JP2009149471A - Method and equipment for manufacturing glass plate - Google Patents

Method and equipment for manufacturing glass plate Download PDF

Info

Publication number
JP2009149471A
JP2009149471A JP2007329130A JP2007329130A JP2009149471A JP 2009149471 A JP2009149471 A JP 2009149471A JP 2007329130 A JP2007329130 A JP 2007329130A JP 2007329130 A JP2007329130 A JP 2007329130A JP 2009149471 A JP2009149471 A JP 2009149471A
Authority
JP
Japan
Prior art keywords
drill
glass plate
outer diameter
hole
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007329130A
Other languages
Japanese (ja)
Inventor
Kazuhiro Ohara
一洋 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2007329130A priority Critical patent/JP2009149471A/en
Publication of JP2009149471A publication Critical patent/JP2009149471A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a through-hole having excellent hole accuracy and surface performance in a drilling step of a glass plate. <P>SOLUTION: The through-hole 4 is formed on the glass plate by intruding a leading drill 1 up to the middle in the thickness direction while cutting from the upper surface of the glass plate 3 and next, moving the leading drill 1 back and after that, intruding a following drill 2 while cutting from the back surface of the glass plate 3. In such a case, the tip part of the following drill 2 is tapered to decrease the diameter from the drum part side toward the drill tip side. The depth of the intrusion of the leading drill 1 from the upper surface of the glass plate 3 is set to satisfy that a relation between the distance L from the topmost of the following drill 2 up to the largest outside diameter part and the distance H from the topmost position in the maximum intrusion of the leading drill 1 up to the back surface of the glass plate 3 is L>H and the outside diameter D2 in the largest outside diameter part of the following drill 2 is set to be larger than the outside diameter D1 in the largest diameter part of the leading drill 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガラス板の製造方法およびその装置に関し、詳しくは、ガラス板の上面側および下面側からそれぞれ上部ドリルおよび下部ドリルを侵入させて、ガラス板に貫通孔を形成する技術に関する。   The present invention relates to a method for manufacturing a glass plate and an apparatus therefor, and more particularly, to a technique for forming a through hole in a glass plate by allowing an upper drill and a lower drill to enter from the upper surface side and the lower surface side of the glass plate, respectively.

周知のように、プラズマディスプレイ(PDP)、フィールドエミッションディスプレイ(FED)、エレクトロルミネッセンスディスプレイ(ELD)などのフラットパネルディスプレイに使用されるガラス基板の中には、パネル内の排気やガス封入に使用することを目的として、当該ガラス基板に貫通孔を形成するものがある。   As is well known, some glass substrates used for flat panel displays such as plasma display (PDP), field emission display (FED), and electroluminescence display (ELD) are used for exhaust and gas filling in the panel. For this purpose, there is one that forms a through hole in the glass substrate.

詳述すると、PDPは、可視光を透過させる電極が形成された前面板としてのガラス基板と、前記透過電極に対応する電極やリブ、さらには蛍光体などが形成された背面板としてのガラス基板とを、所定の空間を介して対向配置することにより構成される。そして、この両板間の所定空間に電圧を印加することによりプラズマ放電を生じさせ、この放電に伴って発生する紫外線により背面板の蛍光体を発光させて前面板上に画像を表示するように構成されている。この場合、実効性あるプラズマ放電を生じさせるには、前面板と背面板との間の空間にXeやAr等のガスを封入する必要があることから、通常、背面板の周縁部もしくは角部に、空気を排出して当該ガスを充填するための直径数mm程度の貫通孔が1又は複数箇所に形成される。   More specifically, the PDP includes a glass substrate as a front plate on which electrodes that transmit visible light are formed, and a glass substrate as a back plate on which electrodes and ribs corresponding to the transmissive electrodes, and phosphors are formed. Are arranged so as to face each other through a predetermined space. Then, a plasma discharge is generated by applying a voltage to a predetermined space between the two plates, and the phosphor on the back plate is caused to emit light by ultraviolet rays generated by the discharge to display an image on the front plate. It is configured. In this case, in order to generate an effective plasma discharge, it is necessary to enclose a gas such as Xe or Ar in the space between the front plate and the back plate. Further, through holes having a diameter of about several millimeters for discharging air and filling the gas are formed at one or a plurality of locations.

また、PDPと同じくフラットパネルディスプレイに含まれるFEDは、電極や蛍光体が形成された前面板としてのガラス基板と、電極および電子源が形成された背面板としてのガラス基板とを対向配置することにより構成される。そして、この両板間に電圧を印加することにより、電子源から放出された電子を蛍光体に衝突させ、この衝突により蛍光体を発光させて前面板上に画像を表示するように構成されている。この場合にも、前面板と背面板との間の空間を高真空にする必要があることから、PDP用のガラス基板と同様、背面板の周縁部もしくは角部に1又は複数の貫通孔が形成される。   Similarly to the PDP, an FED included in a flat panel display has a glass substrate as a front plate on which electrodes and phosphors are formed and a glass substrate as a back plate on which electrodes and an electron source are formed facing each other. Consists of. Then, by applying a voltage between the two plates, the electrons emitted from the electron source collide with the phosphor, and the phosphor emits light by this collision to display an image on the front plate. Yes. Also in this case, since the space between the front plate and the back plate needs to be high vacuum, one or a plurality of through-holes are formed in the peripheral edge or corner of the back plate as in the case of the glass substrate for PDP. It is formed.

この種の貫通孔は、ガラス基板の下面から下側ドリルをガラス板の厚み方向中間位置まで侵入させた後にその下側ドリルを後退させ、然る後、ガラス基板の上面から上側ドリルを侵入させることにより形成されるのが通常である。   This type of through-hole allows the lower drill to retreat from the lower surface of the glass substrate to the middle position in the thickness direction of the glass plate, and then retracts the lower drill, and then causes the upper drill to enter from the upper surface of the glass substrate. Usually, it is formed.

ところで、PDPや一部のFEDの製造工程では、透明電極や蛍光体、リブその他の要素を各ガラス基板上に形成するために焼成等の熱処理工程が設けられている。この熱処理工程において、ガラス基板に微小クラック等の欠陥が存在していると、加熱時もしくは冷却時に微小クラック先端等の応力集中部位が起点となりガラス基板が破損するという事態を招き得る。この種の破損は背面板の排気孔(貫通孔)を起点として発生する傾向にあるため、正確には、貫通孔の内周面もしくはその近傍に存在する凹凸や欠け、微小クラックなどが上記破損の起点となり易いため、これらの欠陥部分をできる限り除去して貫通孔の表面性状を良好なものにすることが肝要となる。   By the way, in the manufacturing process of PDP and some FED, in order to form a transparent electrode, fluorescent substance, a rib, and other elements on each glass substrate, heat processing processes, such as baking, are provided. In this heat treatment step, if a defect such as a microcrack is present in the glass substrate, a stress concentration site such as the tip of the microcrack may be the starting point during heating or cooling, leading to a situation where the glass substrate is damaged. Since this type of damage tends to occur starting from the exhaust holes (through holes) on the back plate, more precisely, the irregularities, chips, microcracks, etc. present on or around the inner peripheral surface of the through holes are damaged. Therefore, it is important to remove these defective portions as much as possible to improve the surface properties of the through holes.

