JP2009170667A - Capacitance-adjusting power-feed substrate, and discharge tube current equalization lighting device using the same, and liquid crystal display - Google Patents

Capacitance-adjusting power-feed substrate, and discharge tube current equalization lighting device using the same, and liquid crystal display Download PDF

Info

Publication number
JP2009170667A
JP2009170667A JP2008007257A JP2008007257A JP2009170667A JP 2009170667 A JP2009170667 A JP 2009170667A JP 2008007257 A JP2008007257 A JP 2008007257A JP 2008007257 A JP2008007257 A JP 2008007257A JP 2009170667 A JP2009170667 A JP 2009170667A
Authority
JP
Japan
Prior art keywords
conductor
power supply
conductors
capacity adjustment
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008007257A
Other languages
Japanese (ja)
Inventor
Guo-Hua Wang
国華 王
Yasushi Kurita
康史 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to JP2008007257A priority Critical patent/JP2009170667A/en
Publication of JP2009170667A publication Critical patent/JP2009170667A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Planar Illumination Modules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive substrate capable of simply adjusting capacitances serially connected to respective discharge tubes, and restraining manufacturing cost; a discharge tube current equalization lighting device using the substrate; and a liquid crystal display. <P>SOLUTION: This substrate is provided with: a plurality of first conductors 301 and 302 formed on a surface S of an insulating substrate 16a by being separated from one another, and connected to the respective discharge tubes; capacitance-adjusting second conductors 311 formed between the first conductors 301 and 302 adjacent to each other on the surface S in a state without being connected to any of the first conductors; and a third conductor 32 formed oppositely to the first conductors 301 and 302 and the second conductors 311 on the back surface R of the insulating substrate 16a. As a result, capacitances can be formed in regions where the first conductors 301 and 302 overlap the third conductor 32. The values of the capacitances can be varied depending on whether the capacitance-adjusting second conductor 311 is jointed to either of the first conductors 301 and 302 adjacent to each other or not. Accordingly, the capacitances connected in series to the respective discharge tubes can be adjusted on a discharge tube basis, and high-frequency currents having values nearly equal to one another can be supplied to the respective discharge tubes. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数の放電管を点灯させる放電管均流点灯装置及び液晶表示装置に関するものである。ここで「放電管」とは、高圧を印加して、密封管内でイオン化した気体(プラズマ)に放電させることにより発光させる器具をいい、ネオン管、ナトリウムランプ、蛍光管、冷陰極管などがこれに該当する。「均流」とは複数の放電管に対して、互いにほぼ等しい大きさの高周波電流を供給することをいう。   The present invention relates to a discharge tube equalizing lighting device and a liquid crystal display device for lighting a plurality of discharge tubes. Here, the “discharge tube” refers to a device that emits light by applying a high pressure to discharge into an ionized gas (plasma) in a sealed tube, such as a neon tube, a sodium lamp, a fluorescent tube, or a cold cathode tube. It corresponds to. “Uniform flow” means that high frequency currents having substantially the same magnitude are supplied to a plurality of discharge tubes.

液晶表示装置など各種表示装置のバックライトには、放電管の一種である冷陰極管( Cold Cathode Fluorescent Tube)が用いられる。この冷陰極管の点灯駆動には、従来から、高周波駆動回路を用いた高周波点灯方式が採用されている。
図13は、高周波駆動回路の一例を示す回路図である。この高周波駆動回路は、数十kHz〜数百kHzの高周波交流電源を供給するためのインバータ回路101と、高周波交流電源を昇圧するための主変圧器102と、その主変圧器102の出力回線に対して並列に接続される複数の冷陰極管103と、各冷陰極管103の一端又は両端に挿入され、各冷陰極管103に互いに等しい電流を流すため各冷陰極管103と直列に接続されたバラスト・キャパシタ(ballast capacitor)からなる均流回路104とを備えている。
For the backlights of various display devices such as liquid crystal display devices, cold cathode fluorescent tubes are used. Conventionally, a high-frequency lighting system using a high-frequency driving circuit has been adopted for lighting the cold cathode tube.
FIG. 13 is a circuit diagram illustrating an example of a high-frequency drive circuit. This high frequency drive circuit includes an inverter circuit 101 for supplying high frequency AC power of several tens kHz to several hundred kHz, a main transformer 102 for boosting the high frequency AC power, and an output line of the main transformer 102. A plurality of cold-cathode tubes 103 connected in parallel to each other, inserted at one end or both ends of each cold-cathode tube 103, and connected in series with each cold-cathode tube 103 in order to pass an equal current to each cold-cathode tube 103. And a current equalizing circuit 104 composed of a ballast capacitor.

このような高周波駆動回路においては、前記均流回路を構成するキャパシタは、各冷陰極管103の一端を支持する基板105上に、当該基板105と一体に形成されている。すなわち、図14に示すように、当該基板105の表面上に各冷陰極管103に接続される各導体106を互いに分離して設け、当該基板105の裏面上に一枚の導体層107を設けて、それら表面及び裏面の導体層106,107の重なる領域すなわち前記導体に作られるキャパシタンスを利用して、均流回路104を構成している。
特開2005-322479号公報
In such a high-frequency driving circuit, the capacitor constituting the current-dividing circuit is formed integrally with the substrate 105 on the substrate 105 that supports one end of each cold cathode tube 103. That is, as shown in FIG. 14, each conductor 106 connected to each cold cathode tube 103 is provided separately on the surface of the substrate 105, and one conductor layer 107 is provided on the back surface of the substrate 105. Thus, the current sharing circuit 104 is configured by utilizing the area where the conductor layers 106 and 107 overlap the front and back surfaces, that is, the capacitance formed in the conductor.
JP 2005-322479 A

ところが、前記構造の均流回路では、一度導体のパターンを作ったらキャパシタンスを増減することができない。実際には、各冷陰極管は、前記基板を介して、放電管均流点灯装置の筐体の一部を構成する支持板に固定配置されるものであるが、各冷陰極管と支持板との間に浮遊キャパシタンスが発生する。この浮遊キャパシタンスは、各冷陰極管の位置に応じて各冷陰極管ごとに異なる値となるものであり、このため各冷陰極管ごとに発光の明るさが異なってくる。この明るさの違いを補償するために、前記各冷陰極管と直列に接続されたキャパシタンスの値を、冷陰極管ごとに調整する必要がある。この調整のために、チップ素子を取り付けたり外したりするのでは手間がかかる。   However, in the current dividing circuit having the above structure, the capacitance cannot be increased or decreased once the conductor pattern is formed. Actually, each cold-cathode tube is fixedly disposed on a support plate that constitutes a part of the casing of the discharge tube equalizing lighting device via the substrate. Stray capacitance occurs between This stray capacitance has a different value for each cold-cathode tube depending on the position of each cold-cathode tube. Therefore, the brightness of light emission differs for each cold-cathode tube. In order to compensate for this difference in brightness, it is necessary to adjust the value of the capacitance connected in series with each cold cathode tube for each cold cathode tube. For this adjustment, it is troublesome to attach or remove the chip element.

そこで本発明は、各放電管に直列に接続されるキャパシタンスを簡単に調整することができ、かつ安価で製作コストを抑えることのできる基板を提供することを目的とする。
また本発明は、前記基板を用いた放電管均流点灯装置及び液晶表示装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a substrate that can easily adjust the capacitance connected in series to each discharge tube, and that can be manufactured at low cost and can be manufactured at a low cost.
Another object of the present invention is to provide a discharge tube equalizing lighting device and a liquid crystal display device using the substrate.

本発明の容量調整用給電基板は、互いに分離して形成され、前記放電管のそれぞれに接続される複数の第一導体と、前記第一導体が形成されている面において、隣接する前記第一導体の間に、いずれの第一導体とも接続されない状態で形成された容量調整用の第二導体と、前記第一導体及び前記第二導体に対向して形成された第三導体とを備えることを特徴とする。   The power supply substrate for capacity adjustment of the present invention is formed separately from each other, and the first conductors adjacent to each other on the surface on which the plurality of first conductors connected to each of the discharge tubes and the first conductor are formed. Between the conductors, a second conductor for capacity adjustment formed without being connected to any of the first conductors, and a third conductor formed opposite to the first conductor and the second conductor. It is characterized by.

