JP2009183264A - Saccharification method of rice straw - Google Patents

Saccharification method of rice straw Download PDF

Info

Publication number
JP2009183264A
JP2009183264A JP2008045766A JP2008045766A JP2009183264A JP 2009183264 A JP2009183264 A JP 2009183264A JP 2008045766 A JP2008045766 A JP 2008045766A JP 2008045766 A JP2008045766 A JP 2008045766A JP 2009183264 A JP2009183264 A JP 2009183264A
Authority
JP
Japan
Prior art keywords
saccharification
glucan
rice
enzyme
starch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008045766A
Other languages
Japanese (ja)
Other versions
JP5322151B2 (en
Inventor
Takeshi Tokuyasu
健 徳安
Motohiko Kondo
始彦 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2008045766A priority Critical patent/JP5322151B2/en
Publication of JP2009183264A publication Critical patent/JP2009183264A/en
Application granted granted Critical
Publication of JP5322151B2 publication Critical patent/JP5322151B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a saccharification method of remarkably high efficiency, without performing chemical pretreatment using strong acid-strong alkali, having no problem of cost and environmental load which problem is caused by use of chemical agents, and only by easy operation, when using plant above-ground parts of rice plant. <P>SOLUTION: The saccharification method comprises recovering plant above-ground parts of rice plant containing starch of ≥5% based on dry weight in the stem and leaf parts, crushing, and performing saccharification treatment using an enzyme solution containing amyloglucosidase and β-glucan catabolic enzyme. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、稲の植物体地上部を原料とした酵素を用いた糖化法に関するものである。
詳しくは、茎葉部に乾燥重量あたり5%以上のでん粉を含有する稲の植物体地上部を原料とし、且つ、アミログルコシダーゼおよびβ−グルカン分解酵素を含む酵素液を用いて糖化処理することによって、糖化の効率が顕著に高められた糖化法に関するものである。
The present invention relates to a saccharification method using an enzyme made from the above-ground part of rice plants.
Specifically, by using as a raw material the above-ground part of a rice plant containing 5% or more starch per dry weight in the foliage, and saccharifying using an enzyme solution containing amyloglucosidase and β-glucan degrading enzyme, The present invention relates to a saccharification method in which the efficiency of saccharification is significantly increased.

バイオ燃料への世界的ニーズの高まりに対応して、糖質系バイオマス由来のバイオエタノール製造技術開発競争が世界的規模で繰り広げられている。特に、食料資源と競合しないリグノセルロース系バイオマスの利用技術開発が、欧米のみならず我が国においても最も重要なブレイクスルーとなりうると考えられている。
リグノセルロース系バイオマスの糖化技術開発は約200年の歴史を有しているが、現在、再び活発化している。特に、酸糖化を中心に展開した糖化技術に代わり、セルラーゼを中心とした酵素糖化技術が高い期待を集めている。しかしながら、一般的に、リグノセルロース系バイオマス中の多糖は複雑な構造をとる細胞壁中に埋め込まれており、糖化工程に先立つ前処理工程の開発が不可欠とされていた。
In response to the growing global needs for biofuels, competition for the development of bioethanol production technology derived from carbohydrate-based biomass is taking place on a global scale. In particular, it is considered that the development of utilization technology of lignocellulosic biomass that does not compete with food resources can be the most important breakthrough not only in Europe and the United States but also in Japan.
The saccharification technology development of lignocellulosic biomass has a history of about 200 years, but is now active again. In particular, enzyme saccharification technology centered on cellulase is attracting high expectations instead of saccharification technology centered on acid saccharification. However, in general, polysaccharides in lignocellulosic biomass are embedded in a cell wall having a complex structure, and development of a pretreatment step prior to the saccharification step has been considered essential.

農産廃棄物を中心とした草本系バイオマス原料は、木質系原料と比較して、穏和な前処理工程により酵素糖化効率が上昇するものと期待されており、現在までに、希硫酸・水蒸気爆砕法、アンモニア処理法等の前処理技術開発が精力的に行われてきた。
しかしながら、これらの前処理工程においても、化学薬品の使用に伴うコストや環境負荷の問題などが指摘されており、より穏和で低コストな前処理技術の開発が望まれている。特に、稲わらを中心とするイネ科植物の茎葉を原料とした効率的糖化技術の開発については、我が国や米国、中国、韓国、ベトナム、タイなどにおいて農業政策とバイオマスエネルギー政策との両方に深く関与するものとして、高い期待を集めているところである。我が国でも、農産廃棄物資源として最も豊富な稲わらのバイオエタノール変換技術開発は喫緊の課題となっている。
Herbaceous biomass materials, mainly agricultural waste, are expected to increase the enzymatic saccharification efficiency by a mild pretreatment process compared to woody materials. To date, dilute sulfuric acid / steam explosion method The development of pretreatment technologies such as ammonia treatment has been vigorously conducted.
However, in these pretreatment steps, the costs associated with the use of chemicals and the problem of environmental impact have been pointed out, and the development of a milder and lower cost pretreatment technique is desired. In particular, with regard to the development of efficient saccharification technology using grasses and leaves of gramineous plants centering on rice straw, we are deeply involved in both agricultural policy and biomass energy policy in Japan, the United States, China, South Korea, Vietnam, Thailand, etc. We are attracting high expectations for being involved. In Japan, the development of bioethanol conversion technology for rice straw, which is the most abundant agricultural waste resource, is an urgent issue.

稲わらをはじめとする単子葉植物系植物細胞壁の前処理技術としては、比較的穏和な処理法が検討されてきた。例えば、2005年まで行われた米国農務省プロジェクト「未来型農業・食品産業システムのための農業イニシアチブ(IFAFS)」では、成分分析データを添えたコーンストーバの均一試料を供給し、多数の機関がそれぞれ手持ちの要素技術(希酸、水蒸気、水酸化カルシウム、アンモニア、アンモニア爆砕等の前処理技術)によるエタノール変換技術について有用性を比較し、それぞれの技術の特徴を評価した(例えば、非特許文献1参照)。また、草本系原料に対する水蒸気爆砕法についても研究が行われている。
しかしながら、これらの方法は、全て、140℃を超える高温での反応、または高濃度の酸・アルカリを用いた反応のいずれかを軸とする前処理であり、反応槽の高度化に伴うコスト、酸・アルカリの回収または処理コストや環境負荷等の問題が解決されていない。
バイオマスの糖化は、可能な限り熱変化やpH変化が少なく、糖化産物の発酵を行う場合には、容易に発酵工程に受け渡すことができるような穏和な方法で行うことが望ましい。既に実用化されているコーンでん粉のドライミルによる糖化技術は、原料の粉砕、100℃前後の比較的低温での加熱および酵素糖化工程により構成されている(例えば、非特許文献2参照)。この技術では、反応装置に係る投資が抑制されるとともに、穏和な酵素反応により化学薬品の使用を抑える点などがメリットとなり、中小規模のバイオエタノールプラント用に急速に普及しているところである。
現在、稲を含むイネ化植物などの草本系バイオマスを原料とした、このような容易な糖化技術の開発が求められている。
As a pretreatment technique for monocotyledonous plant cell walls such as rice straw, a relatively mild treatment method has been studied. For example, in the US Department of Agriculture project “Agricultural Initiative for Future Agricultural and Food Industry Systems (IFAFS)” conducted until 2005, a uniform sample of corn stover with component analysis data was supplied. We compared the usefulness of ethanol conversion technologies based on hand-held elemental technologies (pretreatment technologies such as dilute acid, water vapor, calcium hydroxide, ammonia, and ammonia explosion) and evaluated the characteristics of each technology (for example, Non-Patent Document 1). reference). Research has also been conducted on steam explosion methods for herbaceous materials.
However, all of these methods are pretreatments centered on either a reaction at a high temperature exceeding 140 ° C. or a reaction using a high concentration acid / alkali, and the cost associated with the advancement of the reaction tank, Problems such as acid / alkali recovery or treatment costs and environmental impact have not been solved.
Biomass saccharification is preferably performed in a mild manner so that it can be easily transferred to the fermentation process when fermentation of the saccharified product is as small as possible with little change in heat and pH. Corn starch saccharification technology that has already been put to practical use is composed of raw material grinding, heating at a relatively low temperature of around 100 ° C., and enzymatic saccharification steps (see, for example, Non-Patent Document 2). This technology is advantageous in that the investment in the reaction apparatus is suppressed and the use of chemicals is suppressed by a mild enzyme reaction, which is rapidly spreading for small and medium-sized bioethanol plants.
Currently, there is a demand for the development of such an easy saccharification technique using herbaceous biomass such as rice plants including rice.

Wyman, C. E.,et al., Bioresour. Technol. 2005, 96:1959-1966Wyman, C. E., et al., Bioresour. Technol. 2005, 96: 1959-1966 山田富明、「バイオ液体燃料」株式会社エヌ・ティー・エス (2007)、pp.91-114Tomiaki Yamada, “Bio-Liquid Fuel” NTS Corporation (2007), pp.91-114

本発明は、上記従来の課題を解決し、稲の植物体地上部を原料とした場合に、強酸・強アルカリを用いた化学的前処理を行わずに、化学薬品の使用に伴うコストや環境負荷の問題のない、容易な操作のみで効率が顕著に高い糖化法を提供することにある。   The present invention solves the above-mentioned conventional problems, and when using the above-ground parts of rice plants as a raw material, the cost and environment associated with the use of chemicals without performing chemical pretreatment using strong acids and strong alkalis. It is an object of the present invention to provide a saccharification method that has no problem of load and has a remarkably high efficiency only by an easy operation.

本発明者は、稲の植物体地上部を原料として用いて糖化する方法において、茎葉部の乾燥重量あたり5%以上のでん粉を含有する稲の植物体地上部を原料とし、且つ、アミログルコシダーゼおよびβ−グルカン分解酵素を含む酵素液を用いて糖化処理することによって、糖化の効率を顕著に高めることができることを見出し、本発明の完成に至った。   In the method of saccharification using the above-ground part of rice plant as a raw material, the present inventor uses the above-ground part of rice plant containing 5% or more of starch per dry weight of the foliage as a raw material, and amyloglucosidase and It has been found that the efficiency of saccharification can be remarkably increased by saccharification treatment using an enzyme solution containing β-glucan degrading enzyme, and the present invention has been completed.

本発明は以下に関するものである。
即ち、請求項1に記載の本発明は、茎葉部に乾燥重量あたり5%以上のでん粉を含有する稲の植物体地上部を回収し、粉砕した後に、アミログルコシダーゼおよびβ−グルカン分解酵素を含む酵素液を用いて糖化処理することを特徴とする糖化法に関するものである。
また、請求項2に記載の本発明は、前記植物体地上部が成熟した実を除いた茎葉部である、請求項1に記載の糖化法に関するものである。
また、請求項3に記載の本発明は、前記植物体地上部が、出穂期から成熟期のものである、請求項1または2のいずれかに記載の糖化法に関するものである。
また、請求項4に記載の本発明は、前記植物体地上部が、地際部分を含むものである、請求項1〜3のいずれかに記載の糖化法に関するものである。
また、請求項5に記載の本発明は、前記植物体地上部を回収した後、24時間以内に、40〜130℃での加熱処理を行う、および/または、乾燥処理を行う、ことにより、前記植物体地上部を、前記植物体地上部の植物体細胞および前記植物体内や表面に生息する微生物のショ糖、グルコースおよびフラクトース資化活性が抑制されたものにする、請求項1〜4のいずれかに記載の糖化法に関するものである。
また、請求項6に記載の本発明は、請求項5に記載の方法において、前記資化活性が抑制されたものとなった前記植物体地上部が、前記植物体地上部の乾燥重量に対してショ糖を4%以上、グルコースを0.5%以上、および、フルクトースを0.5%以上含むものである、請求項5に記載の糖化法に関するものである。
また、請求項7に記載の本発明は、前記植物体地上部に含有される総グルカン量のうち、50%以上をグルコースとして回収する、請求項1〜6のいずれかに記載の糖化法に関するものである。
また、請求項8に記載の本発明は、前記β−グルカン分解酵素が、非晶質のセルロース、結晶性のセルロース、およびβ−(1→3),β−(1→4)−グルカンのうちの少なくとも一つを加水分解する活性を有するものである、請求項1〜7のいずれかに記載の糖化法に関するものである。
また、請求項9に記載の本発明は、前記アミログルコシダーゼおよびβ−グルカン分解酵素を含む酵素液が、セロビオハイドロラーゼおよびエンドグルカナーゼの両方の活性を有するものである、請求項1〜8のいずれかに記載の糖化法に関するものである。
また、請求項10に記載の本発明は、前記アミログルコシダーゼおよびβ−グルカン分解酵素を含む酵素液が、ヘミセルロース分解酵素、β-グルコシダーゼ、およびα-アミラーゼのうちの少なくとも一つを含有する、請求項1〜9のいずれかに記載の糖化法に関するものである。
また、請求項11に記載の本発明は、前記アミログルコシダーゼおよび/またはβ-グルカン分解酵素が、微生物由来の酵素または酵素製剤である、請求項1〜10のいずれかに記載の糖化法に関するものである。
また、請求項12に記載の本発明は、前記糖化処理の前において、および/または、前記糖化処理において、70〜130℃の加熱処理を行う、請求項1〜11のいずれかに記載の糖化法に関するものである。
また、請求項13に記載の本発明は、請求項1〜12のいずれかに記載の糖化法により得られた糖化液を用いてエタノール発酵を行うことを特徴とする、エタノールの製造法に関するものである。
The present invention relates to the following.
That is, the present invention according to claim 1 contains amyloglucosidase and β-glucan-degrading enzyme after recovering and pulverizing the above-ground parts of rice plants containing 5% or more starch per dry weight in the foliage. The present invention relates to a saccharification method characterized by saccharification treatment using an enzyme solution.
Moreover, this invention of Claim 2 is related with the saccharification method of Claim 1 which is a foliage part except the fruit which the said plant body above-ground part matured.
Moreover, this invention of Claim 3 is related with the saccharification method in any one of Claim 1 or 2 whose said plant body above-ground part is a thing of a heading stage to a mature stage.
Moreover, this invention of Claim 4 is related with the saccharification method in any one of Claims 1-3 in which the said plant body above-ground part contains a ground part.
Moreover, this invention of Claim 5 performs the heat processing at 40-130 degreeC, and / or performing a drying process within 24 hours, after collect | recovering the said plant body upper parts, The plant body above-mentioned part is a plant body cell of the above-mentioned plant body part and the sucrose, glucose and fructose utilization activity of microorganisms that inhabit the plant body and the surface thereof are suppressed. It relates to the saccharification method described in any one.
Further, the present invention according to claim 6 is the method according to claim 5, wherein the plant ground part in which the assimilation activity is suppressed is based on a dry weight of the plant ground part. The saccharification method according to claim 5, comprising 4% or more of sucrose, 0.5% or more of glucose, and 0.5% or more of fructose.
Moreover, this invention of Claim 7 is related with the saccharification method in any one of Claims 1-6 which collect | recovers 50% or more as glucose among the total amount of glucan contained in the said plant body above-ground part. Is.
Further, in the present invention according to claim 8, the β-glucan degrading enzyme is composed of amorphous cellulose, crystalline cellulose, and β- (1 → 3), β- (1 → 4) -glucan. It is related with the saccharification method in any one of Claims 1-7 which has the activity which hydrolyzes at least one of them.
In addition, the present invention according to claim 9 is characterized in that the enzyme solution containing the amyloglucosidase and β-glucan-degrading enzyme has both cellobiohydrolase and endoglucanase activities. It relates to the saccharification method described in any one.
The present invention according to claim 10 is characterized in that the enzyme solution containing amyloglucosidase and β-glucan degrading enzyme contains at least one of hemicellulose degrading enzyme, β-glucosidase, and α-amylase. It is related with the saccharification method in any one of claim | item 1 -9.
The invention according to claim 11 relates to the saccharification method according to any one of claims 1 to 10, wherein the amyloglucosidase and / or β-glucan-degrading enzyme is a microorganism-derived enzyme or enzyme preparation. It is.
Moreover, this invention of Claim 12 performs the heat processing of 70-130 degreeC before the said saccharification process and / or in the said saccharification process, The saccharification in any one of Claims 1-11 It is about the law.
Moreover, this invention of Claim 13 is related with the manufacturing method of ethanol characterized by performing ethanol fermentation using the saccharified liquid obtained by the saccharification method in any one of Claims 1-12. It is.

本発明は、稲の植物体地上部を原料とした場合に、強酸・強アルカリを用いた化学的前処理を行わず、化学薬品の使用に伴うコストや環境負荷の問題のない、容易な操作のみで顕著に効率の高い糖化を行うこと、特にはグルコースを生産すること、を可能とする。詳しくは、本発明は、前記原料に含有される総グルカン量の50%以上を糖化することを可能とする。
また、本発明は、低コスト・低環境負荷性の効率的なバイオマス糖化技術の開発に繋がるものであり、特に、我が国のみならず世界中で喫緊の課題となっている、バイオエタノール生産技術開発に新機軸を提供するものとして、極めて重要性が高い、バイオマス糖化技術を提供することを可能とする。
The present invention is a simple operation that does not involve chemical pretreatment using a strong acid / strong alkali when using the above-ground plant part of rice as a raw material, and does not have a problem of cost and environmental burden associated with the use of chemicals. It is possible to perform saccharification with remarkably high efficiency, particularly to produce glucose. Specifically, the present invention makes it possible to saccharify 50% or more of the total amount of glucan contained in the raw material.
In addition, the present invention leads to the development of efficient biomass saccharification technology with low cost and low environmental impact, and in particular, development of bioethanol production technology, which is an urgent issue not only in Japan but around the world. It is possible to provide biomass saccharification technology that is extremely important as a new innovation.

本発明は、稲の植物体地上部を原料として用いて糖化する方法において、茎葉部に乾燥重量あたり5%以上のでん粉を含有する稲の植物体地上部を原料とし、且つ、アミログルコシダーゼおよびβ−グルカン分解酵素を含む酵素液を用いて糖化処理することによって、糖化の効率が顕著に高められた糖化法に関する。   The present invention relates to a method for saccharification using an above-ground part of rice plant as a raw material, wherein the above-ground part of rice plant containing 5% or more of starch per dry weight in the stem and leaf is used as a raw material, and amyloglucosidase and β -It relates to a saccharification method in which the saccharification efficiency is remarkably enhanced by saccharification treatment using an enzyme solution containing a glucan-degrading enzyme.

「糖化」とは、多糖類やオリゴ糖のグリコシド結合を切断することにより加水分解し、より低重合度のオリゴ糖や単糖にまで低分子化することをいう。なお、本発明においては、グルコース、マルトース、イソマルトース、マルトオリゴ糖、イソマルトオリゴ糖、セロビオース、セロオリゴ糖にまで、望ましくは、グルコースにまで分解することをさす。   “Saccharification” refers to hydrolysis by cleaving a glycosidic bond of a polysaccharide or oligosaccharide to lower the molecular weight to a oligosaccharide or monosaccharide having a lower polymerization degree. In the present invention, it means to decompose to glucose, maltose, isomaltose, maltooligosaccharide, isomaltoligosaccharide, cellobiose, cellooligosaccharide, and preferably to glucose.