ここで、上下のドリルを用いて板ガラスに貫通孔を形成する方法が下記特許文献1に開示されている。すなわち、当該文献には、上下のドリルを共にカップ型のコアドリル(円筒形ドリル)とし、かつ、下側のコアドリルとしてその外径が上側のコアドリルの外径より小さく、その内径より大きいものを用いて板ガラスに貫通孔を形成する方法が提案されている。この方法によれば、まず、下側コアドリル(先行ドリル)によって板ガラスの下面側から環状凹部が形成され、次に、板ガラスの上面側からの上側コアドリル(後行ドリル)の侵入に伴い、上記環状凹部の外周部が、両ドリルの外径差分だけ、上側ドリル(後行ドリル)により削り取られることで貫通孔が形成される。
特開昭54−126215号公報
Here, Patent Document 1 below discloses a method of forming a through-hole in a sheet glass using upper and lower drills. That is, in this document, the upper and lower drills are both cup-shaped core drills (cylindrical drills), and the lower core drill has an outer diameter smaller than that of the upper core drill and larger than its inner diameter. A method of forming a through hole in a plate glass has been proposed. According to this method, first, an annular recess is formed from the lower surface side of the sheet glass by the lower core drill (preceding drill), and then, with the intrusion of the upper core drill (following drill) from the upper surface side of the sheet glass, The through hole is formed by scraping the outer peripheral portion of the recess by the upper drill (following drill) by the difference in outer diameter between the two drills.
JP 54-126215 A

上記特許文献1に記載の方法は、ドリル回転軸の芯ブレに起因する孔径精度の低下を防止すると共に、上下とも円筒形ドリルを用いることに起因して生じる特有の問題、すなわち、上下ドリルによる上下穿孔間の領域に小さな凹凸面が生じるという問題点の解決を目的としたものである。しかしながら、上記環状凹部の外周部における上記外径差分の領域は、上側コアドリル(後行ドリル)の先端部に設けられた環状の平らな端面によって削り取られてゆくので、切削抵抗が比較的大きくなる。そのため、加工後の孔内周面の面粗度が大きくなり、また、微小クラックが生じる場合がある。   The method described in Patent Document 1 prevents a decrease in the hole diameter accuracy caused by the core rotation of the drill rotating shaft, and also has a peculiar problem caused by using a cylindrical drill on both the upper and lower sides, that is, due to the upper and lower drills. The purpose is to solve the problem that a small uneven surface is formed in the region between the upper and lower perforations. However, since the region of the outer diameter difference in the outer peripheral portion of the annular recess is scraped off by the annular flat end surface provided at the tip of the upper core drill (following drill), the cutting resistance becomes relatively large. . For this reason, the surface roughness of the inner peripheral surface of the hole after processing increases, and micro cracks may occur.

以上の事情に鑑み、本発明では、ガラス板の穿孔工程において、孔精度および表面性状が良好な貫通孔の形成を可能にすることを技術的な課題とする。   In view of the above circumstances, it is an object of the present invention to make it possible to form through holes with good hole accuracy and surface properties in a glass plate punching process.

前記課題の解決は、本発明に係るガラス板の製造方法により達成される。すなわち、このガラス板の製造方法は、ガラス板の一端面から切削を伴い先行ドリルを厚み方向中間まで侵入させた後に先行ドリルを後退させ、然る後、ガラス板の他端面から切削を伴い後行ドリルを侵入させてガラス板に貫通孔を形成する穿孔工程を含むガラス板の製造方法において、後行ドリルは、ドリル胴部からドリル先端に向けて漸次縮径する形状をなし、先行ドリルのガラス板の一端面からの侵入深さは、後行ドリルの先端から最大外径部となるドリル胴部の先端側端部までの軸方向距離Lと、先行ドリルの最大侵入時における先端位置からガラス板の他端面までの距離Hとが、L>Hの関係を満たすように設定され、後行ドリルの最大外径部における外径D2が、先行ドリルの最大外径部における外径D1よりも大きく設定される点をもって特徴づけられる。   The solution to the above problem is achieved by the glass plate manufacturing method according to the present invention. In other words, this glass plate manufacturing method involves cutting from one end surface of the glass plate and intruding the preceding drill to the middle in the thickness direction, then retracting the preceding drill, and thereafter, cutting from the other end surface of the glass plate. In a glass plate manufacturing method including a drilling step in which a row drill is inserted to form a through hole in the glass plate, the subsequent drill has a shape that gradually decreases in diameter from the drill body toward the tip of the drill. The penetration depth from one end surface of the glass plate is determined from the axial distance L from the tip of the succeeding drill to the tip side end portion of the drill body which is the maximum outer diameter portion, and the tip position at the time of maximum penetration of the preceding drill. The distance H to the other end surface of the glass plate is set so as to satisfy the relationship L> H, and the outer diameter D2 at the maximum outer diameter portion of the succeeding drill is larger than the outer diameter D1 at the maximum outer diameter portion of the preceding drill. Is also set larger It characterized with a point.

このように、上述の製造方法においては、後行ドリルをドリル胴部からドリル先端に向けて漸次縮径する形状とし、かつ、後行ドリルの最大外径D2を先行ドリルの最大外径D1より大きく設定したので、先行ドリルで形成された有底孔の内周面を、双方のドリルの最大外径差(D2−D1)の分だけ後行ドリルで削り取る際、後行ドリルの先端に設けた縮径領域がまず上記外径差分の領域に接触し、該ドリルの侵入移動に従って、内径側から外径側にかけて漸次に削り取ってゆくことになる。そのため、フラットな端面を有するドリルに比べて上記外径差分の領域を小さい抵抗で削り取ることができ、加工後の貫通孔の内周面もしくはその近傍に微小クラック等が発生するのを抑えて、良好な表面性状を有する貫通孔を得ることができる。   Thus, in the above-described manufacturing method, the subsequent drill has a shape that gradually decreases in diameter from the drill body toward the drill tip, and the maximum outer diameter D2 of the subsequent drill is greater than the maximum outer diameter D1 of the preceding drill. Since it is set large, the inner peripheral surface of the bottomed hole formed by the preceding drill is provided at the tip of the succeeding drill when the trailing drill is scraped by the maximum outer diameter difference (D2-D1) of both drills. The reduced diameter region first comes into contact with the outer diameter difference region, and is gradually scraped from the inner diameter side to the outer diameter side as the drill enters and moves. Therefore, compared to a drill having a flat end surface, the region of the outer diameter difference can be scraped with a small resistance, suppressing the occurrence of microcracks or the like on the inner peripheral surface of the through hole after processing or in the vicinity thereof, A through-hole having good surface properties can be obtained.