この構成によれば、前記容量調整用の第二導体を、隣接するいずれかの前記第一導体に接合することにより、前記第一導体及び前記第二導体を合わせた導体と、前記第三導体との重なる領域に作られる比較的大きなキャパシタンスを利用して、放電管のための均流回路を構成することが可能となる。また、前記容量調整用の第二導体を、隣接するいずれかの前記第一導体に接合しない場合は、前記第一導体と、前記第三導体との重なる領域に作られるキャパシタンスを利用して、放電管のための均流回路を構成することになる。これらのキャパシタンスは、前記容量調整用の第二導体を隣接するいずれかの前記第一導体に接合するかしないかによって、その値を変えることができる。従って、各放電管に直列につながるキャパシタンスを、放電管ごとに調整することができる。   According to this configuration, the second conductor for capacity adjustment is joined to any one of the adjacent first conductors, thereby combining the first conductor and the second conductor, and the third conductor. A current sharing circuit for the discharge tube can be constructed by using a relatively large capacitance formed in a region where the discharge tube overlaps. Further, when the second conductor for capacity adjustment is not joined to any of the adjacent first conductors, using the capacitance created in the region where the first conductor and the third conductor overlap, A current-shaping circuit for the discharge tube will be constructed. The values of these capacitances can be changed depending on whether or not the capacitance adjusting second conductor is joined to any of the adjacent first conductors. Therefore, the capacitance connected in series with each discharge tube can be adjusted for each discharge tube.

本発明の容量調整用給電基板は、一枚の絶縁基板の表面に前記第一導体及び前記第二導体を形成し、当該絶縁基板の裏面に前記第三導体を形成した構造を有していてもよい。
また、本発明の容量調整用給電基板は、前記第一導体及び前記第二導体を一つの絶縁基板の一面に形成し、前記第二導体を、他の絶縁基板の一面に形成し、前記2つの絶縁基板の前記一面同士を、絶縁膜を介して接近させた構造を有していてもよい。この構造であれば、絶縁膜の厚みや材質を選定することにより、全キャパシタの容量を一律に調整することもできる。
The power supply substrate for capacity adjustment of the present invention has a structure in which the first conductor and the second conductor are formed on the surface of one insulating substrate, and the third conductor is formed on the back surface of the insulating substrate. Also good.
In the capacity adjustment power supply board according to the present invention, the first conductor and the second conductor are formed on one surface of one insulating substrate, and the second conductor is formed on one surface of another insulating substrate. You may have the structure which made the said one surface of two insulating substrates approach through the insulating film. With this structure, the capacitance of all capacitors can be uniformly adjusted by selecting the thickness and material of the insulating film.

本発明の容量調整用給電基板は、ほぼ長方形状を有し、前記複数の第一導体は、当該容量調整用給電基板の長辺方向を分断する形態で互いに独立して形成されていてもよい。
また、前記第三導体は、当該容量調整用給電基板の短辺方向を分断する形態で分離形成されている構造であれば、前記第三導体の分離された導体片同士を接合したり、接合しなかったりすることにより、全キャパシタンスを一律に調整することができる。すなわち、前記容量調整用の第二導体を隣接するいずれかの前記第一導体に接合するかしないかによって、各キャパシタンスを個別に調整することができ、前記第三導体の分離された導体片同士を接合したり、接合しなかったりすることにより、全キャパシタンスを一律に調整することができる。
The capacity adjustment power supply board of the present invention may have a substantially rectangular shape, and the plurality of first conductors may be formed independently of each other in a form of dividing the long side direction of the capacity adjustment power supply board. .
Further, if the third conductor has a structure in which the short side direction of the capacity adjustment power supply substrate is divided and formed, the separated conductor pieces of the third conductor are joined or joined together. By not doing so, the total capacitance can be adjusted uniformly. That is, depending on whether or not the second conductor for capacity adjustment is joined to any one of the adjacent first conductors, each capacitance can be individually adjusted, and the separated conductor pieces of the third conductor By joining or not joining, the total capacitance can be adjusted uniformly.

前記第二導体は、隣接する前記第一導体の間に、複数の導体片に分かれて形成されている場合、各キャパシタンスを個別に、よりきめ細かく調整することができる。
本発明の放電管均流点灯装置は、高周波駆動回路と、前記高周波駆動回路によって駆動される複数の放電管と、前述した容量調整用給電基板とを備え、前記複数の放電管は前記容量調整用給電基板の複数の第一導体にそれぞれ接続され、前記第三導体は前記高周波駆動回路の高周波電源供給端に接続されているものである。この構造であれば、各放電管と高周波駆動回路との間を前記容量調整用給電基板に形成される各キャパシタで接続することができ、かつ、容量調整用給電基板に形成される各キャパシタンスを容易に調整することができる。したがって、各放電管に対して、互いにほぼ等しい大きさの高周波電流を供給することができる。
When the second conductor is divided into a plurality of conductor pieces between the adjacent first conductors, each capacitance can be individually finely adjusted.
The discharge tube current equalizing lighting device of the present invention includes a high-frequency drive circuit, a plurality of discharge tubes driven by the high-frequency drive circuit, and the above-described capacity adjustment power supply substrate, and the plurality of discharge tubes are configured to adjust the capacity. The third conductor is connected to a plurality of first conductors of the power supply board, and the third conductor is connected to a high frequency power supply end of the high frequency drive circuit. With this structure, each discharge tube and the high-frequency drive circuit can be connected with each capacitor formed on the capacity adjustment power supply board, and each capacitance formed on the capacity adjustment power supply board can be It can be adjusted easily. Therefore, high-frequency currents having substantially the same magnitude can be supplied to each discharge tube.

この放電管均流点灯装置は、前記複数の放電管を支持する支持板をさらに含み、前記複数の放電管を、前記容量調整用給電基板と、前記支持板との間に配置するという構成を採用してもよい。これにより、前記容量調整用給電基板と前記支持板との間に発生する浮遊容量を低減させることができる。
前記放電管は、蛍光灯又は冷陰極管であってもよい。
The discharge tube current equalizing apparatus further includes a support plate that supports the plurality of discharge tubes, and the plurality of discharge tubes are disposed between the capacity adjustment power supply substrate and the support plate. It may be adopted. Thereby, the stray capacitance generated between the capacitance adjusting power supply substrate and the support plate can be reduced.
The discharge tube may be a fluorescent lamp or a cold cathode tube.

また、本発明の液晶表示装置は、前記放電管均流点灯装置をバックライトとして用いたものである。   Moreover, the liquid crystal display device of the present invention uses the discharge tube equalizing lighting device as a backlight.

以上のように本発明によれば、各放電管に直列につながるキャパシタンスを、放電管ごとに調整することができるので、放電管の明るさを均一にすることができる。   As described above, according to the present invention, since the capacitance connected in series to each discharge tube can be adjusted for each discharge tube, the brightness of the discharge tube can be made uniform.

以下、本発明の実施の形態を、添付図面を参照しながら詳細に説明する。
図1は、本発明の液晶表示装置10を示す分解図である。この液晶表示装置10は、液晶表示部11と、液晶表示部11を支持する液晶パネル12と、均流点灯装置本体13とを備えている。
均流点灯装置本体13は、樹脂又は金属のいずれか又は両方で構成された支持板14に複数の冷陰極管15が固定配置されたものであり、これらの冷陰極管15は、それぞれ給電線を通して高周波駆動回路に接続される。複数の冷陰極管15のそれぞれを示すとき、冷陰極管151・・・15nと表記することがある。nは冷陰極管の本数(n>=2)である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is an exploded view showing a liquid crystal display device 10 of the present invention. The liquid crystal display device 10 includes a liquid crystal display unit 11, a liquid crystal panel 12 that supports the liquid crystal display unit 11, and a current equalizing lighting device body 13.
The current equalizing lighting device main body 13 has a plurality of cold cathode tubes 15 fixedly arranged on a support plate 14 made of either or both of resin and metal. Is connected to a high-frequency driving circuit. When each of the plurality of cold cathode tubes 15 is shown, they may be expressed as cold cathode tubes 151. n is the number of cold cathode tubes (n> = 2).

