adjusted, and the frequency at which the sound absorption coefficient in the sound absorption structure peaks May be adjusted.
According to such a method for adjusting the sound absorbing structure, it is possible to easily adjust the resonance frequency of the sound absorbing mechanism of the spring mass system, the resonant frequency of the sound absorbing mechanism of the bending system, and the frequency at which the sound absorption coefficient in the sound absorbing structure becomes a peak. it can.

上述した吸音構造のうち、振動体20を第1部材21と第2部材22とで構成し、振動体20が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の密度が、振幅の節または極小となる位置の密度と異なる吸音構造にあっては、当該吸音構造を、吸音構造の吸音率のピークの周波数の音が騒音として発生している場所に配置して騒音を低減させてもよい。
また、上述した吸音構造のうち、振動体20の厚さが均一でなく、振動体20が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の厚さが振幅の節または極小となる位置の厚さと異なる吸音構造についても、当該吸音構造を、吸音構造の吸音率のピークの周波数の音が騒音として発生している場所に配置して騒音を低減させてもよい。
また、上述した吸音構造のうち、振動体20を板状部材24と付加部材25とで構成し、振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部に付加部材25を配置する吸音構造についても、当該吸音構造を、吸音構造の吸音率のピークの周波数の音が騒音として発生している場所に配置して騒音を低減させてもよい。
このように本発明に係る吸音構造を騒音の発生場所に配置して騒音を低減させる騒音低減方法によれば、振動体20が振動して騒音のエネルギーが消費されて騒音が低減されることとなる。
なお、騒音の発生場所としては、例えば車両や飛行機など各種輸送機器の内部、工場や工事現場などで運転されている各種機械などがある。
Of the above-described sound absorbing structure, the vibrating body 20 is composed of the first member 21 and the second member 22, and at least a part of the region other than the position where the amplitude node or the minimum is obtained when the vibrating body 20 undergoes flexural vibration. If the sound absorption structure has a density different from that of the position where the amplitude is a node or a minimum, the sound absorption structure should be placed in a place where the sound at the peak frequency of the sound absorption coefficient of the sound absorption structure is generated as noise. Noise may be reduced.
Further, in the sound absorbing structure described above, the thickness of the vibrating body 20 is not uniform, and the thickness of at least a part of the region other than the position where the vibration body 20 is bent and vibrated except for the position where the amplitude becomes a node or the minimum is the amplitude. Regarding the sound absorbing structure that is different from the thickness of the node or the position where the position is minimal, the sound absorbing structure may be arranged in a place where the sound having the peak frequency of the sound absorption rate of the sound absorbing structure is generated as noise. .
In addition, in the above-described sound absorbing structure, the vibrating body 20 is configured by the plate-like member 24 and the additional member 25, and at least a part of the region other than the position where the amplitude node or the minimum is obtained when the vibrating body vibrates. As for the sound absorbing structure in which the additional member 25 is disposed, the sound absorbing structure may be disposed in a place where the sound having the peak frequency of the sound absorption rate of the sound absorbing structure is generated as noise.
As described above, according to the noise reduction method for reducing the noise by arranging the sound absorbing structure according to the present invention, the vibration body 20 vibrates and the noise energy is consumed to reduce the noise. Become.
Note that the noise generation location includes, for example, various machines operating in factories, construction sites, etc., inside various transportation equipment such as vehicles and airplanes.