加えて、上記製造方法においては、後行ドリルの先端から最大外径部となるドリル胴部の先端側端部までの軸方向距離Lと、先行ドリルの最大侵入時における先端位置からガラス板の他端面までの距離Hとが、L>Hの関係を満たすよう先行ドリルの侵入深さを設定したので、後行ドリルの最大外径部がガラス板に侵入を開始する前に、その最先端が既に先行ドリルにより形成された孔の先端位置に到達する。そして、これ以降、後行ドリルの先端部は既に先行ドリルにより形成された有底孔に挿通され、この孔に案内される形でさらに侵入してゆくことになる。よって、後行ドリルの芯ブレが抑制された状態で有底孔の外周部が削り取られることにより、その削り代をなるべく均等にすることができ、当該加工後の孔内周面の表面性状をより良好なものとすることができる。また、貫通孔の内周面のうちガラス板の他端面側の部分についても、芯ブレが抑制された状態の後行ドリルで切削形成される。これにより、後行ドリルの加工後に得られる孔内周面の表面性状を孔の全長にわたって良好なものとすることができる。   In addition, in the manufacturing method described above, the axial distance L from the tip of the succeeding drill to the tip side end of the drill body which is the maximum outer diameter portion, and the tip position at the time of maximum penetration of the preceding drill, the glass plate Since the penetration depth of the preceding drill is set so that the distance H to the other end surface satisfies the relationship of L> H, before the maximum outer diameter portion of the succeeding drill starts to penetrate the glass plate, the cutting edge Reaches the tip position of the hole already formed by the preceding drill. Thereafter, the tip of the succeeding drill is inserted into the bottomed hole already formed by the preceding drill, and further penetrates in a form guided by this hole. Therefore, by removing the outer peripheral portion of the bottomed hole in a state in which the core blur of the subsequent drill is suppressed, the cutting allowance can be made as uniform as possible, and the surface property of the inner peripheral surface after the processing can be changed. It can be made better. Further, the portion on the other end surface side of the glass plate in the inner peripheral surface of the through hole is also formed by cutting with a subsequent drill in a state where core blur is suppressed. Thereby, the surface property of the inner peripheral surface of the hole obtained after processing the subsequent drill can be made good over the entire length of the hole.

この場合、後行ドリルの最大外径D2に対する、先行ドリルの最大外径D1の比D1/D2が0.7以上0.95以下に設定されることが好ましい。   In this case, the ratio D1 / D2 of the maximum outer diameter D1 of the preceding drill to the maximum outer diameter D2 of the succeeding drill is preferably set to 0.7 or more and 0.95 or less.

このように、双方のドリルの最大外径比D1/D2を上記範囲に設定したのは以下の理由による。すなわち、後述する実験結果を踏まえて設定したものでもあるが、最大外径比D1/D2を0.95以下とすることで、先行ドリルにより形成された有底孔の外周部を効果的に削り取ることができ、結果として当該ガラス板の強度向上を図ることができる。もちろん、この上限値は、上記L>Hの関係を満たすように先行ドリルの侵入深さを設定することではじめて実効性ある数値として機能する。芯ブレが抑制された状態で後行ドリルを侵入させることで、削り代が僅かであっても先の穿孔時に生じた微小クラックを確実に除去できるためである。また、最大外径比D1/D2を0.7以上としたのは、後行ドリルによる有底孔の削り代をあまりに大きく取り過ぎると、本来、微小クラックの除去のために削り取る必要のない領域までも削り取ることになり却って新たなクラックを誘起するおそれが生じるためである。   Thus, the reason why the maximum outer diameter ratio D1 / D2 of both drills is set in the above range is as follows. That is, although set based on the experimental results described later, by setting the maximum outer diameter ratio D1 / D2 to 0.95 or less, the outer peripheral portion of the bottomed hole formed by the preceding drill is effectively scraped off. As a result, the strength of the glass plate can be improved. Of course, this upper limit value functions as an effective numerical value only when the penetration depth of the preceding drill is set so as to satisfy the relationship of L> H. This is because by allowing the subsequent drill to enter in a state in which the core blur is suppressed, even if the machining allowance is small, it is possible to surely remove the micro cracks generated during the previous drilling. In addition, the maximum outer diameter ratio D1 / D2 is set to 0.7 or more because an excessively large machining margin for the bottomed hole by the trailing drill is not necessary for removing the microcracks. This is because there is a possibility that new cracks are induced instead of scraping.

また、上述した後行ドリルのドリル胴部からドリル先端に向けて漸次縮径する部分は、ドリル胴部と滑らかにつながっていることが好ましい。   Moreover, it is preferable that the part which is gradually diameter-reduced toward the drill front-end | tip from the drill trunk | drum of the subsequent drill mentioned above is connected smoothly with the drill trunk | drum.

このように、後行ドリルのドリル縮径領域とドリル胴部とを滑らかにつなげた形状とすることで、後行ドリルのガラス板への侵入時、最大外径部における切削抵抗が低減される。そのため、侵入切削時、ガラス板における微小クラックの発生確率を低減することができる。   Thus, the cutting resistance at the maximum outer diameter portion is reduced when the succeeding drill enters the glass plate by smoothly connecting the drill diameter reduction region of the succeeding drill and the drill body. . Therefore, the probability of occurrence of microcracks in the glass plate can be reduced during intrusion cutting.

以上の方法により製造されるガラス板は、フラットパネルディスプレイ用のガラス基板であることが好ましい。   It is preferable that the glass plate manufactured by the above method is a glass substrate for flat panel displays.

このようにすれば、フラットパネルディスプレイを製造する際の熱処理工程において、貫通孔(排気孔)を起点としてガラス基板に破損が生じるという事態を効果的に回避することができる。   If it does in this way, in the heat treatment process at the time of manufacturing a flat panel display, the situation that a glass substrate is damaged starting from a penetration hole (exhaust hole) can be avoided effectively.