本発明において、でん粉含量は、でん粉の熱糊化後にα-アミラーゼおよびアミログルコシダーゼ処理を行うことにより単糖として測定でき、例えば、メガザイム社のTotal Starch Kitを用いて分析することができる。
なお、稲の茎葉部に含有されるでん粉が、貯蔵でん粉に特有のアミロース/アミロペクチン構造を主体としているか否かは不明であり、グリコーゲン状の構造を取っている可能性等も考えられる。
本発明においては、便宜上、α-アミラーゼおよびアミログルコシダーゼによる糖化が可能である高分子を「でん粉」として定義する。
In the present invention, the starch content can be measured as a monosaccharide by subjecting starch to heat gelatinization and then subjected to α-amylase and amyloglucosidase treatment, and can be analyzed using, for example, Total Starch Kit of Megazyme.
In addition, it is unclear whether the starch contained in the shoots and leaves of rice mainly has an amylose / amylopectin structure peculiar to stored starch, and there is a possibility that it has a glycogen-like structure.
In the present invention, for convenience, a polymer that can be saccharified by α-amylase and amyloglucosidase is defined as “starch”.

本発明において、総グルカン量は、原料である稲の植物体地上部の加水分解物として得られる全グルコースがグルコースの直鎖多糖を基本骨格とすると仮定し、グルコース量から計算式(グルコース量÷180×162)により求めることができる。   In the present invention, the total amount of glucan is calculated from the amount of glucose (glucose amount ÷ assuming that the total glucose obtained as a hydrolyzate of the above-ground plant body of rice as a raw material is a linear polysaccharide of glucose as a basic skeleton. 180 × 162).

また、本発明の目的の一つは、食料との競合を避けるため、食料に利用されないバイオマス原料を活用することにあるので、原料であるイネ科植物の植物体地上部としては、好ましくは、「成熟した実(お米)を除いた」ものであることが望ましい。
なお、稲のうちで実を食用目的としないもの、即ち、飼料稲やエネルギー用の稲を想定して作られたもので、穂に含まれる種子や花などの生殖器官が食料に相当しないものであれば、「成熟した実を含む植物体地上部」を本発明の糖化法の原料として用いることができる。
さらに、出穂期の稲のように、実が成熟していないものも、穂や実を分離せずに、植物体地上部を全量用いることにより、効率的な原料の運搬、貯蔵や粉砕などが可能となる。
Further, one of the objects of the present invention is to utilize biomass raw materials that are not used for food in order to avoid competition with food. It is desirable to be "excluding mature fruit (rice)".
Of rice, those that are not intended for food use, that is, those that are intended for feed rice or energy rice, and the reproductive organs such as seeds and flowers in the ear do not correspond to food. If so, “the above-ground part of the plant body containing mature fruits” can be used as a raw material for the saccharification method of the present invention.
In addition, rice that is not mature, such as rice at the heading stage, can efficiently transport, store, and pulverize raw materials by using the whole plant part without separating the ears and seeds. It becomes possible.

本発明に用いることができる稲の品種系統としては、Oryza sativaとそれを母本とするものを広く利用することができる。
好ましくは、茎葉部にでん粉を多く含有する種類が好ましい。でん粉の含有率は、品種のみならず、栽培方法などにも依存するが、例えば、ジャポニカ型のふくひびき、北陸187号、北陸184号、どんとこい、インディカ型のハバタキ、タカナリなどの品種を挙げることができる。
As rice varieties that can be used in the present invention, Oryza sativa and those based on it can be widely used.
Preferably, the kind which contains many starches in a foliage part is preferable. The starch content depends not only on the cultivar but also on the cultivation method, and examples include varieties such as japonica type fukuhibiki, Hokuriku 187, Hokuriku 184, Dontokoi, Indica type Habataki, Takanari, etc. be able to.

本発明に原料として用いることができる稲の植物体地上部は、乾燥重量あたり、「茎葉部」に5%以上、好ましくは20%以上のでん粉を含有するものであればよい。
なお、茎葉部に乾燥重量あたり、5%を越すでん粉を含むものと、5%未満のでん粉を含むものが混合していて、全体の平均値が5%以上となる場合も、本発明に用いることがきる原料として含まれる。
本発明の技術を用いれば、茎葉部に5%以上のでん粉を含む稲の植物体地上部1kgからは、約170g以上のグルコースの回収が期待される。また、公知の方法により酵素反応条件を最適化することにより、グルコース回収効率を向上することが可能となる。
The above-ground part of the plant body of rice that can be used as a raw material in the present invention is only required to contain 5% or more, preferably 20% or more of starch in the “stems and leaves” per dry weight.
In addition, the case where a mixture containing starch exceeding 5% per dry weight and a mixture containing less than 5% starch per dry weight is used in the present invention when the average value of the whole is 5% or more. Included as raw material.
If the technique of the present invention is used, about 170 g or more of glucose is expected to be recovered from 1 kg of the above-ground part of rice plants containing 5% or more starch in the foliage. In addition, it is possible to improve the glucose recovery efficiency by optimizing the enzyme reaction conditions by a known method.

本発明に用いることができる「稲の植物体地上部」とは、茎葉部、成熟した実(お米)、稲の花序である穂、などの組織を指すものである。
また、本発明における「茎葉部」とは、葉鞘部や稈部を中心とした組織や葉を指すものであり、引き抜いた際の地下部の一部が混入したものも含むものである。
The “plant plant above-ground part” that can be used in the present invention refers to tissues such as stems and leaves, mature fruits (rice), and ears of inflorescences of rice.
In addition, the “stem and leaf part” in the present invention refers to a tissue or a leaf centered on a leaf sheath part or a heel part, and includes a part of the underground part mixed when it is pulled out.

稲の茎葉部に含有されるでん粉量は、生育段階によって異なることが知られている。例えば、以下、稲において具体的に記載する。
コメ収穫後の稲の穂を除く茎葉部には僅かな量のでん粉が含まれているが、通常の刈り取りを行い常温で風乾させると、でん粉含量は、乾燥重量の0〜2%前後となることがある。
上記乾燥重量は、水分を蒸発させた際の残分の重量から計算する。例えば、105℃程度で乾燥させてほぼ恒量となった時の重量として求めることができる。
It is known that the amount of starch contained in the rice foliage varies depending on the growth stage. For example, the following is specifically described for rice.
A small amount of starch is contained in the stems and leaves excluding the rice ears after rice harvest, but when normal mowing and air drying at room temperature, the starch content is around 0-2% of the dry weight Sometimes.
The dry weight is calculated from the weight of the residue when water is evaporated. For example, it can be determined as the weight when dried at about 105 ° C. and almost constant weight.

なお、本発明に用いる原料を「稲わら」と記載することがある。いわゆる「稲わら」とは、「刈り取った稲の成熟した実(お米)を除く植物体地上部」のことを漠然と指す場合があるが、本発明において「稲わら」とは、稲の植物体地上部を刈り取って回収したものであり、出穂期や成熟期の穂や実を含む植物体地上部全体や、コメ収穫の際に刈り取った成熟した実を除く植物体地上部、などを指すものである。これらは、刈り取った直後のものだけでなく、刈り取った後に乾燥させたものも指すものである。   In addition, the raw material used for this invention may be described as "rice straw". The so-called “rice straw” is sometimes referred to vaguely as “the plant body above the matured fruit (rice) of the harvested rice”. In the present invention, “rice straw” refers to the plant of rice. The above-ground part is harvested and collected, and refers to the whole part of the plant body including the heads and seeds in the heading stage and the mature stage, and the above-ground part of the plant body excluding the mature fruit harvested at the time of rice harvest. Is. These are not only those that have just been cut, but also those that have been cut and then dried.

稲の茎葉部に含有されるでん粉は、出穂期のものでは20%を超えるものもあり、糖質としては重要性が高い(He, Y., H., et al., Plant Prod. Sci. 2005, 8: 546-552.)。
この現象については、古くから、実へのでん粉蓄積と茎葉蓄積でん粉量やその時期との関係という観点から研究が行われてきた(例えば、Nagata, K., et al., Plant Prod. Sci., 2001, 4, 173-183. )。成熟に伴い、このでん粉の大部分は穂へ移行するが、成熟期になっても5%程度から20%以上のでん粉を茎葉部に残す品種の稲が存在し、成熟期に再度茎葉でん粉が蓄積するものも見られる。(例えば、山口弘道&松村修、日作紀、2004, 73, 402-409.)。
具体的には、ジャポニカ型のふくひびき、北陸187号、北陸184号、どんとこいなどの品種を挙げることができ、本発明に用いるのに特に好適である。
なお、稲の茎葉部におけるでん粉の蓄積は、品種のみに依存せず、栽培方法にも大きく依存することから、上記以外の多様な稲の品種系統を用いた場合にも、施肥管理等を中心とした栽培技術により、本発明の原料として用いることができるでん粉量を蓄積した稲の茎葉部を有する稲を栽培することが可能である。
The starch contained in the stem and leaves of rice exceeds 20% at the heading stage and is highly important as a carbohydrate (He, Y., H., et al., Plant Prod. Sci. 2005, 8: 546-552.).
This phenomenon has been studied for a long time from the viewpoint of the relationship between starch accumulation in fruits and the amount of starch accumulated in the foliage and its time (for example, Nagata, K., et al., Plant Prod. Sci. , 2001, 4, 173-183. Most of this starch shifts to the ear as it matures, but there are some rice varieties that leave about 5% to 20% or more of starch in the foliage even at the maturity stage. Some are accumulated. (For example, Hiromichi Yamaguchi & Osamu Matsumura, Nisakuki, 2004, 73, 402-409.).
Specific examples include varieties such as Japonica type Hokubiki, Hokuriku 187, Hokuriku 184, Dontokoi and the like, which are particularly suitable for use in the present invention.
The accumulation of starch in the foliage of rice depends not only on the variety but also on the cultivation method. Therefore, even when using various rice varieties other than the above, fertilization management etc. By using the cultivation technique described above, it is possible to cultivate rice having a stem and leaf portion of rice that has accumulated an amount of starch that can be used as a raw material of the present invention.

通常、稲の茎葉部のでん粉蓄積量は出穂期近辺でピークとなることが知られている。従って、出穂期前後から成熟期にかけて稲の茎葉を回収することが望ましい。
成熟期には穀粒が得られるが、茎由来のでん粉は穂への転流によって減少する。しかしながら、成熟期に再度でん粉量が増加するケースも見受けられる。通常の穀粒でん粉は、アミロペクチンの房状粒子およびアミロースによって構成される数μm程度のでん粉粒となっており、生でん粉の酵素分解性は低い。
それに対し、出穂期における茎葉部のでん粉は、出穂期以降における穂への糖分転流を想定した酵素分解性の高い構造となっており、このことが本発明におけるアミログルコシダーゼによるでん粉糖化技術に繋がっていると考えられる。
また、出穂期前後を中心とした、二次壁分化が進んでいない時期は、β−(1→3),β−(1→4)−グルカンなどの非晶性β-グルカンが多いことが知られているが、出穂期のβ−(1→3),β−(1→4)−グルカンは、その分解酵素による分解を受けやすい状態で存在し、このことが、本発明における効率的グルコース生成の一因となると考えられる。
Normally, it is known that the starch accumulation amount in the stem and leaf part of rice reaches a peak near the heading stage. Therefore, it is desirable to collect rice stems and leaves from before and after heading to maturity.
Grains are obtained at maturity, but starch derived from the stem is reduced by translocation to the ear. However, there are cases where the amount of starch increases again in the mature period. Ordinary grain starch is a starch grain of about several μm composed of amylopectin tufted particles and amylose, and the enzymatic degradation of raw starch is low.
On the other hand, the starch in the stem and leaves at the heading stage has a highly enzymatic degradable structure that assumes sugar translocation to the head after the heading stage, which leads to the starch saccharification technology using amyloglucosidase in the present invention. It is thought that.
In addition, there are many amorphous β-glucans such as β- (1 → 3) and β- (1 → 4) -glucan when secondary wall differentiation is not progressing, mainly around the heading period. As is known, β- (1 → 3) and β- (1 → 4) -glucan in the heading stage are present in a state where they are susceptible to degradation by their degrading enzymes, and this is effective in the present invention. It is thought to contribute to glucose production.

その一方で、成熟期の茎葉部について、でん粉含量が高い成熟期では、非でん粉性グルカンの分解率も高く維持されている傾向がある。つまり、でん粉含量が高い茎葉部の植物体地上部に含まれる非でん粉性グルカン部分の酵素糖化を行う上でメリットが存在する。 この原因は不明であるが、地際部分を中心とした茎部にでん粉が多く残存し、その転流機能が残っている段階の茎葉部で通導組織の生存率が比較的高く、木部分化の進行がある程度で留まっている可能性や、でん粉量と相関を示す非デンプン性のグルカンが存在している可能性などが考えられる。   On the other hand, in the mature stage where the starch content is high, the decomposition rate of the non-starch glucan tends to be maintained high. That is, there is a merit in performing enzymatic saccharification of the non-starch glucan part contained in the above-ground part of the plant body of the stem and leaf part having a high starch content. The cause of this is unknown, but the survival rate of the conductive tissue is relatively high in the foliage at the stage where much starch remains in the stem part around the ground part and the translocation function remains, and the tree part There is a possibility that the progress of crystallization will remain to some extent, or there may be a non-starch glucan that correlates with the amount of starch.

茎葉部のでん粉含量が高い成熟期の稲を刈り取って回収した稲わらを原料として用い、本発明の方法により糖化する場合、グルカン量の50%以上のグルコースを容易に回収することができる。具体的には、1gの稲わらからは、160mg程度以上のグルコースが回収できることとなる。   When using rice straw harvested by harvesting and harvesting mature rice with a high starch content in the foliage as a raw material, saccharification can be easily achieved with 50% or more of the glucan content. Specifically, about 160 mg or more of glucose can be recovered from 1 g of rice straw.

また、稲の地上部の地面近くの部位である「地際部分(地面から0〜約15cmの地上部)」には、でん粉を多く含有している。しかし、通常の刈り取り機による収穫作業(通常の刈り取り方法)により回収した稲わらでは、この地際部分が含まれる割合が低く、平均でん粉量が低くなる。
そこで、地際部分を含めた回収方法により刈り取りを行うことで、乾燥重量あたりの茎葉部のでん粉含量が高い稲わらを得ることができる。
In addition, the “border part (ground part from 0 to about 15 cm from the ground)”, which is a part of the rice near the ground, contains a large amount of starch. However, rice straw collected by a harvesting operation using a normal mower (a normal mowing method) has a low ratio of the portion of the ground, and the average starch amount is low.
Therefore, rice straw having a high starch content in the stalks and leaves per dry weight can be obtained by harvesting with a recovery method including the ground part.

また、一般的に植物体内には、遊離性糖質として、ショ糖、グルコース、フラクトースが存在することが知られている。
例えば、He, Y., H., et al., Plant Prod. Sci. 2005, 8:546-552では、葉鞘におけるショ糖、グルコースおよびフラクトースの生成や分解に関する代謝が示されている。
また、稲わらには、セルロースが35%程度存在するという分析データが示されているが(例えば、Saha, B. C., J. Ind. Microbiol. Biotechnol., 2003, 30, 279-291)、これまで、稲わらに含有される“遊離性糖質”の存在や利用性については注目されておらず、バイオマス変換研究が行われてこなかった。
また、一般的に稲わらは、収穫後に天日干しまたは野積みなどにより徐々に乾燥される間に、植物体の細胞、および、植物体内や表面に生息する微生物の資化活性が保たれる温度や湿度の条件下に長時間放置されることが少なくない。そのため、一般的な方法で得られる稲わらには、易分解性の遊離性糖質が減少すると考えられる。
In general, it is known that sucrose, glucose, and fructose are present as free carbohydrates in plants.
For example, He, Y., H., et al., Plant Prod. Sci. 2005, 8: 546-552, show metabolism related to the production and degradation of sucrose, glucose and fructose in the leaf sheath.
In addition, analytical data indicate that about 35% of cellulose is present in rice straw (for example, Saha, BC, J. Ind. Microbiol. Biotechnol., 2003, 30, 279-291). However, attention has not been paid to the existence and utilization of “free sugars” contained in rice straw, and biomass conversion research has not been conducted.
In general, rice straw is a temperature at which assimilation activity of the cells of the plant body and microorganisms that inhabit the plant body and the surface is maintained while it is gradually dried by sun drying or field stacking after harvesting. Often left for a long time under conditions of humidity and humidity. Therefore, it is considered that easily degradable free carbohydrates are reduced in rice straw obtained by a general method.

本発明の糖化法において、原料の稲の植物体地上部には、「遊離糖質」として、ショ糖、グルコース、フラクトースが含まれているものであることが望ましい。
これらの遊離糖質のうち、稲の植物体地上部に含まれるフラクトース量の定量は、Roe法による分析方法(福井作蔵著、生物化学実験法1「還元糖の定量法」、学会出版センターISBN4-7622-0102-2)を準用することで、稲の植物体地上部の水抽出物中の総フラクトース量の定量が可能である。
ここで、稲の植物体地上部の水抽出物中の“総フラクトース量”は、遊離フラクトース量とショ糖分子中のフラクトース残基の量を反映した値となる。
また、“遊離グルコース量”は、グルコースC-IIテストワコー(和光純薬工業株式会社)によるグルコース定量法により測定することができる。
なお、“ショ糖の量”は、上記測定した総フラクトース量と遊離グルコース量の値を用いることにより、推定することが可能となる。即ち、植物体中の遊離フラクトース量は遊離グルコース量とほぼ同程度の値であるため、ショ糖分子中のフラクトース量を推測することにより、ショ糖の量を推定することが可能となる。
具体的には、以下の式を当てはめることにより各遊離糖質の量を推定できる。
まず、遊離フラクトース量は、次の式(I)によって、推定することができる。
In the saccharification method of the present invention, it is desirable that the above-ground part of the rice plant as the raw material contains sucrose, glucose and fructose as “free carbohydrates”.
Among these free carbohydrates, the amount of fructose contained in the above-ground parts of rice plants is determined by an analysis method using the Roe method (Sakuzo Fukui, Biochemical Experiment Method 1 "Quantification Method for Reducing Sugar", ISBN4 -7622-0102-2) can be applied mutatis mutandis to determine the total amount of fructose in water extract from above-ground parts of rice plants.
Here, the “total amount of fructose” in the water extract of the above-ground part of rice plants is a value reflecting the amount of free fructose and the amount of fructose residues in the sucrose molecule.
Further, the “free glucose amount” can be measured by a glucose determination method by Glucose C-II Test Wako (Wako Pure Chemical Industries, Ltd.).
Note that the “amount of sucrose” can be estimated by using the measured values of the total fructose amount and the free glucose amount. That is, since the amount of free fructose in the plant body is approximately the same value as the amount of free glucose, the amount of sucrose can be estimated by estimating the amount of fructose in the sucrose molecule.
Specifically, the amount of each free carbohydrate can be estimated by applying the following equation.
First, the amount of free fructose can be estimated by the following formula (I).

Figure 2009183264
Figure 2009183264

また、ショ糖量は、次の式(II)によって、推定することができる。   The amount of sucrose can be estimated by the following formula (II).

Figure 2009183264
Figure 2009183264

そして、上記のように測定、推定した各遊離糖質の量の値から、次の式(III)によって、遊離糖質の総量を推定することができる。   And the total amount of free carbohydrates can be estimated from the value of the amount of each free carbohydrate measured and estimated as described above by the following equation (III).