本発明の一実施形態に係る吸音構造1の外観図である。1 is an external view of a sound absorbing structure 1 according to an embodiment of the present invention. 吸音構造1の分解斜視図である。1 is an exploded perspective view of a sound absorbing structure 1. FIG. 吸音構造1のA−A線断面図である。2 is a cross-sectional view taken along line AA of the sound absorbing structure 1. FIG. 吸音構造1のシミュレーション結果を示したグラフである。4 is a graph showing a simulation result of the sound absorbing structure 1. 吸音構造1のシミュレーション条件および結果を示した表である。4 is a table showing simulation conditions and results of the sound absorbing structure 1. 本発明の変形例に係る吸音構造1Aの断面図である。It is sectional drawing of the sound absorption structure 1A which concerns on the modification of this invention. 吸音構造1Aの吸音率の測定結果を示したグラフである。It is the graph which showed the measurement result of the sound absorption rate of sound absorption structure 1A. 本発明の変形例に係る吸音構造の断面図である。It is sectional drawing of the sound absorption structure which concerns on the modification of this invention. 本発明の変形例に係る吸音構造の断面図である。It is sectional drawing of the sound absorption structure which concerns on the modification of this invention. 本発明に係る吸音体群の外観図である。It is an external view of the sound absorber group according to the present invention. 本発明の変形例に係る吸音構造の分解図であるIt is an exploded view of the sound-absorbing structure which concerns on the modification of this invention.

符号の説明Explanation of symbols

1,1A,1B・・・吸音構造、10・・・筐体、11・・・底面部、12・・・側壁、13・・・仕切部材、20・・・振動体、21・・・第1部材、22・・・第2部材、23・・・第1領域、24・・・板状部材、25・・・付加部材、30・・・空気層 DESCRIPTION OF SYMBOLS 1,1A, 1B ... Sound absorption structure, 10 ... Case, 11 ... Bottom part, 12 ... Side wall, 13 ... Partition member, 20 ... Vibrating body, 21 ... No. 1 member, 22 ... second member, 23 ... first region, 24 ... plate-like member, 25 ... additional member, 30 ... air layer

Claims (19)