また、前記課題の解決は、本発明に係るガラス板の製造装置によっても達成される。すなわち、このガラス板の製造装置は、ガラス板の一端面から切削を伴い先行ドリルを厚み方向中間まで侵入させた後に先行ドリルを後退させ、然る後、ガラス板の他端面から切削を伴い後行ドリルを侵入させてガラス板に貫通孔を形成するように構成されるガラス板の製造装置において、後行ドリルは、ドリル胴部からドリル先端に向けて漸次縮径する形状をなし、先行ドリルのガラス板の一端面からの侵入深さは、後行ドリルの先端から最大外径部となるドリル胴部の先端側端部までの軸方向距離Lと、先行ドリルの最大侵入時における先端位置からガラス板の他端面までの距離Hとが、L>Hの関係を満たすように設定され、後行ドリルの最大外径部における外径D2が、先行ドリルの最大外径部における外径D1よりも大きく設定されている点をもって特徴づけられる。   Moreover, the solution of the said subject is achieved also by the manufacturing apparatus of the glass plate which concerns on this invention. In other words, this glass plate manufacturing apparatus involves cutting from one end surface of the glass plate and intruding the preceding drill to the middle in the thickness direction, then retracting the preceding drill, and thereafter, cutting from the other end surface of the glass plate. In a glass plate manufacturing apparatus configured to intrude a row drill to form a through hole in the glass plate, the subsequent drill has a shape that gradually decreases in diameter from the drill body toward the tip of the drill. The penetration depth from one end surface of the glass plate is the axial distance L from the tip of the succeeding drill to the tip side end of the drill body which is the maximum outer diameter portion, and the tip position at the time of maximum penetration of the preceding drill The distance H from the other end surface of the glass plate is set so as to satisfy the relationship L> H, and the outer diameter D2 at the maximum outer diameter portion of the succeeding drill is the outer diameter D1 at the maximum outer diameter portion of the preceding drill. Set larger than It characterized with a point are.

このような装置によれば、本欄の冒頭で述べた方法についての事項と、同一の事項が当てはまり、故に当該方法による作用効果と同一の作用効果を得ることができる。   According to such an apparatus, the same items as the method described at the beginning of this column are applied, and therefore, the same operation and effect as those of the method can be obtained.

以上のように本発明に係るガラス板の製造方法およびその装置によれば、孔精度および表面性状が良好な貫通孔をガラス板に形成することができ、特に、孔の全長にわたって孔精度および表面性状が良好な貫通孔を形成することができる。   As described above, according to the method and apparatus for manufacturing a glass plate according to the present invention, it is possible to form a through hole with good hole accuracy and surface properties in the glass plate, and in particular, the hole accuracy and the surface over the entire length of the hole. A through hole having good properties can be formed.

以下、本発明の一実施形態を図1および図2に基づき説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

図1は、本発明の一実施形態に係るガラス板の製造装置の構成要素である2種のドリルの要部を示す概略正面図である。同図に示すように、ガラス板の製造装置は、主たる構成要素として、互いに軸心位置を一致させて上下動可能に配置された先行ドリル1と後行ドリル2とを備えている。ここでは、説明の便宜上、先行ドリル1がガラス板の上側に配置されると共に、後行ドリル2がガラス板の下側に配置されるものとする。   FIG. 1 is a schematic front view showing a main part of two types of drills which are components of a glass plate manufacturing apparatus according to an embodiment of the present invention. As shown in the figure, the glass plate manufacturing apparatus includes, as main components, a preceding drill 1 and a trailing drill 2 that are arranged so as to be movable up and down with their axial centers coincident with each other. Here, for convenience of explanation, it is assumed that the preceding drill 1 is disposed on the upper side of the glass plate and the subsequent drill 2 is disposed on the lower side of the glass plate.

ここで、後行ドリル2に関し、最大外径部となる円柱状のドリル胴部2xの上端に、その先端側に向けて漸次縮径する縮径領域としてのドリル先細り部2aが滑らかにつながっている。また、この実施形態では、先行ドリル1に関し、最大外径部となる円柱状のドリル胴部1xの下端に、その先端側に向けて漸次縮径する縮径領域としてのドリル先細り部1aが滑らかにつながっている。   Here, with respect to the succeeding drill 2, a drill tapered portion 2a as a reduced diameter region that gradually decreases in diameter toward the tip end is smoothly connected to the upper end of a cylindrical drill body 2x that is the maximum outer diameter portion. Yes. Further, in this embodiment, with respect to the preceding drill 1, a drill tapered portion 1a as a reduced diameter region that gradually decreases in diameter toward the distal end side of the cylindrical drill body 1x that becomes the maximum outer diameter portion is smooth. Connected to.

後行ドリル2の先端部となるドリル先細り部2aは、この実施形態では半球状をなし、ドリル胴部2xとドリル先細り部2aとの境界部分からドリル先細り部2aの最先端までの軸方向距離Lがドリル胴部2xの半径に一致している。換言すると、後行ドリル2の最先端から最大外径部(ドリル胴部2xの上端)までの軸方向距離Lが後述する最大外径D2の半分の値となっている。先行ドリル1のドリル先細り部1aも、同様の半球状であることが好ましい。   In this embodiment, the tapered taper portion 2a, which is the tip of the trailing drill 2, is hemispherical, and the axial distance from the boundary between the drill body 2x and the drill tapered portion 2a to the tip of the drill tapered portion 2a. L corresponds to the radius of the drill body 2x. In other words, the axial distance L from the leading edge of the succeeding drill 2 to the maximum outer diameter portion (the upper end of the drill body 2x) is a half value of the maximum outer diameter D2 described later. The drill tapered portion 1a of the preceding drill 1 is also preferably a similar hemispherical shape.

また、先行ドリル1の最大外径部における外径(最大外径)D1は、後行ドリル2の最大外径部における外径(最大外径)D2よりも小さく設定されている。換言すると、後行ドリル2の最大外径D2に対する、先行ドリル1の最大外径D1の比D1/D2が1未満となるように設定されている。ここで、最大外径比D1/D2は、好ましくは、0.7以上0.95以下の範囲内に設定される。   The outer diameter (maximum outer diameter) D1 at the maximum outer diameter portion of the preceding drill 1 is set smaller than the outer diameter (maximum outer diameter) D2 at the maximum outer diameter portion of the subsequent drill 2. In other words, the ratio D1 / D2 of the maximum outer diameter D1 of the preceding drill 1 to the maximum outer diameter D2 of the succeeding drill 2 is set to be less than 1. Here, the maximum outer diameter ratio D1 / D2 is preferably set within a range of 0.7 to 0.95.

上記構成の先行ドリル1および後行ドリル2は、例えばドリル胴部1x,2xとドリル先細り部1a,2aとを一体化してなる金属製本体の表面にダイヤモンド砥粒を付着することにより形成される。   The preceding drill 1 and the following drill 2 having the above-described configuration are formed, for example, by attaching diamond abrasive grains to the surface of a metal main body formed by integrating the drill body portions 1x, 2x and the drill tapered portions 1a, 2a. .

次に、図2に基づいて、先行ドリル1と後行ドリル2とを使用して、ガラス板(この実施形態ではPDP用のガラス基板)の角部に排気孔としての貫通孔を形成する手順を説明する。   Next, a procedure for forming a through hole as an exhaust hole in a corner portion of a glass plate (in this embodiment, a glass substrate for PDP) using a leading drill 1 and a trailing drill 2 based on FIG. Will be explained.

