JP2009181899A - Laminated battery - Google Patents

Laminated battery Download PDF

Info

Publication number
JP2009181899A
JP2009181899A JP2008021653A JP2008021653A JP2009181899A JP 2009181899 A JP2009181899 A JP 2009181899A JP 2008021653 A JP2008021653 A JP 2008021653A JP 2008021653 A JP2008021653 A JP 2008021653A JP 2009181899 A JP2009181899 A JP 2009181899A
Authority
JP
Japan
Prior art keywords
current collecting
collecting tab
positive electrode
tab
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008021653A
Other languages
Japanese (ja)
Inventor
Hitoshi Maeda
仁史 前田
Masayuki Fujiwara
雅之 藤原
Masataka Shinyashiki
昌孝 新屋敷
Atsuhiro Funabashi
淳浩 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008021653A priority Critical patent/JP2009181899A/en
Publication of JP2009181899A publication Critical patent/JP2009181899A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated battery capable of suppressing drop in battery performance caused by penetration of moisture or the like into the battery and cutting of a current collecting tab even when outside force is applied while suppressing great rising of a production cost. <P>SOLUTION: The laminated battery has a laminated electrode body 10 formed by alternately laminating each of a plurality of positive electrode plates 1 from each of which a positive current collecting tab 11 is extended and each of a plurality of negative electrode plates 2 from each of which a negative current collecting tab 12 is extended through a separator 3. The positive current collecting tab 11 is joined to a positive current collecting terminal 15 in a piled-up state; the negative current collecting tab 12 is joined to a negative current collecting terminal 16 in a piled-up state. These current collecting terminals 15, 16 are projected from a laminate outer packaging 25, and an insulating resin layer 20 covering at least part of the positive current collecting tab 11 is formed in the positive current collecting tab 11. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、ロボット、電気自動車、バックアップ電源等に使用される積層式電池に関し、特に、ハイレートでの充放電特性を向上させることができる積層式リチウムイオン電池に関する。   The present invention relates to a stacked battery used in, for example, a robot, an electric vehicle, a backup power supply, and the like, and more particularly to a stacked lithium ion battery capable of improving charge / discharge characteristics at a high rate.

近年、電池は、携帯電話、ノートパソコン、PDA等の移動情報端末の電源のみならず、ロボット、電気自動車、バックアップ電源などに使用されるようになってきており、さらなる高容量化が要求されるようになってきている。このような要求に対し、リチウムイオン電池は、高いエネルギー密度を有し、高容量であるので、上記のような駆動電源として広く利用されている。   In recent years, batteries have been used not only for power sources of mobile information terminals such as mobile phones, notebook personal computers, and PDAs, but also for robots, electric vehicles, backup power sources, etc., and further increase in capacity is required. It has become like this. In response to such demands, lithium ion batteries have a high energy density and high capacity, and are therefore widely used as drive power sources as described above.

このようなリチウムイオン電池の電池形態としては、大別して、渦巻状の電極体を有底筒状の外装体に封入した筒型のものと、方形状電極を複数積層した積層電極体を有底角状の外装体または2枚のラミネートフィルムを溶着することにより作製したラミネート外装体に封入した積層式のものとがある。   Battery types of such a lithium ion battery are roughly classified into a cylindrical type in which a spiral electrode body is enclosed in a bottomed cylindrical exterior body, and a laminated electrode body in which a plurality of rectangular electrodes are stacked. There is a laminated type encapsulated in a rectangular outer package or a laminate outer package produced by welding two laminated films.

これらリチウムイオン電池のうち、積層電極体をラミネート外装体に封入した積層式電池の積層電極体の具体的な構成は、正極集電タブを有するシート状の正極板と、負極集電タブを有するシート状の負極板とを、セパレータを介して必要な数だけ積層するような構成である。   Among these lithium ion batteries, the specific configuration of the laminated electrode body of the laminated battery in which the laminated electrode body is enclosed in a laminated outer package has a sheet-like positive electrode plate having a positive electrode current collecting tab and a negative electrode current collecting tab. A sheet-like negative electrode plate is laminated in a required number via a separator.

ここで、上述の如く、リチウムイオン電池は高容量、高出力のために、積層電極内の一部で内部短絡が起きると短絡部へ積層電極から大電流が流れ込むおそれがあり、この大電流が流れ込んだときは、このリチウムイオン電池自体が損傷する等の不良が生ずると共にこのリチウムイオン電池自体に発熱が起こり、多量の熱を周囲に放出する不都合があった。   Here, as described above, since the lithium ion battery has a high capacity and high output, if an internal short circuit occurs in a part of the laminated electrode, a large current may flow from the laminated electrode to the short-circuited portion. When flowing in, the lithium ion battery itself has a defect such as damage, and the lithium ion battery itself generates heat, which causes inconvenience of releasing a large amount of heat to the surroundings.

このようなことを考慮して、集電タブをヒューズ部とし、このヒューズ部の断面積を、集電体の抵抗率(μΩ・mm)×正極電極面積(mm2 )×4.27×10-7<ヒューズ部断面積(mm2 )<集電体の抵抗率(μΩ・mm)×正極電極面積(mm2 )×2.41×10-6と規制するような提案がなされている(下記特許文献1参照)。 Considering this, the current collector tab is used as a fuse portion, and the cross-sectional area of the fuse portion is defined as the current collector resistivity (μΩ · mm) × positive electrode area (mm 2 ) × 4.27 × 10. -7 <Fuse section cross-sectional area (mm 2 ) <current collector resistivity (μΩ · mm) × positive electrode area (mm 2 ) × 2.41 × 10 −6 See Patent Document 1 below).

また、電池の安全性の向上を図るべく、渦巻状の電極体を備えた電池の正極電極、負極電極のいずれかの巻き始め部に取り付けた集電タブにPTC素子を直列に接続するとともに、このPTC素子を電池要素内部に位置させるような電池が提案されている(下記特許文献2参照)。   In addition, in order to improve the safety of the battery, the PTC element is connected in series to the current collecting tab attached to the winding start portion of either the positive electrode or the negative electrode of the battery provided with the spiral electrode body, A battery in which the PTC element is positioned inside the battery element has been proposed (see Patent Document 2 below).