中空で開口部を備えた筐体と、
板状または膜状の振動体とを有し、
前記開口部が前記振動体で塞がれて前記筐体と前記振動体とで空気層が形成されており、
前記振動体においては、前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の密度が、振幅の節または極小となる位置の密度と異なることを特徴とする吸音構造。
A hollow housing with an opening;
A plate-like or membrane-like vibrator,
The opening is closed with the vibrating body, and an air layer is formed between the casing and the vibrating body,
The vibrator is characterized in that the density of at least a part of the region other than the position where the amplitude node or the local minimum becomes different when the vibration body is flexibly vibrated is different from the density of the amplitude node or the local minimum position. Sound absorbing structure.
前記振動体においては、前記振動体が屈曲振動したときに振幅が極大となる位置を含む所定領域の密度が、前記所定領域以外の部分の密度と異なることを特徴とする請求項1に記載の吸音構造。   2. The vibrator according to claim 1, wherein a density of a predetermined region including a position where an amplitude becomes maximum when the vibrator is flexurally vibrated is different from a density of a portion other than the predetermined region. Sound absorbing structure. 中空で開口部を備えた筐体と、
板状または膜状の振動体とを有し、
前記開口部が前記振動体で塞がれて前記筐体と前記振動体とで空気層が形成されており、
前記振動体においては、前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の厚さが、振幅の節または極小となる位置の厚さと異なることを特徴とする吸音構造。
A hollow housing with an opening;
A plate-like or membrane-like vibrator,
The opening is closed with the vibrating body, and an air layer is formed between the casing and the vibrating body,
In the vibrating body, the thickness of at least a part of a region other than the position where the amplitude node or the local minimum becomes when the vibrating body vibrates is different from the thickness of the position where the amplitude node or the local minimum becomes. Sound absorption structure.
前記振動体においては、前記振動体が屈曲振動したときに振幅が極大となる位置を含む所定領域の厚さが、前記所定領域以外の部分の厚さと異なることを特徴とする請求項3に記載の吸音構造。   The thickness of a predetermined region including a position where the amplitude is maximized when the vibrating body is flexurally vibrated is different from a thickness of a portion other than the predetermined region. Sound absorption structure. 中空で開口部を備えた筐体と、
板状または膜状の振動体と、
付加部材と
を有し、
前記開口部が前記振動体で塞がれて前記筐体と前記振動体とで空気層が形成されており、
前記振動体においては、前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部に前記付加部材を有することを特徴とする吸音構造。
A hollow housing with an opening;
A plate-like or membrane-like vibrator,
With additional members,
The opening is closed with the vibrating body, and an air layer is formed between the casing and the vibrating body,
The sound absorbing structure according to claim 1, wherein the additional member is provided in at least a part of a region other than a position where an amplitude node or a local minimum is obtained when the vibrating member undergoes bending vibration.
前記振動体においては、前記振動体が屈曲振動したときに振幅が極大となる位置を含む所定領域に付加部材を有することを特徴とする請求項5に記載の吸音構造。   The sound absorbing structure according to claim 5, wherein the vibrating body has an additional member in a predetermined region including a position where the amplitude becomes maximum when the vibrating body is bent and vibrated. 前記振動体の前記所定領域の表面に付加部材が固定されていることを特徴とする請求項6に記載の吸音構造。   The sound absorbing structure according to claim 6, wherein an additional member is fixed to a surface of the predetermined region of the vibrating body. 前記振動体の前記所定領域の部分に付加部材が混入されていることを特徴とする請求項6に記載の吸音構造。   The sound absorbing structure according to claim 6, wherein an additional member is mixed in the predetermined region of the vibrating body. 請求項5乃至請求項8のいずれかに記載の吸音構造を複数組み合わせた吸音構造群であって、組み合わされた複数の吸音構造の各付加部材の質量が各々異なることを特徴とする吸音構造群。   A sound-absorbing structure group obtained by combining a plurality of sound-absorbing structures according to any one of claims 5 to 8, wherein the additional members of the plurality of sound-absorbing structures combined have different masses. . 