まず、図2(a)に示すように、水平姿勢にあるガラス板3の上方に、ドリル先細り部1aが下方を指向するように先行ドリル1を配置し、この先行ドリル1を回転を伴って下降させることにより、切削を伴って先行ドリル1のドリル先細り部1aをガラス板3の上側から侵入させていく。この際、先行ドリル1の侵入箇所に切削液を供給しながら、先行ドリル1をガラス板3に侵入させるようにしてもよい。そして、図2(b)に示すように、先行ドリル1のドリル胴部1xがガラス板3に所定の軸方向寸法分だけ侵入した時点で、先行ドリル1の下降を停止する。   First, as shown in FIG. 2 (a), the preceding drill 1 is arranged above the glass plate 3 in a horizontal posture so that the drill tapered portion 1a is directed downward, and the preceding drill 1 is rotated. By lowering, the drill tapered portion 1a of the preceding drill 1 is entered from the upper side of the glass plate 3 with cutting. At this time, the preceding drill 1 may be allowed to enter the glass plate 3 while supplying the cutting fluid to the entry location of the preceding drill 1. As shown in FIG. 2B, when the drill body 1x of the preceding drill 1 enters the glass plate 3 by a predetermined axial dimension, the descending of the preceding drill 1 is stopped.

この時点で、先行ドリル1がガラス板3に侵入した軸心上の下端位置からガラス板3の下面までの距離Hは、上述の後行ドリル2における軸方向距離Lよりも短くなっている。また、上述のように、切削液を供給しながら先行ドリル1がガラス板3に侵入していく過程では、切削液が重力によってその侵入部に十分に行き渡ることになる。そのため、切削液の冷却作用によって摩擦熱の発生が抑制され、クラックが生じ難くなる。   At this time, the distance H from the lower end position on the axial center where the preceding drill 1 has entered the glass plate 3 to the lower surface of the glass plate 3 is shorter than the axial distance L in the following drill 2. Further, as described above, in the process in which the preceding drill 1 enters the glass plate 3 while supplying the cutting fluid, the cutting fluid is sufficiently distributed to the intruding portion by gravity. Therefore, the generation of frictional heat is suppressed by the cooling action of the cutting fluid, and cracks are less likely to occur.

この後、図2(c)に示すように、先行ドリル1を上昇させることにより、ガラス板3から先行ドリル1を抜き出して退避位置まで移動させる。これにより、ガラス板3には、上方のみが開口する非貫通状態の上部孔(有底孔)4aが形成された状態となる。   Thereafter, as shown in FIG. 2C, the preceding drill 1 is lifted to extract the preceding drill 1 from the glass plate 3 and move it to the retracted position. As a result, the glass plate 3 is formed with a non-penetrating upper hole (bottomed hole) 4a that opens only upward.

次に、図2(d)に示すように、ガラス板3の下方に、ドリル先細り部2aが上方を指向するように後行ドリル2を配置する。この場合、後行ドリル2を先に穿孔を行った先行ドリル1とその軸心を合わせた状態で配置することで、ガラス板3に既に形成されている有底孔4aの軸心と後行ドリル2の軸心とが一致した状態で後述の穿孔が実施されるようになっている。そして、図2(e)に示すように、例えば切削液を侵入箇所に供給しながら後行ドリル2を上昇させることにより、後行ドリル2のドリル先細り部2aをガラス板3に下側から侵入させていく。この時点では、後行ドリル2の芯ブレと切削液の重力による落下を原因とする冷却不足とが相まって、ドリル先細り部2aの周囲や侵入方向前方部位5に微小クラックが生じる。   Next, as shown in FIG. 2 (d), the subsequent drill 2 is arranged below the glass plate 3 so that the drill tapered portion 2 a is directed upward. In this case, the rear drill 2 is arranged in a state in which the preceding drill 1 previously drilled and its axis are aligned with each other, so that the axis of the bottomed hole 4a already formed in the glass plate 3 and the subsequent drill 2 are arranged. The drilling described later is performed in a state where the axis of the drill 2 is aligned. And as shown in FIG.2 (e), the drill taper part 2a of the subsequent drill 2 penetrate | invades into the glass plate 3 from lower side, for example by raising the subsequent drill 2 supplying cutting fluid to the penetration | invasion location. I will let you. At this time, a core crack of the trailing drill 2 and insufficient cooling due to the drop of the cutting fluid due to gravity cause a micro crack around the drill tapered portion 2a and the front portion 5 in the penetration direction.

そして、後行ドリル2を上昇させ続けてさらにガラス板3に侵入させていくことにより、図2(f)に示すように、ドリル先細り部2aの先端が、ガラス板3の有底孔4aの下端に到達する。この時点では、上述のL>Hの関係が満たされていることから、後行ドリル2のドリル胴部2x(最大外径部)は未だガラス板3には侵入していない。   And by continuing raising the subsequent drill 2 and making it penetrate | invade into the glass plate 3 further, as shown in FIG.2 (f), the front-end | tip of the drill taper part 2a of the bottomed hole 4a of the glass plate 3 is carried out. Reach the bottom edge. At this time, since the above-described relationship of L> H is satisfied, the drill body 2x (maximum outer diameter portion) of the succeeding drill 2 has not yet entered the glass plate 3.

このような状態から、後行ドリル2を上昇させ続けることにより、図2(g)に示すように、ドリル先細り部2aがガラス板3の有底孔4aに侵入していくことになるので、後行ドリル2は芯ブレを生じることなくガラス板3に侵入できる。しかも、有底孔4aと軸心を一致させ、かつ、最大外径比D1/D2を上述の如く設定した後行ドリル2の最大外径部(ドリル胴部2x)がガラス板3および有底孔4aに侵入していくことで、外径差D2−D1の分だけ有底孔4aの周囲6が、その内側から外側に向けて徐々にかつ均等に削り取られる。これにより、既に上述の侵入方向前方部位5等に生じていた微小クラックはもちろん、有底孔4aの内周面もしくはその近傍に生じていた微小クラックを除去することができる。なお、上述の如く切削液を供給しながら先行ドリル1を侵入させた場合、後行ドリル2により穿設された孔と先行ドリル1により穿設された有底孔4aとが貫通(連通)することで上部の切削液が下側からの孔に流れ込む。これにより、後行ドリル2の摩擦熱を抑えることができる。   By continuing to raise the trailing drill 2 from such a state, as shown in FIG. 2 (g), the drill tapered portion 2a enters the bottomed hole 4a of the glass plate 3, The trailing drill 2 can enter the glass plate 3 without causing a core blur. In addition, the maximum outer diameter portion (drill body portion 2x) of the succeeding drill 2 in which the bottomed hole 4a and the shaft center coincide with each other and the maximum outer diameter ratio D1 / D2 is set as described above is the glass plate 3 and the bottomed portion. By entering the hole 4a, the periphery 6 of the bottomed hole 4a is scraped gradually and evenly from the inside toward the outside by an amount corresponding to the outer diameter difference D2-D1. Thereby, the micro crack which has already arisen in the above-mentioned penetration direction front part 5 grade | etc., As well as the micro crack which has arisen in the inner peripheral surface of the bottomed hole 4a or its vicinity can be removed. When the leading drill 1 is inserted while supplying the cutting fluid as described above, the hole drilled by the trailing drill 2 and the bottomed hole 4a drilled by the leading drill 1 penetrate (communicate). As a result, the upper cutting fluid flows into the hole from the lower side. Thereby, the frictional heat of the trailing drill 2 can be suppressed.