Figure 2009183264
Figure 2009183264

即ち、本発明における、遊離糖質の総量は、ショ糖の量、遊離グルコース量および遊離フラクトース量の和として求めることができる。   That is, the total amount of free carbohydrates in the present invention can be determined as the sum of the amount of sucrose, the amount of free glucose and the amount of free fructose.

本発明では、原料の稲の植物体地上部は、収穫後可能な限り迅速に、“植物体の細胞および植物体内や表面に生息する微生物の資化活性を抑制する処理”を行うことが望ましい。
当該資化活性を抑制する処理は、加熱処理、もしくは、乾燥処理の少なくともいずれかを施すことにより、行うことができる。好ましくは、加熱処理を行うことで、さらに好ましくは両者を組み合わせた処理を行うことで、前記資化活性の抑制効果を向上させることができ好適である。また、乾燥処理を行った後は、当該原料の乾燥状態が維持されるように保存することが望ましい。
In the present invention, it is desirable that the above-ground part of the rice plant as a raw material is subjected to “treatment for suppressing the assimilation activity of the cells of the plant body and the microorganisms inhabiting the surface of the plant body” as soon as possible after harvesting. .
The treatment for suppressing the assimilation activity can be performed by performing at least one of heat treatment and drying treatment. Preferably, performing the heat treatment, more preferably performing the combination of both, can improve the effect of suppressing the assimilation activity, and is suitable. Moreover, after performing a drying process, it is desirable to preserve | save so that the dry state of the said raw material may be maintained.

当該資化活性を抑制する処理は、前記原料の稲の植物体地上部回収後、可能な限り迅速に、具体的には24時間以内、好ましくは収穫または脱穀後直ちに行うべきである。
回収後の原料の温度や含水率などによって、原料中の遊離性糖質が資化される速度は異なるが、これらの処理を24時間以内に行うことにより、当該原料(バイオマス原料)の変換特性が高い状態で維持されると期待される。
The treatment for suppressing the assimilation activity should be carried out as soon as possible after the above-ground part of the plant of rice as a raw material is recovered, specifically within 24 hours, preferably immediately after harvesting or threshing.
The rate at which the free carbohydrates in the raw material are assimilated varies depending on the temperature and moisture content of the recovered raw material, but by performing these treatments within 24 hours, the conversion characteristics of the raw material (biomass raw material) Is expected to remain high.

また、当該資化活性を抑制する処理において、加熱処理を施す場合、加熱は、40〜130℃、望ましくは50〜75℃、より望ましくは、50℃以上70℃程度の比較的低い温度での加熱を行う。
なお、本発明の糖化法を商業的プロセスで行う場合、大量の原料の加熱処理を効率的に行うことができるスチーム吹きつけにより行うことができる。商業的プロセスで使用する一般的なスチーム吹きつけの温度は、130℃程度の温度であることから、これが上限の温度となる。
当該加熱処理の処理時間は、処理温度にも大きく依存するが、数秒間〜120時間、100℃以下の温度では、1分間〜72時間程度、行うことにより、当該原料中の遊離糖質を資化する植物体の細胞および前記微生物の殆どを、死滅させることができる。また、胞子の発芽を考慮した、繰り返し加熱処理法も利用することが可能である。
In addition, when heat treatment is performed in the treatment for suppressing the assimilation activity, the heating is performed at a relatively low temperature of 40 to 130 ° C., desirably 50 to 75 ° C., more desirably 50 ° C. or more and about 70 ° C. Heat.
In addition, when performing the saccharification method of this invention by a commercial process, it can carry out by the steam spraying which can heat-process a lot of raw materials efficiently. A typical steam spraying temperature used in a commercial process is about 130 ° C., which is the upper limit temperature.
The treatment time of the heat treatment largely depends on the treatment temperature, but at a temperature of 100 ° C. or less for a few seconds to 120 hours, for about 1 minute to 72 hours, the free carbohydrates in the raw material are contributed. Most of the cells of the plant body and the microorganisms that are transformed can be killed. In addition, it is possible to use a repeated heat treatment method in consideration of spore germination.

なお、十分な乾燥を行わない加熱処理によって当該資化活性を抑制する処理とする場合には、処理後に外部から微生物が侵入したり胞子等の形態で休眠中の微生物が生育することにより、再度、遊離性糖質の資化が起こる危険性を孕む。そのため、貯蔵を行う際には、原料中に存在する胞子の殺菌を行った後に原料を外部から隔離した状態で貯蔵するか、加熱処理後に乾燥処理を行うことが望ましい。
加熱処理後の当該原料(バイオマス原料)は、外部からの微生物侵入や発生を防ぎつつ、微生物による遊離性糖質の分解が問題とならないような期間の保存を経て、直ちに糖化工程に移行させるべきである。特に、でん粉の糊化温度を越える条件で加熱処理を行った場合、でん粉が吸水し分解性が向上するため、微生物侵入後には、遊離性糖質のみならずでん粉の資化も促進されることとなる。
In addition, when it is set as the process which suppresses the said assimilation activity by heat processing which does not fully dry, after treatment, microorganisms invading from the outside or a dormant microorganism grows in the form of spores, etc. In the meantime, there is a risk of the utilization of free carbohydrates. Therefore, when storing, it is desirable to store the raw material isolated from the outside after sterilizing spores present in the raw material, or to perform a drying treatment after the heat treatment.
The raw material after the heat treatment (biomass raw material) should be transferred to the saccharification process immediately after storage for a period that prevents the decomposition of free carbohydrates by microorganisms, while preventing the entry and generation of microorganisms from the outside. It is. In particular, when heat treatment is performed under conditions that exceed the gelatinization temperature of starch, starch absorbs water and the degradability is improved, so that not only free sugars but also utilization of starch is promoted after invasion of microorganisms. It becomes.

また、当該資化活性を抑制する処理において、乾燥処理を施す場合、含水率を20%以下、望ましくは5%程度あるいはそれ以下に下げることにより、当該原料中の遊離糖質を資化する微生物の生育が大きく抑制される。
なお、当該乾燥処理は、原料を室内または天日下で風乾させることで行ってもよいが、熱風乾燥または恒温器中での加熱乾燥を行うことにより、短時間で当該原料を乾燥状態にすることができる。また、同時に、上記加熱処理を同時に行うことが可能となる。
なお、上記したように、当該乾燥処理を行った後は、当該原料の乾燥状態が維持されるように保存することが望ましい。
In addition, in the treatment for suppressing the assimilation activity, when a drying treatment is performed, a microorganism that assimilate free carbohydrates in the raw material by lowering the water content to 20% or less, preferably about 5% or less. Growth is greatly suppressed.
In addition, although the said drying process may be performed by air-drying a raw material indoors or in the sun, the said raw material can be dried in a short time by performing hot-air drying or heat drying in a thermostat. be able to. At the same time, the heat treatment can be performed simultaneously.
As described above, after the drying process is performed, it is desirable to store the raw material so that the dried state is maintained.

本工程では、上記のように当該資化活性を抑制する処理を行うことによって、前記植物体の細胞および微生物の資化活性を十分に低下でき、当該原料に含まれる遊離糖質であるグルコース、フラクトース、ショ糖の資化を抑えることができる。
また、当該処理によって、原料の稲の植物体地上部は、これら前記遊離性糖質を含有するものとなり、乾燥重量の5%以上、好ましくは、6%以上、具体的には、成熟期において乾燥重量の7%程度またはそれ以上の量の、前記遊離糖質を蓄積させることができる。
In this step, by performing the treatment for suppressing the assimilation activity as described above, the assimilation activity of the cells and microorganisms of the plant body can be sufficiently reduced, and glucose, which is a free carbohydrate contained in the raw material, Utilization of fructose and sucrose can be suppressed.
In addition, by this treatment, the above-ground part of the plant body of rice as the raw material contains these free carbohydrates, and is 5% or more, preferably 6% or more of the dry weight, specifically, in the mature stage. The free carbohydrate can be accumulated in an amount of about 7% or more of the dry weight.

このように、本工程を経ることによって、原料の稲の植物体地上部は、遊離性糖質を多く含む原料とすることができるため、本発明の糖化法の糖化効率を大幅に向上させることができ、稲わらをバイオマス原料として高品質化させることが可能となる。   Thus, by passing through this step, the plant body above-ground part of the raw material rice can be made into a raw material containing a large amount of free carbohydrates, so that the saccharification efficiency of the saccharification method of the present invention is greatly improved. It is possible to improve the quality of rice straw as a biomass raw material.

稲の茎葉部を含む植物体地上部をバイオマス原料として利用し糖化する方法においては、特に、刈り取った稲の成熟した実を除く植物体地上部(いわゆる「稲わら」)を用いた研究が行われてきた。
従来、稲わらを原料として、糖化する場合、高熱、圧力または酸・アルカリ等を用いた前処理が必要とされてきた。
その目的は、糖化基質としてのセルロースやヘミセルロースを可能な限り残しつつ、リグニンを除去・乖離させたり、ヘミセルロースに付いたエステルを除いたり、酵素糖化に適した組織構造に改変したりすることによって、次段の酵素糖化を効率化することにある。
しかしながら、高熱、圧力または酸・アルカリ等を用いた過酷な前処理により、糖化基質の溶離・改質や、リグニンの沈着や副反応の促進、そしてそれに伴う有用物質の損耗や発酵阻害・有害物質の生成などが誘導される。
また、耐熱・耐圧容器の製造や加熱・加圧工程または酸・アルカリ処理工程や回収・廃棄工程などにおいて、処理コストや作業安全性管理上の問題が生じることが懸念されてきた。
In the method of saccharification by using the above-ground part of the plant body including the stem and leaf part of rice as a biomass raw material, research using the above-ground part of the plant body (so-called “rice straw”) excluding the mature fruit of the harvested rice is conducted. I have been.
Conventionally, when saccharification is performed using rice straw as a raw material, pretreatment using high heat, pressure, acid, alkali, or the like has been required.
Its purpose is to remove and dissociate lignin, remove esters attached to hemicellulose, or modify the tissue structure suitable for enzymatic saccharification, leaving as much saccharification substrate cellulose and hemicellulose as possible. The purpose is to improve the efficiency of the next stage of enzymatic saccharification.
However, rigorous pretreatment using high heat, pressure, acid, alkali, etc., elution and modification of saccharification substrate, acceleration of lignin deposition and side reactions, concomitant wear of useful substances, fermentation inhibition and harmful substances The generation of is induced.
In addition, there has been a concern that problems in processing costs and work safety management may occur in the manufacture of heat-resistant / pressure-resistant containers, heating / pressurizing processes, acid / alkali processing processes, recovery / disposal processes, and the like.

また、茎葉部にでん粉を多く含む稲については、飼料稲としての利用の観点から注目されてきたため、「飼料消化性」の予測のための品質評価技術として、酵素分解後の定量技術が開発されている。例えば、松山裕城らの報告(畜産草地研究成果情報、2004年3号51-52ページ)が成果として挙げられる。
しかしながら、バイオマスの直接的に「糖化」する(グルコースなど単糖類や低重合度の糖類を生産する)という観点から、茎葉部にでん粉を高い濃度で蓄積した稲の植物体地上部(稲わら)の酵素を用いた加水分解特性を調べた報告は存在しない。
In addition, rice that contains a large amount of starch in the foliage has attracted attention from the viewpoint of its use as feed rice, and as a quality evaluation technique for predicting “feed digestibility”, a quantitative technique after enzymatic degradation has been developed. ing. For example, the report by Hiroshi Matsuyama et al. (Livestock Pasture Research Result Information, 2004 No. 3, pp. 51-52) can be mentioned as a result.
However, from the viewpoint of directly “saccharifying” biomass (producing monosaccharides such as glucose and low-polymerization sugars), the above-ground part of rice plants that have accumulated starch at high concentrations in the foliage (rice straw) There are no reports on the hydrolysis characteristics of these enzymes.

本発明は、稲の植物体地上部を原料として用いて糖化する方法において、強酸・強アルカリを用いた化学的前処理を行わず、化学薬品の使用に伴うコストや環境負荷の問題のない、糖化の効率を顕著に高い、酵素を用いた糖化法に関するものである。   The present invention is a method of saccharification using the above-ground part of rice plant as a raw material, without performing chemical pretreatment using strong acid / strong alkali, and there is no problem of cost and environmental burden associated with the use of chemicals, The present invention relates to a saccharification method using an enzyme that has a remarkably high saccharification efficiency.

本発明において、酵素を用いた糖化処理とは、アミログルコシダーゼおよびβ−グルカン分解酵素を含む酵素液を用いて、前記原料である稲の植物体地上部の糖化を行うこと指す。   In the present invention, the saccharification treatment using an enzyme refers to saccharification of the above-ground part of the rice plant, which is the raw material, using an enzyme solution containing amyloglucosidase and β-glucan degrading enzyme.

前記原料である稲の植物体地上部を、根から切り離した直後に酵素を直接作用させる際には、酵素の浸透効率が低いことから、適度な粉砕(裁断も含む)を行う。粉砕により表面積が増し、後段の酵素反応を促進する。
粉砕には、回転刃等による裁断、ローラー等による押し潰し、石ヤスリ等による磨り潰し、ハンマーミル等による叩き潰し等の方法などにより行うことができる。
When the enzyme is directly acted on the above-ground part of the rice plant, which is the raw material, immediately after it is cut off from the roots, it is moderately pulverized (including cutting) because the enzyme penetration efficiency is low. Grinding increases the surface area and promotes subsequent enzyme reactions.
The crushing can be performed by a method such as cutting with a rotary blade, crushing with a roller, grinding with a stone file, or crushing with a hammer mill.

また、本発明においては、前記原料の溶解を細胞壁溶解酵素を用いて行い、表面積を増すことも可能である。粉砕を行えば必然的に反応効率が向上するので、コスト、エネルギー効率、作業効率や環境負荷を考慮する限り粉砕条件を制約する要素はないが、ハンドリングを考慮した場合、長軸で2cm以下、数十μm以上の大きさが主成分となることが望ましい。粒度が小さいと、表面積は増すものの、粉砕コストの上昇、粉塵による作業性の低下や、熱変質などの弊害が生じることとなる。
前記原料の乾燥状態によっては、必要に応じて、粉砕前または後に70℃以下の温度で乾燥を行うことにより、機械による粉砕効率が向上するとともに、データに再現性が得られる。
In the present invention, the raw material can be dissolved using a cell wall lytic enzyme to increase the surface area. Since pulverization inevitably improves the reaction efficiency, there are no factors that limit the pulverization conditions as long as cost, energy efficiency, work efficiency, and environmental load are taken into consideration. It is desirable that a size of several tens of μm or more is a main component. If the particle size is small, the surface area increases, but adverse effects such as an increase in the pulverization cost, a decrease in workability due to dust, and thermal deterioration occur.
Depending on the drying state of the raw material, drying is performed at a temperature of 70 ° C. or less before or after pulverization as necessary, whereby the pulverization efficiency by the machine is improved and the data is reproducible.

また、湿潤状態の基質(原料粉末)または基質(原料粉末)の懸濁液を70℃以上、好ましくは80℃以上の温度で加熱処理することにより、でん粉が吸水糊化し、稲わらの酵素糖化速度が向上する。なお、本発明の糖化法を商業的プロセスで行う場合、大量の原料の加熱処理を効率的に行うことができるスチーム吹きつけにより行うことができる。商業的プロセスで使用する一般的なスチーム吹きつけの温度は、130℃程度の温度であることから、これが上限の温度となる。従って、加熱処理温度は、70℃〜130℃、好ましくは80℃〜130℃の範囲の温度である。
加熱処理の時間については、熱交換速度や水分量にも影響されるが、数秒から数十分の間、具体的には、5〜30分間、でん粉の糊化が十分に行われるまでの間行うことが望ましい。
なお、本発明においては、最終的なでん粉変換量のみを考えた場合、この加熱処理工程は必ずしも必要ないことを見出している。しかしながら、酵素の作用性が増し、反応時間の短縮に繋がる点において、加熱処理工程の導入を妨げる理由はない。
In addition, when the wet substrate (raw material powder) or the suspension of the substrate (raw material powder) is heated at a temperature of 70 ° C. or higher, preferably 80 ° C. or higher, the starch becomes a water-absorbing gelatin and enzymatic saccharification of rice straw Increases speed. In addition, when performing the saccharification method of this invention by a commercial process, it can carry out by the steam spraying which can heat-process a lot of raw materials efficiently. A typical steam spraying temperature used in a commercial process is about 130 ° C., which is the upper limit temperature. Therefore, the heat treatment temperature is a temperature in the range of 70 ° C to 130 ° C, preferably 80 ° C to 130 ° C.
The heat treatment time is affected by the heat exchange rate and the amount of water, but for a few seconds to several tens of minutes, specifically for 5-30 minutes until the starch is fully gelatinized. It is desirable to do.
In the present invention, it has been found that when only the final starch conversion amount is considered, this heat treatment step is not necessarily required. However, there is no reason to hinder the introduction of the heat treatment step in that the activity of the enzyme is increased and the reaction time is shortened.

当該加熱処理は、でん粉を糊化させるために基質(原料粉末)を湿潤状態にして加熱する際に、基質(原料粉末)の湿潤または懸濁のために水を用いるほか、pH2以上の希薄な酸またはpH12以下の希薄なアルカリを加えた水を用いることが可能である。
当該加熱処理をこのような条件で行うことによって、続く酵素糖化を行う際にpHを3〜7に調整するためのコストを十分に低く抑えることが可能であるとともに、でん粉の糊化を促す工程に加えて僅かの酵素糖化促進効果を期待される。
希酸存在下で前記所定の温度での加熱処理を行うことにより、でん粉の糊化に加え、キシランの部分分解あるいはシリカの構造変化などによる次段酵素処理効率の僅かな向上が期待できる。また、希アルカリ存在下で前記所定の温度での加熱処理を行うことにより、でん粉の糊化に加え、キシランのアセチルエステルの分解あるいはリグニンの構造変化や遊離、シリカの部分的遊離などによる次段酵素処理効率の僅かな向上が期待できる。
In the heat treatment, in order to gelatinize the starch, when the substrate (raw material powder) is heated in a wet state, water is used for wetting or suspending the substrate (raw material powder). It is possible to use water to which an acid or a dilute alkali having a pH of 12 or less is added.
By performing the heat treatment under such conditions, it is possible to sufficiently reduce the cost for adjusting the pH to 3 to 7 when performing subsequent enzymatic saccharification, and to promote gelatinization of starch In addition to this, a slight enzyme saccharification promoting effect is expected.
By performing the heat treatment at the predetermined temperature in the presence of a dilute acid, a slight improvement in the efficiency of the subsequent enzyme treatment due to partial decomposition of xylan or structural change of silica can be expected in addition to starch gelatinization. Further, by performing the heat treatment at the predetermined temperature in the presence of a dilute alkali, in addition to starch gelatinization, decomposition of acetyl ester of xylan or structural change or release of lignin, partial release of silica, etc. A slight improvement in enzyme treatment efficiency can be expected.