液晶表示部11は、例えば4:3,16:9などの横長形状である。なお液晶表示部11の構造は公知のものであり、例えば、表面側の透明基板と光源側の透明基板とを向き合わせた構造になっている。液晶駆動方式はパッシブマトリクス型でもアクティブマトリクス型でもよい。アクティブマトリクス型を例に挙げると、表面側の透明基板の内面には複数のマトリクス状透明電極群を配列し、光源側の透明基板の内面にはマトリクス状透明電極群と対向するように1枚の半透明電極を設置している。さらに、それぞれの電極の上に、一定方向にラビングした樹脂からなる配向膜を形成している。そして両配向膜の間に液晶を封入している。なお、カラー液晶の場合は、表面側の透明基板にカラーフィルター層が設けられている。   The liquid crystal display unit 11 has a horizontally long shape such as 4: 3, 16: 9, for example. The structure of the liquid crystal display unit 11 is a known structure, for example, a structure in which a transparent substrate on the surface side and a transparent substrate on the light source side face each other. The liquid crystal driving method may be a passive matrix type or an active matrix type. Taking the active matrix type as an example, a plurality of matrix-like transparent electrode groups are arranged on the inner surface of the transparent substrate on the front side, and one sheet is provided on the inner surface of the transparent substrate on the light source side so as to face the matrix-like transparent electrode group The semi-transparent electrode is installed. Further, an alignment film made of a resin rubbed in a certain direction is formed on each electrode. Liquid crystal is sealed between the alignment films. In the case of color liquid crystal, a color filter layer is provided on the transparent substrate on the front side.

均流点灯装置本体13は、n本の冷陰極管151・・・15nを、液晶表示部11の長辺方向と平行に配列している。各冷陰極管151〜15nの端部には容量調整用給電基板16の一方の電極(第一導体)が接続されていて、この容量調整用給電基板16の他の電極(第三導体)が後述する高周波駆動回路の高周波電源供給端に接続される。
容量調整用給電基板16は、支持板14に、支持板14の面と平行な状態で固定されている。冷陰極管15の一端導体を約90度折り曲げ、容量調整用給電基板16に接合・固定することによって、冷陰極管15の一端部を支持することができる。冷陰極管15の他端部も同様の構造によって固定されている。
The uniform current lighting device main body 13 has n cold cathode tubes 151... 15 n arranged in parallel with the long side direction of the liquid crystal display unit 11. One electrode (first conductor) of the capacity adjustment power supply board 16 is connected to the end of each cold cathode tube 151-15n, and the other electrode (third conductor) of the capacity adjustment power supply board 16 It is connected to a high-frequency power supply end of a high-frequency drive circuit described later.
The capacity adjustment power supply substrate 16 is fixed to the support plate 14 in a state parallel to the surface of the support plate 14. The one end portion of the cold cathode tube 15 can be supported by bending the one end conductor of the cold cathode tube 15 about 90 degrees and bonding and fixing the conductor to the capacity adjusting power supply substrate 16. The other end of the cold cathode tube 15 is also fixed by a similar structure.

図2は、高周波駆動回路17及びそれに接続された複数の冷陰極管15を含む均流点灯装置の全体回路図である。この高周波駆動回路17は、商用交流電源22aに接続された整流回路22bと、整流回路22bの直流出力に基づいて数十kHzの高周波交流電源を得るためのスイッチング回路23と、高周波交流電源を昇圧するための主変圧器24と、その主変圧器24の出力回線に接続された高周波電源供給端25と、高周波電源供給端25に対してそれぞれ並列に接続された複数の冷陰極管15と、各冷陰極管151〜15nに接続され、各冷陰極管151〜15nに互いに等しい電流を流すための均流回路18とを備えている。   FIG. 2 is an overall circuit diagram of the uniform current lighting device including the high-frequency driving circuit 17 and a plurality of cold cathode tubes 15 connected thereto. This high frequency drive circuit 17 includes a rectifier circuit 22b connected to a commercial AC power source 22a, a switching circuit 23 for obtaining a high frequency AC power source of several tens of kHz based on the DC output of the rectifier circuit 22b, and a booster for the high frequency AC power source. A main transformer 24, a high-frequency power supply end 25 connected to the output line of the main transformer 24, and a plurality of cold cathode tubes 15 respectively connected in parallel to the high-frequency power supply end 25; The current equalizing circuit 18 is connected to each of the cold cathode fluorescent lamps 151 to 15n and flows the same current through the cold cathode fluorescent lamps 151 to 15n.

均流回路18は、各冷陰極管151〜15nに直列に接続されたn個のキャパシタC1〜Cnから構成される。なお、図2では、キャパシタC1〜Cnは、各冷陰極管151〜15nの片側の電極に接続されているが、後に図11を用いて説明するように、キャパシタを各冷陰極管151〜15nの両側の電極に接続する構成を採用しても良い。
この高周波駆動回路17の動作説明をすると、まず整流回路22bによって得られた直流電源は、スイッチング回路23によって高周波電源に変換され、主変圧器24に供給される。この高周波電源の交流周波数は、主変圧器24として十分な変換効率が得られる周波数であり、通常は数十kHz〜数百kHzである。周波数がこの範囲より低すぎると、主変圧器24を大きくする必要があり、装置全体が大きく重くなる。周波数がこの範囲よりも高いと、主変圧器24内部や冷陰極管15で発生する並列容量の影響が大きくなり、共振が発生して変換効率が低下する。
The current equalizing circuit 18 includes n capacitors C1 to Cn connected in series to the cold cathode tubes 151 to 15n. In FIG. 2, the capacitors C1 to Cn are connected to electrodes on one side of the cold cathode tubes 151 to 15n. However, as will be described later with reference to FIG. 11, the capacitors are connected to the cold cathode tubes 151 to 15n. A configuration in which the electrodes are connected to the electrodes on both sides may be adopted.
The operation of the high-frequency drive circuit 17 will be described. First, the DC power obtained by the rectifier circuit 22 b is converted into a high-frequency power by the switching circuit 23 and supplied to the main transformer 24. The AC frequency of the high-frequency power source is a frequency at which sufficient conversion efficiency is obtained for the main transformer 24, and is usually several tens of kHz to several hundreds of kHz. If the frequency is lower than this range, the main transformer 24 needs to be enlarged, and the entire device becomes large and heavy. When the frequency is higher than this range, the influence of the parallel capacitance generated in the main transformer 24 and the cold cathode tube 15 becomes large, resonance occurs, and the conversion efficiency decreases.

主変圧器24は、所定の巻き数と巻き数比を持つことによって、交流電圧を所定の昇圧比で昇圧する。これによって、各冷陰極管151〜15nの点灯に必要な交流電圧(通常1000V〜2000V程度)を得ることができる。
主変圧器24によって昇圧された電源は、均流回路18を構成する各キャパシタC1〜Cnを通して、各冷陰極管151〜15nに供給される。これらのキャパシタC1〜Cnは、一定の電圧降下を実現することによって、各冷陰極管151〜15nに均等の電流を供給するものである。
The main transformer 24 boosts the AC voltage at a predetermined boost ratio by having a predetermined number of turns and a turn ratio. As a result, an AC voltage (usually about 1000 V to 2000 V) necessary for lighting the cold cathode tubes 151 to 15n can be obtained.
The power source boosted by the main transformer 24 is supplied to the cold cathode tubes 151 to 15n through the capacitors C1 to Cn constituting the current dividing circuit 18. These capacitors C1 to Cn supply a uniform current to the cold cathode fluorescent lamps 151 to 15n by realizing a constant voltage drop.

ここで、均流回路18を構成する各キャパシタC1〜Cnを実現するための容量調整用給電基板の構造を詳しく説明する。
本発明の実施形態では、容量調整用給電基板は、ほぼ長方形状を有している。容量調整用給電基板には、互いに分離して形成され、各冷陰極管151〜15nに接続される複数(n個)の第一導体と、前記第一導体が形成されている面において、隣接する第一導体の間に、いずれの第一導体とも接続されない状態で形成された容量調整用の第二導体と、前記第一導体及び前記第二導体に対向して形成された第三導体とによって形成される。
Here, the structure of the capacitance adjusting power supply substrate for realizing each of the capacitors C1 to Cn constituting the current equalizing circuit 18 will be described in detail.
In the embodiment of the present invention, the capacity adjustment power supply substrate has a substantially rectangular shape. The power supply substrate for capacity adjustment is formed separately from each other, and is adjacent to the plurality of (n) first conductors connected to each of the cold cathode fluorescent lamps 151 to 15n and the surface on which the first conductor is formed. A second conductor for capacity adjustment formed between the first conductors and being not connected to any first conductor, and a third conductor formed opposite to the first conductor and the second conductor; Formed by.