請求項1乃至請求項8のいずれか一に記載の吸音構造を複数組み合わせた吸音構造群。   A sound-absorbing structure group in which a plurality of sound-absorbing structures according to claim 1 are combined. 組み合わされた複数の吸音構造の各空気層のサイズが各々異なることを特徴とする請求項10に記載の吸音構造群。   The sound absorbing structure group according to claim 10, wherein the air layers of the plurality of sound absorbing structures combined have different sizes. 組み合わされた複数の吸音構造の各空気層の厚みが各々異なることを特徴とする請求項10または請求項11に記載の吸音構造群。   The sound absorbing structure group according to claim 10 or 11, wherein the air layers of the plurality of combined sound absorbing structures have different thicknesses. 請求項1乃至請求項8のいずれか一に記載の吸音構造または請求項9乃至請求項12のいずれか一に記載の吸音構造群を有する音響室。   An acoustic chamber having the sound absorbing structure according to any one of claims 1 to 8 or the sound absorbing structure group according to any one of claims 9 to 12. 中空で開口部を備えた筐体と、
板状または膜状の振動体とを有し、
前記開口部が前記振動体で塞がれて前記筐体と前記振動体とで空気層が形成されており、
前記振動体においては、前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の密度が、振幅の節または極小となる位置の密度と異なる吸音構造の調整方法であって、
前記振動体において前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の密度を変更して吸音構造の共振周波数を調整する吸音構造の調整方法。
A hollow housing with an opening;
A plate-like or membrane-like vibrator,
The opening is closed with the vibrating body, and an air layer is formed between the casing and the vibrating body,
In the vibrating body, adjustment of the sound absorbing structure in which the density of at least a part of the region other than the position where the amplitude node or the local minimum becomes different when the vibrating body vibrates is different from the density of the amplitude node or the local minimum position. A method,
A method of adjusting a sound absorbing structure, wherein the resonance frequency of the sound absorbing structure is adjusted by changing a density of at least a part of a region other than a position where an amplitude node or a minimum is obtained when the vibrating member is flexibly vibrated.
中空で開口部を備えた筐体と、
板状または膜状の振動体とを有し、
前記開口部が前記振動体で塞がれて前記筐体と前記振動体とで空気層が形成されており、
前記振動体においては、前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の厚さが、振幅の節または極小となる位置の厚さと異なる吸音構造の調整方法であって、
前記振動体において前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の厚さを変更して吸音構造の共振周波数を調整する吸音構造の調整方法。
A hollow housing with an opening;
A plate-like or membrane-like vibrator,
The opening is closed with the vibrating body, and an air layer is formed between the casing and the vibrating body,
In the vibrating body, the thickness of at least a part of the region other than the position where the amplitude node or the local minimum is obtained when the vibrating body is flexibly vibrated is different from the thickness of the position where the amplitude node or the local minimum is different. An adjustment method,
A method for adjusting a sound absorbing structure, wherein the resonance frequency of the sound absorbing structure is adjusted by changing a thickness of at least a part of a region other than a position where an amplitude node or a minimum is obtained when the vibrating member is flexibly vibrated.
中空で開口部を備えた筐体と、
板状または膜状の振動体と、
付加部材と
を有し、
前記開口部が前記振動体で塞がれて前記筐体と前記振動体とで空気層が形成されており、
前記振動体においては、前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部に前記付加部材を有する吸音構造の調整方法であって、
前記前記付加部材を変更して吸音構造の共振周波数を調整する吸音構造の調整方法。
A hollow housing with an opening;
A plate-like or membrane-like vibrator,
With additional members,
The opening is closed with the vibrating body, and an air layer is formed between the casing and the vibrating body,
The vibrating body is a method for adjusting a sound absorbing structure having the additional member in at least a part of a region other than a position where an amplitude node or a local minimum when the vibrating body vibrates,