特開平08−185850号公報Japanese Patent Laid-Open No. 08-185850 特開2002−110137号公報JP 2002-110137 A

ここで、上記特許文献1に記載の技術では、内部短絡等で異常電流が流れた際、当該異常電流が流れた部位の集電タブは溶断されるので、電池の安全性はある程度確保できる。しかしながら、溶断された集電タブは露出した状態にあるので、当該集電タブが隣接する集電タブと接触した場合には、隣接する集電タブから異常電流が流れて、電池が発熱したりすることがある。また、溶断された集電タブとラミネート外装体のアルミニウム層とが接触して、アルミニウムが腐食し、この結果、電池内部に水分等が侵入して電池性能が低下することがある。更に、集電タブは箔状であるため強度が小さく、外力が加わった場合にリード部が切断することがある。尚、ラミネート外装体は、金属層の両面に樹脂層が形成されているものであるため、集電タブとラミネート外装体のアルミニウム層とが直接接触することはないのでは、とも考えられる。しかしながら、樹脂層には傷、ボイド、クラック等が存在することがあるため、樹脂が欠けている部分もある。したがって、溶断された集電タブとラミネート外装体のアルミニウム層とが直接接触することは起こりうる。   Here, in the technique described in Patent Document 1, when an abnormal current flows due to an internal short circuit or the like, the current collecting tab of the portion where the abnormal current flows is melted, so that the safety of the battery can be ensured to some extent. However, since the melted current collecting tab is in an exposed state, if the current collecting tab comes into contact with the adjacent current collecting tab, an abnormal current flows from the adjacent current collecting tab, and the battery generates heat. There are things to do. In addition, the melted current collecting tab and the aluminum layer of the laminate outer body come into contact with each other, and the aluminum is corroded. As a result, moisture or the like may enter the battery and the battery performance may be deteriorated. Furthermore, since the current collecting tab is foil-like, the strength is small, and the lead portion may be cut when an external force is applied. In addition, since the laminate exterior body has a resin layer formed on both surfaces of the metal layer, it is considered that the current collecting tab and the aluminum layer of the laminate exterior body are not in direct contact. However, since the resin layer may have scratches, voids, cracks, etc., there are portions where the resin is missing. Therefore, direct contact between the melted current collecting tab and the aluminum layer of the laminate outer package may occur.

また、上記特許文献2に記載の技術では、PTC素子の存在により、内部短絡等で異常電流が流れた場合の電池の安全性はある程度確保できるが、積層型電池にこの技術を適用するには各集電タブにそれぞれPTC素子を接続する必要があり、電池に製造工程が複雑化して製造コストが高騰する。   In the technique described in Patent Document 2, the presence of the PTC element can ensure the safety of the battery when an abnormal current flows due to an internal short circuit or the like. However, in order to apply this technique to a stacked battery, It is necessary to connect a PTC element to each current collecting tab, which complicates the manufacturing process of the battery and increases the manufacturing cost.

本発明は上記課題を考慮したものであって、製造コストの大幅な高騰を抑制しつつ、電池が発熱したり、電池内部に水分等が侵入したりすることに起因する電池性能の低下、及び、外力が加わった場合であっても集電タブが切断するのを抑制することができる積層式電池を提供することを目的としている。   The present invention takes the above-mentioned problems into consideration, and while suppressing a significant increase in manufacturing cost, the battery generates heat, or the battery performance is reduced due to moisture or the like entering the battery, and An object of the present invention is to provide a stacked battery that can prevent the current collector tab from being cut even when an external force is applied.

上記目的を達成するために本発明は、各々正極集電タブが延出された複数の正極板と、各々負極集電タブが延出された複数の負極板とが、セパレータを介して交互に積層された積層電極体を有すると共に、この積層電極体が外装体の収納空間内に配置され、且つ、上記正極集電タブは重畳状態で正極集電端子に接合され、上記負極集電タブは重畳状態で負極集電端子に接合され、これら両集電端子が外装体から突出する積層式電池において、上記両集電タブのうち少なくとも一方の集電タブには、当該集電タブの少なくとも一部を覆う絶縁層が形成されていることを特徴とする。   In order to achieve the above object, the present invention provides a plurality of positive electrode plates each extending from a positive electrode current collecting tab and a plurality of negative electrode plates each extending from a negative electrode current collecting tab, alternately through separators. The laminated electrode body has a laminated electrode body, the laminated electrode body is disposed in a housing space of the exterior body, and the positive electrode current collecting tab is joined to the positive electrode current collecting terminal in an overlapping state, and the negative electrode current collecting tab is In a stacked battery that is joined to the negative electrode current collector terminal in an overlapping state and both the current collector terminals protrude from the outer package, at least one of the current collector tabs includes at least one of the current collector tabs. An insulating layer covering the portion is formed.

通常、集電タブに電流が流れると集電タブが発熱し、所定の電流値以上の電流(異常電流)が流れると、大きな発熱により集電タブが溶断することが知られている。そこで、上記構成の如く、集電タブの少なくとも一部を覆う絶縁層が形成されていれば、当該絶縁層が存在する部位は、絶縁層が存在しない部位よりも放熱性に劣るため、絶縁層が存在する部位の温度上昇が大きくなる。この結果、異常電流が流れた場合には、絶縁層が存在する部位で集電タブが溶断される。   In general, it is known that when a current flows through the current collecting tab, the current collecting tab generates heat, and when a current (abnormal current) of a predetermined current value or more flows, the current collecting tab is blown by large heat generation. Therefore, if an insulating layer covering at least a part of the current collecting tab is formed as in the above configuration, the portion where the insulating layer is present is inferior in heat dissipation than the portion where the insulating layer is not present. Increase in the temperature of the site where is present. As a result, when an abnormal current flows, the current collecting tab is melted at a portion where the insulating layer exists.

このように、絶縁層が存在する部位で集電タブが溶断されると、溶断部分の集電タブは絶縁層に覆われている(集電タブは露出した状態にない)ので、当該集電タブが溶断後に隣接する集電タブ方向に変形しても、溶断した集電タブと隣接する集電タブとが電気的に接続されることがない。したがって、隣接する集電タブから異常電流が流れて、電池が発熱するのを防止できる。また、絶縁層の存在により箔状の集電タブの強度がある程度大きくなるので、外力が加わった場合に集電タブが切断するのを抑制できる。   In this way, when the current collecting tab is melted at the site where the insulating layer is present, the current collecting tab at the melted portion is covered with the insulating layer (the current collecting tab is not exposed). Even if the tab is deformed in the direction of the adjacent current collecting tab after being melted, the melted current collecting tab and the adjacent current collecting tab are not electrically connected. Accordingly, it is possible to prevent the battery from generating heat due to an abnormal current flowing from the adjacent current collecting tab. Further, since the strength of the foil-like current collecting tab is increased to some extent due to the presence of the insulating layer, it is possible to suppress the current collecting tab from being cut when an external force is applied.

上記外装体として、金属層と樹脂層とを備えた2枚のラミネートフィルムの周縁同士を接合することにより形成されたラミネート外装体、又は、金属層と樹脂層とを備えた1枚のラミネートフィルムを折り返して周縁同士を接合することにより形成されたラミネート外装体が用いられていることが望ましい。
外装体としてラミネート外装体を用いた場合に、溶断した集電タブがラミネート外装体方向に変形しても、溶断部分の集電タブは絶縁層に覆われているので、溶断した集電タブとアルミニウム層とが電気的に接続されることがない。したがって、アルミニウムの腐食に起因して、電池内部に水分等が侵入し電池性能が低下する等の不都合が発生するのを抑制できる。
As said exterior body, the laminate exterior body formed by joining the periphery of two laminate films provided with the metal layer and the resin layer, or one laminate film provided with the metal layer and the resin layer It is desirable to use a laminate outer body formed by folding back and joining the peripheral edges.
When a laminated outer package is used as the outer package, even if the melted current collecting tab is deformed in the direction of the laminated outer package, the fused current collecting tab is covered with an insulating layer. The aluminum layer is not electrically connected. Therefore, it is possible to suppress the occurrence of inconveniences such as moisture entering into the battery and lowering the battery performance due to corrosion of the aluminum.