この容量調整用給電基板の構造の一例を、図3,図4に示す。図3は容量調整用給電基板16の外観斜視図、図4は容量調整用給電基板16の平面図(a)、正面図(b)及び底面図(c)である。
この容量調整用給電基板16では、絶縁基板16aの表面Sに、その長辺方向(xで示す)に沿って、n個の第一導体301〜30n(総称するときは、第一導体30という)がパターン印刷等により形成されている。各第一導体301〜30nは、当該基板の長辺方xを分断する形態で互いに独立して形成されており、隣り合う第一導体30同士の電気的な直接のつながりはない。絶縁基板16aの表面Sにおいて、隣接する第一導体30同士の間には、いずれの第一導体30とも接続されない状態で、容量調整用の第二導体311〜31(n−1)(総称するときは、第二導体31という)がパターン印刷により形成されている。各第二導体31は、さらに複数(図では5本であるが、5本に限定されるものではない)の導体片Pに分かれて形成されており、これらの複数の導体片P同士、電気的な直接のつながりはない。
An example of the structure of the capacitance adjusting power supply substrate is shown in FIGS. 3 is an external perspective view of the capacity adjustment power supply board 16, and FIG. 4 is a plan view (a), a front view (b), and a bottom view (c) of the capacity adjustment power supply board 16. FIG.
In this capacity adjustment power supply substrate 16, n first conductors 301 to 30 n (referred to collectively as first conductors 30) along the long side direction (indicated by x) on the surface S of the insulating substrate 16 a. ) Is formed by pattern printing or the like. Each of the first conductors 301 to 30n is formed independently of each other in the form of dividing the long side x of the substrate, and there is no direct electrical connection between the adjacent first conductors 30. On the surface S of the insulating substrate 16a, the second conductors 311 to 31 (n-1) for capacity adjustment (generic name) are connected between the adjacent first conductors 30 without any of the first conductors 30 being connected. Is sometimes formed by pattern printing. Each of the second conductors 31 is further divided into a plurality of conductor pieces P (five but not limited to five in the figure), and the plurality of conductor pieces P are electrically connected to each other. There is no direct connection.

各第一導体301〜30nには、各冷陰極管151〜15nの一方の電極が、半田などの接合部材Bによってそれぞれ接続されている。
容量調整用給電基板16の裏面Rには、図4(c)に示すように、第三導体32が、前記第一導体30及び前記第二導体31に対向する領域、すなわち容量調整用給電基板16の裏面Rのほぼ全面に形成されている。
One electrode of each cold cathode tube 151-15n is connected to each first conductor 301-30n by a joining member B such as solder.
On the back surface R of the capacity adjustment power supply board 16, as shown in FIG. 4C, a region where the third conductor 32 faces the first conductor 30 and the second conductor 31, that is, the capacity adjustment power supply board. 16 is formed on almost the entire back surface R of the surface.

このように絶縁基板16aの厚みを介して、各第一導体301〜30nが第三導体32に対向することにより、各第一導体301〜30nは、第三導体32との間にキャパシタンスをそれぞれ形成する。また、各第二導体31の各導体片Pも第三導体32との間にキャパシタンスをそれぞれ形成する。
第一導体30とそれに隣接する第二導体31のいずれかの導体片Pとは、半田、導体ペーストなどの接合部材により、互いに接合可能となっている。図3に、接合部材により互いに接合された領域(容量調整用接合領域という)Aを示している。この容量調整用接合領域Aにおいて互いに接合された導体同士が電気的に一体になることにより、各導体ごとに作られるキャパシタンスは合体したものとなる。
In this way, the first conductors 301 to 30n face the third conductor 32 through the thickness of the insulating substrate 16a, so that each first conductor 301 to 30n has a capacitance between the first conductor 301 and the third conductor 32, respectively. Form. Each conductor piece P of each second conductor 31 also forms a capacitance with the third conductor 32.
The first conductor 30 and any conductor piece P of the second conductor 31 adjacent to the first conductor 30 can be joined to each other by a joining member such as solder or conductor paste. FIG. 3 shows an area A (referred to as a capacity adjustment joining area) A joined to each other by the joining member. When the conductors joined to each other in the capacitance adjusting junction region A are electrically integrated, the capacitances created for the respective conductors are combined.

例えば、図3では、絶縁基板16aの最も端に位置する第一導体301と、第二導体311を構成する3本の導体片Pとが合体されているので、これらの導体で作られ合体されたキャパシタが、冷陰極管151を駆動するキャパシタC1となる。また、絶縁基板16aの次に位置する第一導体302と、第二導体312を構成する2本の導体片Pとが合体されているので、これらの導体で作られ合体されたキャパシタが、冷陰極管152を駆動するキャパシタC2となる。   For example, in FIG. 3, since the first conductor 301 located at the end of the insulating substrate 16a and the three conductor pieces P constituting the second conductor 311 are combined, they are made of these conductors and combined. This capacitor becomes the capacitor C1 for driving the cold cathode tube 151. Further, since the first conductor 302 positioned next to the insulating substrate 16a and the two conductor pieces P constituting the second conductor 312 are combined, the combined capacitor made of these conductors is cooled. The capacitor C2 that drives the cathode tube 152 is obtained.

半田、導体ペーストなどの接合部材を用いて、第一導体30を、第二導体31のいずれの導体片Pに接合させるか、すなわち容量調整用接合領域Aの範囲を決定するためには、次のようにする。各第一導体301〜30nに各冷陰極管151〜15nの一方の電極を接続し、各冷陰極管151〜15nの他方の電極を接地する。高周波駆動回路17によって全冷陰極管151・・・15nを点灯させて、環状の鉄芯を持つカレントトランスを用いて各冷陰極管151〜15nを流れる電流を非接触に測定して、測定した電流値が基準値より少ない場合、その該当する第一導体30に導体片Pを接合する。このことにより、その該当する第一導体30と第三導体32との間のキャパシタンスを増大させる。導体片Pをいくつ接合するかは、測定した電流値が基準値よりどれだけ少ないかに応じて決めればよい。なお、カレントトランスを用いて各冷陰極管151〜15nを流れる電流を測定する代わりに、各冷陰極管151〜15nの明るさを光度計で測定してもよい。この場合、比較的暗い冷陰極管15に対応する第一導体30に、隣接する導体片Pを多数接合させて、当該冷陰極管15につながるキャパシタのキャパシタンスを増大させる。比較的明るい冷陰極管15に対応する第一導体30には、隣接する導体片Pを接合させない。   In order to determine which conductor piece P of the second conductor 31 is to be joined to the first conductor 30 using a joining member such as solder or conductor paste, that is, the range of the capacity adjustment joining area A, Like this. One electrode of each cold cathode tube 151-15n is connected to each first conductor 301-30n, and the other electrode of each cold cathode tube 151-15n is grounded. All the cold cathode tubes 151... 15 n are turned on by the high-frequency driving circuit 17, and the current flowing through each of the cold cathode tubes 151 to 15 n is measured in a non-contact manner using a current transformer having an annular iron core. When the current value is smaller than the reference value, the conductor piece P is joined to the corresponding first conductor 30. This increases the capacitance between the corresponding first conductor 30 and third conductor 32. The number of conductor pieces P to be joined may be determined according to how much the measured current value is smaller than the reference value. Instead of measuring the current flowing through each cold cathode tube 151-15n using a current transformer, the brightness of each cold cathode tube 151-15n may be measured with a photometer. In this case, a large number of adjacent conductor pieces P are joined to the first conductor 30 corresponding to the relatively dark cold-cathode tube 15 to increase the capacitance of the capacitor connected to the cold-cathode tube 15. The adjacent conductor piece P is not joined to the first conductor 30 corresponding to the relatively bright cold cathode tube 15.