A method for adjusting a sound absorbing structure, wherein the additional member is changed to adjust a resonance frequency of the sound absorbing structure.
中空で開口部を備えた筐体と、
板状または膜状の振動体とを有し、
前記開口部が前記振動体で塞がれて前記筐体と前記振動体とで空気層が形成されており、
前記振動体が振動して騒音を低減する騒音低減方法であって、
前記振動体においては、前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の密度を、振幅の節または極小となる位置の密度と異ならせること
を特徴とする騒音低減方法。
A hollow housing with an opening;
A plate-like or membrane-like vibrator,
The opening is closed with the vibrating body, and an air layer is formed between the casing and the vibrating body,
A noise reduction method in which the vibrator vibrates to reduce noise,
In the vibrating body, the density of at least a part of a region other than a position where the amplitude becomes a node or a minimum when the vibrating body vibrates is different from a density of a position where the amplitude becomes a node or a minimum. Noise reduction method.
中空で開口部を備えた筐体と、
板状または膜状の振動体とを有し、
前記開口部が前記振動体で塞がれて前記筐体と前記振動体とで空気層が形成されており、
前記振動体が振動して騒音を低減する騒音低減方法であって、
前記振動体においては、前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部の厚さを、振幅の節または極小となる位置の厚さと異ならせることを特徴とする騒音低減方法。
A hollow housing with an opening;
A plate-like or membrane-like vibrator,
The opening is closed with the vibrating body, and an air layer is formed between the casing and the vibrating body,
A noise reduction method in which the vibrator vibrates to reduce noise,
In the vibrating body, the thickness of at least a part of the region other than the position where the amplitude node or the local minimum becomes when the vibrating body is flexurally vibrated is different from the thickness of the position where the amplitude node or the local minimum becomes. A characteristic noise reduction method.
中空で開口部を備えた筐体と、
板状または膜状の振動体と、
付加部材と
を有し、
前記開口部が前記振動体で塞がれて前記筐体と前記振動体とで空気層が形成されており、
前記振動体が振動して騒音を低減する騒音低減方法であって、
前記振動体においては、前記振動体が屈曲振動したときに振幅の節または極小となる位置以外の領域の少なくとも一部に前記付加部材を配置することを特徴とする騒音低減方法。
A hollow housing with an opening;
A plate-like or membrane-like vibrator,
With additional members,
The opening is closed with the vibrating body, and an air layer is formed between the casing and the vibrating body,
A noise reduction method in which the vibrator vibrates to reduce noise,
In the vibrating body, the noise reduction method is characterized in that the additional member is disposed in at least a part of a region other than a position where an amplitude node or a local minimum becomes when the vibrating body vibrates.
JP2008041772A 2008-02-22 2008-02-22 Sound absorbing structure, sound absorbing structure group, acoustic chamber, method of adjusting sound absorbing structure and noise reduction method Pending JP2009198902A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008041772A JP2009198902A (en) 2008-02-22 2008-02-22 Sound absorbing structure, sound absorbing structure group, acoustic chamber, method of adjusting sound absorbing structure and noise reduction method
US12/388,282 US20090223738A1 (en) 2008-02-22 2009-02-18 Sound absorbing structure and vehicle component having sound absorption property
CN2009100053807A CN101515453B (en) 2008-02-22 2009-02-20 Sound absorbing structure and vehicle component having sound absorption property
EP09002472A EP2093754A2 (en) 2008-02-22 2009-02-20 Sound absorbing structure and vehicle component having sound absorption properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008041772A JP2009198902A (en) 2008-02-22 2008-02-22 Sound absorbing structure, sound absorbing structure group, acoustic chamber, method of adjusting sound absorbing structure and noise reduction method