当該加熱処理を、希薄な酸または希薄なアルカリを加えた水を用いて行った場合、酸としては、塩酸や硫酸などを用いることができ、アルカリとしては、水酸化ナトリウム、水酸化カルシウム、水酸化カリウム、アンモニアなどを用いることができる。
また、当該希薄な酸または希薄なアルカリを用いて加熱処理を行った後には、加えた酸またはアルカリを揮発させるか、あるいはそれぞれアルカリまたは酸を加えて、pHを3〜7に調整することが望ましい。このことにより、糊化したでん粉や遊離性糖質の流亡を避けることができる。
また、化学的処理効果を期待するような、上記のような希薄な酸や希薄なアルカリの他にも、予め、酵素の利用に適したpH3〜7程度に調整した緩衝液や弱酸溶液を用いて、でん粉糊化のための加熱処理を行うことができる。
なお、加熱処理の際に、酸素、オゾン、過酸化水素などの酸化剤を使用すれば、リグニン遊離が促されることにより、酵素糖化効率を向上させることが可能となる。
When the heat treatment is performed using water to which a dilute acid or dilute alkali is added, hydrochloric acid, sulfuric acid, or the like can be used as the acid, and sodium hydroxide, calcium hydroxide, water can be used as the alkali. Potassium oxide, ammonia, etc. can be used.
In addition, after the heat treatment using the diluted acid or the diluted alkali, the added acid or alkali is volatilized or the pH is adjusted to 3 to 7 by adding an alkali or an acid, respectively. desirable. This can avoid the loss of gelatinized starch and free carbohydrates.
In addition to the dilute acid and dilute alkali as described above, in which a chemical treatment effect is expected, a buffer solution or a weak acid solution adjusted to a pH of about 3 to 7 suitable for enzyme use is used in advance. Then, heat treatment for starch gelatinization can be performed.
In addition, if an oxidizing agent such as oxygen, ozone, or hydrogen peroxide is used during the heat treatment, lignin release is promoted, so that enzymatic saccharification efficiency can be improved.

また、加熱処理時には、耐熱性α-アミラーゼを用いることが望ましい。耐熱性α-アミラーゼは100℃前後の高度な加熱処理においても失活しにくい。
この酵素を加熱処理時に利用すれば、当該加熱処理において糊化したでん粉を迅速に消化し、粘度低下によりハンドリング性が向上する。
なお、本発明の特徴である、アミログルコシダーゼによる糖化処理は、このような、既存のα-アミラーゼによる液化技術やプルラナーゼやイソアミラーゼによる枝切り酵素利用技術の導入を妨げるものではない。
In addition, it is desirable to use thermostable α-amylase during the heat treatment. The thermostable α-amylase is not easily inactivated even at a high heat treatment at around 100 ° C.
If this enzyme is used at the time of heat treatment, starch that has been gelatinized in the heat treatment is rapidly digested, and handling properties are improved by reducing the viscosity.
The saccharification treatment with amyloglucosidase, which is a feature of the present invention, does not prevent the introduction of the existing liquefaction technology with α-amylase and the use of a debranching enzyme with pullulanase or isoamylase.

また、当該加熱処理は、糖化処理を行う前に行ってもよいし、糖化処理を行っている最中に行ってもよい。好ましくは、糖化酵素の全てが耐熱性を持っている場合には、糖化工程と同時に加熱し、糖化酵素の少なくとも一部が加熱処理時に失活する場合には、糖化処理の前に加熱を行い、酵素が安定に作用する温度に冷却した後に酵素糖化を行うことが望ましい。   In addition, the heat treatment may be performed before the saccharification treatment or during the saccharification treatment. Preferably, when all of the saccharifying enzymes have heat resistance, heating is performed simultaneously with the saccharification step, and when at least a part of the saccharifying enzyme is deactivated during the heat treatment, heating is performed before the saccharification treatment. It is desirable to carry out enzymatic saccharification after cooling to a temperature at which the enzyme acts stably.

本発明における、アミログルコシダーゼおよびβ−グルカン分解酵素を含む酵素液とは、アミログルコシダーゼおよびβ−グルカン分解酵素を含むものである。
また、好ましくは、ヘミセルロース分解酵素、β−グルコシダーゼ、およびα−アミラーゼのうちの少なくとも一つを含有するものであることが好ましい。
また、本発明における、アミログルコシダーゼおよびβ−グルカン分解酵素を含む酵素液は、セロビオハイドロラーゼおよびエンドグルカナーゼの両方の活性を有するものであることが好ましい。
In the present invention, the enzyme solution containing amyloglucosidase and β-glucan-degrading enzyme contains amyloglucosidase and β-glucan-degrading enzyme.
In addition, it preferably contains at least one of hemicellulose-degrading enzyme, β-glucosidase, and α-amylase.
In the present invention, the enzyme solution containing amyloglucosidase and β-glucan degrading enzyme preferably has both cellobiohydrolase and endoglucanase activities.

本発明におけるアミログルコシダーゼ(=グルコアミラーゼ)とは、α−グルカンの分解酵素であり、でん粉の非還元末端側からα−(1→4)結合やα−(1→6)結合を加水分解する酵素である。
具体的には、Aspergillus属菌由来の物やRhizopus属菌由来のものなどを挙げることができる。
また、本発明におけるアミログルコシダーゼは、α−アミラーゼ、プルラナーゼやイソアミラーゼのようなエンド型加水分解酵素との併用により、非還元末端数が増加し、ある程度の効率化が可能である。
セルラーゼ製剤などの酵素製剤内には、α−アミラーゼ活性を示すものもあり、このような酵素の作用でアミログルコシダーゼによるグルコース生産(糖化)が促されると考えられる。
The amyloglucosidase (= glucoamylase) in the present invention is an α-glucan degrading enzyme, which hydrolyzes α- (1 → 4) bond or α- (1 → 6) bond from the non-reducing terminal side of starch. It is an enzyme.
Specific examples include those derived from the genus Aspergillus and those derived from the genus Rhizopus.
In addition, the amyloglucosidase in the present invention can be increased in efficiency by increasing the number of non-reducing terminals when used in combination with an endo-hydrolyzing enzyme such as α-amylase, pullulanase or isoamylase.
Some enzyme preparations such as cellulase preparations exhibit α-amylase activity, and it is considered that glucose production (saccharification) by amyloglucosidase is promoted by the action of such enzymes.

なお、一般に、生のでん粉は、酵素消化性の高い画分と難消化性画分から構成されることが知られており、後者はでん粉の由来や処理工程によって変動する。水中でのでん粉の加熱によりでん粉は吸水・糊化し、難消化性画分の消化性が向上するが、組織破砕物などのマトリックス中で糊化すると、ゲル化したでん粉がマトリクス内に留まり回収率が下がる危険性がある。
そのため、従来においては、でん粉の効率的糖化のため、適宜、ジェットクッカー等を用いて、耐熱性α-アミラーゼを含んだ状態で95℃前後に加熱し、糊化させながら液化させる方法を用いてきた。
また、標準的な総でん粉分析法(メガザイム社のTotal Starch Kit=AOAC法996.11、AACC法76.13)では、粉砕試料を80%エタノールで分散させ、耐熱性アミラーゼを加えて直ちに100℃で加熱する方法ででん粉を液化している。また、アミログルコシダーゼ単独での糖化方法も存在するが、80%エタノールによる予備的処理や数時間の加熱処理を伴うものであり、複雑な工程となっている。(He, Y., H., et al., Plant Prod. Sci. 2005, 8: 546-552.、前出文献。)
In general, raw starch is known to be composed of a fraction having high enzyme digestibility and a fraction that is difficult to digest, and the latter varies depending on the origin of starch and the processing steps. Starch is water-absorbed and gelatinized by heating starch in water, improving the digestibility of indigestible fractions. However, when gelatinized in a matrix such as a tissue fragment, the gelatinized starch remains in the matrix and is recovered. There is a risk of falling.
Therefore, conventionally, for efficient saccharification of starch, a method of heating to around 95 ° C. in a state containing heat-resistant α-amylase using a jet cooker or the like as appropriate and liquefying while gelatinizing has been used. It was.
In addition, in the standard total starch analysis method (Megazyme Total Starch Kit = AOAC method 996.11, AACC method 76.13), a ground sample is dispersed with 80% ethanol, heat-resistant amylase is added and immediately heated at 100 ° C. Starch is liquefied. There is also a saccharification method using amyloglucosidase alone, but it involves a preliminary treatment with 80% ethanol and a heat treatment for several hours, which is a complicated process. (He, Y., H., et al., Plant Prod. Sci. 2005, 8: 546-552., Supra.)

このような中で、本発明においては、でん粉の糊化は必ずしも必要でないことを見出した。また、アミログルコシダーゼ(=グルコアミラーゼ)を用いたでん粉の糖化により迅速かつ効率的に大部分がグルコースに変換されることが、本発明の原料においても適用できることを見出した。なお、茎葉部にでん粉を多く含有する稲の植物体地上部(稲わら)の糖化を目的とした変換特性データはこれまでに存在しておらず、当該稲の植物体地上部を用いた場合のでん粉の分解特性は未解明であった。   Under such circumstances, it has been found that gelatinization of starch is not always necessary in the present invention. Moreover, it discovered that it can apply also to the raw material of this invention that most is rapidly and efficiently converted into glucose by saccharification of starch using amyloglucosidase (= glucoamylase). In addition, conversion characteristic data for the purpose of saccharification of the above-ground part of rice plants (rice straw) containing a large amount of starch in the foliage has not existed so far. The decomposition characteristics of starch were not elucidated.

本発明における、糖化処理は、前記原料の糖化処理において、アミログルコシダーゼ分解とともに、β−グルカン分解酵素による分解を行うことを特徴としている。
ここでいうβ−グルカン分解酵素とは、前記原料中のセルロース、β−(1→3),β−(1→4)−グルカン、キシログルカン等のβ-グルカンに対して加水分解活性を示す酵素を広く示し、その中には、セルロース以外の基質に対してより高い活性を示す酵素も含まれることとなる。
また、イネ科植物の幼植物体を中心に広く存在するβ−(1→3),β−(1→4)−グルカンやキシログルカンを切断する酵素もβ-グルカン分解酵素に該当する。
The saccharification treatment in the present invention is characterized in that in the saccharification treatment of the raw material, amyloglucosidase decomposition is performed and decomposition by β-glucan degrading enzyme is performed.
The β-glucan-degrading enzyme here indicates hydrolysis activity for β-glucan such as cellulose, β- (1 → 3), β- (1 → 4) -glucan, and xyloglucan in the raw material. Enzymes are widely shown, and among them, enzymes showing higher activity against substrates other than cellulose will be included.
In addition, enzymes that cleave β- (1 → 3), β- (1 → 4) -glucan and xyloglucan that are widely present mainly in seedlings of gramineous plants also correspond to β-glucan degrading enzymes.

なお、従来技術として、特に、β−(1→3),β−(1→4)−グルカンのβ−(1→3)結合を加水分解するリケナーゼは、β-グルコシダーゼと併用することにより効率的にグルコースを生産することができる。この技術は、AACC法(32−23)やAOAC法(995−16)として知られているが、オオムギや麦汁などを主対象とした技術である。
しかし、β−(1→3),β−(1→4)−グルカンは、植物の成長に伴い減少することが知られているが、茎葉部にでん粉を多く含有する稲の植物体地上部という特殊な原料において、総グルカンに占める様々な多糖のバランスや、β−(1→3),β−(1→4)−グルカンの存在量や分解特性など、バイオマス糖化に関する情報については全く解明されておらず、そのバイオマス成分としての価値は注目されてこなかった。
As a conventional technique, a lichenase that hydrolyzes a β- (1 → 3) bond of β- (1 → 3), β- (1 → 4) -glucan is particularly effective when used in combination with β-glucosidase. Glucose can be produced. This technique is known as the AACC method (32-23) or the AOAC method (995-16), but is a technique mainly for barley, wort and the like.
However, β- (1 → 3) and β- (1 → 4) -glucan are known to decrease with the growth of the plant, but the above-ground part of rice plants containing a large amount of starch in the stem and leaves. Information on biomass saccharification, such as the balance of various polysaccharides in the total glucan, the abundance and degradation characteristics of β- (1 → 3), β- (1 → 4) -glucan, etc. The value as a biomass component has not been noticed.

一般的な、コメ収穫後の稲の植物体地上部は、乾燥重量の30%前後のグルカンを有している。発酵効率90%、蒸留効率100%と仮定した場合、稲わら中のグルコースのみを発酵原料としたバイオエタノール製造時は、9kg台、8kg台、7kg台、6kg台、5kg台または4kg台の乾燥稲わらを使用して1リットルのエタノールを製造するためには、1kgの稲わらからそれぞれ約156g, 174g, 196g, 224g, 261gまたは314g以上のグルカンを加水分解してグルコースに変換する必要がある。
そこで、現在、セルロース由来のグルコースの収率を向上するための検討以外に、乾燥稲わらに含まれるキシランを糖化して得られるキシロースを発酵原料として利用し、エタノールを製造する方法が精力的に検討されている。
しかしながら、キシロース発酵に組換え微生物を用いる方法は、通常の酵母を用いた発酵施設と比較して、高度管理された発酵・廃棄物処理施設の整備が必要となるため、可能ならば、通常の非組換え酵母を用いてグルコースを基質とした発酵を行うことが望まれている。
Generally, the above-ground part of rice plants after harvesting rice has about 30% glucan in dry weight. Assuming a fermentation efficiency of 90% and a distillation efficiency of 100%, when producing bioethanol using only the glucose in rice straw as the fermentation raw material, the 9 kg, 8 kg, 7 kg, 6 kg, 5 kg or 4 kg levels are dried. In order to produce 1 liter of ethanol using rice straw, it is necessary to hydrolyze about 156 g, 174 g, 196 g, 224 g, 261 g or 314 g or more of glucan from 1 kg of rice straw to convert it into glucose. .
Therefore, in addition to studies to improve the yield of glucose derived from cellulose, a method for producing ethanol using xylose obtained by saccharifying xylan contained in dry rice straw as a fermentation raw material has been energetically used. It is being considered.
However, the method using recombinant microorganisms for xylose fermentation requires the development of a highly-managed fermentation / waste treatment facility compared to a fermentation facility using normal yeast. It is desired to perform fermentation using glucose as a substrate using non-recombinant yeast.

本発明の糖化法は、バイオマス原料である前記原料に含まれるでん粉のみならず、前記原料に含まれる非でん粉性グルカンをも糖化し、グルコースとして回収できるものである。
また、特には、本発明の糖化法は、前記稲の植物体地上部に含有される総グルカン量のうち、50%以上をグルコースとして回収することができるものである。
In the saccharification method of the present invention, not only starch contained in the raw material as a biomass raw material but also non-starch glucan contained in the raw material can be saccharified and recovered as glucose.
In particular, the saccharification method of the present invention can recover 50% or more of the total glucan contained in the above-ground part of the rice plant as glucose.

また、本発明の糖化法においては、原料として、茎葉部にでん粉を多く含量する稲の植物体地上部を用いることで、原料に含有されるグルカンの糖化効率も高めることができるものである。
前記原料に含有されるでん粉とグルカンの加水分解効率の関係のメカニズムについては、明らかではないが、成熟期のものと同様に、本発明者は、でん粉の多い出穂期の品種系統から得られる、コメ収穫後の稲の植物体地上部(いわゆる「稲わら」)でも、非でん粉性グルカンが少ない傾向があることを見出し、また、成熟期において非でん粉性の易分解グルカン画分が存在し、その量はでん粉含量にかかわらずほぼ一定量であることを発見した。これらの傾向は、成熟期のものと共通しており、でん粉含量が高い稲わらの方が非でん粉性グルカンの分解率が高いという傾向は、非でん粉性グルカンの中に占める易分解グルカンの存在比が高く、結晶性セルロースを主要構成成分とする難分解性グルカンの存在比が低いことが一因となっていると考えられる。
また、本発明者は、出穂期のβ−(1→3),β−(1→4)−グルカンの存在量が成熟期の稲わらと比較して多いことを見出した。前記原料にはβ−(1→3),β−(1→4)−グルカンの存在量が多く、これを基質とするβ−グルカン分解酵素を用いることにより、グルコースの生成量が増す可能性が考えられる。
また、エンドグルカナーゼなどのセルラーゼ製剤中の酵素がこれを基質とすることにより、グルコースの生成量が増す可能性が示唆された。
なお、従来、前記原料に含有されるβ−(1→3),β−(1→4)−グルカンと他成分との相互作用や直接酵素分解の受けやすさについては全く検討されていなかった。
Moreover, in the saccharification method of this invention, the saccharification efficiency of the glucan contained in a raw material can be improved by using the above-ground part of the rice plant body which contains a large amount of starch in a stem and leaf part as a raw material.
The mechanism of the relationship between starch and glucan hydrolysis efficiency contained in the raw material is not clear, but as in the mature stage, the present inventor is obtained from a variety line at the heading stage rich in starch, We found that non-starchy glucan tends to be less in the above-ground part of rice after harvesting rice (so-called “rice straw”), and there is a non-starch easily degradable glucan fraction in the mature stage, It was found that the amount was almost constant regardless of starch content. These tendencies are the same as those in the mature period, and rice straw with a higher starch content has a higher rate of decomposition of non-starch glucan, indicating the presence of easily degradable glucan in non-starch glucan. This is considered to be due to the high ratio and the low abundance ratio of the hardly degradable glucan containing crystalline cellulose as a main constituent.
The present inventor has also found that the amount of β- (1 → 3) and β- (1 → 4) -glucan in heading season is higher than that in mature rice straw. There is a large amount of β- (1 → 3), β- (1 → 4) -glucan in the raw material, and the use of β-glucan degrading enzyme using this as a substrate may increase the amount of glucose produced. Can be considered.
Further, it was suggested that an enzyme in a cellulase preparation such as endoglucanase may increase the amount of glucose produced by using it as a substrate.
Heretofore, the interaction between β- (1 → 3), β- (1 → 4) -glucan contained in the raw material and other components and the susceptibility to direct enzymatic degradation have not been studied at all. .

本発明における、β−グルカン分解酵素とは、非晶質のセルロース、結晶性のセルロース、およびβ−(1→3),β−(1→4)−グルカンのうちの少なくとも一つを加水分解する活性を有するものである。
具体的には、「β−グルコシダーゼ」であるセロビアーゼ;、「セルラーゼ」である、セロビオハイドロラーゼ、エンドグルカナーゼ;、「ヘミセルロース分解酵素」である、キシラナーゼ、β−D−キシロシダーゼ、α−L−アラビノフラノシダーゼ、アセチルキシランエステラーゼ、フェルロイルエステラーゼ;、β−(1→3),β−(1→4)−グルカンの分解酵素である、リケナーゼなどを挙げることができる。
In the present invention, β-glucan-degrading enzyme means hydrolyzing at least one of amorphous cellulose, crystalline cellulose, and β- (1 → 3), β- (1 → 4) -glucan. It has activity to do.
Specifically, cellobiase, which is “β-glucosidase”; cellulose, cellobiohydrolase, endoglucanase; “hemicellulose-degrading enzyme”, xylanase, β-D-xylosidase, α-L- Examples include arabinofuranosidase, acetyl xylan esterase, feruloyl esterase; lichenase, which is a degradation enzyme of β- (1 → 3), β- (1 → 4) -glucan.