このようにして、各冷陰極管151〜15nに流れる高周波電流が均一となるように、容量調整用給電基板16上の各キャパシタンスC1〜Cnを調整することができる。
いままでの説明では、容量調整用給電基板の表面Sと裏面Rに、それぞれ導体を形成していた。しかし、2枚の絶縁基板と1枚の絶縁テープを用いて、前記第一導体及び前記第二導体を一つの絶縁基板の一面に形成し、前記第二導体を、他の絶縁基板16cの一面に形成し、前記2つの絶縁基板の前記一面同士を、絶縁テープを介して接着して、容量調整用給電基板を構成することも可能である。
In this way, the capacitances C1 to Cn on the capacity adjustment power supply substrate 16 can be adjusted so that the high-frequency current flowing through the cold cathode tubes 151 to 15n is uniform.
In the description so far, conductors have been formed on the front surface S and the back surface R of the capacity adjustment power supply substrate, respectively. However, by using two insulating substrates and one insulating tape, the first conductor and the second conductor are formed on one surface of one insulating substrate, and the second conductor is formed on one surface of another insulating substrate 16c. It is also possible to form a capacitance adjusting power supply substrate by bonding the one surface of the two insulating substrates to each other via an insulating tape.

図5は、このようにして構成した容量調整用給電基板26の平面図(a)、正面図(b)及び底面図(c)である。
この容量調整用給電基板26では、図5(a)に示すように、一つの絶縁基板16bの一面に、その長辺方向に沿って、n個の第一導体301〜30nを形成し、同じ面の、隣接する第一導体30同士の間に、いずれの第一導体30とも接続されない状態で、容量調整用の第二導体311〜31(n−1)を形成している。各第二導体31は、さらに複数(図では5本)の導体片Pに分かれて形成されている。
FIG. 5 is a plan view (a), a front view (b), and a bottom view (c) of the capacity adjustment power supply board 26 configured as described above.
In this capacity adjustment power supply substrate 26, as shown in FIG. 5A, n first conductors 301 to 30n are formed on one surface of one insulating substrate 16b along the long side direction, and the same. Between the adjacent first conductors 30 on the surface, the second conductors 311 to 31 (n−1) for capacity adjustment are formed in a state where no first conductor 30 is connected. Each second conductor 31 is further divided into a plurality (five in the figure) of conductor pieces P.

他の絶縁基板16cの一面には、図5(c)に示すように、第三導体32をほぼ全面に形成している。
そして、図5(b)のように、一つの絶縁基板16bの一面と他の絶縁基板16cの一面とを、その間に絶縁テープ16dを介して対向させている。絶縁基板16b,16cと絶縁テープ16dとは、接着するなどして互いに離れないようにすることが望ましい。
On one surface of the other insulating substrate 16c, as shown in FIG. 5C, a third conductor 32 is formed on almost the entire surface.
As shown in FIG. 5B, one surface of one insulating substrate 16b and one surface of another insulating substrate 16c are opposed to each other with an insulating tape 16d interposed therebetween. It is desirable that the insulating substrates 16b and 16c and the insulating tape 16d are not separated from each other by bonding or the like.

この構造の容量調整用給電基板26では、各第一導体301〜30nと各冷陰極管151〜15nの電極とを接続するための、第一導体30に接続用の領域を作っておく必要がある。そこで図5(a)に示すように、一つの絶縁基板16bの幅を、他の絶縁基板16cや絶縁テープ16dの幅よりも広くし、これに応じて第一導体30、第二導体31の幅W1も、第三導体32の幅W2よりも広く作成しておく。   In the capacity adjustment power supply board 26 of this structure, it is necessary to create a connection region in the first conductor 30 for connecting the first conductors 301 to 30n and the electrodes of the cold cathode tubes 151 to 15n. is there. Therefore, as shown in FIG. 5A, the width of one insulating substrate 16b is made wider than the width of the other insulating substrate 16c and the insulating tape 16d, and the first conductor 30 and the second conductor 31 are made accordingly. The width W1 is also made wider than the width W2 of the third conductor 32.

一つの絶縁基板16bの一面と他の絶縁基板16cの一面とを、その間に絶縁テープ16dを介して重ね合わせた状態を示す斜視図が、図6である。この図に示すように、第一導体30、第二導体31の幅W1と、第三導体32の幅W2との差(W1−W2)に相当する領域が、絶縁テープ16dの側辺からはみ出るので、このはみ出た領域において、各冷陰極管151〜15nの電極を接続することができ、第一導体30とそれに隣接する第二導体31のいずれかの導体片Pとを、半田、導体ペーストなどの接合部材により、接合することができる。   FIG. 6 is a perspective view showing a state in which one surface of one insulating substrate 16b and one surface of another insulating substrate 16c are overlapped with each other via an insulating tape 16d. As shown in this figure, a region corresponding to the difference (W1−W2) between the width W1 of the first conductor 30 and the second conductor 31 and the width W2 of the third conductor 32 protrudes from the side of the insulating tape 16d. Therefore, in the protruding region, the electrodes of the cold cathode tubes 151 to 15n can be connected, and the first conductor 30 and any conductor piece P of the second conductor 31 adjacent to the first conductor 30 are connected to the solder, conductor paste. It can join by joining members, such as.

このように絶縁テープ16dの厚みを介して、第一導体301〜30nが第三導体32に対向することにより、各第一導体301〜30nは、第三導体32との間にキャパシタンスをそれぞれ形成する。また、第二導体31の各導体片Pも第三導体32との間にキャパシタンスをそれぞれ形成する。第一導体30とそれに隣接する第二導体31のいずれかの導体片Pとは、半田、導体ペーストなどの接合部材により接合されれば、接合された導体同士を電気的に一体にすることができ、キャパシタンスを増大させることができる。   As described above, the first conductors 301 to 30n face the third conductor 32 through the thickness of the insulating tape 16d, so that each first conductor 301 to 30n forms a capacitance with the third conductor 32, respectively. To do. Each conductor piece P of the second conductor 31 also forms a capacitance with the third conductor 32. If the first conductor 30 and any conductor piece P of the second conductor 31 adjacent to the first conductor 30 are joined by a joining member such as solder or conductor paste, the joined conductors can be electrically integrated. And the capacitance can be increased.

次に、第三導体32を、容量調整用給電基板16の裏面Rに、当該基板の短辺方向を分断する形で形成した実施形態を説明する。
図7は、このようにして構成した容量調整用給電基板36の平面図(a)、正面図(b)及び底面図(c)である。
この容量調整用給電基板36では、絶縁基板16aの表面Sに形成される第一導体30、第二導体31の形状は図4に示したのと同様であるが、容量調整用給電基板36の裏面Rには、図7(c)に示すように、第三導体32が、前記第一導体30及び前記第二導体31に対向する領域に、かつ、当該基板の短辺方向yを分断する形で複数の導体片321〜323に分割されて形成されている。各導体片321〜323のうち、高周波電源供給端25に接続される主導体片321は、最も面積が大きく、第一導体30、第二導体31と対向することにより大きなキャパシタンスを形成する。導体片322,323は面積が小さく、半田、導体ペーストなどの接合部材により、主導体片321と接合可能となっている。接合された導体片同士が電気的に一体になることにより、各導体片で作られるキャパシタンスも合体したものとなる。
Next, an embodiment will be described in which the third conductor 32 is formed on the back surface R of the capacitance adjusting power supply substrate 16 so as to divide the short side direction of the substrate.
FIG. 7 is a plan view (a), a front view (b), and a bottom view (c) of the capacity adjustment power supply board 36 configured as described above.
In this capacity adjustment power supply board 36, the shapes of the first conductor 30 and the second conductor 31 formed on the surface S of the insulating substrate 16a are the same as those shown in FIG. On the back surface R, as shown in FIG. 7C, the third conductor 32 divides the short-side direction y of the substrate into a region facing the first conductor 30 and the second conductor 31. It is divided into a plurality of conductor pieces 321 to 323 in the form. Of the conductor pieces 321-323, the main conductor piece 321 connected to the high-frequency power supply end 25 has the largest area, and forms a large capacitance by facing the first conductor 30 and the second conductor 31. The conductor pieces 322 and 323 have a small area and can be joined to the main conductor piece 321 by a joining member such as solder or conductor paste. When the joined conductor pieces are electrically integrated with each other, the capacitance formed by the conductor pieces is also combined.