Publications (1)

Publication Number Publication Date
JP2009198902A true JP2009198902A (en) 2009-09-03

Family

ID=41039881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008041772A Pending JP2009198902A (en) 2008-02-22 2008-02-22 Sound absorbing structure, sound absorbing structure group, acoustic chamber, method of adjusting sound absorbing structure and noise reduction method

Country Status (2)

Country Link
JP (1) JP2009198902A (en)
CN (1) CN101515453B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017532478A (en) * 2014-09-03 2017-11-02 ゼネラル・エレクトリック・カンパニイ Sound absorption processing assembly for turbine systems
KR20190053667A (en) * 2017-11-10 2019-05-20 현대자동차주식회사 Vibration reduction device
EP3550557A4 (en) * 2016-11-29 2019-12-18 Fujifilm Corporation Soundproof structure
CN112259066A (en) * 2020-10-23 2021-01-22 西安交通大学 N-order acoustic metamaterial low-frequency sound insulation structure
US11218798B2 (en) 2019-04-09 2022-01-04 Samsung Electronics Co., Ltd. Electronic device including a display panel speaker
WO2023032618A1 (en) * 2021-08-30 2023-03-09 富士フイルム株式会社 Ventilation path silencer

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107103898A (en) * 2011-10-06 2017-08-29 Hrl实验室有限责任公司 High bandwidth anti-resonance vibration film
CN105161089B (en) * 2015-06-17 2019-10-15 成都斯铂润音响设备有限公司 A kind of sound absorber
JP6828644B2 (en) * 2017-09-27 2021-02-10 トヨタ紡織株式会社 Arrangement structure of sound absorbing material in vehicle interior materials
CN110725811A (en) * 2018-07-16 2020-01-24 中兴通讯股份有限公司 Communication equipment
JP7141473B2 (en) * 2019-01-11 2022-09-22 富士フイルム株式会社 Silencer for electric vehicles
CN109859732A (en) * 2019-03-28 2019-06-07 苏州拓朴声学科技有限公司 The standardized sound insulation sound absorption unitary module of one kind and selection method
CN111451118B (en) * 2020-05-14 2021-05-11 郑州科技学院 Device for realizing music interaction between music rooms
CN112660029A (en) * 2020-12-29 2021-04-16 宜宾凯翼汽车有限公司 Glove box structure
CN116424238B (en) * 2023-06-13 2023-08-25 江苏派欧汽车零部件有限公司 Automobile interior trimming panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165296A (en) * 1984-09-07 1986-04-03 日本ゼオン株式会社 Plaster board excellent in sound insulation
JPS6223094A (en) * 1985-07-23 1987-01-31 日本ゼオン株式会社 Sound insulating board material
JP2000330571A (en) * 1999-05-21 2000-11-30 Nok Vibracoustic Kk Sound absorbing structure
JP2006265872A (en) * 2005-03-22 2006-10-05 Matsushita Electric Works Ltd Sound absorbing folded-up ceiling unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2541159A (en) * 1946-01-22 1951-02-13 Paul H Geiger Sound deadener for vibratory bodies
US5691516A (en) * 1994-06-21 1997-11-25 Tekna Sonic, Inc. Tunable vibration absorber
JP2005134653A (en) * 2003-10-30 2005-05-26 Kobe Steel Ltd Sound absorbing structure
US7395898B2 (en) * 2004-03-05 2008-07-08 Rsm Technologies Limited Sound attenuating structures
CN101329865A (en) * 2007-06-18 2008-12-24 中国科学院声学研究所 Resonance sound-absorbing structure for sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165296A (en) * 1984-09-07 1986-04-03 日本ゼオン株式会社 Plaster board excellent in sound insulation
JPS6223094A (en) * 1985-07-23 1987-01-31 日本ゼオン株式会社 Sound insulating board material
JP2000330571A (en) * 1999-05-21 2000-11-30 Nok Vibracoustic Kk Sound absorbing structure
JP2006265872A (en) * 2005-03-22 2006-10-05 Matsushita Electric Works Ltd Sound absorbing folded-up ceiling unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017532478A (en) * 2014-09-03 2017-11-02 ゼネラル・エレクトリック・カンパニイ Sound absorption processing assembly for turbine systems
EP3550557A4 (en) * 2016-11-29 2019-12-18 Fujifilm Corporation Soundproof structure
US11049485B2 (en) 2016-11-29 2021-06-29 Fujifilm Corporation Soundproof structure
KR20190053667A (en) * 2017-11-10 2019-05-20 현대자동차주식회사 Vibration reduction device
KR102371259B1 (en) 2017-11-10 2022-03-04 현대자동차 주식회사 Vibration reduction device
US11218798B2 (en) 2019-04-09 2022-01-04 Samsung Electronics Co., Ltd. Electronic device including a display panel speaker
CN112259066A (en) * 2020-10-23 2021-01-22 西安交通大学 N-order acoustic metamaterial low-frequency sound insulation structure
WO2023032618A1 (en) * 2021-08-30 2023-03-09 富士フイルム株式会社 Ventilation path silencer

Also Published As

Publication number Publication date
CN101515453B (en) 2012-07-04
CN101515453A (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP2009198902A (en) Sound absorbing structure, sound absorbing structure group, acoustic chamber, method of adjusting sound absorbing structure and noise reduction method
JP7260049B2 (en) flat panel speakers and displays
JP5402025B2 (en) Sound absorption structure and acoustic room
JP5056385B2 (en) Sound absorber
JP5245641B2 (en) Sound absorbing structure
JP4277876B2 (en) Speaker system and speaker enclosure
JP7322712B2 (en) Display device
JP5332495B2 (en) Sound absorption structure
JP5493378B2 (en) Sound absorbing structure
JP5446134B2 (en) Sound absorbing structure
JP5167751B2 (en) Sound absorption structure
CN111373764B (en) Loudspeaker device
JP5262800B2 (en) Sound absorbing structure
JP2009204836A (en) Sound absorption structure, sound absorption structure group, sound box, method of adjusting sound structure and noise reduction method
JP2010097145A (en) Sound absorbing structure, sound absorbing structure group and acoustic room
CN112655223B (en) Product with integrally formed vibration panel speaker
JP5286949B2 (en) Sound absorption structure
JP2009198901A (en) Sound absorption structure, sound absorption structure group, acoustic chamber, method of adjusting sound absorption structure and noise reduction method
JP2010097147A (en) Sound absorbing structure, sound absorbing structure group and acoustic room
GB2442260A (en) Loudspeaker diaphragm conforms to surrounding acoustic surface
JP2009145740A (en) Sound absorber, sound absorber group and acoustic room
JP5066680B2 (en) Sound absorbing structure
JP4747912B2 (en) Speaker device
JP2010097146A (en) Sound absorbing structure, sound absorbing structure group and acoustic room
JP2008178133A (en) Recoilless speaker system and unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507