上記絶縁層は絶縁性樹脂から成ることが望ましく、特に、絶縁性樹脂としてポリテトラフルオロエチレン樹脂が用いられていることが望ましい。
一般的に、絶縁性樹脂は安価で且つ容易に塗布することができるからであり、このような点を考慮すると、ポリテトラフルオロエチレン樹脂がより好ましい。
但し、本発明の絶縁層を形成する素材としては絶縁性樹脂に限定するものではなく、例えば、SiO2やTiO2を含むゲル状接着剤を用いても良い。また、絶縁性樹脂としては、ポリテトラフルオロエチレン樹脂に限定されるものではなく、エポキシ樹脂等であっても良い。
The insulating layer is preferably made of an insulating resin, and in particular, a polytetrafluoroethylene resin is preferably used as the insulating resin.
In general, the insulating resin is inexpensive and can be easily applied. In consideration of such points, polytetrafluoroethylene resin is more preferable.
However, the material for forming the insulating layer of the present invention is not limited to the insulating resin, and for example, a gel adhesive containing SiO 2 or TiO 2 may be used. The insulating resin is not limited to polytetrafluoroethylene resin, and may be an epoxy resin or the like.

上記絶縁層は上記重畳状態にある集電タブを一体的に覆っていることが望ましい。
各集電タブに各々樹脂層を形成することもできるが、重畳状態にある集電タブを一体的に覆うような絶縁層を形成しても本発明の作用効果は発揮される。この場合には、各集電タブに各々樹脂層を形成するよりも短時間で絶縁層を形成できる。
加えて、切断した集電タブが隣接する集電タブやラミネート外装体方向に変形するのが抑えられるので、上述した作用効果が一層発揮される。
It is desirable that the insulating layer integrally covers the current collecting tab in the superimposed state.
Although a resin layer can be formed on each current collecting tab, the effect of the present invention can be exhibited even if an insulating layer is formed so as to integrally cover the current collecting tabs in a superimposed state. In this case, the insulating layer can be formed in a shorter time than forming the resin layer on each current collecting tab.
In addition, since the cut current collecting tab is prevented from being deformed in the direction of the adjacent current collecting tab or the laminate outer package, the above-described effects are further exhibited.

上記絶縁層が形成された集電タブのうち、最も上記ラミネート外装体に最も近い位置に存在する集電タブには、集電端子との接合部から極板に至るまで上記樹脂層が形成されていることが望ましい。
外部から力が加わった場合、上記ラミネート外装体に最も近い位置に存在する集電タブ(以下、最外集電タブと称するときがある)は他の集電タブよりも大きな負荷が加わって、最外集電タブが切断することが多い。そこで、最外集電タブに、集電端子との接合部から極板に至るまで樹脂層を形成することにより、最外集電タブの切断が抑制される。
Among the current collecting tabs on which the insulating layer is formed, the resin layer is formed on the current collecting tab located closest to the laminate outer package from the junction with the current collecting terminal to the electrode plate. It is desirable that
When a force is applied from the outside, the current collecting tab (hereinafter sometimes referred to as the outermost current collecting tab) present at the position closest to the laminate exterior body is subjected to a larger load than the other current collecting tabs, The outermost current collecting tab often cuts. Therefore, by forming a resin layer on the outermost current collecting tab from the junction with the current collecting terminal to the electrode plate, cutting of the outermost current collecting tab is suppressed.

上記正極板に用いられる正極活物質と、上記負極板に用いられる負極活物質とが、リチウムを吸蔵放出できる材料から構成されていることが望ましい。
正極活物質と負極活物質とがリチウムを吸蔵放出できる材料から構成されるリチウムイオン電池では、発熱等の問題が特に生じ易いので、本発明の構成を適用する効果が大きい。
It is desirable that the positive electrode active material used for the positive electrode plate and the negative electrode active material used for the negative electrode plate are made of a material capable of occluding and releasing lithium.
In a lithium ion battery in which the positive electrode active material and the negative electrode active material are made of a material capable of occluding and releasing lithium, problems such as heat generation are particularly likely to occur, so the effect of applying the configuration of the present invention is great.

本発明によれば、絶縁層が存在する部位で集電タブが溶断されるので、当該溶断された集電タブが隣接する集電タブ方向に変形しても、溶断した集電タブと隣接する集電タブとが電気的に接続されない。したがって、隣接する集電タブに異常電流が流れることに起因する電池の発熱を抑制できる。また、絶縁層の存在により箔状の集電タブの強度がある程度大きくなるので、外力が加わった場合に集電タブが切断するのを抑制できるといった優れた効果を奏する。   According to the present invention, since the current collecting tab is melted at the portion where the insulating layer is present, even if the melted current collecting tab is deformed in the direction of the adjacent current collecting tab, the current collecting tab is adjacent to the melted current collecting tab. The current collector tab is not electrically connected. Therefore, the heat generation of the battery due to the abnormal current flowing through the adjacent current collecting tab can be suppressed. Further, since the strength of the foil-like current collecting tab is increased to some extent due to the presence of the insulating layer, there is an excellent effect that the current collecting tab can be prevented from being cut when an external force is applied.

以下、本発明の一例に係る積層式電池(角型リチウムイオン電池)を、図1〜図12に基づいて説明する。なお、本発明における積層式電池は、下記の形態に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, a stacked battery (rectangular lithium ion battery) according to an example of the present invention will be described with reference to FIGS. The laminated battery according to the present invention is not limited to those shown in the following embodiments, and can be implemented with appropriate modifications within a range not changing the gist thereof.