そして、後行ドリル2を上記位置からさらに上昇させることにより、後行ドリル2のドリル胴部2xがガラス板3の上面側に突き抜けた時点で、貫通孔(排気孔)4の穿設加工を終える。この後、後行ドリル2を下降させて図2(h)に示す退避位置まで移動した時点で穿孔工程が完了する。これにより、後行ドリル2の最大外径D2(ドリル胴部2xの外径)に相当する直径の貫通孔4がガラス板3に形成される。   Then, by further raising the trailing drill 2 from the above position, when the drill body 2x of the trailing drill 2 penetrates to the upper surface side of the glass plate 3, the through hole (exhaust hole) 4 is drilled. Finish. Thereafter, the drilling process is completed when the trailing drill 2 is moved down to the retracted position shown in FIG. As a result, a through hole 4 having a diameter corresponding to the maximum outer diameter D2 of the trailing drill 2 (the outer diameter of the drill body 2x) is formed in the glass plate 3.

なお、上記実施形態では、各ドリル1,2の先端形状を半球状とした場合を例示したが、もちろん、当該先端形状はそれぞれ本発明の範囲内において任意に変更が可能である。例えば、ドリル先細り部1a,2aの一方あるいは双方を、その長軸をドリル軸心と一致させた半楕円球状とすることもできる。あるいは、ドリル先細り部1a,2aの一方あるいは双方をテーパ状に縮径する形状とし、かつ、この先細り部1a,2aをドリル胴部1x,2xと適当な断面R状円環面等で滑らかにつないだ形状とすることもできる。   In addition, although the case where the tip shape of each drill 1 and 2 was hemispherical was illustrated in the said embodiment, of course, the said tip shape can each be arbitrarily changed within the scope of the present invention. For example, one or both of the drill tapered portions 1a and 2a can be formed into a semi-elliptical sphere whose major axis coincides with the drill axis. Alternatively, one or both of the drill taper portions 1a and 2a is formed into a tapered shape, and the taper portions 1a and 2a are smoothly formed by the drill body portions 1x and 2x and an appropriate R-shaped annular surface. It can also be connected.

また、以上の説明に係る貫通孔の穿孔工程であれば、例えば貫通孔として直径1mmから5mm程度までを対象する場合に好適であり、また、その貫通孔長さとして、言い換えると、貫通孔周辺における板ガラスの厚みとして0.5mmから4mm程度までを対象とする場合に好適である。   In addition, the through-hole drilling process according to the above description is suitable when, for example, the through-hole has a diameter of about 1 mm to about 5 mm, and as the through-hole length, in other words, around the through-hole. It is suitable when the thickness of the plate glass is about 0.5 mm to 4 mm.

また、以上の説明では、PDP用のガラス基板に貫通孔(排気孔)を形成する場合に本発明を適用したが、これ以外に、FED用或いはELD用のガラス基板に貫通孔を形成する場合にも同様にして本発明を適用できるのはもちろん、クラックの発生が問題となる貫通孔をガラス板に形成する必要がある場合には、それら全般にわたっても本発明を適用することが可能である。   In the above description, the present invention is applied to the case where the through hole (exhaust hole) is formed in the glass substrate for PDP. However, the case where the through hole is formed in the glass substrate for FED or ELD in addition to this. In addition, the present invention can be applied to the same manner, and of course, when it is necessary to form a through hole in the glass plate where cracks are a problem, the present invention can be applied to all of them. .

本発明の効果を確認すべく、以下に示す試験ならびにその検討を行った。本発明の実施例(実施例1〜4)、および、比較例(比較例1)について、先に共通する項目を説明する。まず、貫通孔を形成するガラス板には、横寸法が500mmで縦寸法が600mmであり且つ厚みが1.8mmのPDP用のガラス基板を、それぞれ10枚ずつ用意した。また、先行ドリルおよび後行ドリルはいずれも、ドリル胴部と半球状をなすドリル先細り部とからなるものとし、ドリル回転数を5000rpm、ドリル送り速度を0.2mm/秒として上記ガラス基板に排気孔となる貫通孔を形成した。また、後行ドリルにおける、図1に示す軸方向距離Lを何れも1.0mmとし、かつ、先行ドリルの図2(b)に示すガラス板への侵入距離Hを何れも0.7mmとした。また、何れも先行ドリルをガラス基板の上側から侵入させると共に、後行ドリルをガラス基板の下側から侵入させて穿孔を行った。   In order to confirm the effect of the present invention, the following tests and examinations were conducted. Items common to the examples of the present invention (Examples 1 to 4) and the comparative example (Comparative Example 1) will be described first. First, 10 glass substrates for PDP each having a horizontal dimension of 500 mm, a vertical dimension of 600 mm, and a thickness of 1.8 mm were prepared for the glass plates forming the through holes. Each of the preceding drill and the following drill is composed of a drill body and a hemispherical drill tapered portion, and the exhaust gas is exhausted to the glass substrate with a drill rotation speed of 5000 rpm and a drill feed speed of 0.2 mm / sec. A through hole to be a hole was formed. Further, in the following drill, the axial distance L shown in FIG. 1 is 1.0 mm, and the penetration distance H of the preceding drill into the glass plate shown in FIG. 2B is 0.7 mm. . In each case, the preceding drill was entered from the upper side of the glass substrate, and the subsequent drill was entered from the lower side of the glass substrate for drilling.

そして、後行ドリルの最大外径部における外径D2を何れも2.0mmとした上で、先行ドリルの最大外径部における外径D1を異ならせて穿孔工程を実施した。すなわち、上記最大外径比D1/D2が0.7以上0.95の範囲に含まれるものを実施例(実施例1〜4)、外径比D1/D2が1のものを比較例(比較例1)として穿孔工程を実施した。   And after making all the outer diameter D2 in the largest outer diameter part of a subsequent drill into 2.0 mm, the outer diameter D1 in the largest outer diameter part of a preceding drill was varied, and the drilling process was implemented. That is, the examples in which the maximum outer diameter ratio D1 / D2 is included in the range of 0.7 to 0.95 are examples (Examples 1 to 4), and the outer diameter ratio D1 / D2 is 1 in the comparative example (comparison). A drilling step was carried out as Example 1).