本発明における糖化処理に用いる酵素液としては、β−グルカン分解酵素として、上記のうち、少なくともβ−グルコシダーゼおよびセルラーゼを含有するものを用いることができる。また、好ましくは、β−グルコシダーゼ、セルラーゼおよびヘミセルロース分解酵素を含有するもの、β−グルコシダーゼ、セルラーゼおよびリケナーゼを含有するものであることが望ましい。   As the enzyme solution used for the saccharification treatment in the present invention, a β-glucan degrading enzyme containing at least β-glucosidase and cellulase can be used. In addition, it is preferable that those containing β-glucosidase, cellulase and hemicellulose-degrading enzyme, and those containing β-glucosidase, cellulase and lichenase are preferable.

また、前記セルラーゼとしては、セロビオハイドロラーゼ活性を有するもの、エンドグルカナーゼ活性を有する酵素を含有するものであることが望ましい。
即ち、本発明における前記酵素液としては、セロビオハイドロラーゼ活性またはエンドグルカナーゼ活性を有するものであることが望ましく、さらには、セロビオハイドロラーゼ活性およびエンドグルカナーゼ活性の両方の活性を有するものであることが望ましい。
Moreover, as said cellulase, it is desirable to contain what has cellobiohydrolase activity and what has endoglucanase activity.
That is, the enzyme solution in the present invention preferably has cellobiohydrolase activity or endoglucanase activity, and further has both cellobiohydrolase activity and endoglucanase activity. It is desirable.

市販セルラーゼ製剤には、セルロースをはじめとする種々のβ−グルカンに対する分解酵素が含まれているものが多く、例えば、ノボザイムズ・ジャパン社の「Celluclast 1.5L」は、β−(1→3),β−(1→4)−グルカンやキシログルカンの加水分解活性が強く検出される。また、複数の酵素が存在することにより、単独の酵素よりも効果的に糖化を行える可能性がある。
ここでは、その例として、セロビオハイドロラーゼまたはエンドグルカナーゼとしての活性を有するものについて説明する。セロビオハイドロラーゼは結晶性セルロースを、そしてエンドグルカナーゼは非晶性セルロースを効率的に分解する。本発明においては、この両者を併用することで、糖化効率をさらに高めることができる。
Many commercially available cellulase preparations contain degrading enzymes for various β-glucans including cellulose. For example, “Celluclast 1.5L” from Novozymes Japan is β- (1 → 3), The hydrolysis activity of β- (1 → 4) -glucan and xyloglucan is strongly detected. In addition, the presence of a plurality of enzymes may enable saccharification more effectively than a single enzyme.
Here, what has activity as a cellobiohydrolase or an endoglucanase is demonstrated as the example. Cellobiohydrolase effectively degrades crystalline cellulose, and endoglucanase effectively degrades amorphous cellulose. In the present invention, the saccharification efficiency can be further increased by using both of them together.

本発明の糖化処理に用いる酵素液に含有されるβ−グルカン分解酵素としては、少なくともβ−グルコシダーゼおよびセルラーゼを含有するものである。
セルロースはセルラーゼにより大量のセロビオースを生成する可能性があることから、グルコースの収量を増やすためには、β−グルコシダーゼの利用が有効である。
即ち、β−グルコシダーゼは、セロビオースを基質として加水分解して、グルコースを生成するために有効である。また、セルラーゼの反応産物であるセロビオースの蓄積によるセルラーゼの活性の低下を抑制するために有効である。
なお、本発明による糖化法により糖化産物をバイオエタノールの原料とするにあたり、酵母が資化できないセロビオースを資化性のあるグルコースに変換するという意味においても有効である。
The β-glucan degrading enzyme contained in the enzyme solution used for the saccharification treatment of the present invention contains at least β-glucosidase and cellulase.
Since cellulose may produce a large amount of cellobiose by cellulase, the use of β-glucosidase is effective for increasing the yield of glucose.
That is, β-glucosidase is effective for hydrolyzing cellobiose as a substrate to produce glucose. Further, it is effective for suppressing a decrease in the activity of cellulase due to the accumulation of cellobiose which is a reaction product of cellulase.
In addition, when using a saccharification product by the saccharification method by this invention as a raw material of bioethanol, it is effective also in the meaning which converts cellobiose which a yeast cannot assimilate to assimilating glucose.

また、キシロースなどの、ヘミセルロース由来の単糖を得るためには、ヘミセルロース分解酵素系を添加することも効果的である。
ヘミセルロース分解酵素とは、キシラナーゼ、β−D−キシロシダーゼ、α−L−アラビノフラノシダーゼ、アセチルキシランエステラーゼ、フェルロイルエステラーゼなどが挙げられる。これらの一部を用いるか、あるいは微生物が生産し、単数または複数のヘミセルロース分解酵素を含む酵素製剤を用いることができる。例えば、ノボザイムズ・ジャパン社の「Viscozyme L」が酵素製剤として該当する。
In order to obtain a hemicellulose-derived monosaccharide such as xylose, it is also effective to add a hemicellulose-degrading enzyme system.
Examples of hemicellulose-degrading enzymes include xylanase, β-D-xylosidase, α-L-arabinofuranosidase, acetyl xylan esterase, and feruloyl esterase. Some of these can be used, or an enzyme preparation produced by a microorganism and containing one or more hemicellulose-degrading enzymes can be used. For example, “Viscozyme L” from Novozymes Japan is an enzyme preparation.

さらに、糖化効率を高めるためには、リグニンなどの細胞壁を構成する他の成分を分解することにより、原料における新たな基質表面が露出し、他の糖化処理に用いた他の酵素による糖化を促進することができる。   Furthermore, in order to increase saccharification efficiency, by decomposing other components that constitute the cell wall such as lignin, a new substrate surface in the raw material is exposed, and saccharification by other enzymes used in other saccharification treatments is promoted. can do.

また、稲の植物体地上部に存在するショ糖については、酵母をはじめとする多くの発酵微生物により直接資化されるが、グルコースの収率を上げる必要がある場合には、インベルターゼなどのシュークロース加水分解酵素を用いることが有効である。
なお、従来から行われているセルロースの酵素糖化を想定して化学的前処理を行う方法では、セルロースを不溶性生成物として回収し、化学的前処理に用いた薬液を含む液体は除去されることがあるが、前記薬液の除去とともに可溶性のショ糖も流亡し、糖のロスが生じることとなる。
その一方で、本発明による糖化法では、原料の粉砕物を用いて、適宜、加熱処理をした後に直接糖化液を得るため(液の除去操作が必要ないため)、粉砕後の原料中に含まれる可溶性ショ糖も全て回収することが可能となる。
In addition, sucrose existing in the above-ground parts of rice plants is directly assimilated by many fermenting microorganisms such as yeast. However, if it is necessary to increase the yield of glucose, a shoe such as invertase can be used. It is effective to use Claus hydrolase.
In the conventional method of performing chemical pretreatment assuming the enzymatic saccharification of cellulose, cellulose is recovered as an insoluble product, and the liquid containing the chemical solution used for chemical pretreatment is removed. However, with the removal of the chemical solution, soluble sucrose is washed away, resulting in sugar loss.
On the other hand, in the saccharification method according to the present invention, the pulverized raw material is used to obtain a saccharified solution directly after appropriate heat treatment (because no operation for removing the liquid is required), and thus included in the pulverized raw material All the soluble sucrose can be recovered.

本発明において、前記糖化処理を行う際には、前記原料である稲の植物体地上部の粉砕物の濃度は、乾物計算で1%(w/v)程度から30%(w/v)程度、好ましくは5%(w/v)程度から20%(w/v)程度とすることが望ましい。
3mmメッシュパス以下程度の粉砕物を用いて糖液を得ることを目的とする場合、糖化処理における酵素反応時間は、30分以上48時間以下程度、好ましくは、30分以上6時間以下とすることが望ましい。
また、糖化処理における酵素反応の温度は、20〜60℃、好ましくは30〜50℃である。また、糖化処理における酵素反応のpHは、pH3〜7、好ましくはpH3.5〜6の間である。
In the present invention, when the saccharification treatment is performed, the concentration of the pulverized material in the above-ground part of the rice plant as the raw material is about 1% (w / v) to about 30% (w / v) in dry matter calculation. Preferably, it is desirable to set it to about 5% (w / v) to about 20% (w / v).
When it is intended to obtain a sugar solution using a pulverized product of about 3 mm mesh pass or less, the enzyme reaction time in the saccharification treatment is about 30 minutes to 48 hours, preferably 30 minutes to 6 hours. Is desirable.
Moreover, the temperature of the enzyme reaction in a saccharification process is 20-60 degreeC, Preferably it is 30-50 degreeC. The pH of the enzyme reaction in the saccharification treatment is between pH 3 and 7, preferably between pH 3.5 and 6.

なお、本発明の本質的な部分は、α-グルカンの分解酵素であるアミログルコシダーゼとβ-グルカン分解酵素を作用させることにより、高い糖化効率が得られることにある。
これらの酵素の供給源としては、酵素製剤、精製酵素標品、微生物培養液、あるいは微生物の菌体外・菌体内あるいは菌体表面上の生産物など、様々な可能性を含み、本発明において用いることができる。
本発明では、これらの酵素の少なくとも一部を生産する能力のある発酵微生物を培養し、糖化と同時に発酵を行う場合にも適用されるが、好ましくは、微生物由来の酵素または酵素製剤を反応液に添加して用いることが好ましい。
The essential part of the present invention is that high saccharification efficiency can be obtained by the action of amyloglucosidase and β-glucan degrading enzyme, which are α-glucan degrading enzymes.
The supply sources of these enzymes include various possibilities such as enzyme preparations, purified enzyme preparations, microbial culture solutions, and products of microorganisms outside, inside or on the surface of the cells. Can be used.
The present invention is also applicable to the case where a fermented microorganism capable of producing at least a part of these enzymes is cultured and subjected to fermentation simultaneously with saccharification. Preferably, the microorganism-derived enzyme or enzyme preparation is used as a reaction solution. It is preferable to add to and use.

なお、本発明の原料として、出穂期から成熟期の稲の植物体地上部を原料として用いた場合、その糖化処理液にはヘミセルロース分解物も含まれており、五炭糖発酵酵母などの微生物によりエタノール等の有用物質に変換することが可能となる。
さらには、当該微生物によるエタノール等の発酵残渣には、リグニン残渣、ヘミセルロースやセルロースの残渣や酵素由来のタンパク質が含まれており、飼料や肥料、または燃料としての利用、あるいは、さらなる化学的または生物的変換により化学品またはバイオエネルギーの抽出が可能となる。
また、強酸・強アルカリを用いた化学的前処理を行う従来の方法では、硫酸等による苛酷な前処理を行うことにより、リグニンは化学修飾を受けるため、糖化反応の副産物を回収する際にはその商品価値が低下するが、本発明の糖化法では、前記副産物の変質を最小限に抑えることができる。
In addition, as a raw material of the present invention, when the above-ground part of a rice plant from the heading stage to the mature stage is used as a raw material, the saccharification treatment liquid also contains a hemicellulose degradation product, and microorganisms such as pentose fermentation yeast It becomes possible to convert into useful substances, such as ethanol.
Furthermore, fermentation residues such as ethanol by the microorganism include lignin residues, hemicellulose and cellulose residues, and enzyme-derived proteins, which can be used as feed, fertilizer, fuel, or for further chemical or biological use. Chemical conversion allows extraction of chemicals or bioenergy.
In the conventional method of chemical pretreatment using strong acid / strong alkali, lignin is chemically modified by severe pretreatment with sulfuric acid etc. Although its commercial value is reduced, the saccharification method of the present invention can minimize alteration of the by-product.

本発明の糖化法により、穏やかな方法で原料から糖化液を得ることが可能となり、得られた糖化液を用いてエタノール発酵を行うことにより、エタノールを製造することができる。
前述のように、本発明における糖化法では、強酸・強アルカリ等の反応性の高い化学薬品を用いないことから、硫酸糖化で副生するようなフルフラールや5−ヒドロキシメチルフルフラールなどのエタノール発酵を阻害する物質の生成が抑制されるのみならず、pH調整を容易に行うことが可能となる。即ち、本発明の糖化法で得られた糖化液は、これをエタノール発酵に用いることは、操作の簡便性、効率、コストの点で大きい利点を有する。
また、本発明の糖化法では、加熱処理が行われるため、原料である稲の植物体地上部に付着する大部分の微生物が殺菌されることとなる。
According to the saccharification method of the present invention, it is possible to obtain a saccharified solution from a raw material in a gentle manner, and ethanol can be produced by performing ethanol fermentation using the obtained saccharified solution.
As described above, the saccharification method in the present invention does not use highly reactive chemicals such as strong acid and strong alkali, so ethanol fermentation such as furfural and 5-hydroxymethylfurfural as a by-product by sulfate saccharification is performed. Not only is the production of the inhibiting substance suppressed, but the pH can be adjusted easily. That is, using the saccharified solution obtained by the saccharification method of the present invention for ethanol fermentation has great advantages in terms of ease of operation, efficiency and cost.
Moreover, in the saccharification method of this invention, since heat processing are performed, most microorganisms adhering to the plant upper part of the rice which is a raw material will be sterilized.

本発明の糖化法で得られた糖化液を用いたエタノール発酵は、酵母、ザイモモナス属細菌など、低重合度の糖類、特にはグルコース、を資化してエタノール発酵を行う微生物を用いて行うことができる。具体的には、酵母であるSaccharomyces cerevisiae (NBRC 0224)を用いて行うことができる。
なお、組換え大腸菌などの遺伝子組換え技術によってエタノール発酵効率を向上させた微生物などを用いて行うことができるが、グルコースやフラクトースなどの六炭糖のみに注目し、酵母やザイモモナス属細菌などの非組換え微生物を用いることにより、遺伝子組換え微生物の拡散防止措置のための設備コストや管理コストを抑えることが可能となる。
Ethanol fermentation using the saccharified solution obtained by the saccharification method of the present invention can be performed using a microorganism that performs ethanol fermentation by assimilating saccharides having a low polymerization degree, particularly glucose, such as yeast and Zymomonas bacteria. it can. Specifically, it can be performed using yeast Saccharomyces cerevisiae (NBRC 0224).
Although it can be performed using microorganisms that have improved ethanol fermentation efficiency by genetic recombination technology such as recombinant Escherichia coli, focusing only on hexoses such as glucose and fructose, such as yeast and Zymomonas bacteria By using non-recombinant microorganisms, it is possible to reduce facility costs and management costs for measures for preventing the spread of genetically modified microorganisms.

本発明の糖化法で得られた糖化液を用いたエタノール発酵は、公知の発酵方法を用いて行うことができる。
本発明においては、糖化処理工程と発酵工程を分離し、得られた糖液をバッチ式または連続式発酵槽に移すことも可能であるが、糖化処理工程と発酵工程を同時に行うという、いわゆる「並行複発酵」を行うことは、省スペース化かつ処理時間短縮などの効果の点から特に望ましい。
Ethanol fermentation using the saccharified solution obtained by the saccharification method of the present invention can be performed using a known fermentation method.
In the present invention, the saccharification treatment step and the fermentation step can be separated, and the obtained sugar solution can be transferred to a batch-type or continuous fermentation tank. “Parallel double fermentation” is particularly desirable in terms of effects such as space saving and shortening of processing time.

当該エタノール発酵に用いる糖化液の糖類の濃度は、0.5%〜30%程度の範囲、望ましくは5%〜30%の範囲である。
糖化液の糖類の濃度が高い方が、発酵効率や蒸留効率が向上するが、操作性を考慮した場合、前記範囲であることが好ましい。例えば、リグノセルロース系原料を懸濁させる際には、かさ高くなり、撹拌等の操作性が低下する。
また、糖化液の糖類の濃度が0.5%程度(好ましくは5%)より低い場合、十分なエタノール量を生産することができず望ましくない。
なお、糖化反応とエタノール発酵を同時に行う並行複発酵を行う際には、生成されることが期待される糖類の濃度が、上記所定の範囲内に入るよう、原料である稲わらの量を調整すべきである。例えば、本発明における糖化法により、乾燥原料(乾燥稲わら)1グラムから0.25グラムのグルコースの生成が期待できる場合、並行複発酵を行う反応液に対して2%以上の前記乾燥原料(乾燥稲わら)を用いることで、0.5%以上のグルコースが生成されることが期待される。
The concentration of saccharides in the saccharified solution used for the ethanol fermentation is in the range of about 0.5% to 30%, preferably in the range of 5% to 30%.
The higher the saccharide concentration of the saccharified solution, the better the fermentation efficiency and the distillation efficiency, but when the operability is taken into consideration, the above range is preferable. For example, when a lignocellulosic raw material is suspended, it becomes bulky and the operability such as stirring is lowered.
Moreover, when the saccharide | sugar density | concentration of a saccharified liquid is lower than about 0.5% (preferably 5%), sufficient ethanol amount cannot be produced and it is undesirable.
In addition, when performing parallel double fermentation in which saccharification reaction and ethanol fermentation are performed simultaneously, the amount of rice straw as a raw material is adjusted so that the concentration of sugars expected to be produced falls within the predetermined range. Should. For example, when production of 0.25 gram of glucose from 1 gram of dry raw material (dry rice straw) can be expected by the saccharification method in the present invention, 2% or more of the dry raw material (2% or more with respect to the reaction solution for parallel double fermentation) By using dried rice straw, it is expected that 0.5% or more of glucose is produced.

当該エタノール発酵における反応温度は、用いる微生物によって異なるが、酵母の場合には25℃〜50℃の範囲、細菌では25℃〜60℃の範囲内である。反応時間は、酵母の菌体濃度や糖化酵素量、反応温度や撹拌速度などに大きく依存するが、バッチ法では10時間以上48時間以下程度が適当である。
また、糖化反応とエタノール発酵を同時に行う並行複発酵を行った場合、発酵後に、並行複発酵に用いた液を次の原料を含む発酵槽に移動させることにより、液に含まれる糖化酵素と酵母をそのまま次の原料に対して再度作用させることができる。
Although the reaction temperature in the said ethanol fermentation changes with microorganisms to be used, in the case of yeast, it is the range of 25 to 50 degreeC, and in the range of 25 to 60 degreeC in bacteria. The reaction time largely depends on the yeast cell concentration, the amount of saccharifying enzyme, the reaction temperature, the stirring speed, etc., but in the batch method, about 10 to 48 hours is appropriate.
Moreover, when parallel double fermentation which performs saccharification reaction and ethanol fermentation simultaneously is performed, the saccharification enzyme and yeast contained in a liquid are moved by moving the liquid used for parallel double fermentation to the fermentor containing the following raw material after fermentation. Can be made to act again on the next raw material as it is.