(積層式電池の構造)
図1に示すように、積層式電池は積層電極体10を有しており、この積層電極体10は、2枚のセパレータから成り内部に正極板1が配置された袋状セパレータ3と負極板2とが多数積層され、且つ、最外位置には負極板2が配置される構造となっている。このように、最外位置に負極板2が配置されることから、負極板2の枚数が正極板1の枚数より1枚多くなるように構成されている(具体的には、正極板1は50枚、負極板2は51枚で構成されている)。また、図示はしないが、最外位置に存在する負極板2の外側にはポリプロピレン製の形状保持シートが配置されており、また、図5に示すように、積層電極体10の外周部には積層電極体10を跨ぐように、各電極板1、2のずれを抑制するためのテープ5が貼着されている。更に、上記積層電極体10は、図2に示すような2枚のラミネートフィルム28を溶着することにより形成したラミネート外装体25の収納空間の内部に、電解液と共に封入されており、上記ラミネート外装体25からは、アルミニウム板(厚さ:0.5mm)から成る正極集電端子15と、銅板(厚さ:0.5mm)から成る負極集電端子16とが突出する構造となっている。尚、上記ラミネートフィルム28はアルミニウム箔の両面に樹脂層が形成される構造であり、また、図2の符号27は2枚のラミネートフィルム28の溶着部である。
(Structure of stacked battery)
As shown in FIG. 1, the laminated battery has a laminated electrode body 10, and this laminated electrode body 10 is composed of two separators, a bag-like separator 3 having a positive electrode plate 1 disposed therein, and a negative electrode plate. 2 is laminated, and the negative electrode plate 2 is arranged at the outermost position. Thus, since the negative electrode plate 2 is arranged at the outermost position, the number of the negative electrode plates 2 is configured to be one more than the number of the positive electrode plates 1 (specifically, the positive electrode plate 1 is 50 sheets and 51 negative electrode plates 2). Although not shown, a polypropylene shape holding sheet is disposed outside the negative electrode plate 2 located at the outermost position. Also, as shown in FIG. A tape 5 for suppressing displacement of the electrode plates 1 and 2 is attached so as to straddle the laminated electrode body 10. Further, the laminated electrode body 10 is sealed together with an electrolytic solution in a storage space of a laminated exterior body 25 formed by welding two laminated films 28 as shown in FIG. From the body 25, a positive electrode current collecting terminal 15 made of an aluminum plate (thickness: 0.5 mm) and a negative electrode current collecting terminal 16 made of a copper plate (thickness: 0.5 mm) are projected. The laminate film 28 has a structure in which a resin layer is formed on both surfaces of an aluminum foil, and reference numeral 27 in FIG. 2 is a welded portion of the two laminate films 28.

上記正極板1は、図3(a)に示すように、方形状のアルミニウム箔(厚さ:15μm)から成る正極用導電性芯体の両面の全面に、LiCoO2から成る正極活物質と、カーボンブラックから成る導電剤と、ポリフッ化ビニリデンから成る結着剤とから構成される正極活物質層1aが設けられる構造となっている。上記正極板1の幅L1は96mm、高さL2は96mmとなっており、また、正極板1の一辺からは、上記正極用導電性芯体と一体形成されると共に上記正極活物質層1aが設けられていない正極集電タブ11(幅L3は30mm、高さL4は20mm)が突出する構造となっている。この正極集電タブ11は、上記正極集電端子15の両面に重ねられた状態で(正極集電端子15の各面に25枚ずつ重ねられた状態で)、上記正極集電端子15と溶着されている。 As shown in FIG. 3A, the positive electrode plate 1 has a positive electrode active material made of LiCoO 2 on the entire surface of both sides of a positive electrode conductive core made of a rectangular aluminum foil (thickness: 15 μm). A positive electrode active material layer 1a composed of a conductive agent made of carbon black and a binder made of polyvinylidene fluoride is provided. The positive electrode plate 1 has a width L1 of 96 mm and a height L2 of 96 mm. From one side of the positive electrode plate 1, the positive electrode active material layer 1a is formed integrally with the positive electrode conductive core. The positive electrode current collection tab 11 (width L3 is 30 mm, height L4 is 20 mm) which is not provided has a structure protruding. The positive electrode current collecting tab 11 is welded to the positive electrode current collector terminal 15 in a state where the positive electrode current collector terminal 15 is overlaid on both surfaces of the positive electrode current collector terminal 15 (25 sheets on each surface of the positive electrode current collector terminal 15). Has been.

上記袋状セパレータ3は、図3(c)に示すように、2枚のポリプロピレン(PP)製のセパレータ3aを重ね合わせ、これらセパレータ3aの周辺部においてセパレータ3a同士を融着する融着部4(溶着幅は2mm)を設けるような構成である。このような構成とすることにより、上記正極板1を袋状セパレータ3内に収納できる。尚、上記セパレータ3aは、図3(b)に示すように、高さL5は100mm、幅L6は100mmの方形状を成しており、また、その厚さは30μmとなっている。   As shown in FIG. 3C, the bag-like separator 3 is composed of two polypropylene (PP) separators 3a, and a fusion part 4 for fusing the separators 3a around each other in the peripheral part of the separators 3a. (Welding width is 2 mm). With such a configuration, the positive electrode plate 1 can be stored in the bag-like separator 3. As shown in FIG. 3B, the separator 3a has a rectangular shape with a height L5 of 100 mm, a width L6 of 100 mm, and a thickness of 30 μm.

上記負極板2は、図4に示すように、方形状の銅箔(厚さ:10μm)から成る負極用導電性芯体の両面の全面に、天然黒鉛から成る負極活物質と、ポリフッ化ビニリデンから成る結着剤とから構成される負極活物質層2aが設けられる構造となっている。上記負極板2の幅L7は100mm、高さL8は100mmであり、上記セパレータ3aと同様の大きさとなっている。また、負極板2の一辺からは、上記負極用導電性芯体と一体形成されると共に上記負極活物質層2aが設けられていない負極集電タブ12(幅L9は30mm、高さL10は20mm)が突出する構造となっている。この負極集電タブ12は、上記負極集電端子16の両面に重ねられた状態で(負極集電端子16の一方の面に25枚、他方の面に26枚重ねられた状態で)、上記負極集電端子16と溶着されている。   As shown in FIG. 4, the negative electrode plate 2 has a negative electrode active material made of natural graphite and polyvinylidene fluoride on both surfaces of a negative electrode conductive core made of a rectangular copper foil (thickness: 10 μm). The negative electrode active material layer 2a comprised from the binder which consists of is provided. The negative electrode plate 2 has a width L7 of 100 mm and a height L8 of 100 mm, which is the same size as the separator 3a. Further, from one side of the negative electrode plate 2, a negative electrode current collecting tab 12 that is integrally formed with the negative electrode conductive core and is not provided with the negative electrode active material layer 2a (width L9 is 30 mm, height L10 is 20 mm). ) Protrudes. The negative electrode current collecting tab 12 is overlaid on both surfaces of the negative electrode current collector terminal 16 (25 sheets on one surface of the negative electrode current collector terminal 16 and 26 sheets on the other surface). It is welded to the negative electrode current collector terminal 16.