上述のようにして排気孔を形成したガラス基板を、適当な熱履歴あるいは熱履歴および機械的負荷を与えることで破損させ、破損した破断面の破面解析により求めた破壊強度データに対してワイブルプロット処理を施し、各実施例および比較例ごとに破損確率10%における破壊強度を算出した。その結果を、下記の表1に示す。

Figure 2009149471
The glass substrate with the exhaust holes formed as described above is damaged by applying an appropriate thermal history or thermal history and mechanical load, and weibull against the fracture strength data obtained by fracture surface analysis of the damaged fracture surface. Plot processing was performed, and the fracture strength at a failure probability of 10% was calculated for each example and comparative example. The results are shown in Table 1 below.
Figure 2009149471

上記の表1によれば、最大外径比D1/D2が1に近づくにつれて、言い換えると、先行ドリルと後行ドリルとの最大外径の差D2−D1が縮まるにつれて、ドリル径が同径の場合に比べて破壊強度の向上が認められる。具体的には、実施例1に示すように、最大外径比D1/D2を0.95とした場合、同径の場合に比べて約30%の強度向上が認められた。この強度向上効果は、最大外径比D1/D2が1からある程度離れた場合であっても認められ、少なくともD1/D2が0.7以上あれば、同径の場合と比べて強度向上効果が認められることを確認するに到った。   According to Table 1 above, as the maximum outer diameter ratio D1 / D2 approaches 1, in other words, as the difference D2-D1 in the maximum outer diameter between the preceding drill and the succeeding drill decreases, the drill diameter becomes the same diameter. Compared to the case, an improvement in fracture strength is observed. Specifically, as shown in Example 1, when the maximum outer diameter ratio D1 / D2 was set to 0.95, an improvement in strength of about 30% was recognized compared to the case of the same diameter. This strength improvement effect is recognized even when the maximum outer diameter ratio D1 / D2 is somewhat apart from 1, and if at least D1 / D2 is 0.7 or more, the strength improvement effect is greater than the case of the same diameter. It came to confirm that it was recognized.

本発明の一実施形態に係るガラス板の製造装置の主たる構成要素である先行ドリルおよび後行ドリルの要部を示す正面図。The front view which shows the principal part of the precedent drill and subsequent drill which are the main components of the manufacturing apparatus of the glass plate which concerns on one Embodiment of this invention. 図2(a)〜(h)は、本発明の一実施形態に係るガラス板の製造方法における穿孔工程の実施状況を順を追って示す概略縦断正面図。FIG. 2A to FIG. 2H are schematic longitudinal front views sequentially showing the state of implementation of a perforation process in the glass plate manufacturing method according to one embodiment of the present invention.

符号の説明Explanation of symbols

1 先行ドリル
1a 先行ドリルのドリル先細り部
1x 先行ドリルのドリル胴部
2 後行ドリル
2a 後行ドリルのドリル先細り部
2x 後行ドリルのドリル胴部
3 ガラス板
4 貫通孔(排気孔)
4a 有底孔
6 有底孔の周囲部分(後行ドリル除去部)
DESCRIPTION OF SYMBOLS 1 Leading drill 1a Drilling taper part 1x of a preceding drill Drill body part 2 of a preceding drill Trailing drill 2a Drilling taper part 2x of a succeeding drill Drill body part 3 of a following drill 3 Glass plate 4 Through-hole (exhaust hole)
4a Bottomed hole 6 Surrounding part of bottomed hole (rear drill removal part)

Claims (5)

ガラス板の一端面から切削を伴い先行ドリルを厚み方向中間まで侵入させた後に該先行ドリルを後退させ、然る後、前記ガラス板の他端面から切削を伴い後行ドリルを侵入させて前記ガラス板に貫通孔を形成する穿孔工程を含むガラス板の製造方法において、
前記後行ドリルは、ドリル胴部からドリル先端に向けて漸次縮径する形状をなし、
前記先行ドリルの前記ガラス板の一端面からの侵入深さは、前記後行ドリルの先端から最大外径部となる前記ドリル胴部の先端側端部までの軸方向距離Lと、前記先行ドリルの最大侵入時における先端位置から前記ガラス板の他端面までの距離Hとが、L>Hの関係を満たすように設定され、
前記後行ドリルの前記最大外径部における外径D2が、前記先行ドリルの最大外径部における外径D1よりも大きく設定されることを特徴とするガラス板の製造方法。
After cutting the leading drill from the one end surface of the glass plate to the middle in the thickness direction, the leading drill is retracted, and then the trailing drill is inserted from the other end surface of the glass plate with cutting. In the manufacturing method of the glass plate including the perforation process of forming a through hole in the plate,
The subsequent drill has a shape that gradually decreases in diameter from the drill body toward the drill tip,
The depth of penetration of the preceding drill from the one end surface of the glass plate is an axial distance L from the tip of the succeeding drill to the tip side end of the drill body which is the maximum outer diameter portion, and the leading drill. And the distance H from the tip position at the time of maximum penetration to the other end surface of the glass plate is set so as to satisfy the relationship of L> H,
An outer diameter D2 at the maximum outer diameter portion of the trailing drill is set to be larger than an outer diameter D1 at the maximum outer diameter portion of the preceding drill.
前記後行ドリルの最大外径D2に対する、前記先行ドリルの最大外径D1の比D1/D2が0.7以上0.95以下に設定される請求項1に記載のガラス板の製造方法。   The method for producing a glass sheet according to claim 1, wherein a ratio D1 / D2 of the maximum outer diameter D1 of the preceding drill to the maximum outer diameter D2 of the trailing drill is set to 0.7 or more and 0.95 or less. 前記後行ドリルの前記ドリル胴部から前記ドリル先端に向けて漸次縮径する部分は、前記ドリル胴部と滑らかにつながっている請求項1又は2に記載のガラス板の製造方法。   The method for producing a glass plate according to claim 1 or 2, wherein a portion of the succeeding drill that gradually decreases in diameter from the drill body toward the drill tip is smoothly connected to the drill body. 前記ガラス板は、フラットパネルディスプレイ用のガラス基板であることを特徴とする請求項1〜3の何れかに記載のガラス板の製造方法。   The said glass plate is a glass substrate for flat panel displays, The manufacturing method of the glass plate in any one of Claims 1-3 characterized by the above-mentioned. ガラス板の一端面から切削を伴い先行ドリルを厚み方向中間まで侵入させた後に該先行ドリルを後退させ、然る後、前記ガラス板の他端面から切削を伴い後行ドリルを侵入させて前記ガラス板に貫通孔を形成するように構成されるガラス板の製造装置において、
前記後行ドリルは、ドリル胴部からドリル先端に向けて漸次縮径する形状をなし、
前記先行ドリルの前記ガラス板の一端面からの侵入深さは、前記後行ドリルの先端から最大外径部となる前記ドリル胴部の先端側端部までの軸方向距離Lと、前記先行ドリルの最大侵入時における先端位置から前記ガラス板の他端面までの距離Hとが、L>Hの関係を満たすように設定され、
前記後行ドリルの前記最大外径部における外径D2が、前記先行ドリルの最大外径部における外径D1よりも大きく設定されていることを特徴とするガラス板の製造装置。
After cutting the leading drill from the one end surface of the glass plate to the middle in the thickness direction, the leading drill is retracted, and then the trailing drill is inserted from the other end surface of the glass plate with cutting. In a glass plate manufacturing apparatus configured to form a through hole in a plate,
The subsequent drill has a shape that gradually decreases in diameter from the drill body toward the drill tip,
The depth of penetration of the preceding drill from the one end surface of the glass plate is an axial distance L from the tip of the succeeding drill to the tip side end of the drill body which is the maximum outer diameter portion, and the leading drill. And the distance H from the tip position at the time of maximum penetration to the other end surface of the glass plate is set so as to satisfy the relationship of L> H,
An apparatus for producing a glass plate, wherein an outer diameter D2 at the maximum outer diameter portion of the trailing drill is set to be larger than an outer diameter D1 at the maximum outer diameter portion of the preceding drill.
JP2007329130A 2007-12-20 2007-12-20 Method and equipment for manufacturing glass plate Withdrawn JP2009149471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007329130A JP2009149471A (en) 2007-12-20 2007-12-20 Method and equipment for manufacturing glass plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007329130A JP2009149471A (en) 2007-12-20 2007-12-20 Method and equipment for manufacturing glass plate