如上の如く、本発明の糖化法により、化学薬品の使用に伴うコストや環境負荷の問題のない、容易な操作のみで顕著に効率の高い糖化を行うこと、特にはグルコースを生産すること、が可能となり、これまで廃棄の対象であったり、十分な利用がなされていなかった稲の植物体地上部(稲わら)、即ち、具体的には、成熟した実(米)を食用としない稲の品種系統の植物体地上部や、コメ収穫の際に刈り取った成熟した実(米)を除く植物体地上部、エタノール製造の原料などの複合的バイオマスとして利用するシステムを構築することができる。
特に、本発明の糖化法の原料として、成熟した実(米)を食用としない出穂期の稲の植物体地上部を用いる場合、成熟した実(米)を刈り取る(回収する)までの栽培期間に比べて、栽培期間を大幅に短縮することが可能となり、日本全国において二期作以上の実施が可能となり、年間収量を増加させることが可能となる
なお、より高いでん粉含有量をもつ稲の成熟した実を除いた茎葉部(稲わら)が成熟期後期において得られる場合、本発明の技術の応用性は飛躍的に向上するものと考えられる。
As described above, according to the saccharification method of the present invention, there is no problem of cost and environmental load associated with the use of chemicals, remarkably high saccharification only by easy operation, in particular, production of glucose. It has become possible to dispose of rice plants that have not been used or have not been fully utilized until now (ie, rice straw), specifically, rice that does not eat mature fruits (rice). It is possible to construct a system that can be used as a composite biomass such as the above-ground part of a variety lineage plant, the above-ground part of a plant body excluding the matured fruit (rice) harvested during rice harvesting, and a raw material for ethanol production.
In particular, as a raw material for the saccharification method of the present invention, when using the above-ground part of the heading rice plant that does not eat mature fruits (rice), the cultivation period until the mature fruits (rice) are cut (recovered) Compared to, the cultivation period can be significantly shortened, and more than two cropping crops can be implemented throughout Japan, increasing the annual yield. In addition, matured rice with higher starch content It is considered that the applicability of the technique of the present invention is drastically improved when the leaves and leaves (rice straw) excluding the fruit are obtained in the late maturity stage.

以下、本発明を実施例によりさらに詳細に説明するが、これらの実施例により本発明が限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by these Examples.

実施例1
稲(品種名:ハバタキ)の地際で刈り取り穂を切り取った、出穂期の葉鞘および稈(稲わら)を、70℃で72時間乾燥し、粉砕機(シーエムティ科学高速振動試料粉砕機 TI-100)を用いて90秒間粉砕し、稲わら粉末を調製した。この稲わらの茎葉部の乾燥重量あたりのでん粉率(Total starch kit(メガザイム社)で分析)と総グルカン率(硫酸処理後のグルコース量をグルカンとして換算)は、それぞれ23%と44.6%だった。
これを稲わら粉末を100mg量り、2ml容のプラスチックチューブに入れたものを2本用意した。これらに水を0.5ml加え、うち1本(試料1−1)は100℃のヒートブロック中で10分間加熱処理した(2分ごとに撹拌)。
その後、双方にセルラーゼ製剤(0.01ml, Celluclast 1.5 L、ノボザイムズ・ジャパン社)、ヘミセルラーゼ製剤(0.01ml, Viscozyme L、ノボザイムズ・ジャパン社)、β-グルコシダーゼ製剤(0.003ml, Novozyme188、シグマ社)およびアミログルコシダーゼ(2mg, 92U/mg, オリエンタル酵母株式会社)および酢酸ナトリウム緩衝液(反応液の最終濃度50mM、pH5.0)を加えて1mlにメスアップして反応液とし、50℃ヒートブロック中、回転させながら糖化処理を行った。
途中、一部分をサンプリングして、水で希釈した後に、グルコースC-IIテストワコー(和光純薬工業株式会社)を用いて遊離グルコース量を測定した。その結果、図1に示すように、双方のサンプルで、4時間の反応で理論量の7割程度のグルコースが遊離した。
Example 1
The leaf sheath and straw (rice straw) from which the cuttings were cut at the ground of rice (variety name: Habataki) were dried at 70 ° C. for 72 hours, and then pulverized (CMT Science High Speed Vibration Sample Crusher TI-) 100) for 90 seconds to prepare rice straw powder. The starch ratio (analyzed by Total starch kit (Megazyme)) and the total glucan ratio (converted as the amount of glucose after sulfuric acid treatment as glucan) per dry weight of the rice straw stems and leaves were 23% and 44.6%, respectively. was.
Two of this were prepared by weighing 100 mg of rice straw powder and putting it in a 2 ml plastic tube. 0.5 ml of water was added to these, and one of them (Sample 1-1) was heat-treated in a heat block at 100 ° C. for 10 minutes (stirring every 2 minutes).
Then, cellulase preparation (0.01 ml, Celluclast 1.5 L, Novozymes Japan), hemicellulase preparation (0.01 ml, Viscozyme L, Novozymes Japan), β-glucosidase preparation (0.003 ml, Novozyme188, Sigma) ) And amyloglucosidase (2 mg, 92 U / mg, Oriental Yeast Co., Ltd.) and sodium acetate buffer solution (final concentration of reaction solution 50 mM, pH 5.0) to make up to 1 ml to make reaction solution, heat at 50 ° C. The saccharification treatment was performed while rotating in the block.
In the middle, after sampling a part and diluting with water, the amount of free glucose was measured using Glucose C-II Test Wako (Wako Pure Chemical Industries, Ltd.). As a result, as shown in FIG. 1, about 70% of the theoretical amount of glucose was liberated in both samples after 4 hours of reaction.

その結果、その速度は、100℃で処理したもの(試料1−1)の方が高かったが、100℃で処理していないもの(試料1−2)と同程度の変換率でほぼ一定になった。   As a result, the rate was higher for the sample treated at 100 ° C. (Sample 1-1), but almost constant at a conversion rate similar to that of the sample not treated at 100 ° C. (Sample 1-2). became.

実施例2
実施例1で用いた稲わら粉末(品種名:ハバタキ)を50mg量り取った。これを2ml容のプラスチックチューブに入れたものを2本用意し、水を0.5ml加え、100℃のヒートブロック中で10分間加熱処理した(2分ごとに撹拌)。
その後、うち1本(試料2−1)には、セルラーゼ製剤(Celluclast 1.5 L、0.01 ml, ノボザイムズ・ジャパン社)、ヘミセルラーゼ製剤(Viscozyme L、0.01 ml, ノボザイムズ・ジャパン社)、β−グルコシダーゼ製剤(0.003ml, Novozyme188、シグマ社)およびアミログルコシダーゼ(2mg, 92U/mg, オリエンタル酵母株式会社)および酢酸ナトリウム緩衝液(反応液の最終濃度50mM、pH5.0)を加えた。
また、もう1本(試料2−2)には、後者2つの酵素(β-グルコシダーゼ製剤(0.003ml, Novozyme188、シグマ社)およびアミログルコシダーゼ(2mg, 92U/mg, オリエンタル酵母株式会社))と、酢酸ナトリウム緩衝液(反応液の最終濃度50mM、pH5.0)を加えた。
そして、それぞれを1mlにメスアップして反応液とし、50℃中、回転させながら糖化処理を行った。途中、一部分をサンプリングして、水で希釈した後に、グルコースC-IIテストワコー(和光純薬工業株式会社)を用いて遊離グルコース量を測定した。
Example 2
50 mg of rice straw powder (variety name: Habataki) used in Example 1 was weighed. Two of these were put in a 2 ml plastic tube, 0.5 ml of water was added, and heat treatment was carried out for 10 minutes in a heat block at 100 ° C. (stirring every 2 minutes).
After that, one of them (Sample 2-1) includes cellulase preparation (Celluclast 1.5 L, 0.01 ml, Novozymes Japan), hemicellulase preparation (Viscozyme L, 0.01 ml, Novozymes Japan), β-glucosidase preparation. (0.003 ml, Novozyme188, Sigma) and amyloglucosidase (2 mg, 92 U / mg, Oriental Yeast Co., Ltd.) and sodium acetate buffer (final concentration of reaction solution 50 mM, pH 5.0) were added.
The other two (sample 2-2) include the latter two enzymes (β-glucosidase preparation (0.003 ml, Novozyme188, Sigma) and amyloglucosidase (2 mg, 92 U / mg, Oriental Yeast Co., Ltd.)) Sodium acetate buffer (final concentration of reaction solution 50 mM, pH 5.0) was added.
And each was made up to 1 ml to make a reaction solution, and saccharification was performed while rotating at 50 ° C. On the way, after sampling a part and diluting with water, the amount of free glucose was measured using Glucose C-II Test Wako (Wako Pure Chemical Industries, Ltd.).

その結果、図2に示すように、双方のサンプルでグルコースが遊離したが、試料2−2では理論量の34%程度のグルカンがグルコースに変換されたのに対して、試料2−1では、セルロースやヘミセルロース分解酵素系の作用により、理論量の67%前後のグルカンがグルコースに変換された。   As a result, as shown in FIG. 2, glucose was liberated in both samples, but in Sample 2-2, about 34% of the theoretical amount of glucan was converted to glucose, whereas in Sample 2-1, About 67% of the theoretical amount of glucan was converted to glucose by the action of cellulose or hemicellulose-degrading enzyme system.

実施例3
稲(品種名:タカナリ)の地際で刈り取り穂を切り取った、出穂期の葉鞘および稈(稲わら)を、70℃で72時間乾燥し、粉砕機(ウイレイ粉砕機、3mmメッシュパス)を用いて粉砕し、稲わら粉末を調製した。この稲わらの茎葉部の乾燥重量あたりのでん粉率(Total starch kit(メガザイム社)で分析)と総グルカン率(硫酸処理後のグルコース量をグルカンとして換算)は、それぞれ9.79%と38.7%だった。これを2ml容のプラスチックチューブに50mg量り取り、試料3−1とした。
また、稲(品種名:ミルキークイーン)の通常の稲刈り機で刈り取った、コメ収穫後の穂を除く葉鞘および稈(稲わら)を、粗粉砕後にハンマーミル(吉田製作所製)で粉砕し、稲わら粉末を調製した。この稲わらの茎葉部の乾燥重量あたりのでん粉率(Total starch kit(メガザイム社)で分析)と総グルカン率(硫酸処理後のグルコース量をグルカンとして換算)は、それぞれ2.18%と34.0%だった。これを2ml容のプラスチックチューブに50mg量り取り、試料3−2とした。
これらに水を0.5ml加え、100℃のヒートブロック中で10分間加熱処理した(2分ごとに撹拌)。
その後、セルラーゼ製剤(0.01ml, Celluclast 1.5 L、ノボザイムズ・ジャパン社)、ヘミセルラーゼ製剤(0.01ml, Viscozyme L、ノボザイムズ・ジャパン社)、β-グルコシダーゼ製剤(0.003ml, Novozyme188、シグマ社)およびアミログルコシダーゼ(2mg, 92U/mg, オリエンタル酵母株式会社)および酢酸ナトリウム緩衝液(反応液の最終濃度50mM、pH5.0)を加えて、それぞれを1mlにメスアップしたものを反応液とし、50℃中、回転させながら糖化処理を行った。
途中、一部分をサンプリングして、水で希釈した後に、グルコースC-IIテストワコー(和光純薬工業株式会社)を用いて遊離グルコース量を測定した。
Example 3
The leaf sheath and straw (rice straw) from which the harvested ears were cut off at the border of rice (variety name: Takanari) were dried at 70 ° C. for 72 hours and then used with a grinder (Wiley grinder, 3 mm mesh pass). And pulverized to prepare rice straw powder. The starch ratio (analyzed by Total starch kit (Megazyme)) and the total glucan ratio (converted as the amount of glucose after sulfuric acid treatment as glucan) per dry weight of the rice straw stems and leaves were 9.79% and 38. It was 7%. 50 mg of this was weighed into a 2 ml plastic tube and used as sample 3-1.
In addition, the leaf sheath and straw (rice straw), except for the ears after harvesting rice, harvested with a normal rice harvester for rice (variety name: Milky Queen), were coarsely crushed and then crushed with a hammer mill (Yoshida Seisakusho). A straw powder was prepared. The starch ratio (analyzed by Total starch kit (Megazyme)) and the total glucan ratio (converted as the amount of glucose after sulfuric acid treatment as glucan) per dry weight of the rice straw stems and leaves were 2.18% and 34. It was 0%. 50 mg of this was weighed into a 2 ml plastic tube and used as sample 3-2.
0.5 ml of water was added to these and heat-treated in a heat block at 100 ° C. for 10 minutes (stirring every 2 minutes).
Cellulase preparation (0.01 ml, Celluclast 1.5 L, Novozymes Japan), hemicellulase preparation (0.01 ml, Viscozyme L, Novozymes Japan), β-glucosidase preparation (0.003 ml, Novozyme188, Sigma) And amyloglucosidase (2 mg, 92 U / mg, Oriental Yeast Co., Ltd.) and sodium acetate buffer (final concentration of reaction solution 50 mM, pH 5.0), and each made up to 1 ml was used as a reaction solution. The saccharification treatment was performed while rotating at 0 ° C.
On the way, after sampling a part and diluting with water, the amount of free glucose was measured using Glucose C-II Test Wako (Wako Pure Chemical Industries, Ltd.).

その結果、図3に示すように、双方のサンプルでグルコースが遊離したが、試料3−1では12.2mgのグルコースが遊離したのに対して、試料3−2では4.39mgに留まった。   As a result, as shown in FIG. 3, glucose was liberated in both samples, but 12.2 mg of glucose was liberated in sample 3-1, whereas it remained at 4.39 mg in sample 3-2.

なお、試料3−1と同様の操作を、酵素処理前の10分間の加熱処理温度を60℃、70℃および80℃および熱処理無しの4種類に変更した試料を用いて行い、加熱処理の温度と酵素反応4時間後のグルコース遊離量の関係を調べた。その結果を表1に示す。   In addition, the same operation as that of Sample 3-1 was performed using samples in which the heat treatment temperature for 10 minutes before the enzyme treatment was changed to four types of 60 ° C., 70 ° C., 80 ° C. and no heat treatment, and the temperature of the heat treatment And the relationship between the amount of glucose released 4 hours after the enzyme reaction. The results are shown in Table 1.

Figure 2009183264
Figure 2009183264

実施例4
稲(品種名:タカナリ)の地際で刈り取り穂を切り取った、出穂期の葉鞘および稈(稲わら)を、70℃で72時間乾燥し、粉砕機(ウイレイ粉砕機、3mmメッシュパス)を用いて粉砕し、稲わら粉末を調製した。この稲わらの茎葉部の乾燥重量あたりのでん粉率(Total starch kit(メガザイム社)で分析)と総グルカン率(硫酸処理後のグルコース量をグルカンとして換算)は、それぞれ9.79%と38.7%だった。
これを2ml容のプラスチックチューブに50mg量り取ったものを4本用意し、水を0.5ml加え、100℃のヒートブロック中で10分間加熱処理した(2分ごとに撹拌)。
その後、セルラーゼ1(セロビオハイドロラーゼI、0.7U/ml, メガザイム社)、セルラーゼ2(エンドグルカナーゼII、540U/ml, メガザイム社)を、4本それぞれ(試料4−1〜試料4−4)について以下のとおり添加した。
即ち、試料4−1には、セルラーゼ1=0ml、セルラーゼ2=0mlとなるように、試料4−2には、セルラーゼ1=0.1ml、セルラーゼ2=0mlとなるように、試料4−3には、セルラーゼ1=0ml、セルラーゼ2=0.1mlとなるように、試料4−4には、セルラーゼ1=0.05ml、セルラーゼ2=0.05mlとなるように添加した。
そして、それぞれの試料に対して、β-グルコシダーゼ製剤(0.003ml, Novozyme188、シグマ社)およびアミログルコシダーゼ(2mg, 92U/mg, オリエンタル酵母株式会社)および酢酸ナトリウム緩衝液(反応液の最終濃度50mM、pH5.0)を加えて、それぞれを1mlにメスアップしたものを反応液とし、50℃中、回転させながら糖化処理を行った。
途中、一部分をサンプリングして、水で希釈した後に、グルコースC-IIテストワコー(和光純薬工業株式会社)を用いて遊離グルコース量を測定した。
Example 4
The leaf sheath and straw (rice straw) from which the harvested ears were cut off at the border of rice (variety name: Takanari) were dried at 70 ° C. for 72 hours and then used with a grinder (Wiley grinder, 3 mm mesh pass). And pulverized to prepare rice straw powder. The starch ratio (analyzed by Total starch kit (Megazyme)) and the total glucan ratio (converted as the amount of glucose after sulfuric acid treatment as glucan) per dry weight of the rice straw stems and leaves were 9.79% and 38. It was 7%.
Four of this were prepared by weighing 50 mg into a 2 ml plastic tube, added with 0.5 ml of water, and heat-treated in a heat block at 100 ° C. for 10 minutes (stirring every 2 minutes).
Thereafter, cellulase 1 (cellobiohydrolase I, 0.7 U / ml, Megazyme), cellulase 2 (endoglucanase II, 540 U / ml, Megazyme), each of four (Sample 4-1 to Sample 4-4) ) Was added as follows.
That is, sample 4-3 has cellulase 1 = 0 ml and cellulase 2 = 0 ml, and sample 4-2 has cellulase 1 = 0.1 ml and cellulase 2 = 0 ml, sample 4-3. Was added so that cellulase 1 = 0 ml and cellulase 2 = 0.1 ml, and to sample 4-4 so that cellulase 1 = 0.05 ml and cellulase 2 = 0.05 ml.
For each sample, β-glucosidase preparation (0.003 ml, Novozyme188, Sigma) and amyloglucosidase (2 mg, 92 U / mg, Oriental Yeast Co., Ltd.) and sodium acetate buffer (final concentration of reaction solution 50 mM) , PH 5.0) was added to make up each to 1 ml, and a reaction solution was used, and saccharification treatment was performed while rotating at 50 ° C.
On the way, after sampling a part and diluting with water, the amount of free glucose was measured using Glucose C-II Test Wako (Wako Pure Chemical Industries, Ltd.).

その結果、図4に示すように、それぞれのサンプルでグルコースが遊離したが、試料4−1では4時間後には6mg前後のグルコースが遊離されたのに対して、試料4−2では、僅かに、そして試料4−3では比較的顕著にグルコース遊離量が増加した。そして、試料4−4については、セルラーゼ1(セロビオハイドロラーゼI)とセルラーゼ2(エンドグルカナーゼII)との相乗効果が確認された。   As a result, as shown in FIG. 4, glucose was released in each sample. In Sample 4-1, about 6 mg of glucose was released after 4 hours, whereas in Sample 4-2, it was slightly released. In Sample 4-3, the amount of glucose released increased relatively remarkably. And about sample 4-4, the synergistic effect of cellulase 1 (cellobiohydrolase I) and cellulase 2 (endoglucanase II) was confirmed.