ここで、上記各正極集電タブ11の両面には、図6及び前記図1、図3、図5に示すように、当該正極集電タブ11の一部を覆う絶縁性樹脂層20が各々形成されており、この絶縁性樹脂層20はポリテトラフルオロエチレン樹脂から成る。また、絶縁性樹脂層20の厚さは片面が約30μmであり、幅L11は5mmである。尚、図6は模式的に表した図であり、実際は、図7に示すように、隣接する絶縁性樹脂層20同士が接触しているような構造となっている。これは、両極板1、2やセパレータ3が極めて薄いということに起因するものである。   Here, as shown in FIGS. 6, 1, 3, and 5, an insulating resin layer 20 covering a part of the positive electrode current collecting tab 11 is formed on both surfaces of each positive electrode current collecting tab 11. The insulating resin layer 20 is formed of polytetrafluoroethylene resin. The insulating resin layer 20 has a thickness of about 30 μm on one side and a width L11 of 5 mm. FIG. 6 is a diagram schematically showing an actual structure in which adjacent insulating resin layers 20 are in contact with each other as shown in FIG. This is because the bipolar plates 1 and 2 and the separator 3 are extremely thin.

上記の如く、絶縁性樹脂層20が正極集電タブ11に形成されていれば、当該絶縁性樹脂層20が存在する部位は、絶縁性樹脂層20が存在しない部位よりも放熱性に劣るため、絶縁性樹脂層20が存在しない部位よりも絶縁性樹脂層20が存在する部位の温度上昇が大きくなる。この結果、図8及び図9に示すように、最外位置に存在するセル10aに異常をきたして、そのセル10aに対応する正極集電タブ11aに異常電流が流れた場合には、図8〜図10に示すように、正極集電タブ11aの絶縁性樹脂層20aが存在する部位で、正極集電タブ11aが溶断されることになる。   As described above, if the insulating resin layer 20 is formed on the positive electrode current collecting tab 11, the portion where the insulating resin layer 20 exists is inferior in heat dissipation than the portion where the insulating resin layer 20 does not exist. In addition, the temperature rise in the portion where the insulating resin layer 20 exists is larger than the portion where the insulating resin layer 20 does not exist. As a result, as shown in FIG. 8 and FIG. 9, when an abnormality occurs in the cell 10a existing at the outermost position and an abnormal current flows through the positive electrode current collecting tab 11a corresponding to the cell 10a, FIG. As shown in FIG. 10, the positive electrode current collector tab 11 a is melted at a portion where the insulating resin layer 20 a of the positive electrode current collector tab 11 a is present.

このように、絶縁性樹脂層20aが存在する部位で正極集電タブ11aが溶断され、図8に示すように、当該正極集電タブ11aが溶断後に隣接する正極集電タブ11b方向に変形した場合に、溶断部分の正極集電タブ11aは絶縁性樹脂層20aに覆われている(正極集電タブ11aは露出した状態にない)ので、溶断した正極集電タブ11aと隣接する正極集電タブ11bとが電気的に接続されることがない。したがって、隣接する正極集電タブ11bに異常電流が流れるのを防止できるので、電池が発熱するのを阻止することができる。また、絶縁性樹脂層20の存在により箔状の正極集電タブ11の強度がある程度大きくなるので、外力が加わった場合に正極集電タブ11が切断するのを抑制できる。   In this way, the positive electrode current collecting tab 11a is melted at a portion where the insulating resin layer 20a is present, and as shown in FIG. 8, the positive electrode current collecting tab 11a is deformed in the direction of the adjacent positive electrode current collecting tab 11b after the fusing. In this case, since the positive electrode current collecting tab 11a at the fusing part is covered with the insulating resin layer 20a (the positive electrode current collecting tab 11a is not exposed), the positive electrode current collecting tab adjacent to the fusing positive electrode current collecting tab 11a is used. The tab 11b is not electrically connected. Therefore, since an abnormal current can be prevented from flowing through the adjacent positive electrode current collecting tab 11b, the battery can be prevented from generating heat. Moreover, since the strength of the foil-shaped positive electrode current collecting tab 11 is increased to some extent due to the presence of the insulating resin layer 20, it is possible to suppress the positive electrode current collecting tab 11 from being cut when an external force is applied.

一方、図9に示すように、溶断した正極集電タブ11aが図示しないラミネート外装体25方向に変形した場合であっても、溶断部分の正極集電タブ11aは絶縁性樹脂層20に覆われていることから、溶断した正極集電タブ11aとラミネート外装体25のアルミニウム層とが電気的に接続されることはない。したがって、アルミニウムの腐食に起因して、電池内部に水分等が侵入し、電池性能が低下する等の不都合が発生するのを抑制できる。   On the other hand, as shown in FIG. 9, even when the melted positive electrode current collecting tab 11 a is deformed in the direction of the laminate outer package 25 (not shown), the melted positive electrode current collecting tab 11 a is covered with the insulating resin layer 20. Therefore, the melted positive electrode current collecting tab 11a and the aluminum layer of the laminate outer package 25 are not electrically connected. Therefore, it is possible to suppress the occurrence of inconveniences such as moisture intruding into the inside of the battery due to aluminum corrosion and the battery performance being lowered.

尚、絶縁性樹脂層20が存在することにより放熱性を低下させるという観点からは、絶縁性樹脂層20の厚みを大きくすることが望ましいが、厚みを大きくすると、積層式電池において、電池の内部空間に対する集電部の占める体積が増大し、電池のエネルギー密度が低下する。したがって、絶縁性樹脂層20の厚みは上述した程度に規制するのが好ましい。   From the viewpoint of reducing heat dissipation due to the presence of the insulating resin layer 20, it is desirable to increase the thickness of the insulating resin layer 20. The volume occupied by the current collector with respect to the space increases, and the energy density of the battery decreases. Therefore, it is preferable to regulate the thickness of the insulating resin layer 20 to the above-described level.

(積層式電池の作製方法)
〔正極板の作製〕
正極活物質としてのLiCoO2を90質量%と、導電剤としてのカーボンブラックを5質量%と、結着剤としてのポリフッ化ビニリデンを5質量%と、溶剤としてのN−メチル−2−ピロリドン(NMP)溶液とを混合して正極スラリーを調製した。次に、この正極スラリーを、正極集電体としてのアルミニウム箔(厚み:15μm)の両面に塗布した。その後、溶剤を乾燥し、ローラーで厚み0.1mmにまで圧縮した後、上述した幅L1及び高さL2になり且つ正極集電タブ11が突出するように切断して正極板1を作製した。この後、正極集電タブ11の両面に、正極集電タブ11の一部を覆うように絶縁性樹脂を塗布した後、加熱することにより、各正極集電タブ11に絶縁性樹脂層20を形成した。
(Production method of laminated battery)
[Preparation of positive electrode plate]
90% by mass of LiCoO 2 as a positive electrode active material, 5% by mass of carbon black as a conductive agent, 5% by mass of polyvinylidene fluoride as a binder, N-methyl-2-pyrrolidone as a solvent ( NMP) solution was mixed to prepare a positive electrode slurry. Next, this positive electrode slurry was applied to both surfaces of an aluminum foil (thickness: 15 μm) as a positive electrode current collector. Then, after drying the solvent and compressing to a thickness of 0.1 mm with a roller, the positive electrode plate 1 was produced by cutting so as to have the above-described width L1 and height L2 and the positive electrode current collecting tab 11 protruding. Thereafter, an insulating resin is applied to both surfaces of the positive electrode current collector tab 11 so as to cover a part of the positive electrode current collector tab 11, and then heated, whereby the insulating resin layer 20 is applied to each positive electrode current collector tab 11. Formed.