Publications (1)

Publication Number Publication Date
JP2009149471A true JP2009149471A (en) 2009-07-09

Family

ID=40919095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007329130A Withdrawn JP2009149471A (en) 2007-12-20 2007-12-20 Method and equipment for manufacturing glass plate

Country Status (1)

Country Link
JP (1) JP2009149471A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029666A1 (en) * 2010-09-01 2012-03-08 旭硝子株式会社 Hole boring drill for glass
WO2012053488A1 (en) * 2010-10-20 2012-04-26 旭硝子株式会社 Method for drilling mother glass substrate, and mother glass substrate
JP2012254626A (en) * 2011-05-13 2012-12-27 Nippon Electric Glass Co Ltd Laminate
JPWO2012046751A1 (en) * 2010-10-06 2014-02-24 国立大学法人徳島大学 Drill hole
US9446566B2 (en) 2011-05-13 2016-09-20 Nippon Electric Glass Co., Ltd. Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object
CN108326337A (en) * 2017-12-11 2018-07-27 江西合力泰科技有限公司 A kind of CNC processing methods preventing touch cover porous dehiscence
WO2021192481A1 (en) * 2020-03-24 2021-09-30 三菱マテリアル株式会社 Method of manufacturing electrode plate for plasma processing device and electrode plate for plasma processing device
JP2021535843A (en) * 2018-11-06 2021-12-23 エルジー・ケム・リミテッド Hole processing equipment and processing method for optical films

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029666A1 (en) * 2010-09-01 2012-03-08 旭硝子株式会社 Hole boring drill for glass
JPWO2012046751A1 (en) * 2010-10-06 2014-02-24 国立大学法人徳島大学 Drill hole
WO2012053488A1 (en) * 2010-10-20 2012-04-26 旭硝子株式会社 Method for drilling mother glass substrate, and mother glass substrate
US10279568B2 (en) 2011-05-13 2019-05-07 Nippon Electric Glass Co., Ltd. Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object
US9446566B2 (en) 2011-05-13 2016-09-20 Nippon Electric Glass Co., Ltd. Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object
JP2012254626A (en) * 2011-05-13 2012-12-27 Nippon Electric Glass Co Ltd Laminate
CN108326337A (en) * 2017-12-11 2018-07-27 江西合力泰科技有限公司 A kind of CNC processing methods preventing touch cover porous dehiscence
CN108326337B (en) * 2017-12-11 2019-11-08 江西合力泰科技有限公司 A kind of CNC processing method preventing touch cover porous dehiscence
JP2021535843A (en) * 2018-11-06 2021-12-23 エルジー・ケム・リミテッド Hole processing equipment and processing method for optical films
JP7106755B2 (en) 2018-11-06 2022-07-26 エルジー・ケム・リミテッド Optical film hole processing device and processing method
WO2021192481A1 (en) * 2020-03-24 2021-09-30 三菱マテリアル株式会社 Method of manufacturing electrode plate for plasma processing device and electrode plate for plasma processing device
JP2021153131A (en) * 2020-03-24 2021-09-30 三菱マテリアル株式会社 Manufacturing method of electrode plate for plasma processing apparatus and electrode plate for plasma processing apparatus
JP7439605B2 (en) 2020-03-24 2024-02-28 三菱マテリアル株式会社 Method for manufacturing an electrode plate for plasma processing equipment and electrode plate for plasma processing equipment

Similar Documents

Publication Publication Date Title
JP2009149471A (en) Method and equipment for manufacturing glass plate
KR101232926B1 (en) Method of boring glass substrate and glass substrate for plasma display manufactured by the method
CN105592994B (en) Method and apparatus for machining plate-like workpieces and the product made of this kind of workpiece
EP1986249A3 (en) Organic light emitting device and method of manufacturing the same
JP5164016B2 (en) Glass plate manufacturing method and apparatus
JP5009062B2 (en) Electrode structure for discharge lamp
JP2006216583A (en) Static electricity eliminating method and substrate processing apparatus
JP2006216583A5 (en)
JP2011111370A (en) Apparatus and method for manufacturing glass plate
KR20130122624A (en) Method for drilling mother glass substrate, and mother glass substrate
JP4671047B2 (en) Drill for drilling glass
WO2012029666A1 (en) Hole boring drill for glass
JP2010247265A (en) Drill and punching method
JP2000311616A (en) Air discharge hole for plasma display panel substrate
JP2006305672A (en) Drilling drill of glass substrate
JP4821696B2 (en) Glass substrate for flat panel display
JP5328129B2 (en) Aluminum alloy foil for electrolytic capacitors
JP2008142831A (en) Method of manufacturing electrode for electric discharge machining
JP2011105560A (en) Core drill and drilling method of glass plate using the drill
CN102059532B (en) Machining method of high-frequency connector shell
JP4849341B2 (en) Glass substrate for flat panel display
JP6962332B2 (en) Substrate with non-through holes
JP2005169479A (en) Piercing method, pierced member, and liquid discharging head
CN108551723A (en) The blockette seamless laser processing method of thicker gas electron multiplier circuit board
KR20220156807A (en) Method for manufacturing electrode plate for plasma processing device and electrode plate for plasma processing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110301