実施例5
表2に示す各試料(同一品種系統について複数の栽培条件で試験したものを含む。)を、表2内に記した時期に地際で刈り取り穂を切り取った、葉鞘および稈を、70℃で72時間乾燥し、粉砕機(シーエムティ科学高速振動試料粉砕機 TI-100)を用いて90秒間粉砕し、各稲わら粉末を調製した。これら稲わらの茎葉部の乾燥重量あたりのでん粉率(Total starch kit(メガザイム社)で分析)と総グルカン率(硫酸処理後のグルコース量をグルカンとして換算)を測定した。(測定結果を表2に示す。)
これらを50mgずつ量り取り、それぞれ2ml容のプラスチックチューブに入れたものを用意し、これらに水を0.5ml加え、100℃のヒートブロック中で10分間加熱処理した(2分ごとに撹拌)。
その後、セルラーゼ製剤(0.01ml, Celluclast 1.5 L、ノボザイムズ・ジャパン社)、ヘミセルラーゼ製剤(0.01ml, Viscozyme L、ノボザイムズ・ジャパン社)、β−グルコシダーゼ製剤(0.003ml, Novozyme188、シグマ社)およびアミログルコシダーゼ(2mg, 92U/mg, オリエンタル酵母株式会社)および酢酸ナトリウム緩衝液(反応液の最終濃度50mM、pH5.0)を加え、それぞれを1mlにメスアップしたものを反応液とし、50℃中、回転させながら糖化処理を行った。
そして、4時間後に一部分をサンプリングして、水で希釈した後に、グルコースC-IIテストワコー(和光純薬工業株式会社)を用いて遊離グルコース量を測定した。測定結果を表2に示す。
Example 5
Each of the samples shown in Table 2 (including those tested under a plurality of cultivation conditions for the same variety line) was cut off at the ground at the time indicated in Table 2, and the leaf sheath and cocoon were cut at 70 ° C. Each rice straw powder was prepared by drying for 72 hours and pulverizing for 90 seconds using a pulverizer (CMT Scientific High-Speed Vibration Sample Crusher TI-100). The starch rate per dry weight (analyzed by Total starch kit (Megazyme)) and the total glucan rate (the amount of glucose after sulfuric acid treatment was converted as glucan) were measured. (Measurement results are shown in Table 2.)
50 mg of these were weighed out and prepared in a 2 ml plastic tube, and 0.5 ml of water was added thereto, followed by heat treatment for 10 minutes in a heat block at 100 ° C. (stirring every 2 minutes).
Cellulase preparation (0.01 ml, Celluclast 1.5 L, Novozymes Japan), hemicellulase preparation (0.01 ml, Viscozyme L, Novozymes Japan), β-glucosidase preparation (0.003 ml, Novozyme188, Sigma) And amyloglucosidase (2 mg, 92 U / mg, Oriental Yeast Co., Ltd.) and sodium acetate buffer (final concentration of reaction solution 50 mM, pH 5.0) were added to make up 1 ml of each reaction solution. The saccharification treatment was carried out while rotating.
Then, after a part was sampled after 4 hours and diluted with water, the amount of free glucose was measured using Glucose C-II Test Wako (Wako Pure Chemical Industries, Ltd.). The measurement results are shown in Table 2.

Figure 2009183264
Figure 2009183264

その結果、でん粉含有率が多い程、非でん粉性グルカンの含有率が少なくなる傾向と、でん粉含有率が多い程、酵素反応後のグルカンの糖化率が向上する傾向を確認した。   As a result, it was confirmed that the higher the starch content, the lower the non-starch glucan content, and the higher the starch content, the higher the saccharification rate of the glucan after the enzyme reaction.

実施例6
稲(品種名:ハバタキ)の地際で刈り穂を切り取った、出穂期の葉鞘および稈(稲わら)を、70℃で72時間乾燥し、粉砕機(シーエムティ科学高速振動試料粉砕機 TI-100)を用いて90秒間粉砕し、稲わら粉末aを調製した。この稲わらの茎葉部の乾燥重量あたりのでん粉率(Total starch kit(メガザイム社)で分析)と総グルカン率(硫酸処理後のグルコース量をグルカンとして換算)は、それぞれ24%と44.6%だった。
これらを25mgずつ量り取り、それぞれ2ml容のプラスチックチューブに入れたものを用意し、試料6−1,試料6−2とした。
また、稲(品種名:コシヒカリ)の通常の稲刈り機で刈り取った、コメ収穫後の穂を除く葉鞘および稈を含む稲わらを、粗粉砕後にハンマーミル(吉田製作所製)で粉砕し、稲わら粉末bを調製した。この稲わらの茎葉部の乾燥重量あたりのでん粉率(Total starch kit(メガザイム社)で分析)と総グルカン率(硫酸処理後のグルコース量をグルカンとして換算)は、それぞれ2.77%と30.9%だった。
これを25mgずつ量り取り、2ml容のプラスチックチューブに入れたものを用意し、試料6−3とした。そして、試料6−1,試料6−2,試料6−3にそれぞれ水を0.5ml加え、100℃のヒートブロック中で10分間加熱処理した(2分ごとに攪拌)。
Example 6
The leaf sheath and straw (rice straw) from which the cuttings were cut off at the border of rice (variety name: Habataki) were dried at 70 ° C. for 72 hours, and then pulverized (CMT Science High-Speed Vibration Sample Crusher TI-) 100) for 90 seconds to prepare rice straw powder a. The starch ratio (analyzed by Total starch kit (Megazyme)) and the total glucan ratio (converted as the amount of glucose after sulfuric acid treatment as glucan) per dry weight of the rice straw stems and leaves were 24% and 44.6%, respectively. was.
25 mg of each of these was weighed out and placed in a 2 ml plastic tube to prepare Sample 6-1 and Sample 6-2.
In addition, rice straw including leaf sheaths and straw except for harvested rice harvested with a conventional rice mower of rice (variety name: Koshihikari) was coarsely crushed and then crushed with a hammer mill (Yoshida Seisakusho). Powder b was prepared. The starch ratio (analyzed by Total starch kit (Megazyme)) and the total glucan ratio (converted as the amount of glucose after sulfuric acid treatment as glucan) per dry weight of the rice straw stems and leaves were 2.77% and 30. respectively. It was 9%.
25 mg of this was weighed out and put into a 2 ml plastic tube to prepare a sample 6-3. Then, 0.5 ml of water was added to each of Sample 6-1, Sample 6-2, and Sample 6-3, and heat-treated in a heat block at 100 ° C. for 10 minutes (stirring every 2 minutes).

次に、試料6−1(稲わら粉末a)と試料6−3(稲わら粉末b)には、0.05mlのセルラーゼ1(セロビオハイドロラーゼI、0.7U/ml, メガザイム社)および0.05mlのセルラーゼ2(エンドグルカナーゼII、540U/ml, メガザイム社)、0.025mlのβ-グルコシダーゼ(40U/ml, メガザイム社)、2mgのアミログルコシダーゼ(92U/mg, オリエンタル酵母株式会社)および0.004mlのリケナーゼ(1000U/ml, メガザイム社)を加えた。
また、試料6−2(稲わら粉末a)は、上記と同量のセルラーゼ1、セルラーゼ2およびβ-グルコシダーゼのみを加えた。
これらに、酢酸ナトリウム緩衝液(反応液の最終濃度50mM、pH5.0)を加えた後、それぞれを1mlにメスアップしたものを反応液とし、50℃中、回転させながら糖化反応を行った。途中、一部分をサンプリングして、水で希釈した後に、グルコースC-IIテストワコー(和光純薬工業株式会社)を用いて遊離グルコース量を測定した。
Next, sample 6-1 (rice straw powder a) and sample 6-3 (rice straw powder b) were charged with 0.05 ml of cellulase 1 (cellobiohydrolase I, 0.7 U / ml, Megazyme) and 0.05 ml cellulase 2 (Endoglucanase II, 540 U / ml, Megazyme), 0.025 ml β-glucosidase (40 U / ml, Megazyme), 2 mg amyloglucosidase (92 U / mg, Oriental Yeast Co.) and 0.004 ml of lichenase (1000 U / ml, Megazyme) was added.
Sample 6-2 (rice straw powder a) was added with the same amounts of cellulase 1, cellulase 2, and β-glucosidase as described above.
To these, a sodium acetate buffer solution (final concentration of reaction solution 50 mM, pH 5.0) was added, and each was made up to 1 ml. The reaction solution was used, and a saccharification reaction was performed while rotating at 50 ° C. On the way, after sampling a part and diluting with water, the amount of free glucose was measured using Glucose C-II Test Wako (Wako Pure Chemical Industries, Ltd.).

その結果、図5に示すように、試料6−1では4時間の反応で6.6mg以上のグルコースが遊離し、試料6−2では2.37mg、試料6−3では1.46mgであった。
試料6−1と6−2を比較すると、試料6−1の方が多量のグルコースが遊離していることが明らかとなった。試料6−2については、β-グルカン分解酵素のみでの分解を行っており、試料6−1ではα-グルカンおよびβ-グルカンの両方を想定した分解を行っている。
また、試料6−2のβ-グルカンの分解効率が試料6−3のものと比較して高いという結果は、でん粉を高濃度で含有する出穂期の稲わらのβ-グルカン構造が、でん粉を低い濃度でしか含有しない成熟期の稲わらのβ-グルカン構造と比較して、酵素分解を受けやすくなっていることを示した。
As a result, as shown in FIG. 5, 6.6 mg or more of glucose was liberated in the sample 6-1 after 4 hours of reaction, 2.37 mg in the sample 6-2, and 1.46 mg in the sample 6-3. .
When samples 6-1 and 6-2 were compared, it was revealed that sample 6-1 released more glucose. Sample 6-2 is decomposed only with β-glucan-degrading enzyme, and sample 6-1 is decomposed assuming both α-glucan and β-glucan.
Moreover, the result that the decomposition efficiency of β-glucan of sample 6-2 is higher than that of sample 6-3 indicates that the β-glucan structure of rice straw at the heading stage containing starch at a high concentration Compared to the β-glucan structure of mature rice straw, which contains only low concentrations, it was more susceptible to enzymatic degradation.

実施例7
実施例5の試料5−15(ハバタキ、出穂期)の稲わら粉末原料を25.0mg秤量し、2ml容プラスチックチューブに入れたものを2本用意した。これらに、それぞれ0.45mlのYEP培地(2% Yeast Extractおよび1% Bacto Peptoneを含み、pH5.0に調整したもの)を加え、100℃のヒートブロック上に10分間静置し、途中、2分ごとにボルテックスミキサーにより3秒程度撹拌した。
そのうちの1本には、セルラーゼ製剤(0.01ml, Celluclast 1.5 L、ノボザイムズ・ジャパン社)、ヘミセルラーゼ製剤(0.01ml, Viscozyme L、ノボザイムズ・ジャパン社)、β−グルコシダーゼ製剤(0.003ml, Novozyme188、シグマ社)およびアミログルコシダーゼ(2mg, 92U/mg, オリエンタル酵母株式会社)を含む、0.5mlのYEP培地を加えたものを試料7−1として調製した。もう1本には、0.5mlのYEP培地のみを加えたものを試料7−2として調製した。
また、試料7−1および試料7−2と同様の液体組成で、稲わら粉末原料を含まないものを、それぞれ、試料7−3および試料7−4として用意した。
次に、予め、YEPG培地(2% Yeast Extract、1% Bacto Peptoneおよび1% グルコースを含み、pH5.0に調整したもの)にSaccharomyces cerevisiae (NBRC 0224)を接種して30℃で5時間回転培養(24回転/分)した後の菌体懸濁液を、これらの試料に対して0.05mlずつ加え、閉栓後、同様に15時間回転培養した。
培養後に、培養上澄部に含まれるエタノール量は、Ethanol Assay Kit (メガザイム社製)を用いて定量し、液量1mlあたりのエタノール含量として計算した。なお、測定は2回繰り返して行った。その結果を表3に示す。
Example 7
25.0 mg of the rice straw powder raw material of Sample 5-15 (Habataki, heading period) of Example 5 was weighed and prepared in two 2 ml plastic tubes. To each of these, 0.45 ml of YEP medium (containing 2% Yeast Extract and 1% Bacto Peptone and adjusted to pH 5.0) was added and left on a heat block at 100 ° C. for 10 minutes. The mixture was stirred for about 3 seconds by a vortex mixer every minute.
One of them includes cellulase preparation (0.01 ml, Celluclast 1.5 L, Novozymes Japan), hemicellulase preparation (0.01 ml, Viscozyme L, Novozymes Japan), β-glucosidase preparation (0.003 ml, Novozyme 188 (Sigma) and amyloglucosidase (2 mg, 92 U / mg, Oriental Yeast Co., Ltd.) containing 0.5 ml of YEP medium was prepared as Sample 7-1. The other was prepared by adding only 0.5 ml of YEP medium as sample 7-2.
Samples having the same liquid composition as Samples 7-1 and 7-2 and not containing rice straw powder raw materials were prepared as Sample 7-3 and Sample 7-4, respectively.
Next, Saccharomyces cerevisiae (NBRC 0224) was inoculated in advance in YPPG medium (containing 2% Yeast Extract, 1% Bacto Peptone and 1% glucose and adjusted to pH 5.0) and rotated at 30 ° C. for 5 hours. The cell suspension after (24 rotations / min) was added to each sample in an amount of 0.05 ml, and after closing, the cells were similarly cultured for 15 hours.
After the culture, the amount of ethanol contained in the culture supernatant was quantified using Ethanol Assay Kit (manufactured by Megazyme) and calculated as the ethanol content per ml of liquid. The measurement was repeated twice. The results are shown in Table 3.

Figure 2009183264
Figure 2009183264

試料7−1が示すように、稲わら粉末(糖化原料)存在下で糖化反応とエタノール発酵を同時に行うこと(並行複発酵)により、エタノールが生産されることが示された。
また、糖化反応が進行しない試料である、稲わら粉末(糖化原料)のみを添加した試料7−2およびYEP培地のみの試料7−4では、エタノール生産量は極めて低く、エタノール発酵はほとんど行われなかった。
なお、糖化反応が進行しない試料である、稲わら粉末(糖化原料)が存在しない試料7−3でもエタノール発酵がおこることが観察されたが、一部の酵素製剤に含まれる糖質を主な発酵源としているものと考えられる。
これらの結果より、稲わら粉末を糖化処理することにより得られた糖化液を用いて酵母によるエタノール発酵を行うことで、エタノールが生産されることが示された。
As shown in Sample 7-1, it was shown that ethanol was produced by simultaneously performing saccharification reaction and ethanol fermentation (parallel double fermentation) in the presence of rice straw powder (saccharification raw material).
Moreover, in the sample 7-2 to which only the rice straw powder (saccharification raw material) and the sample 7-4 having only the YEP medium, which are samples in which the saccharification reaction does not proceed, ethanol production is extremely low, and ethanol fermentation is almost performed. There wasn't.
It was observed that ethanol fermentation also occurred in Sample 7-3, which is a sample in which saccharification reaction does not proceed, and in which rice straw powder (saccharification raw material) does not exist, but saccharides contained in some enzyme preparations are mainly used. It is considered to be a fermentation source.
From these results, it was shown that ethanol was produced by performing ethanol fermentation with yeast using a saccharified solution obtained by saccharifying rice straw powder.

試験例1
表4に示す各試料を調製するため、表4内に記した時期(成熟期又は出穂期)に稲の植物体地上部を地際から刈り取り、穂を除いて葉鞘と稈を取り出した後、“24時間以内に70℃で72時間乾燥させた(加熱乾燥処理)”。その後、粉砕機(シーエムティ科学高速振動試料粉砕機 TI-100)を用いて90秒間粉砕し、稲わら粉末(試料E1−1〜試料E1−13、試料E1−15)を調製した。
次に、これらの試料を水で抽出し、Roe法により総フラクトース量(遊離フラクトース量およびショ糖分子中のフラクトース残基を遊離フラクトースとして換算した総和量)を測定した。
また、グルコースC-IIテストワコー(和光純薬工業株式会社)により遊離グルコース量(ショ糖分子中のグルコース残基は含まない量)を測定した。
なお、比較対照として、成熟期の稲の植物体地上部(コシヒカリ、表4では*を付けて表示)を地際から刈り取り、穂を除いて葉鞘と稈を取り出した後、“二週間常温保存したもの”を粗粉砕後にハンマーミル(吉田製作所製)で粉砕した稲わら粉末(試料E1−14)についても、上記と同様に測定を行った。
そして、上記により測定した総フラクトース量、遊離グルコース量の値から、上記の式(I)〜(III)を用いて、試料に含有される遊離糖質の総量(ショ糖の量、遊離グルコース量および遊離フラクトース量の和)を算出した。結果を表4に示す。
Test example 1
In order to prepare each sample shown in Table 4, after cutting the above-ground part of the plant body of the rice from the ground at the time (maturity or heading) described in Table 4, after removing the ears and taking out the leaf sheath and straw, “Dried for 72 hours at 70 ° C. within 24 hours (heat drying treatment)”. Then, it grind | pulverized for 90 second using the grinder (CMT science high-speed vibration sample grinder TI-100), and prepared the rice straw powder (Sample E1-1-Sample E1-13, Sample E1-15).
Next, these samples were extracted with water, and the total fructose amount (the total amount obtained by converting the free fructose amount and the fructose residue in the sucrose molecule as free fructose) was measured by the Roe method.
In addition, the amount of free glucose (amount not containing glucose residues in sucrose molecules) was measured by Glucose C-II Test Wako (Wako Pure Chemical Industries, Ltd.).
As a comparative control, the above-ground part of the mature rice plant (Koshihikari, indicated by * in Table 4) was cut off from the ground, the ears were removed and the leaf sheath and cocoon were taken out, and then stored at room temperature for two weeks. The rice straw powder (sample E1-14), which was coarsely pulverized and then pulverized with a hammer mill (manufactured by Yoshida Seisakusho), was measured in the same manner as described above.
Then, using the above formulas (I) to (III), the total amount of free carbohydrates contained in the sample (the amount of sucrose and the amount of free glucose) from the values of the total fructose amount and free glucose amount measured as described above And the sum of the amount of free fructose). The results are shown in Table 4.

Figure 2009183264
Figure 2009183264

その結果、稲の植物体地上部を刈り取って、24時間以内に70℃で72時間乾燥させることで(加熱乾燥処理を行うことで)、当該処理後の稲の植物体地上部には、遊離糖質が高い濃度で保持されることが示された。   As a result, the above-ground part of the plant body of rice is cut and dried at 70 ° C. for 72 hours within 24 hours (by performing heat drying treatment). It was shown that carbohydrates are retained at high concentrations.

試験例2
成熟期の稲の植物体地上部(ミルキークイーン)を通常の収穫機で刈り取り、穂を除いて葉鞘と稈を取り出した後、“24時間以内に室内で風乾させた(乾燥処理)”。その後、粗粉砕し、さらにハンマーミル(吉田製作所製)を用いて粉砕し、含水率5%の稲わら粉末(試料E2−1)を調製した。
次に、この試料E2−1の稲わら粉末10mgを、2ml溶のプラスチックチューブに量り取り、閉栓後に72時間、室温(約25℃)で保存した稲わら粉末(試料E2−2)を調製した。即ち、乾燥した状態で室温保存した。
また、この試料E2−1の稲わら粉末10mgを、2ml溶のプラスチックチューブに量り取り、滅菌水を加水して含水率81%の稲わら粉末を得、その後閉栓し、室温(約25℃)で24時間保存した稲わら粉末(試料E2−3)、および、48時間保存した稲わら粉末(試料E2−4)を調製した。即ち、含水率が高い状態で室温保存した。
また、この試料E2−1の稲わら粉末10mgを、2ml溶のプラスチックチューブに量り取り、滅菌水を加水して含水率81%の稲わら粉末を得、その後閉栓し、65℃で4時間保存し、さらに、室温(約25℃)で44時間保存した稲わら粉末(試料E2−5)を調製した。即ち、含水率を高い状態にした後直ちに加熱処理し、その後含水率が高い状態で室温保存した。
そして、これら試料E2−1〜試料E2−5の稲わら粉末について、試験例1に記載の方法と同様にして、Roe法で総フラクトース量を測定した。結果を表5に示す。
Test example 2
The above-ground part of the mature rice plant (milky queen) was cut with a normal harvesting machine, and after removing the ears, the leaf sheath and the cocoon were taken out, and “air-dried indoors within 24 hours (drying treatment)”. Then, coarsely pulverized and further pulverized using a hammer mill (manufactured by Yoshida Seisakusho) to prepare a rice straw powder (sample E2-1) having a water content of 5%.
Next, 10 mg of rice straw powder of sample E2-1 was weighed into a 2 ml plastic tube, and rice straw powder (sample E2-2) stored at room temperature (about 25 ° C.) for 72 hours after closing was prepared. . That is, it was stored at room temperature in a dry state.
In addition, 10 mg of rice straw powder of this sample E2-1 was weighed into a 2 ml plastic tube, sterilized water was added to obtain rice straw powder having a water content of 81%, and then closed and room temperature (about 25 ° C.) The rice straw powder (sample E2-3) stored for 24 hours and the rice straw powder (sample E2-4) stored for 48 hours were prepared. That is, it was stored at room temperature with a high water content.
In addition, 10 mg of rice straw powder of this sample E2-1 was weighed into a 2 ml plastic tube, sterilized water was added to obtain rice straw powder having a moisture content of 81%, and then sealed and stored at 65 ° C. for 4 hours. Furthermore, rice straw powder (sample E2-5) stored for 44 hours at room temperature (about 25 ° C.) was prepared. That is, heat treatment was performed immediately after the moisture content was high, and then the mixture was stored at room temperature with a high moisture content.
And about the rice straw powder of these sample E2-1-sample E2-5, it carried out similarly to the method of the test example 1, and measured the total fructose amount by Roe method. The results are shown in Table 5.