この容量調整用給電基板36の構造では、冷陰極管151を駆動するキャパシタC1、冷陰極管152を駆動するキャパシタC2などを個別に調整するのではなく、冷陰極管151〜15nを駆動するキャパシタC1〜Cnを一括して増減することができる。すなわち、主導体片321を導体片322,323に接続しない場合は、各キャパシタC1〜Cnのキャパシタンスは比較的小さく、主導体片321を導体片322に接合すれば、各キャパシタC1〜Cnのキャパシタンスは一律に大きくなる。主導体片321を導体片322及び導体片323に接合すれば、各キャパシタC1〜Cnのキャパシタンスはさらに大きくなる。   In the structure of the capacitance adjusting power supply substrate 36, the capacitor C1 that drives the cold cathode tubes 151, the capacitor C2 that drives the cold cathode tubes 152, and the like are not individually adjusted, but the capacitors that drive the cold cathode tubes 151 to 15n. C1 to Cn can be increased or decreased all at once. That is, when the main conductor piece 321 is not connected to the conductor pieces 322 and 323, the capacitances of the capacitors C1 to Cn are relatively small, and when the main conductor piece 321 is joined to the conductor piece 322, the capacitances of the capacitors C1 to Cn. Will grow uniformly. If the main conductor piece 321 is joined to the conductor piece 322 and the conductor piece 323, the capacitances of the capacitors C1 to Cn are further increased.

このように基板裏面Rにおいて第三導体32を分割形成する構造を採用することにより、冷陰極管151〜15nの全体の明るさを調整することができる。
いままでの説明では、容量調整用給電基板の表面Sと裏面Rに、それぞれ導体を形成していた。しかし、2枚の絶縁基板と1枚の絶縁テープを用いて、前記第一導体30及び前記第二導体31を一つの絶縁基板16bの一面に形成し、前記第三導体32を、他の絶縁基板16cの一面に形成し、前記2つの絶縁基板16b,16cの前記一面同士を、絶縁テープ16dを介して接近させて容量調整用給電基板46を構成することも可能である。
Thus, by adopting the structure in which the third conductor 32 is divided and formed on the back surface R of the substrate, the overall brightness of the cold cathode fluorescent lamps 151 to 15n can be adjusted.
In the description so far, conductors have been formed on the front surface S and the back surface R of the capacity adjustment power supply substrate, respectively. However, using two insulating substrates and one insulating tape, the first conductor 30 and the second conductor 31 are formed on one surface of one insulating substrate 16b, and the third conductor 32 is replaced with another insulating substrate. It is also possible to form the capacity adjustment power supply board 46 by forming it on one surface of the substrate 16c, and bringing the one surface of the two insulating substrates 16b and 16c closer via an insulating tape 16d.

図8は、このようにして構成した容量調整用給電基板46の平面図(a)、正面図(b)及び底面図(c)である。
この容量調整用給電基板46では、図8(a)に示すように、一つの絶縁基板16bの一面に、その長辺方向に沿って、n個の第一導体301〜30nを形成し、同じ面の、隣接する第一導体30同士の間に第二導体311〜31(n−1)を形成している。各第二導体31は、さらに複数(図では5本)の導体片Pに分かれて形成されている。
FIG. 8 is a plan view (a), a front view (b), and a bottom view (c) of the capacity adjustment power supply board 46 thus configured.
In this capacity adjustment power supply substrate 46, as shown in FIG. 8A, n first conductors 301 to 30n are formed on one surface of one insulating substrate 16b along the long side direction, and the same. Second conductors 311 to 31 (n-1) are formed between adjacent first conductors 30 on the surface. Each second conductor 31 is further divided into a plurality (five in the figure) of conductor pieces P.

他の絶縁基板16cの一面には、図8(c)に示すように、第三導体32を、前記第一導体30及び前記第二導体31に対向する領域に形成し、かつ、当該基板の短辺方向を分断する形で、複数の導体片321〜323に分割している。
この構造の容量調整用給電基板46では、各第一導体301〜30nと各冷陰極管151〜15nの電極とを接続するため、第一導体30に接続用の領域を作る必要があることは、図5、図6を用いて説明したとおりであるが、さらに第三導体32の主導体片321と導体片322,323とを接合するための接続用の領域を作る必要がある。そこで、図8(c)に示すように、絶縁基板16cの長辺方向xに沿った長さを延ばし、第三導体32の長辺方向xに沿った長さを、第一導体30、第二導体31の長さよりも、Uだけ長くしておく。この長さの差Uに相当する領域が、第三導体32の主導体片321を導体片322,323に接合するための接続用の領域となる。
As shown in FIG. 8C, a third conductor 32 is formed on one surface of the other insulating substrate 16c in a region facing the first conductor 30 and the second conductor 31, and The conductor is divided into a plurality of conductor pieces 321 to 323 so as to divide the short side direction.
In the capacity adjusting power supply board 46 of this structure, it is necessary to create a connection region in the first conductor 30 in order to connect the first conductors 301 to 30n and the electrodes of the cold cathode tubes 151 to 15n. As described with reference to FIGS. 5 and 6, it is necessary to make a connection region for joining the main conductor piece 321 and the conductor pieces 322 and 323 of the third conductor 32. Therefore, as shown in FIG. 8C, the length along the long side direction x of the insulating substrate 16 c is extended, and the length along the long side direction x of the third conductor 32 is changed to the first conductor 30 and the second conductor 32. It is made longer by U than the length of the two conductors 31. An area corresponding to the length difference U is a connection area for joining the main conductor piece 321 of the third conductor 32 to the conductor pieces 322 and 323.

図9、図10は、一つの絶縁基板16bの一面と他の絶縁基板16cの一面とを、その間に絶縁テープ16dを介して重ね合わせた容量調整用給電基板46を示す斜視図である。
図9に示すように、絶縁基板16bにおいて、第一導体30、第二導体31の幅W1と、第三導体32の幅W2との差(W1−W2)に相当する領域が、絶縁テープ16dの側辺からはみ出るので、このはみ出た領域において、各冷陰極管151〜15nの電極を接続したり、第一導体30とそれに隣接する第二導体31のいずれかの導体片Pとを、半田、導体ペーストなどの接合部材により、接合することができる。
9 and 10 are perspective views showing a capacitance adjusting power supply substrate 46 in which one surface of one insulating substrate 16b and one surface of another insulating substrate 16c are overlapped with an insulating tape 16d therebetween.
As shown in FIG. 9, in the insulating substrate 16b, a region corresponding to the difference (W1-W2) between the width W1 of the first conductor 30 and the second conductor 31 and the width W2 of the third conductor 32 is the insulating tape 16d. In this protruding region, the electrodes of the cold cathode tubes 151 to 15n are connected, or the first conductor 30 and any conductor piece P of the second conductor 31 adjacent thereto are soldered. It can be joined by a joining member such as a conductor paste.

また、図10に示すように、他の絶縁基板16cにおいて、第三導体32が、第一導体30、第二導体31よりも、基板の長辺方向に沿って距離Uだけはみ出している。この長さの差Uに相当する領域において、第三導体32の主導体片321を導体片322,323に接合することができる。
このように絶縁テープ16dの厚みを介して、第一導体301〜30nが第三導体32に対抗することにより、各第一導体301〜30nは、第三導体32との間にキャパシタンスをそれぞれ形成する。また、第二導体31の各導体片Pも第三導体32との間にキャパシタンスをそれぞれ形成する。第一導体30とそれに隣接する第二導体31のいずれかの導体片Pとは、半田、導体ペーストなどの接合部材により接合されれば、接合された導体同士を電気的に一体にすることができ、キャパシタンスを増大させることができる。
As shown in FIG. 10, in the other insulating substrate 16 c, the third conductor 32 protrudes from the first conductor 30 and the second conductor 31 by a distance U along the long side direction of the substrate. In a region corresponding to this length difference U, the main conductor piece 321 of the third conductor 32 can be joined to the conductor pieces 322 and 323.
As described above, the first conductors 301 to 30n oppose the third conductor 32 through the thickness of the insulating tape 16d, whereby each first conductor 301 to 30n forms a capacitance with the third conductor 32, respectively. To do. Each conductor piece P of the second conductor 31 also forms a capacitance with the third conductor 32. If the first conductor 30 and any conductor piece P of the second conductor 31 adjacent to the first conductor 30 are joined by a joining member such as solder or conductor paste, the joined conductors can be electrically integrated. And the capacitance can be increased.

また、第三導体32の主導体片321を導体片322に接合し、又は導体片322,323に接合することにより、冷陰極管151〜15nを駆動するキャパシタC1〜Cnを一括して増減することができる。
いままで本発明の実施の形態を説明したが、本発明は、実施の形態に限られるものでない。例えば、図11に示すように、各冷陰極管151〜15nの両側の電極に均流回路181,182を接続する場合がある。均流回路181を構成するキャパシタをC11〜Cn1と表記し、均流回路182を構成するキャパシタをC12〜Cn2と表記する。この場合は、高周波電源供給端25,25間の電圧を、2つの均流回路181,182で分圧することができるので、各キャパシタC11〜Cn1、C12〜Cn2にかかる電圧を図2の回路と比べて半分にすることができる。この構造において、本発明の容量調整用給電基板16,26,36,46は、冷陰極管15の両側に設置すればよい。絶縁基板16a,16b,16cや絶縁テープ16dの耐圧が低くなるので、絶縁体の材質の選択範囲を広げることができる。
Further, by joining the main conductor piece 321 of the third conductor 32 to the conductor piece 322 or joining to the conductor pieces 322 and 323, the capacitors C1 to Cn for driving the cold cathode tubes 151 to 15n are collectively increased or decreased. be able to.
Although the embodiment of the present invention has been described so far, the present invention is not limited to the embodiment. For example, as shown in FIG. 11, current equalization circuits 181 and 182 may be connected to the electrodes on both sides of each cold cathode tube 151 to 15n. Capacitors constituting the current sharing circuit 181 are denoted as C11 to Cn1, and capacitors constituting the current equalization circuit 182 are denoted as C12 to Cn2. In this case, since the voltage between the high-frequency power supply terminals 25 and 25 can be divided by the two current-dividing circuits 181 and 182, the voltages applied to the capacitors C11 to Cn1 and C12 to Cn2 are the same as those shown in FIG. Compared to half. In this structure, the capacity adjustment power supply boards 16, 26, 36 and 46 of the present invention may be installed on both sides of the cold cathode tube 15. Since the withstand voltages of the insulating substrates 16a, 16b, 16c and the insulating tape 16d are lowered, the selection range of the insulator material can be expanded.

以上のような本発明の構成によって、複数の冷陰極管151・・・15nに均等の電流を流すことができ、均一な明るさで点灯することができる。
いままで本発明の実施の形態を説明したが、本発明は、実施の形態に限られるものでないことはもちろんである。例えば、図12に示すように、樹脂又は金属のいずれか又は両方で構成された支持板14の上に冷陰極管15を設置し、さらにその上に容量調整用給電基板16を配置する構造も可能である。この構造によれば、冷陰極管15は、支持板14と容量調整用給電基板16との間に配置される。したがって、支持板14と容量調整用給電基板16との距離を図3の構造のものよりも広げることができ、容量調整用給電基板16に起因する浮遊容量を減少させることができる。また、本発明は、実施の形態で用いた冷陰極管に限られず、放電管一般に適用できるものである。
With the configuration of the present invention as described above, an equal current can be supplied to the plurality of cold-cathode tubes 151... 15n, and lighting can be performed with uniform brightness.
Although the embodiments of the present invention have been described so far, the present invention is of course not limited to the embodiments. For example, as shown in FIG. 12, there is also a structure in which a cold cathode tube 15 is installed on a support plate 14 made of either or both of resin and metal, and a capacity adjustment power supply board 16 is further arranged thereon. Is possible. According to this structure, the cold cathode tube 15 is disposed between the support plate 14 and the capacity adjustment power supply substrate 16. Accordingly, the distance between the support plate 14 and the capacity adjustment power supply board 16 can be made larger than that of the structure shown in FIG. 3, and the stray capacitance caused by the capacity adjustment power supply board 16 can be reduced. Further, the present invention is not limited to the cold cathode tubes used in the embodiments, and can be applied to general discharge tubes.

本発明の液晶表示装置10を示す分解斜視図である。It is a disassembled perspective view which shows the liquid crystal display device 10 of this invention. 高周波駆動回路17及びそれに接続された複数の冷陰極管15を含む本発明の均流点灯装置の全体回路図である。1 is an overall circuit diagram of a current equalizing lighting device of the present invention including a high-frequency drive circuit 17 and a plurality of cold cathode tubes 15 connected thereto. 容量調整用給電基板16に冷陰極管を接続した状態を示す外観斜視図である。FIG. 4 is an external perspective view showing a state where a cold cathode tube is connected to a capacity adjustment power supply substrate 16. 容量調整用給電基板16の平面図(a)、正面図(b)及び底面図(c)である。It is the top view (a), front view (b), and bottom view (c) of the power supply board 16 for capacity adjustment. 一つの絶縁基板16bの一面と他の絶縁基板16cの一面とを、その間に絶縁テープ16dを介して重ね合わせた容量調整用給電基板26の平面図(a)、正面図(b)及び底面図(c)である。A plan view (a), a front view (b), and a bottom view of a capacitance adjusting power supply substrate 26 in which one surface of one insulating substrate 16b and one surface of another insulating substrate 16c are overlapped with each other via an insulating tape 16d. (C). 容量調整用給電基板26に冷陰極管を接続した状態を示す外観斜視図である。FIG. 3 is an external perspective view showing a state where a cold cathode tube is connected to a capacity adjustment power supply board 26. 絶縁基板の裏面Rの第三導体を、当該基板の短辺方向を分断する形で形成した容量調整用給電基板36の平面図(a)、正面図(b)及び底面図(c)である。It is the top view (a), the front view (b), and the bottom view (c) of the capacity adjusting power supply substrate 36 in which the third conductor on the back surface R of the insulating substrate is formed by dividing the short side direction of the substrate. . 一つの絶縁基板16bの一面と他の絶縁基板16cの一面とを、その間に絶縁テープ16dを介して重ね合わせた容量調整用給電基板46の平面図(a)、正面図(b)及び底面図(c)である。A plan view (a), a front view (b), and a bottom view of a capacitance adjusting power supply substrate 46 in which one surface of one insulating substrate 16b and one surface of another insulating substrate 16c are overlapped with each other via an insulating tape 16d. (C). 前記容量調整用給電基板46を示す斜視図である。FIG. 5 is a perspective view showing the capacity adjustment power supply board 46. 前記容量調整用給電基板46の、特に端部を示す斜視図である。It is a perspective view which shows especially the edge part of the said electric power feeding board 46 for capacity | capacitance adjustment. 各冷陰極管151〜15nの両側の電極に均流回路181,182を接続した回路例を示す図である。It is a figure which shows the circuit example which connected the current equalization circuits 181 and 182 to the electrode of the both sides of each cold cathode tube 151-15n. 支持板14の上に冷陰極管15を設置し、さらにその上に容量調整用給電基板16を配置した構造を示す図である。It is a figure which shows the structure which installed the cold cathode tube 15 on the support plate 14, and has arrange | positioned the capacity | capacitance adjustment electric power feeding board 16 on it. キャパシタを利用した放電管均流点灯装置の一例を示す回路図である。It is a circuit diagram which shows an example of the discharge tube equality lighting apparatus using a capacitor. 各冷陰極管の一端又は両端を支持する基板上にキャパシタを、当該基板と一体に形成した例を示す斜視図である。It is a perspective view which shows the example which formed the capacitor integrally with the said board | substrate on the board | substrate which supports the one end or both ends of each cold-cathode tube.

符号の説明Explanation of symbols

10 液晶表示装置10
11 液晶表示部
12 液晶パネル
13 均流点灯装置本体
14 支持板
15,151・・・15n 冷陰極管
16,26,36,46 容量調整用給電基板
16a,16b,16c 絶縁基板
16d 絶縁テープ
17 高周波駆動回路
18,181,182 均流回路
25 高周波電源供給端
30,301〜30n 第一導体
31,311〜31(n−1) 第二導体
32 第三導体
321,322,323 導体片
A 容量調整用接合領域
P 導体片
10 Liquid crystal display device 10
DESCRIPTION OF SYMBOLS 11 Liquid crystal display part 12 Liquid crystal panel 13 Current equalizing lighting device main body 14 Support plate 15,151 ... 15n Cold cathode tube 16,26,36,46 Capacity adjustment electric power feeding board | substrate 16a, 16b, 16c Insulating board | substrate 16d Insulating tape 17 High frequency Drive circuit 18, 181, 182 Current equalization circuit 25 High frequency power supply terminals 30, 301 to 30n First conductor 31, 311 to 31 (n-1) Second conductor 32 Third conductor 321, 322, 323 Conductor piece A Capacity adjustment Joining area P Conductor piece

Claims (10)

高周波駆動回路によって駆動される複数の放電管の一端又は両端を支持するための基板であって、
互いに分離して形成され、前記放電管のそれぞれに接続される複数の第一導体と、
前記第一導体が形成されている面において、隣接する前記第一導体の間に、いずれの第一導体とも接続されない状態で形成された容量調整用の第二導体と、
前記第一導体及び前記第二導体に対向して形成された第三導体と、を備えることを特徴とする容量調整用給電基板。
A substrate for supporting one or both ends of a plurality of discharge tubes driven by a high-frequency driving circuit,
A plurality of first conductors formed separately from each other and connected to each of the discharge tubes;
On the surface where the first conductor is formed, between the adjacent first conductors, a second conductor for capacity adjustment formed in a state in which any first conductor is not connected,
And a third conductor formed to face the first conductor and the second conductor.
前記第一導体及び前記第二導体は一枚の絶縁基板の表面に形成され、前記第三導体は、当該絶縁基板の裏面に形成されている、請求項1記載の容量調整用給電基板。   The capacity adjustment power supply board according to claim 1, wherein the first conductor and the second conductor are formed on a surface of a single insulating substrate, and the third conductor is formed on a back surface of the insulating substrate. 前記第一導体及び前記第二導体は一つの絶縁基板の一面に形成され、前記第二導体は、他の絶縁基板の一面に形成され、前記2つの絶縁基板の前記一面同士を、絶縁膜を介して接近させている、請求項1記載の容量調整用給電基板。   The first conductor and the second conductor are formed on one surface of one insulating substrate, the second conductor is formed on one surface of another insulating substrate, and the one surface of the two insulating substrates is bonded with an insulating film. The power supply board for capacity adjustment according to claim 1, wherein the power supply board is close to each other. 前記容量調整用給電基板はほぼ長方形状を有し、
前記複数の第一導体は、当該容量調整用給電基板の長辺方向を分断する形態で独立して形成されている、請求項1から請求項3のいずれか1項に記載の容量調整用給電基板。
The capacity adjustment power supply board has a substantially rectangular shape,
The power supply for capacity adjustment according to any one of claims 1 to 3, wherein the plurality of first conductors are independently formed in a form in which a long side direction of the capacity adjustment power supply board is divided. substrate.
前記第三導体は、当該容量調整用給電基板の短辺方向を分断する形態で分離形成されている、請求項1から請求項4のいずれか1項に記載の容量調整用給電基板。   5. The capacity adjustment power supply board according to claim 1, wherein the third conductor is separately formed so as to divide a short side direction of the capacity adjustment power supply board. 6. 前記第二導体は、隣接する前記第一導体の間に、複数の導体片に分かれて形成されている、請求項1から請求項5のいずれか1項に記載の容量調整用給電基板。   6. The capacity adjustment power supply board according to claim 1, wherein the second conductor is divided into a plurality of conductor pieces between the adjacent first conductors. 7. 高周波駆動回路と、前記高周波駆動回路によって駆動される複数の放電管と、請求項1から請求項6のいずれか1項に記載の容量調整用給電基板とを備え、
前記複数の放電管は前記容量調整用給電基板の複数の第一導体にそれぞれ接続され、前記第三導体は前記高周波駆動回路の高周波電源供給端に接続されていることを特徴とする放電管均流点灯装置。
A high frequency drive circuit, a plurality of discharge tubes driven by the high frequency drive circuit, and the capacity adjustment power supply substrate according to any one of claims 1 to 6,
The plurality of discharge tubes are respectively connected to a plurality of first conductors of the capacity adjustment power supply substrate, and the third conductor is connected to a high-frequency power supply end of the high-frequency drive circuit. Flow lighting device.
前記複数の放電管を支持する支持板をさらに含み、
前記複数の放電管は、前記容量調整用給電基板と、前記支持板との間に配置されている請求項7記載の放電管均流点灯装置。
And further comprising a support plate for supporting the plurality of discharge tubes,
The discharge tube equalizing lighting device according to claim 7, wherein the plurality of discharge tubes are arranged between the capacity adjustment power supply substrate and the support plate.
前記放電管は、蛍光灯又は冷陰極管である請求項7又は請求項8記載の放電管均流点灯装置。   The discharge tube equalizing lighting device according to claim 7 or 8, wherein the discharge tube is a fluorescent lamp or a cold cathode tube. 請求項9記載の放電管均流点灯装置をバックライトとして用いた液晶表示装置。   A liquid crystal display device using the discharge tube uniform current lighting device according to claim 9 as a backlight.
JP2008007257A 2008-01-16 2008-01-16 Capacitance-adjusting power-feed substrate, and discharge tube current equalization lighting device using the same, and liquid crystal display Pending JP2009170667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008007257A JP2009170667A (en) 2008-01-16 2008-01-16 Capacitance-adjusting power-feed substrate, and discharge tube current equalization lighting device using the same, and liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008007257A JP2009170667A (en) 2008-01-16 2008-01-16 Capacitance-adjusting power-feed substrate, and discharge tube current equalization lighting device using the same, and liquid crystal display

Publications (1)

Publication Number Publication Date
JP2009170667A true JP2009170667A (en) 2009-07-30

Family

ID=40971518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008007257A Pending JP2009170667A (en) 2008-01-16 2008-01-16 Capacitance-adjusting power-feed substrate, and discharge tube current equalization lighting device using the same, and liquid crystal display

Country Status (1)

Country Link
JP (1) JP2009170667A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017877A1 (en) * 2018-07-20 2020-01-23 Samsung Electronics Co., Ltd. Electronic device including variable capacitor including photo-conductive material and method for controlling the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017877A1 (en) * 2018-07-20 2020-01-23 Samsung Electronics Co., Ltd. Electronic device including variable capacitor including photo-conductive material and method for controlling the same
US10872730B2 (en) 2018-07-20 2020-12-22 Samsung Electronics Co., Ltd. Electronic device including variable capacitor including photo-conductive material and method for controlling the same

Similar Documents

Publication Publication Date Title
US7427154B2 (en) Backlight assembly including inverter for liquid crystal display device
JP4255930B2 (en) Backlight assembly
KR100925546B1 (en) Backlight unit and liquid crystal display module including the same
KR100965594B1 (en) Apparatus driving lamp of liquid crystal display device
US8077140B2 (en) Liquid crystal display device
US20030214478A1 (en) Backlight assembly having external electrode fluorescent lamp, method of driving thereof and liquid crystal display having the same
TW200411288A (en) Back light unit
US8300195B2 (en) Balance board and liquid crystal display having the same
US20080067951A1 (en) Backlight circuit for LCD panel
KR100710167B1 (en) driving circuit of back light
KR200470950Y1 (en) A piezoelectric type resonance high-voltage light-starting circuit
JP2009170667A (en) Capacitance-adjusting power-feed substrate, and discharge tube current equalization lighting device using the same, and liquid crystal display
US8054009B2 (en) Lamp driving device and liquid crystal display device having the same
KR101043669B1 (en) Apparatus driving lamp of liquid crystal display device
US7677756B2 (en) Backlight module
KR101692458B1 (en) Backlight unit and display apparatus having the same
JP2010055878A (en) Discharge tube uniform-current lighting device
KR101350972B1 (en) Backlight unit and liquid crystal display device module including the same
KR101258264B1 (en) Backlight unit for liquid crystal display
JP2009231000A (en) Discharge tube uniform flow lighting device
JP2009231001A (en) Discharge tube uniform flow lighting device
US20110063274A1 (en) Backlight assembly and display apparatus having the same
US8810500B2 (en) Power-applying module, backlight assembly, and display apparatus having the same
KR20080055283A (en) Liquid crystal display module
KR100499575B1 (en) A Back light