〔正極板が内部に配置された袋状セパレータの作製〕
PP製セパレータ3aを2枚用意し、当該セパレータ3a間に正極板1を配置した後、セパレータ3aの周辺部を熱溶着して、正極板1が内部に配置された袋状セパレータ3を作製した。
[Production of bag-shaped separator with positive electrode plate arranged inside]
After preparing two PP separators 3a and arranging the positive electrode plate 1 between the separators 3a, the periphery of the separator 3a was thermally welded to produce a bag-like separator 3 in which the positive electrode plate 1 was arranged. .

〔負極板の作製〕
負極活物質としての天然黒鉛粉末を95質量%と、結着剤としてのポリフッ化ビニリデンを5質量%と、溶剤としてのNMP溶液とを混合してスラリーを調製した後、このスラリーを負極集電体としての銅箔(厚み:10μm)の両面に塗布した。その後、溶剤を乾燥し、ローラーで厚み0.08mmにまで圧縮した後、上述した幅L7及び高さL8になり且つ負極集電タブ12が突出するように切断して負極板2を作製した。
(Production of negative electrode plate)
A slurry was prepared by mixing 95% by mass of natural graphite powder as a negative electrode active material, 5% by mass of polyvinylidene fluoride as a binder, and an NMP solution as a solvent. It apply | coated on both surfaces of the copper foil (thickness: 10 micrometers) as a body. Then, after drying the solvent and compressing to a thickness of 0.08 mm with a roller, the negative electrode plate 2 was produced by cutting so as to have the above-described width L7 and height L8 and the negative electrode current collecting tab 12 protruding.

〔電池の作製〕
上述のようにして得られた負極板2(51枚)と、正極板1が内部に配置された袋状セパレータ3(50枚)とを交互に積層して積層電極体を作製した。尚、この積層電極体10における積層方向の端部には負極板2を配置した。次に、積層電極体10の4辺に、積層電極体10を跨ぐようにして、ずれ防止用テープ5を貼着した。
[Production of battery]
The negative electrode plate 2 (51 sheets) obtained as described above and the bag-like separator 3 (50 sheets) in which the positive electrode plate 1 was disposed were alternately laminated to produce a laminated electrode body. Note that the negative electrode plate 2 was disposed at the end of the laminated electrode body 10 in the laminating direction. Next, the slip prevention tape 5 was adhered to the four sides of the multilayer electrode body 10 so as to straddle the multilayer electrode body 10.

次いで、積層電極体10から突出した50枚の正極集電タブ11と正極集電端子15とを超音波溶接法にて溶着すると共に、積層電極体10から突出した51枚の負極集電タブ12と負極集電端子16とを超音波溶接法にて溶着した後、ラミネート外装体25の収納空間内に、積層電極体10を配置した。その後、正極集電端子15と負極集電端子16とがラミネートフィルム28から突出した状態で、両集電端子15、16が存在する辺のラミネートフィルム28同士を溶着した後、ラミネートフィルム28の残り3辺のうち2辺を溶着することにより積層電極体10をラミネート外装体25内に配置した。最後に、ラミネート外装体25の内圧が30torr以下となるように規制した状態で、ラミネート外装体25の開口部から非水電解液を注液した後、ラミネート外装体25の開口部(ラミネートフィルムの残りの1辺)を溶着することにより積層式電池を作製した。尚、上記非水電解液としては、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とが体積比で30:70の割合で混合された混合溶媒に、LiPF6が1M(モル/リットル)の割合で溶解されたものを使用した。 Next, the 50 positive electrode current collecting tabs 11 and the positive electrode current collecting terminals 15 protruding from the laminated electrode body 10 are welded by an ultrasonic welding method, and 51 negative electrode current collecting tabs 12 protruding from the laminated electrode body 10 are used. And the negative electrode current collector terminal 16 were welded by an ultrasonic welding method, and then the laminated electrode body 10 was disposed in the storage space of the laminate outer package 25. Thereafter, in a state in which the positive electrode current collecting terminal 15 and the negative electrode current collecting terminal 16 protrude from the laminate film 28, the laminate films 28 on the sides where both the current collector terminals 15, 16 are welded together, and then the remaining laminate film 28 is left. The laminated electrode body 10 was disposed in the laminate outer package 25 by welding two of the three sides. Finally, in a state where the internal pressure of the laminate exterior body 25 is regulated to be 30 torr or less, a non-aqueous electrolyte is injected from the opening of the laminate exterior body 25, and then the opening of the laminate exterior body 25 (the laminate film A stacked battery was prepared by welding the remaining one side). As the non-aqueous electrolyte, a mixed solvent in which ethylene carbonate (EC) and methyl ethyl carbonate (MEC) are mixed at a volume ratio of 30:70, LiPF 6 is 1 M (mol / liter). What was melt | dissolved in the ratio was used.

(その他の事項)
(1)上記実施例では絶縁層を正極集電タブ11に形成したが、負極集電タブ12に形成しても良い。尚、両集電タブ11、12に形成しても良いが、工数が増えて製造コストが上昇するので、一方の集電タブに形成するのが望ましい。また、両集電タブ11、12に形成しなくても、一方の集電タブに形成すれば、本発明の作用効果は十分に発揮される。
(Other matters)
(1) Although the insulating layer is formed on the positive electrode current collecting tab 11 in the above embodiment, it may be formed on the negative electrode current collecting tab 12. Although it may be formed on both current collecting tabs 11 and 12, it is desirable to form the current collecting tabs on one of the current collecting tabs because the man-hour increases and the manufacturing cost increases. Moreover, even if it does not form in both the current collection tabs 11 and 12, if it forms in one current collection tab, the effect of this invention will fully be exhibited.

(2)上記実施例では正極集電タブ11の一部分にのみ絶縁性樹脂層20が形成されているが、図11に示すように、最も外側に位置する(最も上記ラミネート外装体25に最も近い位置に位置する)正極集電タブ11aには、正極集電端子15との接合部から正極板1に至るまで上記絶縁性樹脂層20aが形成されていても良い。尚、最も外側に位置する正極集電タブ11aのみならず、全ての正極集電タブ11を同様の構成としても良い。 (2) In the above embodiment, the insulating resin layer 20 is formed only on a part of the positive electrode current collecting tab 11, but as shown in FIG. 11, it is located on the outermost side (closest to the laminate outer package 25). The insulating resin layer 20 a may be formed on the positive electrode current collecting tab 11 a (located at a position) from the joint with the positive electrode current collecting terminal 15 to the positive electrode plate 1. In addition, not only the positive electrode current collection tab 11a located in the outermost side but all the positive electrode current collection tabs 11 are good also as a structure.

(3)上記実施例では各正極集電タブ11に各々絶縁性樹脂層20を形成したが、図12に示すように、重畳状態にある正極集電タブ11を一体的に覆うような絶縁性樹脂層20を形成しても良い。 (3) Although the insulating resin layer 20 is formed on each positive electrode current collecting tab 11 in the above embodiment, as shown in FIG. 12, the insulating property that integrally covers the positive electrode current collecting tab 11 in an overlapping state is provided. The resin layer 20 may be formed.

(4)上記実施例では、正極集電端子15をアルミニウム板、負極集電端子16を銅板でそれぞれ構成しているが、これらをニッケル板で構成しても良い。このように両集電端子15、16に同一素材のものを用いれば、電池の生産コストが低減できる。 (4) In the above embodiment, the positive electrode current collecting terminal 15 is made of an aluminum plate and the negative electrode current collecting terminal 16 is made of a copper plate, but these may be made of a nickel plate. If the same material is used for both current collecting terminals 15 and 16 as described above, the production cost of the battery can be reduced.

(5)上記実施例では2枚のラミネートフィルム28の両者に収納空間を構成する収納凹部を設けているが、このような構造に限定するものではなく、一方のラミネートフィルムにのみ収納凹部を設け、他方のラミネートフィルムには収納凹部を設けないような構造であっても良い。また、必ずしも2枚のラミネートフィルムを用いる必要はなく、1枚のラミネートフィルムを折り返してラミネート外装体を構成しても良い。 (5) In the above-described embodiment, the storage concave portion constituting the storage space is provided in both of the two laminate films 28. However, the present invention is not limited to such a structure, and the storage concave portion is provided only in one laminate film. The other laminate film may have a structure in which no storage recess is provided. Moreover, it is not always necessary to use two laminated films, and a laminated outer package may be formed by folding one laminated film.

(6)正極活物質としては、上記LiCoO2に限定するものではなく、LiNiO2、LiMnO4或いはこれらの複合体等であっても良く、負極活物質としては上記天然黒鉛に限定するものではなく、人造黒鉛等であっても良い。 (6) The positive electrode active material is not limited to the above LiCoO 2 , but may be LiNiO 2 , LiMnO 4, or a composite thereof, and the negative electrode active material is not limited to the above natural graphite. Artificial graphite or the like may be used.

(7)上記実施例では、全ての負極板2につき、負極用導電性芯体の両面に負極活物質層2aを形成したが、正極板と対向していない部位の負極活物質層(具体的には、最外に配置された負極板の外側に存在する負極活物質層)はなくても良い。そして、このような構造とすれば、積層電極体10の厚みが小さくなるので、電池の高容量密度化を達成できる。 (7) In the above embodiment, the negative electrode active material layers 2a are formed on both surfaces of the negative electrode conductive core for all the negative electrode plates 2, but the negative electrode active material layers (specifically, not facing the positive electrode plate) May not have a negative electrode active material layer) present on the outer side of the outermost negative electrode plate. And if it is such a structure, since the thickness of the laminated electrode body 10 becomes small, the high capacity density of a battery can be achieved.

本発明は、例えば、ロボット、電気自動車およびバックアップ電源等に用いる電池に適用することができる。   The present invention can be applied to, for example, a battery used for a robot, an electric vehicle, a backup power source, and the like.

本発明の積層式電池に用いる積層電極体の分解斜視図である。It is a disassembled perspective view of the laminated electrode body used for the laminated battery of this invention. 本発明の積層式電池の斜視図である。It is a perspective view of the laminated battery of the present invention. 本発明の積層式電池の一部を示す図であって、同図(a)は正極の平面図、同図(b)はセパレータの斜視図、同図(c)は正極が内部に配置された袋状セパレータを示す平面図である。It is a figure which shows a part of laminated battery of this invention, Comprising: The figure (a) is a top view of a positive electrode, The figure (b) is a perspective view of a separator, The figure (c) is a positive electrode arrange | positioned inside. It is a top view which shows the bag-shaped separator. 本発明の積層式電池に用いる負極の平面図である。It is a top view of the negative electrode used for the laminated battery of this invention. 本発明の積層式電池に用いる積層電極体の斜視図である。It is a perspective view of the laminated electrode body used for the laminated battery of this invention. 本発明の積層式電池に用いる積層電極体の説明図である。It is explanatory drawing of the laminated electrode body used for the laminated battery of this invention. 本発明の積層式電池に用いる積層電極体の側面図である。It is a side view of the laminated electrode body used for the laminated battery of this invention. 正極集電タブが切断したときの状態を示す説明図である。It is explanatory drawing which shows a state when a positive electrode current collection tab cut | disconnects. 正極集電タブが切断したときの他の状態を示す説明図である。It is explanatory drawing which shows the other state when a positive electrode current collection tab cut | disconnects. 正極集電タブが切断したときの状態を示す平面図である。It is a top view which shows a state when a positive electrode current collection tab cut | disconnects. 本発明の積層式電池の変形例を示す説明図である。It is explanatory drawing which shows the modification of the laminated battery of this invention. 本発明の積層式電池の他の変形例を示す説明図である。It is explanatory drawing which shows the other modification of the laminated battery of this invention.

符号の説明Explanation of symbols

1:正極板
2:負極板
3:セパレータ
10:積層電極体
11:正極集電タブ
12:負極集電タブ
15:正極集電端子
16:負極集電端子
20:絶縁性樹脂層
25:ラミネート外装体
DESCRIPTION OF SYMBOLS 1: Positive electrode plate 2: Negative electrode plate 3: Separator 10: Laminated electrode body 11: Positive electrode current collection tab 12: Negative electrode current collection tab 15: Positive electrode current collection terminal 16: Negative electrode current collection terminal 20: Insulating resin layer 25: Laminate exterior body

Claims (7)

各々正極集電タブが延出された複数の正極板と、各々負極集電タブが延出された複数の負極板とが、セパレータを介して交互に積層された積層電極体を有すると共に、この積層電極体が外装体の収納空間内に配置され、且つ、上記正極集電タブは重畳状態で正極集電端子に接合され、上記負極集電タブは重畳状態で負極集電端子に接合され、これら両集電端子が外装体から突出する積層式電池において、
上記両集電タブのうち少なくとも一方の集電タブには、当該集電タブの少なくとも一部を覆う絶縁層が形成されていることを特徴とする積層式電池。
A plurality of positive electrode plates each extending from a positive electrode current collecting tab and a plurality of negative electrode plates each extending from a negative electrode current collecting tab each have a laminated electrode body that is alternately laminated via a separator. A laminated electrode body is disposed in a housing space of the exterior body, and the positive current collecting tab is joined to the positive current collecting terminal in a superimposed state, and the negative current collecting tab is joined to the negative current collecting terminal in a superimposed state, In the stacked battery in which both the current collecting terminals protrude from the exterior body,
A stacked battery, wherein an insulating layer covering at least a part of the current collecting tab is formed on at least one of the current collecting tabs.
上記外装体として、金属層と樹脂層とを備えた2枚のラミネートフィルムの周縁同士を接合することにより形成されたラミネート外装体、又は、金属層と樹脂層とを備えた1枚のラミネートフィルムを折り返して周縁同士を接合することにより形成されたラミネート外装体が用いられている、請求項1に記載の積層式電池。   As said exterior body, the laminate exterior body formed by joining the periphery of two laminate films provided with the metal layer and the resin layer, or one laminate film provided with the metal layer and the resin layer The laminate type battery according to claim 1, wherein a laminate outer body formed by folding back and bonding peripheral edges is used. 上記絶縁層は絶縁性樹脂から成る、請求項1又は2に記載の積層式電池。   The stacked battery according to claim 1, wherein the insulating layer is made of an insulating resin. 上記絶縁性樹脂としてポリテトラフルオロエチレン樹脂が用いられている、請求項3に記載の積層式電池。   The stacked battery according to claim 3, wherein a polytetrafluoroethylene resin is used as the insulating resin. 上記絶縁層は上記重畳状態にある集電タブを一体的に覆っている、請求項1〜4のいずれか1項に記載の積層式電池。   The stacked battery according to any one of claims 1 to 4, wherein the insulating layer integrally covers the current collecting tabs in the overlapping state. 上記絶縁層が形成された集電タブのうち、上記ラミネート外装体に最も近い位置に存在する集電タブには、集電端子との接合部から極板に至るまで上記樹脂層が形成されている、請求項2〜4のいずれか1項に記載の積層式電池。   Among the current collecting tabs on which the insulating layer is formed, the resin layer is formed on the current collecting tab that is closest to the laminate outer package from the junction with the current collecting terminal to the electrode plate. The stacked battery according to any one of claims 2 to 4. 上記正極板に用いられる正極活物質と、上記負極板に用いられる負極活物質とが、リチウムを吸蔵放出できる材料から構成されている、請求項1〜6のいずれか1項に記載の積層式電池。   The stacked type according to any one of claims 1 to 6, wherein the positive electrode active material used for the positive electrode plate and the negative electrode active material used for the negative electrode plate are made of a material capable of occluding and releasing lithium. battery.
JP2008021653A 2008-01-31 2008-01-31 Laminated battery Withdrawn JP2009181899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008021653A JP2009181899A (en) 2008-01-31 2008-01-31 Laminated battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008021653A JP2009181899A (en) 2008-01-31 2008-01-31 Laminated battery

Publications (1)

Publication Number Publication Date
JP2009181899A true JP2009181899A (en) 2009-08-13

Family

ID=41035685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008021653A Withdrawn JP2009181899A (en) 2008-01-31 2008-01-31 Laminated battery

Country Status (1)

Country Link
JP (1) JP2009181899A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142458A1 (en) * 2013-03-11 2014-09-18 주식회사 엘지화학 Cathode including insulating layer on cathode tap and secondary battery including cathode
CN105940520A (en) * 2014-10-16 2016-09-14 株式会社Lg化学 Electrode tab having electrical insulation layer coated thereon and secondary battery comprising same
KR101735157B1 (en) * 2014-07-24 2017-05-12 주식회사 엘지화학 Electrode assembly and secondary battery with the same
US9755213B2 (en) 2013-03-11 2017-09-05 Lg Chem, Ltd. Cathode including insulation layer on cathode tab and secondary battery including the cathode
CN110088966A (en) * 2016-08-29 2019-08-02 株式会社杰士汤浅国际 Multilayer electrode body and charge storage element
WO2023195743A1 (en) * 2022-04-04 2023-10-12 주식회사 엘지화학 Insulating layer composition for lithium secondary battery and lithium secondary battery comprising same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142458A1 (en) * 2013-03-11 2014-09-18 주식회사 엘지화학 Cathode including insulating layer on cathode tap and secondary battery including cathode
KR20140112609A (en) * 2013-03-11 2014-09-24 주식회사 엘지화학 Cathode comprising insulating layer on cathode tab and secondary battery comprising the same
KR101586530B1 (en) 2013-03-11 2016-01-21 주식회사 엘지화학 Cathode comprising insulating layer on cathode tab and secondary battery comprising the same
US9755213B2 (en) 2013-03-11 2017-09-05 Lg Chem, Ltd. Cathode including insulation layer on cathode tab and secondary battery including the cathode
KR101735157B1 (en) * 2014-07-24 2017-05-12 주식회사 엘지화학 Electrode assembly and secondary battery with the same
CN105940520A (en) * 2014-10-16 2016-09-14 株式会社Lg化学 Electrode tab having electrical insulation layer coated thereon and secondary battery comprising same
EP3073552A4 (en) * 2014-10-16 2017-08-16 LG Chem, Ltd. Electrode tab having electrical insulation layer coated thereon and secondary battery comprising same
US10454090B2 (en) 2014-10-16 2019-10-22 Lg Chem, Ltd. Electrode tab coated with electrical insulating layer and secondary battery comprising the same
CN110088966A (en) * 2016-08-29 2019-08-02 株式会社杰士汤浅国际 Multilayer electrode body and charge storage element
WO2023195743A1 (en) * 2022-04-04 2023-10-12 주식회사 엘지화학 Insulating layer composition for lithium secondary battery and lithium secondary battery comprising same

Similar Documents

Publication Publication Date Title
JP4878800B2 (en) Lithium secondary battery
JP5830953B2 (en) Secondary battery, battery unit and battery module
JP5844052B2 (en) Multilayer battery and method for manufacturing the same
JP5701688B2 (en) Multilayer battery and method for manufacturing the same
JP5219587B2 (en) Laminated battery and battery module including the laminated battery
JP5558265B2 (en) battery
JP5252937B2 (en) Stacked battery and method for manufacturing the same
KR101216422B1 (en) Secondary Battery Having Sealing Portion of Improved Insulating Property
JP4961673B2 (en) Method for producing tab lead for non-aqueous electrolyte battery
US20120244423A1 (en) Laminate case secondary battery
JP5541514B2 (en) Multilayer secondary battery
JP5505218B2 (en) Sealed storage battery
US20080070111A1 (en) Sheet-type secondary battery and manufacturing method therefor
JP6250921B2 (en) battery
JP2006221938A (en) Film packaged electric storage device
JP2003168417A (en) Battery part and secondary battery adopting the same
JP2012033399A (en) Rectangular secondary battery
JP5344235B2 (en) Non-aqueous secondary battery
JP2011076838A (en) Laminate type battery
JP2006054189A (en) Battery for automobile
JPWO2018079817A1 (en) Electrode for electrochemical device, electrochemical device, and production method thereof
JP2009181899A (en) Laminated battery
WO2017098995A1 (en) Electrochemical device and method for manufacturing same
KR101734327B1 (en) Pouch type secondary battery
JP2011070977A (en) Laminated battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110405