Figure 2009183264
Figure 2009183264

表5が示すように、稲わら粉末に含まれる総フラクトース量(遊離性糖質)は、含水率が高い状態で室温に保存することにより、急速にその含有率が減少した。
一方、含水率を高い状態にした後、直ちに65℃で加熱処理し、その後含水率が高い状態で室温保存したものでは、総フラクトース量(遊離性糖質)は、室温保存前(試験前)とほぼ同じ値であった。
また、含水率を低く維持した状態(乾燥状態)で室温保存したものでは、総フラクトース量(遊離性糖質)は、殆ど変化しなかった。
このように、稲わら粉末中の遊離性糖質は、加湿後の室温放置により急速に減少し、原料中の遊離糖を保持するためには、加熱処理をすること、または、乾燥処理後に乾燥状態で保存すること、が有効であることが示された。
As Table 5 shows, the total fructose content (free saccharides) contained in rice straw powder decreased rapidly when stored at room temperature with a high water content.
On the other hand, in the case where the moisture content is increased and then immediately heated at 65 ° C. and then stored at room temperature with a high moisture content, the total fructose amount (free carbohydrate) is measured before storage at room temperature (before the test). And almost the same value.
In addition, the total amount of fructose (free carbohydrate) hardly changed in the case where the water content was kept at a low temperature (dry state) and stored at room temperature.
In this way, free sugars in rice straw powder rapidly decrease when left at room temperature after humidification. In order to retain the free sugar in the raw material, heat treatment or drying after the drying process is performed. Saving in a state has been shown to be effective.

試験例3
試験例1で調製した、稲わら粉末(試料E1−1,E1−2,E1−5〜E1−7,E1−9,E1−10,E1−12:いずれも、成熟期の植物体地上部を地際から刈り取り、穂を除いて葉鞘と稈を取り出したものからの稲わら粉末)中に存在するβ−(1→3),β−(1→4)グルカン量を、Mixed-Linkage Beta-Glucanキット(メガザイム社)を用いて測定した。
また、これらのでん粉含有量についても、Total starch kit(メガザイム社)を用いて測定し、茎葉部の乾燥重量あたりのでん粉率を求めた。結果を表6に示す。
Test example 3
Rice straw powder prepared in Test Example 1 (Samples E1-1, E1-2, E1-5 to E1-7, E1-9, E1-10, E1-12: all above the plant part above the mature stage) Rice-powder, rice straw powder from which leaf sheath and cocoon were taken out except for the ears) β- (1 → 3), β- (1 → 4) glucan content in Mixed-Linkage Beta -Measured using Glucan kit (Megazyme).
Moreover, these starch content was also measured using Total starch kit (Megazyme), and the starch ratio per dry weight of the foliage was determined. The results are shown in Table 6.

Figure 2009183264
Figure 2009183264

その結果、でん粉率が5%以上の稲の植物体地上部(試料E1−1,E1−2およびE1−5)には、でん粉率が5%より低い稲の植物体地上部(試料E1−6,E1−7,E1−9,E1−10およびE1−12)と比較して、β−(1→3),β−(1→4)グルカン含有量が高い値となる傾向が観察された。
As a result, the above-ground part of rice plants having a starch rate of 5% or more (samples E1-1, E1-2, and E1-5) has the above-ground part of rice plants having a starch rate lower than 5% (sample E1- 6, E1-7, E1-9, E1-10 and E1-12), β- (1 → 3), β- (1 → 4) glucan content tends to be higher. It was.

本発明は、茎葉部の乾燥重量あたり5%以上のでん粉を含有する稲の植物体地上部を原料とした、低コスト・低環境負荷性の効率的なバイオマス糖化技術に関するものであり、バイオエタノール製造技術の開発、バイオリファイナリー技術の開発に繋がることが期待される。
特に、我が国のみならず世界中で喫緊の課題となっている、バイオエタノール生産技術開発に新機軸を提供するものとして、極めて重要性が高いと認められる。
また、本発明によれば、酵素糖化残渣などの副生成物の飼料、肥料や燃料分野への利用が可能である。
The present invention relates to an efficient biomass saccharification technology that uses low-cost, low-environmental environmentally-friendly biomass saccharification technology, which uses raw material of rice plant containing 5% or more of starch per dry weight of foliage. It is expected to lead to the development of manufacturing technology and biorefinery technology.
In particular, it is recognized as extremely important as a new innovation in the development of bioethanol production technology, which is an urgent issue not only in Japan but around the world.
Further, according to the present invention, by-products such as enzyme saccharification residue can be used in feed, fertilizer and fuel fields.

実施例1において、稲わら粉末の糖化処理におけるグルカン加水分解度の経時変化を示す図である。グラフにおける黒塗りの四角形は試料1−1を、黒塗りの菱形は試料1−2を示す。In Example 1, it is a figure which shows the time-dependent change of the glucan hydrolysis degree in the saccharification process of rice straw powder. Black squares in the graph indicate Sample 1-1, and black diamonds indicate Sample 1-2. 実施例2における、稲わら粉末の糖化処理におけるグルカン加水分解度の経時変化を示す図である。グラフにおける黒塗りの菱形は試料2−1を、黒塗りの四角形は試料2−2を示す。It is a figure which shows the time-dependent change of the glucan hydrolysis degree in the saccharification process of the rice straw powder in Example 2. In the graph, a black diamond indicates Sample 2-1, and a black rectangle indicates Sample 2-2. 実施例3における、稲わら粉末の糖化処理におけるグルコース遊離量の経時変化を示す図である。グラフにおける黒塗りの菱形は試料3−1を、黒塗りの四角形は試料3−2を示す。It is a figure which shows the time-dependent change of the glucose release amount in the saccharification process of the rice straw powder in Example 3. In the graph, a black diamond represents the sample 3-1, and a black square represents the sample 3-2. 実施例4における、稲わら粉末の糖化処理におけるグルコース遊離量の経時変化を示す図である。グラフにおける黒塗りの菱形は試料4−1を、黒塗りの四角形は試料4−2を、黒塗りの三角形は試料4−3を、バツ印は試料4−4を示す。It is a figure which shows the time-dependent change of the glucose release amount in the saccharification process of the rice straw powder in Example 4. In the graph, black diamonds indicate Sample 4-1, black squares indicate Sample 4-2, black triangles indicate Sample 4-3, and crosses indicate Sample 4-4. 実施例6における、稲わら粉末の糖化処理におけるグルコース遊離量の経時変化を示す図である。グラフにおける黒塗りの菱形は試料6−1を、黒塗りの四角形は試料6−2を、三角形は試料6−3を示す。It is a figure which shows the time-dependent change of the glucose release amount in the saccharification process of the rice straw powder in Example 6. In the graph, a black diamond represents the sample 6-1, the black square represents the sample 6-2, and the triangle represents the sample 6-3.

Claims (13)

茎葉部に乾燥重量あたり5%以上のでん粉を含有する稲の植物体地上部を回収し、粉砕した後に、アミログルコシダーゼおよびβ−グルカン分解酵素を含む酵素液を用いて糖化処理することを特徴とする糖化法。   The plant body part of rice plants containing 5% or more starch per dry weight in the foliage is collected, ground, and then saccharified using an enzyme solution containing amyloglucosidase and β-glucan degrading enzyme. Saccharification method. 前記植物体地上部が成熟した実を除いた茎葉部である、請求項1に記載の糖化法。   The saccharification method according to claim 1, wherein the above-ground part of the plant body is a foliage part excluding mature fruits. 前記植物体地上部が、出穂期から成熟期のものである、請求項1または2のいずれかに記載の糖化法。   The saccharification method according to claim 1, wherein the above-ground part of the plant body is from the heading stage to the mature stage. 前記植物体地上部が、地際部分を含むものである、請求項1〜3のいずれかに記載の糖化法。   The saccharification method according to any one of claims 1 to 3, wherein the above-ground part of the plant body includes a border part. 前記植物体地上部を回収した後、24時間以内に、40〜130℃での加熱処理を行う、および/または、乾燥処理を行う、ことにより、前記植物体地上部を、前記植物体地上部の植物体細胞および前記植物体内や表面に生息する微生物のショ糖、グルコースおよびフラクトース資化活性が抑制されたものにする、
請求項1〜4のいずれかに記載の糖化法。
After recovering the above-ground part of the plant body, by performing a heat treatment at 40 to 130 ° C. and / or performing a drying treatment within 24 hours, the above-ground part of the plant body is converted into the above-mentioned part of the plant body. Sucrose, glucose and fructose utilization activity of the plant body cells and microorganisms that inhabit the plant body and the surface thereof are suppressed,
The saccharification method according to any one of claims 1 to 4.
請求項5に記載の方法において、前記資化活性が抑制されたものとなった前記植物体地上部が、前記植物体地上部の乾燥重量に対してショ糖を4%以上、グルコースを0.5%以上、および、フルクトースを0.5%以上含むものである、請求項5に記載の糖化法。   6. The method according to claim 5, wherein the above-ground part of the plant body in which the assimilation activity is suppressed is 4% or more of sucrose and 0. 0% of glucose with respect to the dry weight of the above-ground part of the plant body. The saccharification method according to claim 5, wherein the saccharification method comprises 5% or more and 0.5% or more of fructose. 前記植物体地上部に含有される総グルカン量のうち、50%以上をグルコースとして回収する、請求項1〜6のいずれかに記載の糖化法。   The saccharification method in any one of Claims 1-6 which collect | recovers 50% or more as glucose among the total glucan content contained in the said plant body above-ground part. 前記β−グルカン分解酵素が、非晶質のセルロース、結晶性のセルロース、およびβ−(1→3),β−(1→4)−グルカンのうちの少なくとも一つを加水分解する活性を有するものである、請求項1〜7のいずれかに記載の糖化法。   The β-glucan degrading enzyme has an activity of hydrolyzing at least one of amorphous cellulose, crystalline cellulose, and β- (1 → 3), β- (1 → 4) -glucan. The saccharification method in any one of Claims 1-7 which is a thing. 前記アミログルコシダーゼおよびβ−グルカン分解酵素を含む酵素液が、セロビオハイドロラーゼおよびエンドグルカナーゼの両方の活性を有するものである、請求項1〜8のいずれかに記載の糖化法。   The saccharification method according to any one of claims 1 to 8, wherein the enzyme solution containing amyloglucosidase and β-glucan degrading enzyme has both cellobiohydrolase and endoglucanase activities. 前記アミログルコシダーゼおよびβ−グルカン分解酵素を含む酵素液が、ヘミセルロース分解酵素、β-グルコシダーゼ、およびα-アミラーゼのうちの少なくとも一つを含有する、請求項1〜9のいずれかに記載の糖化法。   The saccharification method according to any one of claims 1 to 9, wherein the enzyme solution containing amyloglucosidase and β-glucan-degrading enzyme contains at least one of hemicellulose-degrading enzyme, β-glucosidase, and α-amylase. . 前記アミログルコシダーゼおよび/またはβ-グルカン分解酵素が、微生物由来の酵素または酵素製剤である、請求項1〜10のいずれかに記載の糖化法。   The saccharification method according to any one of claims 1 to 10, wherein the amyloglucosidase and / or β-glucan degrading enzyme is a microorganism-derived enzyme or enzyme preparation. 前記糖化処理の前において、および/または、前記糖化処理において、70〜130℃の加熱処理を行う、請求項1〜11のいずれかに記載の糖化法。   The saccharification method according to any one of claims 1 to 11, wherein a heat treatment at 70 to 130 ° C is performed before the saccharification treatment and / or in the saccharification treatment. 請求項1〜12のいずれかに記載の糖化法により得られた糖化液を用いてエタノール発酵を行うことを特徴とする、エタノールの製造法。   A method for producing ethanol, comprising performing ethanol fermentation using the saccharified solution obtained by the saccharification method according to any one of claims 1 to 12.
JP2008045766A 2008-01-11 2008-02-27 Saccharification method of rice straw Expired - Fee Related JP5322151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045766A JP5322151B2 (en) 2008-01-11 2008-02-27 Saccharification method of rice straw

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008004393 2008-01-11
JP2008004393 2008-01-11
JP2008045766A JP5322151B2 (en) 2008-01-11 2008-02-27 Saccharification method of rice straw

Publications (2)

Publication Number Publication Date
JP2009183264A true JP2009183264A (en) 2009-08-20
JP5322151B2 JP5322151B2 (en) 2013-10-23

Family

ID=41067230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045766A Expired - Fee Related JP5322151B2 (en) 2008-01-11 2008-02-27 Saccharification method of rice straw

Country Status (1)

Country Link
JP (1) JP5322151B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010035431A (en) * 2008-07-31 2010-02-18 National Agriculture & Food Research Organization Method for saccharifying rice
JP2012050408A (en) * 2010-09-03 2012-03-15 Aomori Prefectural Industrial Technology Research Center Saccharification raw material and method for producing the same, and method for producing ethanol
JP2013516998A (en) * 2010-01-20 2013-05-16 ザイレコ,インコーポレイテッド Method and system for saccharification and fermentation of biomass feedstock
US9453250B2 (en) 2010-01-20 2016-09-27 Xyleco, Inc. Processing materials
KR102405022B1 (en) * 2021-09-01 2022-06-07 주식회사 코씨드바이오팜 Cosmetic Composition Comprising Plants With Low Molecular Weight Cellulose As Active Ingredient
CN116133533A (en) * 2020-07-21 2023-05-16 丸米株式会社 Sweetener derived from rice, food comprising sweetener derived from rice and method of manufacture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136263A (en) * 2004-11-12 2006-06-01 National Institute Of Advanced Industrial & Technology Method for treating lignocellulosic biomass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136263A (en) * 2004-11-12 2006-06-01 National Institute Of Advanced Industrial & Technology Method for treating lignocellulosic biomass

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN7013001336; Starch Vol.38, 1986, p.428-432 *
JPN7013001337; Process Biochem Vol.32, 1997, p.405-415 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010035431A (en) * 2008-07-31 2010-02-18 National Agriculture & Food Research Organization Method for saccharifying rice
KR20170124633A (en) * 2010-01-20 2017-11-10 질레코 인코포레이티드 Method and system for saccharifying and fermenting a biomass feedstock
JP2013516998A (en) * 2010-01-20 2013-05-16 ザイレコ,インコーポレイテッド Method and system for saccharification and fermentation of biomass feedstock
US9453250B2 (en) 2010-01-20 2016-09-27 Xyleco, Inc. Processing materials
JP2016214244A (en) * 2010-01-20 2016-12-22 ザイレコ,インコーポレイテッド Method and system for saccharifying and fermenting biomass feedstock
US9631208B2 (en) 2010-01-20 2017-04-25 Xyleco, Inc. Processing materials
KR101798254B1 (en) * 2010-01-20 2017-11-15 질레코 인코포레이티드 Method and system for saccharifying and fermenting a biomass feedstock
US9873897B2 (en) 2010-01-20 2018-01-23 Xyleco, Inc. Processing materials
JP2018086007A (en) * 2010-01-20 2018-06-07 ザイレコ,インコーポレイテッド Method and system for saccharifying and fermenting biomass feedstock
KR101884147B1 (en) * 2010-01-20 2018-07-31 질레코 인코포레이티드 Method and system for saccharifying and fermenting a biomass feedstock
JP2012050408A (en) * 2010-09-03 2012-03-15 Aomori Prefectural Industrial Technology Research Center Saccharification raw material and method for producing the same, and method for producing ethanol
CN116133533A (en) * 2020-07-21 2023-05-16 丸米株式会社 Sweetener derived from rice, food comprising sweetener derived from rice and method of manufacture
KR102405022B1 (en) * 2021-09-01 2022-06-07 주식회사 코씨드바이오팜 Cosmetic Composition Comprising Plants With Low Molecular Weight Cellulose As Active Ingredient

Also Published As

Publication number Publication date
JP5322151B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5633839B2 (en) Method for converting lignocellulosic biomass
Chen et al. Potential of agricultural residues and hay for bioethanol production
US8563277B1 (en) Methods and systems for saccharification of biomass
US20220090156A1 (en) Methods and Systems For Saccharification of Biomass
CN103597085A (en) Methods for converting lignocellulosic material to useful products
CN104903462B (en) Method for enzymatic hydrolysis ligno-cellulosic materials
WO2009061740A2 (en) Process of producing ethanol using cellulose with enzymes generated through solid state culture
JP5322151B2 (en) Saccharification method of rice straw
CN106978454A (en) The technique for preparing tunning from the material of lignocellulose-containing
Park et al. Efficient recovery of glucose and fructose via enzymatic saccharification of rice straw with soft carbohydrates
KR20150028959A (en) Methods of hydrolyzing pretreated densified biomass particulates and systems related thereto
WO2014169079A2 (en) Increased productivity during fermentation
EP2836602B1 (en) Methods and systems for saccharification of biomass
Ray et al. Sweet sorghum for bioethanol production: scope, technology, and economics
Guo et al. Production of cellulosic ethanol and value-added products from corn fiber
CN105200096A (en) Methods Of Processing Ensiled Biomass
EP2864493B1 (en) Production of enzymes for ligno-cellulosic biomass
Lalitha et al. Use of fruit biomass peel residue for ethanol production
JP2016504032A (en) Stabilized chlorine dioxide for pollution control in zymomonas fermentations
Serna-Saldivar et al. Production and supply logistics of sweet sorghum as an energy feedstock
CN106032542B (en) Method for producing ethanol by fermenting cellulose hydrolysate
JP5311548B2 (en) Rice saccharification method
Turini et al. Enzymatic hydrolysis of carbohydrates in by-products of processed rice
De Menezes et al. Saccharification of bamboo carbohydrates for the production of ethanol
CN111793662A (en) Method for pretreating lignocellulose by adding alkaline reagent in densification process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees