JP2009149195A - Controller for hybrid system - Google Patents

Controller for hybrid system Download PDF

Info

Publication number
JP2009149195A
JP2009149195A JP2007328586A JP2007328586A JP2009149195A JP 2009149195 A JP2009149195 A JP 2009149195A JP 2007328586 A JP2007328586 A JP 2007328586A JP 2007328586 A JP2007328586 A JP 2007328586A JP 2009149195 A JP2009149195 A JP 2009149195A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
control
egr rate
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007328586A
Other languages
Japanese (ja)
Inventor
Yohei Hosokawa
陽平 細川
Tomohiro Shinagawa
知広 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007328586A priority Critical patent/JP2009149195A/en
Priority to PCT/IB2008/003218 priority patent/WO2009090456A2/en
Publication of JP2009149195A publication Critical patent/JP2009149195A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/105Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/065Introducing corrections for particular operating conditions for engine starting or warming up for starting at hot start or restart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/144Sensor in intake manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1452Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a COx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide technology for stabilizing combustion at the start-up of an internal combustion engine, while generating requirement output at restoration to normal fuel injection control from fuel cut control, in a hybrid system having an EGR device. <P>SOLUTION: This controller for the hybrid system has: the EGR device making a part of exhaust emission from the internal combustion engine flow into an intake system of the internal combustion engine as EGR gas; a means for performing the fuel cut control to stop fuel injection in the internal combustion engine; a decision means deciding whether an EGR rate of gas took into the internal combustion engine is not more than a prescribed limit EGR rate at which a misfire does not occur in the internal combustion engine; and a means for continuing the fuel cut control without restoring the internal combustion engine to the normal fuel injection control during a period, until it is decided by the decision means that the EGR rate becomes not larger than the limit EGR rate, after a condition to be restored is satisfied, when the condition to be restored to the normal fuel injection control from the fuel cut control is satisfied during execution of the fuel cut control, and performing control, such that the required output is generated by only an electric motor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ハイブリッドシステムの制御装置に関する。   The present invention relates to a control device for a hybrid system.

動力源として内燃機関及び電動モータを備え、運転条件に応じて内燃機関及び/又は電動モータにより要求出力を発生させるようにしたハイブリッドシステムが知られている。ハイブリッドシステムにおいて、減速時や車両停止時に内燃機関への燃料供給を停止する燃料カット制御を行い、内燃機関を停止させることによって、燃費向上を図る技術が知られている。   There is known a hybrid system that includes an internal combustion engine and an electric motor as a power source, and generates a required output by the internal combustion engine and / or the electric motor according to operating conditions. In a hybrid system, a technique for improving fuel efficiency by performing fuel cut control for stopping fuel supply to an internal combustion engine when decelerating or stopping a vehicle and stopping the internal combustion engine is known.

また、内燃機関の排気エミッションの低減及び燃費向上を図る技術として、内燃機関からの排気の一部をEGRガスとして吸気系に戻すEGR装置が知られている。   As a technique for reducing exhaust emission and improving fuel efficiency of an internal combustion engine, an EGR device that returns part of the exhaust from the internal combustion engine to the intake system as EGR gas is known.

EGR装置を備えたハイブリッドシステムにおいて、EGR装置による吸気系へのEGRガスの導入が行われている時に燃料カット制御が行われると、燃料カット制御中吸気系及び排気系内にEGRガスが残留し、この残留しているEGRガスが燃料カット制御からの復帰時に排気浄化触媒によって十分に浄化されないまま車外に排出されてしまう場合があった。これに対し、減速時に電動モータと内燃機関との間のクラッチを締結してモータリングを行うと共に、スロットルバルブを全開にして残留EGRガスを排気浄化触媒に送ることにより、残留EGRガスの浄化を行うことを図る技術が特許文献1に記載されている。
特開2002−256919号公報 特開平6−257518号公報
In a hybrid system equipped with an EGR device, if fuel cut control is performed while EGR gas is being introduced into the intake system by the EGR device, EGR gas remains in the intake system and the exhaust system during fuel cut control. In some cases, the remaining EGR gas is discharged outside the vehicle without being sufficiently purified by the exhaust purification catalyst when returning from the fuel cut control. On the other hand, at the time of deceleration, the clutch between the electric motor and the internal combustion engine is engaged to perform motoring, and the throttle valve is fully opened to send the residual EGR gas to the exhaust purification catalyst, thereby purifying the residual EGR gas. A technique to be performed is described in Patent Document 1.
JP 2002-256919 A JP-A-6-257518

EGR装置を備えたハイブリッドシステムにおいて、EGR装置による吸気系へのEGRガスの導入が行われている時に燃料カット制御が行われると、燃料カット制御中吸気系内にEGRガスが残留し、この残留しているEGRガスが燃料カット制御からの復帰時に気筒に吸入されることになる。この時のEGRガスの量が過剰に多い場合、燃料カット制御からの復帰時の内燃機関始動時に、失火等の燃焼不安定を生じる場合があった。   In a hybrid system equipped with an EGR device, if fuel cut control is performed while EGR gas is being introduced into the intake system by the EGR device, EGR gas remains in the intake system during the fuel cut control, and this residual The EGR gas is sucked into the cylinder when returning from the fuel cut control. If the amount of EGR gas at this time is excessively large, combustion instability such as misfire may occur when the internal combustion engine is started when returning from the fuel cut control.

本発明はこのような問題点に鑑みてなされたものであり、EGR装置を備えたハイブリッドシステムにおいて、燃料カット制御から通常の燃料噴射制御への復帰時に、要求出力を発生させつつ内燃機関の始動時の燃焼を安定化させる技術を提供することを目的とするものである。   The present invention has been made in view of such problems, and in a hybrid system equipped with an EGR device, the internal combustion engine is started while generating a required output when returning from fuel cut control to normal fuel injection control. It aims at providing the technique which stabilizes the combustion of time.

上記目的を達成するため、本発明のハイブリッドシステムの制御装置は、
前記内燃機関からの排気の一部をEGRガスとして前記内燃機関の吸気系に流入させるEGR装置と、
前記内燃機関における燃料噴射を停止する燃料カット制御を行う手段と、
前記内燃機関に吸入されるガスのEGR率が前記内燃機関において失火が発生しない所定の限界EGR率以下であるか否かを判定する判定手段と、
前記燃料カット制御の実行中に当該燃料カット制御から通常の燃料噴射制御に復帰すべき条件が成立した場合、当該通常の燃料噴射制御に復帰すべき条件が成立した時点から、前記判定手段により前記EGR率が前記限界EGR率以下になったと判定されるまでの期
間中、前記内燃機関について、当該通常の燃料噴射制御に復帰せずに前記燃料カット制御を継続するとともに、前記電動モータについて、前記電動モータのみによって要求出力を発生させるように制御する制御手段と、
を備えることを特徴とする。
In order to achieve the above object, a control device for a hybrid system of the present invention provides:
An EGR device that causes a part of the exhaust from the internal combustion engine to flow into the intake system of the internal combustion engine as EGR gas;
Means for performing fuel cut control for stopping fuel injection in the internal combustion engine;
Determining means for determining whether an EGR rate of gas sucked into the internal combustion engine is equal to or less than a predetermined limit EGR rate at which misfire does not occur in the internal combustion engine;
When the condition for returning from the fuel cut control to the normal fuel injection control is satisfied during the execution of the fuel cut control, the determination unit performs the determination from the time when the condition for returning to the normal fuel injection control is satisfied. During the period until it is determined that the EGR rate is equal to or less than the limit EGR rate, the internal combustion engine continues the fuel cut control without returning to the normal fuel injection control, and the electric motor Control means for controlling to generate the required output only by the electric motor;
It is characterized by providing.

上記本発明の構成において、「限界EGR率」は、内燃機関において失火が発生しないEGR率の上限値に基づいて予め定められる。内燃機関において失火が発生しないEGR率の上限値は、内燃機関の運転条件に応じて異なる。従って、上記構成における「限界EGR率」も、通常の燃料噴射制御に復帰すべき条件が成立した時の内燃機関の運転条件に応じた可変値としても良い。一般に、内燃機関の運転条件が低負荷の場合はEGRガスに対する燃焼耐性が低く、高負荷の場合はEGRガスに対する燃焼耐性が高い。よって、通常の燃料噴射制御に復帰すべき条件が成立した時の内燃機関の運転条件が低負荷であるほど、限界EGR率を低い濃度に設定するようにしても良い。また、通常の燃料噴射制御に復帰すべき条件が成立した時の内燃機関の運転条件によらず失火の発生を抑制可能な一定値を「限界EGR率」として設定しても良い。   In the configuration of the present invention, the “limit EGR rate” is determined in advance based on the upper limit value of the EGR rate at which misfire does not occur in the internal combustion engine. The upper limit value of the EGR rate at which misfire does not occur in the internal combustion engine varies depending on the operating conditions of the internal combustion engine. Therefore, the “limit EGR rate” in the above configuration may also be a variable value according to the operating condition of the internal combustion engine when the condition for returning to normal fuel injection control is satisfied. Generally, when the operating condition of the internal combustion engine is low load, the combustion resistance against EGR gas is low, and when the operation condition is high load, the combustion resistance against EGR gas is high. Therefore, the limit EGR rate may be set to a lower concentration as the operating condition of the internal combustion engine when the condition for returning to normal fuel injection control is satisfied is lower. Further, a constant value that can suppress the occurrence of misfire regardless of the operating condition of the internal combustion engine when the condition for returning to the normal fuel injection control is satisfied may be set as the “limit EGR rate”.

また、「判定手段」は、内燃機関の吸入ガスのEGR率が限界EGR率以下であるか否かを判定可能であればどのような手段であっても良い。例えば、吸気マニホールドや吸気通路にガス濃度センサを設置し、当該ガス濃度センサの出力と限界EGR率との比較に基づいて判定を行うことができる。また、燃料カット制御が開始される直前におけるEGR装置の制御状態(EGRガス量、EGR弁開度、EGRガス温度等)、内燃機関の制御状態(回転数、負荷、燃料噴射量、排気中の不活性成分濃度、排気温度、スロットル開度等)、燃料カット制御が開始されてから通常の燃料噴射制御に復帰すべき条件が成立するまでの時間等のデータに基づいて、モデル計算によって内燃機関の吸入ガスのEGR率を推定し、推定されたEGR率と限界EGR率との比較に基づいて判定を行うようにしても良い。また、これらの物理量と、通常の燃料噴射制御に復帰すべき条件が成立してからの経過時間と、内燃機関の吸入ガスのEGR率と、の対応関係を予め求めておき、通常の燃料噴射制御に復帰すべき条件が成立してからの経過時間の測定値に基づいて判定を行うこともできる。燃料カット制御が開始される直前における内燃機関の運転条件が、EGR装置によるEGRガスの導入が行われないような運転条件であった場合には、吸気系内のEGRガスの残留はないと考えられるので、通常の燃料噴射制御に復帰すべき条件が成立した時点で、EGR率が限界EGR率以下になったと判定するようにしても良い。   The “determination means” may be any means as long as it can determine whether or not the EGR rate of the intake gas of the internal combustion engine is equal to or less than the limit EGR rate. For example, a gas concentration sensor can be installed in the intake manifold or the intake passage, and determination can be made based on a comparison between the output of the gas concentration sensor and the limit EGR rate. In addition, the control state of the EGR device (EGR gas amount, EGR valve opening, EGR gas temperature, etc.) immediately before the fuel cut control is started, the control state of the internal combustion engine (rotation speed, load, fuel injection amount, exhaust gas) Internal combustion engine by model calculation based on data such as inert component concentration, exhaust temperature, throttle opening, etc., and time from when fuel cut control is started until the conditions for returning to normal fuel injection control are satisfied The EGR rate of the intake gas may be estimated, and the determination may be made based on a comparison between the estimated EGR rate and the limit EGR rate. In addition, a correspondence relationship between these physical quantities, the elapsed time since the condition for returning to normal fuel injection control, and the EGR rate of the intake gas of the internal combustion engine is obtained in advance, and normal fuel injection is performed. It is also possible to make a determination based on the measured value of the elapsed time since the condition for returning to control is established. When the operating condition of the internal combustion engine immediately before the fuel cut control is started is an operating condition in which the EGR gas is not introduced by the EGR device, it is considered that there is no EGR gas remaining in the intake system. Therefore, it may be determined that the EGR rate has become equal to or less than the limit EGR rate when the condition for returning to the normal fuel injection control is satisfied.

また、「通常の燃料噴射制御」とは、要求出力を内燃機関と電動モータとで所定の分配比率で分配し、内燃機関に分配された要求出力を発生可能なように定められた所定量の燃料を内燃機関に噴射供給する制御である。また、燃料カット制御は、例えば、減速状態や車両停止状態等の要求出力が0であるような運転条件において実行される。従って、「通常の燃料噴射制御に復帰すべき条件」とは、内燃機関の運転条件が、これら燃料カット制御が行われる運転条件からそれ以外の運転条件に変化した時に成立する。例えば、減速状態からの再加速時や、アイドリングストップ状態からの走行開始時等を例示できる。   “Normal fuel injection control” means that the required output is distributed at a predetermined distribution ratio between the internal combustion engine and the electric motor, and a predetermined amount determined so as to be able to generate the required output distributed to the internal combustion engine. In this control, fuel is injected and supplied to the internal combustion engine. Further, the fuel cut control is executed under an operating condition in which a required output such as a deceleration state or a vehicle stop state is 0, for example. Accordingly, the “condition for returning to normal fuel injection control” is established when the operating condition of the internal combustion engine changes from the operating condition in which the fuel cut control is performed to another operating condition. For example, it is possible to exemplify when re-acceleration from a deceleration state or when starting running from an idling stop state.

本発明により、燃料カット制御から通常の燃料噴射制御に復帰すべき条件が成立してから、内燃機関の吸入ガスのEGR率が限界EGR率以下になったと判定されるまでの期間中、内燃機関が通常の燃料噴射制御に復帰することが遅延され、燃料カット制御が継続される。すなわち、内燃機関の吸入ガスのEGR率が、失火する虞のある高濃度状態である時には燃料噴射が行われない。従って、吸入ガスのEGR率が過剰に高いことに起因する失火等の燃焼不安定が生じることを抑制できる。   According to the present invention, during the period from when the condition for returning from the fuel cut control to the normal fuel injection control is satisfied, until the EGR rate of the intake gas of the internal combustion engine is determined to be equal to or lower than the limit EGR rate, Is delayed to return to normal fuel injection control, and fuel cut control is continued. That is, fuel injection is not performed when the EGR rate of the intake gas of the internal combustion engine is in a high concentration state that may cause a misfire. Therefore, it is possible to suppress the occurrence of combustion instability such as misfire caused by the excessively high EGR rate of the intake gas.

そして、上記期間中内燃機関の通常の燃料噴射制御への復帰が遅延されることによって、通常の燃料噴射制御が行われるべき運転条件下で内燃機関によって発生させることが想
定されている出力を、内燃機関によって発生させることができなくなる。この点、本発明では、制御手段によって、この本来内燃機関によって発生させるべき出力を含む全要求出力を、電動モータによって発生させるように、電動モータが制御される。これにより、内燃機関の通常の燃料噴射制御への復帰が遅延されている期間中において、ハイブリッドシステムが発生する出力が要求出力に満たなくなることをも抑制できる。従って、燃料カット制御から通常の燃料噴射制御への復帰時における燃焼不安定を抑制できるとともに、加速感の不足、トルク変動、ドライバビリティの低下等の問題が生じることを抑制することも可能になる。
And, by delaying the return to the normal fuel injection control of the internal combustion engine during the period, an output that is assumed to be generated by the internal combustion engine under the operating conditions under which the normal fuel injection control should be performed, It cannot be generated by the internal combustion engine. In this regard, in the present invention, the electric motor is controlled by the control means so that the electric motor generates all the required outputs including the output that should be originally generated by the internal combustion engine. Thereby, it is possible to suppress the output generated by the hybrid system from being less than the required output during the period in which the return of the internal combustion engine to the normal fuel injection control is delayed. Therefore, combustion instability at the time of return from the fuel cut control to the normal fuel injection control can be suppressed, and problems such as insufficient acceleration feeling, torque fluctuation, and drivability deterioration can be suppressed. .

本発明において、制御手段は、内燃機関の通常の燃料噴射制御への復帰が遅延されている期間中、電動モータについて、更に内燃機関のクランキングを行うように制御しても良い。このクランキングは当然燃料カット制御が行われている時に行われる。これにより、吸気系内に残留しているEGRガスの掃気を促進させることができる。従って、内燃機関の吸入ガスのEGR率が限界EGR率以下になるまでに要する時間、換言すると、内燃機関を通常の燃料噴射制御へ復帰させるまでの遅延時間を、短縮することができる。   In the present invention, the control means may control the electric motor to further crank the internal combustion engine during a period in which the return to the normal fuel injection control of the internal combustion engine is delayed. This cranking is naturally performed when the fuel cut control is performed. Thereby, scavenging of the EGR gas remaining in the intake system can be promoted. Accordingly, it is possible to shorten the time required until the EGR rate of the intake gas of the internal combustion engine becomes equal to or lower than the limit EGR rate, in other words, the delay time until the internal combustion engine is returned to the normal fuel injection control.

本発明において、内燃機関の吸入ガスのEGR率が限界EGR率以下になったと判定された場合は、内燃機関を通常の燃料噴射制御へ復帰させるとともに、電動モータについても通常の制御に復帰させることができる。   In the present invention, when it is determined that the EGR rate of the intake gas of the internal combustion engine has become equal to or less than the limit EGR rate, the internal combustion engine is returned to normal fuel injection control, and the electric motor is also returned to normal control. Can do.

ここで、「電動モータを通常の制御に復帰させる」とは、上述したように、要求出力を内燃機関と電動モータとで所定の比率で分配し、電動モータに分配された要求出力を発生可能なように定められた所定の制御を電動モータについて行うことを意味する。   Here, “returning the electric motor to normal control” means that, as described above, the required output can be distributed between the internal combustion engine and the electric motor at a predetermined ratio, and the required output distributed to the electric motor can be generated. It means that predetermined control determined in such a manner is performed on the electric motor.

本発明により、EGR装置を備えたハイブリッドシステムにおいて、燃料カット制御から通常の燃料噴射制御への復帰時の復帰時に、要求出力を発生しつつ内燃機関の始動時の燃焼を安定化させることが可能になる。   According to the present invention, in a hybrid system equipped with an EGR device, it is possible to stabilize combustion at the time of starting an internal combustion engine while generating a required output when returning from fuel cut control to normal fuel injection control. become.

以下に図面を参照して、この発明を実施するための最良の形態を例示的に詳しく説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特定的な記載がない限りは、発明の技術的範囲をそれらのみに限定する趣旨のものではない。   The best mode for carrying out the present invention will be exemplarily described in detail below with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention only to those unless otherwise specified.

図1は、本実施例に係るハイブリッドシステムの概略構成を示す概念図である。図1において、ハイブリッドシステム1は、内燃機関10、トランスアクスル30、インバータ40、バッテリ50を備えている。ハイブリッドシステム1には、ハイブリッドシステム1の制御を行うコンピュータであるECU60が併設されている。   FIG. 1 is a conceptual diagram illustrating a schematic configuration of a hybrid system according to the present embodiment. In FIG. 1, the hybrid system 1 includes an internal combustion engine 10, a transaxle 30, an inverter 40, and a battery 50. The hybrid system 1 is provided with an ECU 60 that is a computer that controls the hybrid system 1.

内燃機関10は、燃料の燃焼エネルギを源としてハイブリッド車両の駆動力を発生する。トランスアクスル30はトランスミッションとアクスル(車軸)とを一体構造として構成されており、トランスアクスル30の内部には動力分割機構(例えば、遊星歯車機構)31、減速機32、電動モータ33、ジェネレータ34、電動モータ33及びジェネレータ34の制御を行うパワー制御ユニット35が収容されている。また、トランスアクスル30内には潤滑油が貯留されており、電動モータ33、ジェネレータ34、動力分割機構31、減速機32等が潤滑される。   The internal combustion engine 10 generates a driving force of the hybrid vehicle using fuel combustion energy as a source. The transaxle 30 is configured with a transmission and an axle (axle) as an integral structure. Inside the transaxle 30, a power split mechanism (for example, a planetary gear mechanism) 31, a speed reducer 32, an electric motor 33, a generator 34, A power control unit 35 for controlling the electric motor 33 and the generator 34 is accommodated. Further, lubricating oil is stored in the transaxle 30, and the electric motor 33, the generator 34, the power split mechanism 31, the speed reducer 32, and the like are lubricated.

ジェネレータ34は、内燃機関10が発生する出力により発電を行う。電動モータ33は、電動モータ33を駆動するための電力を充電するバッテリ50あるいはジェネレータ
34から供給される電力によりハイブリッド車両の駆動力を発生する。内燃機関10による出力及び電動モータ33による出力は、動力分配機構31及び減速機32を介して車輪へと伝達される。
The generator 34 generates power using the output generated by the internal combustion engine 10. The electric motor 33 generates the driving force of the hybrid vehicle by the electric power supplied from the battery 50 or the generator 34 that charges the electric power for driving the electric motor 33. The output from the internal combustion engine 10 and the output from the electric motor 33 are transmitted to the wheels via the power distribution mechanism 31 and the speed reducer 32.

動力分配機構31は、内燃機関10とジェネレータ34との間の動力伝達、内燃機関10と減速機32との間の動力伝達、電動モータ33と減速機32との間の動力伝達を行う。また、インバータ40は、バッテリ50の直流電流と電動モータ33及びジェネレータ34の交流電流とを変換する。   The power distribution mechanism 31 performs power transmission between the internal combustion engine 10 and the generator 34, power transmission between the internal combustion engine 10 and the speed reducer 32, and power transmission between the electric motor 33 and the speed reducer 32. Further, the inverter 40 converts the direct current of the battery 50 and the alternating current of the electric motor 33 and the generator 34.

次に、内燃機関10及びその吸排気系の概略構成について説明する。内燃機関10には、吸気マニホールド11が接続されており、吸気マニホールド11の各枝管は吸気ポートを介して各気筒2の燃焼室と連通している。吸気マニホールド11は吸気通路13と接続されており、吸気通路13には排気のエネルギを駆動源として作動するターボチャージャ14のコンプレッサ14aが設けられている。また、吸気通路13におけるコンプレッサ14aよりも下流側には、吸気通路13を流れるガスを冷却するインタークーラ15が設けられている。コンプレッサ14aに流入した吸気は、コンプレッサ14aに内装されたコンプレッサホイール(図示省略)の回転によって圧縮される。圧縮されて高温となった吸気は、インタークーラ15にて冷却された後、吸気マニホールド11に流入する。そして、吸気マニホールド11に流入した吸気は、吸気ポートを介して各気筒2に分配される。そして、各気筒2に分配された吸気は各気筒2に設けられた燃料噴射弁6から噴射される燃料とともに燃焼する。吸気マニホールド11には、吸気中の二酸化炭素濃度を測定するガス濃度センサ5が設けられている。   Next, a schematic configuration of the internal combustion engine 10 and its intake / exhaust system will be described. An intake manifold 11 is connected to the internal combustion engine 10, and each branch pipe of the intake manifold 11 communicates with a combustion chamber of each cylinder 2 through an intake port. The intake manifold 11 is connected to an intake passage 13, and a compressor 14 a of a turbocharger 14 that operates using exhaust energy as a drive source is provided in the intake passage 13. An intercooler 15 that cools the gas flowing through the intake passage 13 is provided downstream of the compressor 14 a in the intake passage 13. The intake air flowing into the compressor 14a is compressed by the rotation of a compressor wheel (not shown) provided in the compressor 14a. The compressed intake air having a high temperature is cooled by the intercooler 15 and then flows into the intake manifold 11. The intake air flowing into the intake manifold 11 is distributed to each cylinder 2 via the intake port. The intake air distributed to each cylinder 2 is combusted together with the fuel injected from the fuel injection valve 6 provided in each cylinder 2. The intake manifold 11 is provided with a gas concentration sensor 5 that measures the concentration of carbon dioxide in the intake air.

また、内燃機関10には排気マニホールド18が接続され、排気マニホールド18の各枝管は排気ポート(図示省略)を介して各気筒2の燃焼室と接続されている。排気マニホールド18は排気通路19と接続されており、排気通路19にはターボチャージャ14のタービン14bが設けられている。また、排気通路19におけるタービン14bよりも下流側には排気浄化触媒20が設けられ、排気通路19は排気浄化触媒20の下流にてマフラー(図示省略)に接続されている。各気筒2内の既燃ガスは排気ポートを介して排気マニホールド18に排出される。この排気は排気通路19を流通してタービン14bに流入し、タービン14b内に回転自在に支持されたタービンホイール(図示省略)を回転駆動する。タービンホイール(図示省略)の回転トルクはコンプレッサ14a内のコンプレッサホイール(図示省略)に伝達される。タービン14bから流出した排気は、排気浄化触媒20において有害物質(例えば、NOx、HC、CO等)が浄化された後、マフラーを通って大気中に放出される。   An exhaust manifold 18 is connected to the internal combustion engine 10, and each branch pipe of the exhaust manifold 18 is connected to the combustion chamber of each cylinder 2 via an exhaust port (not shown). The exhaust manifold 18 is connected to an exhaust passage 19, and a turbine 14 b of the turbocharger 14 is provided in the exhaust passage 19. An exhaust purification catalyst 20 is provided downstream of the turbine 14 b in the exhaust passage 19, and the exhaust passage 19 is connected to a muffler (not shown) downstream of the exhaust purification catalyst 20. The burnt gas in each cylinder 2 is discharged to the exhaust manifold 18 through the exhaust port. This exhaust gas flows through the exhaust passage 19 and flows into the turbine 14b, and rotationally drives a turbine wheel (not shown) rotatably supported in the turbine 14b. The rotational torque of the turbine wheel (not shown) is transmitted to the compressor wheel (not shown) in the compressor 14a. Exhaust gas flowing out from the turbine 14b is discharged into the atmosphere through a muffler after harmful substances (for example, NOx, HC, CO, etc.) are purified by the exhaust purification catalyst 20.

タービン14bより上流の排気通路19と、コンプレッサ14aより下流の吸気通路13とは、EGR通路3により接続されている。EGR通路3を介して、排気通路19を流れる排気の一部がEGRガスとして吸気通路13に流入する。EGR通路3の途中にはEGR通路3内を流通するEGRガスの量を調節するEGR弁4が設けられている。   The exhaust passage 19 upstream from the turbine 14 b and the intake passage 13 downstream from the compressor 14 a are connected by the EGR passage 3. A part of the exhaust gas flowing through the exhaust passage 19 flows into the intake passage 13 as EGR gas via the EGR passage 3. An EGR valve 4 for adjusting the amount of EGR gas flowing through the EGR passage 3 is provided in the middle of the EGR passage 3.

ハイブリッドシステム1には、上述したガス濃度センサ5の他、クランクシャフトの回転角度に応じた信号を出力するクランクポジションセンサ23、アクセルペダルの踏み込み量(アクセル開度)に対応した信号を出力するアクセルポジションセンサ21、車両の走行速度に対応した信号を出力する車速センサ22、バッテリ50の充電状態(SOC)を取得するSOCセンサ51等の各種センサが設けられ、各センサからの信号がECU60に入力されるようになっている。ECU60は、ガス濃度センサ5から入力される信号に基づいて吸気マニホールド11内に存在する吸気ガスのEGR率を算出する。   In the hybrid system 1, in addition to the gas concentration sensor 5 described above, a crank position sensor 23 that outputs a signal corresponding to the rotation angle of the crankshaft, and an accelerator that outputs a signal corresponding to the amount of depression of the accelerator pedal (accelerator opening). Various sensors such as a position sensor 21, a vehicle speed sensor 22 that outputs a signal corresponding to the traveling speed of the vehicle, and an SOC sensor 51 that acquires the state of charge (SOC) of the battery 50 are provided, and signals from each sensor are input to the ECU 60. It has come to be. The ECU 60 calculates the EGR rate of the intake gas existing in the intake manifold 11 based on the signal input from the gas concentration sensor 5.

また、ECU60には、上述した燃料噴射弁6、EGR弁4の他各種機器が接続され、
上記各種センサからの入力される信号に応じてこれら各機器の動作が制御されるようになっている。例えば、アクセルポジションセンサ21及びクランクポジションセンサ23から入力される信号に基づいてハイブリッドシステム1が発生すべき要求出力を算出し、運転条件やSOCセンサ51から入力される信号に基づいて、要求出力の内燃機関10と電動モータ33との配分比率を決定し、当該配分に従った出力を発生可能なように、内燃機関10への燃料噴射量及び電動モータ33への電力供給が制御される。
In addition, the ECU 60 is connected to various devices other than the fuel injection valve 6 and the EGR valve 4 described above.
The operations of these devices are controlled in accordance with signals input from the various sensors. For example, a required output to be generated by the hybrid system 1 is calculated based on signals input from the accelerator position sensor 21 and the crank position sensor 23, and the required output is calculated based on operating conditions and a signal input from the SOC sensor 51. The distribution ratio between the internal combustion engine 10 and the electric motor 33 is determined, and the fuel injection amount to the internal combustion engine 10 and the power supply to the electric motor 33 are controlled so that the output according to the distribution can be generated.

EGR弁4を開弁することにより、EGRガスが吸気通路13に流入する。このようにして内燃機関10の吸気系にEGRガスを導入することにより、冷却損失やポンピングロスが低減するので、燃費を向上させることができる。また、排気に含まれるNOx等の有害物質の量が低減するので、排気性能を向上させることができる。しかしながら、吸気のEGR率が過剰に高くなると、燃焼が不安定化し、失火やトルク変動等の問題が生じる場合がある。一般に、内燃機関10の運転条件が低負荷低回転の場合、新気量及び燃料噴射量が少ないため、EGRガスの導入に対して燃焼不安定が生じ易い。一方、内燃機関10の運転条件が高負荷高回転の場合、安定した燃焼が行われるので、大量のEGRガスを導入しても燃焼不安定を生じにくい。図2に、内燃機関10の運転条件が低負荷低回転の場合と高負荷高回転の場合との各場合における、吸気のEGR率とトルク変動との関係を示す。図2に示されるように、内燃機関10の運転条件が高負荷高回転の場合にはトルク変動が生じにくいEGR率であっても、内燃機関10の運転条件が低負荷低回転の場合には大きなトルク変動が生じる場合がある。   By opening the EGR valve 4, EGR gas flows into the intake passage 13. By introducing the EGR gas into the intake system of the internal combustion engine 10 in this way, the cooling loss and the pumping loss are reduced, so that the fuel consumption can be improved. Moreover, since the amount of harmful substances such as NOx contained in the exhaust gas is reduced, the exhaust performance can be improved. However, if the EGR rate of intake air becomes excessively high, combustion may become unstable, and problems such as misfire and torque fluctuation may occur. In general, when the operating condition of the internal combustion engine 10 is low load and low rotation, since the amount of fresh air and the amount of fuel injection are small, combustion instability is likely to occur when EGR gas is introduced. On the other hand, when the operating condition of the internal combustion engine 10 is a high load and high rotation, stable combustion is performed, so that even if a large amount of EGR gas is introduced, combustion instability is unlikely to occur. FIG. 2 shows the relationship between the EGR rate of intake air and torque fluctuation in each of the cases where the operating condition of the internal combustion engine 10 is low load and low speed and high load and high speed. As shown in FIG. 2, when the operating condition of the internal combustion engine 10 is high load and high rotation, even when the EGR rate is less likely to cause torque fluctuation, Large torque fluctuations may occur.

このように、燃焼が不安定化しない吸気のEGR率の上限値(限界EGR率)が内燃機関10の運転条件に応じて異なる点に鑑み、本実施例のハイブリッドシステムでは、内燃機関10の運転条件が高負荷高回転になるほど吸気のEGR率が高くなるようにEGR制御を行うこととした。図3に、内燃機関10の運転条件とEGR率との関係を示す。図3に示すように、内燃機関10の回転数及び/又は負荷が高くなるほど、EGR率は高くされる。また、図3において斜線で示す所定の低負荷低回転領域ではEGRガスの導入が停止される。   Thus, in view of the fact that the upper limit (limit EGR rate) of the intake EGR rate at which combustion does not become unstable varies depending on the operating conditions of the internal combustion engine 10, the hybrid system of the present embodiment operates the internal combustion engine 10. The EGR control is performed so that the EGR rate of the intake air increases as the condition becomes a high load and high speed. FIG. 3 shows the relationship between the operating conditions of the internal combustion engine 10 and the EGR rate. As shown in FIG. 3, the EGR rate increases as the rotational speed and / or load of the internal combustion engine 10 increases. Further, the introduction of EGR gas is stopped in a predetermined low-load low-rotation region indicated by diagonal lines in FIG.

本実施例のハイブリッドシステムでは、内燃機関10に対する要求出力がゼロであるような所定の運転条件において、燃料噴射弁6による燃料噴射を停止する燃料カット制御を行う。所定の運転条件とは、減速状態や車両停止時等である。燃料カット制御を行うことにより、余計な燃料消費を抑制することができ、燃費を向上させることができる。燃料カット制御時には、EGR弁4は閉弁され、EGRガスの導入も停止される。   In the hybrid system of the present embodiment, fuel cut control for stopping fuel injection by the fuel injection valve 6 is performed under predetermined operating conditions such that the required output to the internal combustion engine 10 is zero. The predetermined driving conditions are a deceleration state, a time when the vehicle is stopped, and the like. By performing fuel cut control, unnecessary fuel consumption can be suppressed and fuel consumption can be improved. During fuel cut control, the EGR valve 4 is closed and the introduction of EGR gas is also stopped.

ここで、EGRガスが導入される運転条件で内燃機関10が運転されている時に燃料カット制御が開始されると、燃料カット制御中、EGR弁4より下流側のEGR通路3、EGR通路3の接続箇所より下流側の吸気通路13、及び吸気マニホールド11から成る吸気系領域内にEGRガスが残留する。吸気系領域内に残留しているEGRガスの一部は、燃料カット制御開始後に内燃機関10の回転が完全に停止するまでの間に気筒2に吸入されて掃気されるが、燃料カット制御の開始直前の内燃機関10の運転条件等により十分に吸気系領域内から掃気されない場合がある。このような場合、吸気系領域内にEGRガスが残留した状態で内燃機関10が停止した状態となる。この状態で、内燃機関10について燃料カット制御から通常の燃料噴射制御(通常制御)へ復帰すべき条件(復帰条件)が成立した場合、まず吸気系領域内に残留しているEGRガスが気筒2に吸入されることになる。   Here, when the fuel cut control is started when the internal combustion engine 10 is operated under the operation condition in which the EGR gas is introduced, during the fuel cut control, the EGR passage 3 and the EGR passage 3 on the downstream side of the EGR valve 4 are operated. EGR gas remains in the intake system region including the intake passage 13 and the intake manifold 11 on the downstream side of the connection location. A part of the EGR gas remaining in the intake system region is sucked into the cylinder 2 and scavenged before the rotation of the internal combustion engine 10 completely stops after the fuel cut control is started. There may be a case where the air is not sufficiently scavenged from the intake system region due to the operating condition of the internal combustion engine 10 immediately before the start. In such a case, the internal combustion engine 10 is stopped with EGR gas remaining in the intake system region. In this state, when a condition (return condition) for returning from the fuel cut control to the normal fuel injection control (normal control) is satisfied for the internal combustion engine 10, first, the EGR gas remaining in the intake system region is the cylinder 2 Will be inhaled.

特に、大量のEGRガスが導入される高負荷高回転領域に属する運転条件から燃料カット制御が開始された場合、通常制御への復帰条件が成立した時に吸気系領域内に大量のEGRガスが残留している可能性がある。そのような場合、通常制御への復帰条件が成立し
た時に即座に通常制御への復帰が行われると、吸気系領域内の高EGR率の残留ガスが内燃機関10の気筒2に吸入されるとともに、燃料噴射弁6による内燃機関10への燃料供給が行われる。そのため、復帰条件成立時の内燃機関10の運転条件に対応する限界EGR率を超えて気筒吸入ガスのEGR率が過剰に高くなり、失火等の燃焼不安定を生じる可能性がある。
In particular, when fuel cut control is started from an operating condition belonging to a high-load, high-rotation region where a large amount of EGR gas is introduced, a large amount of EGR gas remains in the intake system region when the return condition to normal control is satisfied. There is a possibility. In such a case, if the return to normal control is performed immediately when the return condition to normal control is satisfied, the residual gas having a high EGR rate in the intake system region is sucked into the cylinder 2 of the internal combustion engine 10. Then, the fuel is supplied to the internal combustion engine 10 by the fuel injection valve 6. Therefore, the EGR rate of the cylinder intake gas exceeds the limit EGR rate corresponding to the operating condition of the internal combustion engine 10 when the return condition is satisfied, and there is a possibility that combustion instability such as misfire may occur.

そこで、本実施例のハイブリッドシステム1では、燃料カット制御の実行中に、燃料カット制御から通常制御への復帰条件が成立した場合、ガス濃度センサ5の出力に基づいて吸気マニホールド11内のガスのEGR率を算出し、算出されたEGR率が、復帰条件成立時の内燃機関10の運転条件に対応する限界EGR率を超えている場合、内燃機関10を燃料カット制御から通常制御に復帰させず、燃料カット制御を継続するようにした。そして、ガス濃度センサ5の出力に基づいて算出される吸気マニホールド11内のガスのEGR率が前記限界EGR率以下となった時点で燃料カット制御を終了し、通常制御へ復帰させるようにした。さらに、この燃料カット制御から通常制御への復帰条件が成立してから実際に通常制御への復帰が実行されるまでの遅延期間中、本来内燃機関10により発生させることが想定されていた出力を、電動モータ33によって出力するように、電動モータ33を制御するようにした。さらに、この遅延期間中において、電動モータ33により内燃機関10のクランキングを行うように、電動モータ33を制御するようにした。   Therefore, in the hybrid system 1 of the present embodiment, when the return condition from the fuel cut control to the normal control is satisfied during execution of the fuel cut control, the gas in the intake manifold 11 is determined based on the output of the gas concentration sensor 5. When the EGR rate is calculated and the calculated EGR rate exceeds the limit EGR rate corresponding to the operating condition of the internal combustion engine 10 when the return condition is satisfied, the internal combustion engine 10 is not returned from the fuel cut control to the normal control. The fuel cut control was continued. Then, when the EGR rate of the gas in the intake manifold 11 calculated based on the output of the gas concentration sensor 5 becomes equal to or lower than the limit EGR rate, the fuel cut control is terminated and returned to the normal control. Further, the output originally assumed to be generated by the internal combustion engine 10 during a delay period from when the return condition from the fuel cut control to the normal control is satisfied until the actual return to the normal control is executed. The electric motor 33 is controlled so as to be output by the electric motor 33. Furthermore, the electric motor 33 is controlled so that the internal combustion engine 10 is cranked by the electric motor 33 during this delay period.

このような制御を行うことにより、内燃機関10について燃料カット制御から通常制御への復帰が実行される時には、内燃機関10の気筒2に吸入されるガスのEGR率は、限界EGR率以下となっているので、通常制御への復帰時に失火等の燃焼不安定が生じることが抑制され、トルク変動やドライバビリティの低下等の問題が生じることを抑制できる。さらに、上記遅延期間中において、本来内燃機関10が燃料カット制御から通常制御へ復帰して内燃機関10による出力が想定されているにもかかわらず内燃機関10の通常制御への復帰が遅延されることによって内燃機関10により発生させることができなくなる出力については、電動モータ33により補償されるので、当該遅延期間中における要求出力を過不足無く発生させることができ、加速感の不足等のドライバビリティの低下が起こることを抑制できる。また、上記遅延期間中、電動モータ33は、更に内燃機関10のクランキングを行うように制御されるので、吸気系領域内に残留しているガスをより早期に掃気完了することができる。従って、遅延期間を短縮し、より早期に内燃機関10を通常制御に復帰させることができる。   By performing such control, when the internal combustion engine 10 is returned from the fuel cut control to the normal control, the EGR rate of the gas sucked into the cylinder 2 of the internal combustion engine 10 becomes equal to or less than the limit EGR rate. Therefore, combustion instability such as misfire is suppressed when returning to normal control, and problems such as torque fluctuation and drivability deterioration can be suppressed. Further, during the delay period, the return of the internal combustion engine 10 to the normal control is delayed even though the internal combustion engine 10 originally returns from the fuel cut control to the normal control and the output from the internal combustion engine 10 is assumed. Since the output that cannot be generated by the internal combustion engine 10 is compensated by the electric motor 33, the required output during the delay period can be generated without excess or deficiency, and drivability such as lack of acceleration. Can be prevented from occurring. Further, during the delay period, the electric motor 33 is further controlled to perform cranking of the internal combustion engine 10, so that scavenging of the gas remaining in the intake system region can be completed earlier. Therefore, the delay period can be shortened and the internal combustion engine 10 can be returned to the normal control earlier.

図4は、上記説明した本実施例の制御を、内燃機関10が高負荷運転をしている状態から減速状態となり再加速する場合に適用した場合の、車速、要求出力、及び吸気マニホールド11内のガスのEGR率の時間変化の一例を示したタイムチャートである。図4(a)は本実施例のハイブリッドシステム1を動力源として搭載した車両の車速を表し、図4(b)はハイブリッドシステム1に対する要求出力を表し、図4(c)はガス濃度センサ5からの信号に基づいてECU60により算出される吸気マニホールド11内ガスのEGR率を表す。   FIG. 4 shows the vehicle speed, the required output, and the inside of the intake manifold 11 when the control of the present embodiment described above is applied when the internal combustion engine 10 is decelerated from the high-load operation state and reaccelerated. It is the time chart which showed an example of the time change of the EGR rate of this gas. 4A shows the vehicle speed of a vehicle equipped with the hybrid system 1 of this embodiment as a power source, FIG. 4B shows the required output for the hybrid system 1, and FIG. 4C shows the gas concentration sensor 5 Represents the EGR rate of the gas in the intake manifold 11 calculated by the ECU 60 based on the signal from.

図4に示す例では、時刻t以前には、ハイブリッドシステム1に対する要求出力は全て内燃機関10に分配され、全要求出力を内燃機関10により発生させるようにECU60によるハイブリッドシステム1の制御が行われる。この時、内燃機関10は高負荷で運転され、上述したように大量のEGRガスが吸気系に導入されている。 In the example shown in FIG. 4, before the time t 1 , all the required outputs for the hybrid system 1 are distributed to the internal combustion engine 10, and the hybrid system 1 is controlled by the ECU 60 so that all the required outputs are generated by the internal combustion engine 10. Is called. At this time, the internal combustion engine 10 is operated at a high load, and a large amount of EGR gas is introduced into the intake system as described above.

時刻tにおいて運転者の要求により減速すべき条件が成立すると、ハイブリッドシステム1への要求出力が0となるとともに、内燃機関10への要求出力も0となり、これに伴い内燃機関10において燃料カット制御が実施される。また、同時に目標EGRガス率が0となり、これに伴ってEGR弁4が閉弁される。 When a condition to be decelerated is satisfied by the driver's request at time t 1 , the required output to the hybrid system 1 becomes 0 and the required output to the internal combustion engine 10 also becomes 0. Accordingly, the fuel cut in the internal combustion engine 10 occurs. Control is implemented. At the same time, the target EGR gas rate becomes 0, and the EGR valve 4 is closed accordingly.

時刻t以降の燃料カット制御中、内燃機関10は慣性で回転を続けるが、徐々に回転数が低下していく。この燃料カット制御開始後の慣性回転により、吸気系領域内のガスは掃気されていき、かつEGR弁4が閉弁されて新たなEGRガスの導入も停止されるので、吸気マニホールド11内ガスのEGR率は徐々に低下していく。 During the fuel cut control of the time t 1 and later, the internal combustion engine 10 will continue to rotate in inertia, gradually speed decreases. Due to the inertia rotation after the start of the fuel cut control, the gas in the intake system region is scavenged, and the EGR valve 4 is closed and the introduction of new EGR gas is also stopped. The EGR rate gradually decreases.

時刻tにおいて、再加速要求がなされる。これにより燃料カット制御から通常制御へ復帰すべき条件が成立することになる。この時、ガス濃度センサ5からの信号に基づいて吸気マニホールド11内ガスのEGR率が算出され、当該算出されたEGR率と限界EGR率Rcとの比較が行われる。図4に示す例では、時刻tにおいて吸気マニホールド11内ガスのEGR率が限界EGR率Rcより高いので、内燃機関10の通常制御への復帰が行われず、燃料カット制御が継続されるとともに、この時のハイブリッドシステム1に対する全要求出力を電動モータ33に分配し、電動モータ33により要求出力を発生させるべく電動モータ33の制御が行われる。さらに、電動モータ33により内燃機関10のクランキングを行うように電動モータ33の制御が行われ、これにより吸気系領域内のガスの掃気が促進されるので、時刻t以降、吸気マニホールド11内ガスのEGR率の低下速度が速くなる。この時の内燃機関10のクランキングは、燃料カット制御とともに実行されるものであり、燃料噴射を伴わないクランキングである。 In time t 2, the re-acceleration request is made. As a result, a condition for returning from the fuel cut control to the normal control is established. At this time, the EGR rate of the gas in the intake manifold 11 is calculated based on the signal from the gas concentration sensor 5, and the calculated EGR rate is compared with the limit EGR rate Rc. In the example shown in FIG. 4, since the EGR rate of the intake manifold 11 in the gas at time t 2 is higher than the limit EGR rate Rc, not performed return to the normal control of the internal combustion engine 10, the fuel cut control is continued, All the required outputs for the hybrid system 1 at this time are distributed to the electric motor 33, and the electric motor 33 is controlled so that the electric motor 33 generates the required output. Furthermore, the control of the electric motor 33 to perform the cranking of the internal combustion engine 10 is performed by the electric motor 33, thereby since the scavenging gas in the intake system area is promoted, the time t 2 later, the intake manifold 11 The rate of decrease in the EGR rate of gas increases. The cranking of the internal combustion engine 10 at this time is executed together with the fuel cut control, and is cranking that does not involve fuel injection.

時刻tにおいて、ガス濃度センサ5からの信号に基づいて算出されるEGR率が限界EGR率Rc以下になると、内燃機関10を燃料カット制御から通常制御へ復帰させる。すなわち、ハイブリッドシステム1に対する全要求出力を、予め運転条件に応じて定められる分配比率によって内燃機関10及び電動モータ33に分配し、当該分配された出力を発生可能なように、内燃機関10における燃料噴射制御及び電動モータ33における電力供給制御が行われる。 At time t 3, when the EGR rate calculated on the basis of the signal from the gas concentration sensor 5 becomes less than the limit EGR rate Rc, it is returned to the normal controlling an internal combustion engine 10 from the fuel cut control. That is, all the required outputs for the hybrid system 1 are distributed to the internal combustion engine 10 and the electric motor 33 at a distribution ratio determined in advance according to the operating conditions, and the fuel in the internal combustion engine 10 is generated so that the distributed output can be generated. Injection control and power supply control in the electric motor 33 are performed.

図5は、上記説明した本実施例の制御を実行するためのルーチンを表すフローチャートである。このルーチンは、内燃機関10の燃料カット制御中に実行される。   FIG. 5 is a flowchart showing a routine for executing the control of the present embodiment described above. This routine is executed during fuel cut control of the internal combustion engine 10.

ステップS101において、ECU60は、内燃機関10を通常制御に復帰させるべき条件が成立したか否かを判定する。例えば、加速要求があった時にこの条件が成立する。ステップS101において肯定判定された場合、ECU60はステップS102に進む。ステップS101において否定判定された場合、ECU60は本ルーチンの実行を一旦終了する。   In step S101, the ECU 60 determines whether or not a condition for returning the internal combustion engine 10 to the normal control is satisfied. For example, this condition is satisfied when there is an acceleration request. If an affirmative determination is made in step S101, the ECU 60 proceeds to step S102. If a negative determination is made in step S101, the ECU 60 once ends the execution of this routine.

ステップS102において、ECU60は、ガス濃度センサ5からの信号に基づいて吸気マニホールド11内ガスのEGR率を算出し、当該算出されたEGR率Rが限界EGR率Rcより高いか否かを判定する。ステップS102において肯定判定された場合(R>Rc)、ECU60はステップS103に進む。ステップS102において否定判定された場合(R≦Rc)、ECU60はステップS104に進む。   In step S102, the ECU 60 calculates the EGR rate of the gas in the intake manifold 11 based on the signal from the gas concentration sensor 5, and determines whether or not the calculated EGR rate R is higher than the limit EGR rate Rc. If an affirmative determination is made in step S102 (R> Rc), the ECU 60 proceeds to step S103. If a negative determination is made in step S102 (R ≦ Rc), the ECU 60 proceeds to step S104.

ステップS103において、ECU60は、内燃機関10に対する燃料カット制御を継続するとともに、内燃機関10に分配された要求出力を電動モータ33により発生すべく電動モータ33への電力供給制御を行う。また、電動モータ33による内燃機関10のクランキングを開始する。   In step S <b> 103, the ECU 60 continues the fuel cut control for the internal combustion engine 10 and performs power supply control to the electric motor 33 so that the electric motor 33 generates the required output distributed to the internal combustion engine 10. Further, cranking of the internal combustion engine 10 by the electric motor 33 is started.

ステップS104において、ECU60は、内燃機関10を通常制御に復帰させる。すなわち、内燃機関10に分配された要求出力を内燃機関10により発生すべく燃料噴射を行うとともに、電動モータ33に分配された要求出力を電動モータ33により発生すべく電力供給制御を行う。   In step S104, the ECU 60 returns the internal combustion engine 10 to normal control. That is, fuel injection is performed so that the required output distributed to the internal combustion engine 10 is generated by the internal combustion engine 10, and power supply control is performed so that the required output distributed to the electric motor 33 is generated by the electric motor 33.

なお、上記の例では、再加速要求があった時刻tにおいて吸気マニホールド11内ガスのEGR率が限界EGR率Rcより高い場合について行われる制御について説明したが、減速状態における内燃機関10の慣性回転によって十分に吸気系領域内の残留ガスが掃気された時に、再加速要求があった場合には、その時の吸気マニホールド11内ガスのEGR率が限界EGR率以下となっている場合も考えられる。そのような場合は、本実施例にかかる内燃機関10の通常制御への復帰を遅延させる制御を行わずに、即座に内燃期間10の通常制御への復帰を実行するようにしても良い。また、内燃機関10の通常制御への復帰の遅延期間中に電動モータ33により内燃機関10の燃料カットクランキングを行うことは、必須ではない。 In the above example, the EGR rate of the intake manifold 11 in the gas at time t 2 which was re-acceleration request has been described control performed in the case above a critical EGR rate Rc, the inertia of the internal combustion engine 10 in the deceleration state If there is a request for re-acceleration when the remaining gas in the intake system region is sufficiently scavenged by rotation, the EGR rate of the gas in the intake manifold 11 at that time may be less than or equal to the limit EGR rate. . In such a case, the return to the normal control of the internal combustion period 10 may be executed immediately without performing the control for delaying the return to the normal control of the internal combustion engine 10 according to the present embodiment. In addition, it is not essential to perform fuel cut cranking of the internal combustion engine 10 by the electric motor 33 during the delay period for returning the internal combustion engine 10 to normal control.

図6は、上記説明した本実施例の制御を、内燃機関10の停止を伴う車両停止状態からの加速時に適用した場合の、車速、要求出力、及び吸気マニホールド11内ガスのEGR率の時間変化の一例を示したタイムチャートである。図6(a)は本実施例のハイブリッドシステム1を動力源として搭載した車両の車速を表し、図6(b)はハイブリッドシステム1に対する要求出力を表し、図6(c)はガス濃度センサ5からの信号に基づいてECU60により算出される吸気マニホールド11内ガスのEGR率を表す。   FIG. 6 shows the time change of the vehicle speed, the required output, and the EGR rate of the gas in the intake manifold 11 when the control of the present embodiment described above is applied at the time of acceleration from the vehicle stop state accompanied by the stop of the internal combustion engine 10. It is the time chart which showed an example. 6A shows the vehicle speed of a vehicle equipped with the hybrid system 1 of this embodiment as a power source, FIG. 6B shows the required output for the hybrid system 1, and FIG. 6C shows the gas concentration sensor 5 Represents the EGR rate of the gas in the intake manifold 11 calculated by the ECU 60 based on the signal from.

時刻t以前には、車両は停止状態であり、この時内燃機関10に対しては燃料カット制御が実行され、内燃機関10は停止しており、アイドリングストップ制御が行われている。図6に示す例では、このアイドリングストップ状態において吸気系領域内に高濃度のEGRガスが残留している場合を想定している。例えば、当該アイドリングストップ状態が開始される直前において大量のEGRガスを導入する制御が行われていた場合等にこのような状況が想定できる。 Time t 1 Previously, the vehicle is stopped, this time the fuel cut control is performed for the internal combustion engine 10, the engine 10 is stopped, the idling stop control is performed. In the example shown in FIG. 6, it is assumed that a high concentration EGR gas remains in the intake system region in the idling stop state. For example, such a situation can be assumed when control for introducing a large amount of EGR gas is performed immediately before the idling stop state is started.

時刻tにおいて、再加速要求がなされる。これにより燃料カット制御から通常制御へ復帰すべき条件が成立することになる。この時、ガス濃度センサ5からの信号に基づいて吸気マニホールド11内ガスのEGR率が算出され、当該算出されたEGR率と限界EGR率との比較が行われる。図6に示す例では、時刻tにおいて吸気マニホールド11内ガスのEGR率が限界EGR率Rcより高いので、内燃機関10の通常制御への復帰は行われず、燃料カット制御が継続されるとともに、この時のハイブリッドシステム1に対する全要求出力を電動モータ33に分配し、電動モータ33により要求出力を発生させるべく電動モータ33の制御が行われる。さらに、電動モータ33により内燃機関10のクランキングを行うように電動モータ33の制御が行われ、これにより吸気系領域内のガスの掃気が促進されるので、時刻t以降、吸気マニホールド11内ガスのEGR率が徐々に低下していく。この時の内燃機関10のクランキングは、燃料カット制御とともに実行されるものであり、燃料噴射を伴わないクランキングである。 At time t 1, re-acceleration request is made. As a result, a condition for returning from the fuel cut control to the normal control is established. At this time, the EGR rate of the gas in the intake manifold 11 is calculated based on the signal from the gas concentration sensor 5, and the calculated EGR rate is compared with the limit EGR rate. In the example shown in FIG. 6, the EGR rate of the intake manifold 11 in the gas at time t 1 is higher than the limit EGR rate Rc, the return to normal control of the internal combustion engine 10 is not performed, the fuel cut control is continued, All the required outputs for the hybrid system 1 at this time are distributed to the electric motor 33, and the electric motor 33 is controlled so that the electric motor 33 generates the required output. Furthermore, the control of the electric motor 33 to perform the cranking of the internal combustion engine 10 is performed by the electric motor 33, thereby since the scavenging gas in the intake system area is promoted, after time t 1, the intake manifold 11 The EGR rate of gas gradually decreases. The cranking of the internal combustion engine 10 at this time is executed together with the fuel cut control, and is cranking that does not involve fuel injection.

時刻tにおいて、ガス濃度センサ5からの信号に基づいて算出されるEGR率が限界EGR率Rc以下になると、内燃機関10を燃料カット制御から通常制御へ復帰させる。すなわち、ハイブリッドシステム1に対する全要求出力を、予め運転条件に応じて定められる分配比率によって内燃機関10及び電動モータ33に分配し、当該分配された出力を発生可能なように、内燃機関10における燃料噴射制御及び電動モータ33における電力供給制御が行われる。 In time t 2, the the EGR rate calculated on the basis of the signal from the gas concentration sensor 5 becomes less than the limit EGR rate Rc, is returned to the normal controlling an internal combustion engine 10 from the fuel cut control. That is, all the required outputs for the hybrid system 1 are distributed to the internal combustion engine 10 and the electric motor 33 at a distribution ratio determined in advance according to the operating conditions, and the fuel in the internal combustion engine 10 is generated so that the distributed output can be generated. Injection control and power supply control in the electric motor 33 are performed.

図7は、上記説明した本実施例の制御を実行するためのルーチンを表すフローチャートである。このルーチンは、アイドリングストップ状態において実行される。   FIG. 7 is a flowchart showing a routine for executing the control of this embodiment described above. This routine is executed in the idling stop state.

ステップS201において、ECU60は、内燃機関10を通常制御に復帰させるべき条件が成立したか否かを判定する。例えば、加速要求があった時にこの条件が成立する。
ステップS201において肯定判定された場合、ECU60はステップS202に進む。ステップS201において否定判定された場合、ECU60は本ルーチンの実行を一旦終了する。
In step S201, the ECU 60 determines whether a condition for returning the internal combustion engine 10 to the normal control is satisfied. For example, this condition is satisfied when there is an acceleration request.
If an affirmative determination is made in step S201, the ECU 60 proceeds to step S202. If a negative determination is made in step S201, the ECU 60 once ends the execution of this routine.

ステップS202において、ECU60は、ガス濃度センサ5からの信号に基づいて吸気マニホールド11内ガスのEGR率を算出し、当該算出されたEGR率Rが限界EGR率Rcより高いか否かを判定する。ステップS202において肯定判定された場合(R>Rc)、ECU60はステップS203に進む。ステップS202において否定判定された場合(R≦Rc)、ECU60はステップS204に進む。   In step S202, the ECU 60 calculates the EGR rate of the gas in the intake manifold 11 based on the signal from the gas concentration sensor 5, and determines whether or not the calculated EGR rate R is higher than the limit EGR rate Rc. If an affirmative determination is made in step S202 (R> Rc), the ECU 60 proceeds to step S203. If a negative determination is made in step S202 (R ≦ Rc), the ECU 60 proceeds to step S204.

ステップS203において、ECU60は、内燃機関10に対する燃料カット制御を継続するとともに、内燃機関10に分配された要求出力を電動モータ33により発生すべく電動モータ33への電力供給制御を行う。また、電動モータ33による内燃機関10のクランキングを開始する。   In step S <b> 203, the ECU 60 continues the fuel cut control for the internal combustion engine 10 and performs power supply control to the electric motor 33 so that the electric motor 33 generates the required output distributed to the internal combustion engine 10. Further, cranking of the internal combustion engine 10 by the electric motor 33 is started.

ステップS204において、ECU60は、内燃機関10を通常制御に復帰させる。すなわち、内燃機関10に分配された要求出力を内燃機関10により発生すべく燃料噴射を行うとともに、電動モータ33に分配された要求出力を電動モータ33により発生すべく電力供給制御を行う。   In step S204, the ECU 60 returns the internal combustion engine 10 to normal control. That is, fuel injection is performed so that the required output distributed to the internal combustion engine 10 is generated by the internal combustion engine 10, and power supply control is performed so that the required output distributed to the electric motor 33 is generated by the electric motor 33.

上記実施例において、EGR通路3、EGR弁4、及びEGR弁4を制御するECU60が、本発明におけるEGR装置に相当する。また、ステップS102及びステップS202の判定を行うECU60が、本発明における判定手段に相当する。また、ステップS102の判定結果に従ってステップS103の内燃機関10の通常制御への復帰の遅延を行うECU60、ステップS202の判定結果に従ってステップS203の内燃機関10の通常制御への復帰の遅延を行うECU60が、本発明における制御手段に相当する。   In the above embodiment, the EGR passage 3, the EGR valve 4, and the ECU 60 that controls the EGR valve 4 correspond to the EGR device in the present invention. Moreover, ECU60 which performs determination of step S102 and step S202 is equivalent to the determination means in this invention. Further, the ECU 60 that delays the return to the normal control of the internal combustion engine 10 in step S103 according to the determination result of step S102, and the ECU 60 that delays the return to the normal control of the internal combustion engine 10 in step S203 according to the determination result of step S202. This corresponds to the control means in the present invention.

なお、上記実施例には本発明の範囲内で種々の変更を加え得る。例えば、内燃機関に吸入されるガスのEGR率が限界EGR率以下であるか否かの判定を、上記実施例とは異なる方法によって行うこともできる。例えば、図8に示すように、内燃機関10が通常制御状態から燃料カット制御状態へ移行した後の、吸気マニホールド11内ガスのEGR率は、燃料カット制御開始直前における内燃機関10の運転条件(例えば、回転数、負荷、吸入空気量、燃料噴射量、目標EGR率、排気中の二酸化炭素濃度等)と、燃料カット制御が開始されてからの経過時間と、に基づいて求めることができる。このような燃料カット制御開始直前の運転条件及び燃料カット制御開始からの経過時間と、吸気マニホールド11内ガスのEGR率との関係を予め求めておき、内燃機関10を燃料カット制御から通常制御へ復帰させるべき条件が成立した時の燃料カット制御開始からの経過時間に基づいて、当該条件成立時の吸気マニホールド11内ガスのEGR率を推定するようにしても良い。また、上記実施例におけるEGR通路を、タービン14b又は排気浄化触媒20より下流の排気通路19とコンプレッサ14aより上流の吸気通路13とを接続する通路としても良い。また、限界EGR率として、ある予め求められた定数を用いても良いし、燃料カット制御から通常制御への復帰条件が成立した時の運転条件に応じた可変値としても良い。   Various modifications can be made to the above-described embodiment within the scope of the present invention. For example, it is possible to determine whether or not the EGR rate of the gas sucked into the internal combustion engine is equal to or lower than the limit EGR rate by a method different from the above embodiment. For example, as shown in FIG. 8, the EGR rate of the gas in the intake manifold 11 after the internal combustion engine 10 shifts from the normal control state to the fuel cut control state is the operating condition of the internal combustion engine 10 immediately before the start of the fuel cut control ( For example, the rotation speed, the load, the intake air amount, the fuel injection amount, the target EGR rate, the carbon dioxide concentration in the exhaust gas, etc.) and the elapsed time since the start of the fuel cut control can be obtained. The relationship between the operating conditions immediately before the start of the fuel cut control, the elapsed time from the start of the fuel cut control, and the EGR rate of the gas in the intake manifold 11 is obtained in advance, and the internal combustion engine 10 is changed from the fuel cut control to the normal control. The EGR rate of the gas in the intake manifold 11 when the condition is satisfied may be estimated based on the elapsed time from the start of the fuel cut control when the condition to be restored is satisfied. Further, the EGR passage in the above embodiment may be a passage connecting the exhaust passage 19 downstream of the turbine 14b or the exhaust purification catalyst 20 and the intake passage 13 upstream of the compressor 14a. Further, as the limit EGR rate, a predetermined constant may be used, or a variable value may be set according to the operating condition when the return condition from the fuel cut control to the normal control is established.

本実施例におけるハイブリッドシステムの概略構成を示す図である。It is a figure which shows schematic structure of the hybrid system in a present Example. 吸気ガスのEGR率とトルク変動との関係を内燃機関の運転状態別に示した図である。It is the figure which showed the relationship between the EGR rate of intake gas, and a torque fluctuation according to the driving | running state of an internal combustion engine. 内燃機関の運転条件毎に定められるEGR率の目標値を示した図である。It is the figure which showed the target value of the EGR rate defined for every operating condition of an internal combustion engine. 内燃機関が高負荷運転状態から減速状態となり再加速する場合に本実施例の内燃機関の通常制御への復帰を遅延させる制御を適用したときの車速、要求出力及び吸気マニホールド内ガスのEGR率の時間変化の一例を示す図である。When the internal combustion engine is decelerated from the high-load operation state and re-accelerated, the vehicle speed, the required output, and the EGR rate of the gas in the intake manifold when the control for delaying the return to the normal control of the internal combustion engine of this embodiment is applied. It is a figure which shows an example of a time change. 内燃機関が高負荷運転状態から減速状態となり再加速する場合に本実施例の内燃機関の通常制御への復帰を遅延させる制御を適用したときの制御ルーチンを示すフローチャートである。7 is a flowchart showing a control routine when applying a control for delaying the return to normal control of the internal combustion engine of the present embodiment when the internal combustion engine is decelerated from the high load operation state to re-accelerate. アイドリングストップ状態から再加速する場合に本実施例の内燃機関の通常制御への復帰を遅延させる制御を適用したときの車速、要求出力及び吸気マニホールド内ガスのEGR率の時間変化の一例を示す図である。The figure which shows an example of the time change of the vehicle speed, request | requirement output, and the EGR rate of the gas in an intake manifold when the control which delays the return to the normal control of the internal combustion engine of a present Example is applied when reaccelerating from an idling stop state. It is. アイドリングストップ状態から再加速する場合に本実施例の内燃機関の通常制御への復帰を遅延させる制御を適用したときの制御ルーチンを示すフローチャートである。It is a flowchart which shows a control routine when the control which delays the return to normal control of the internal combustion engine of a present Example is applied when reaccelerating from an idling stop state. 内燃機関が通常制御状態から燃料カット制御へ移行した場合の、吸気マニホールド内ガスのEGR率の時間変化の一例を示す図である。It is a figure which shows an example of the time change of the EGR rate of the gas in an intake manifold when an internal combustion engine transfers to fuel cut control from a normal control state.

符号の説明Explanation of symbols

1 ハイブリッドシステム
2 気筒
3 EGR通路
4 EGR弁
5 ガス濃度センサ
6 燃料噴射弁
10 内燃機関
11 吸気マニホールド
13 吸気通路
14 ターボチャージャ
14a コンプレッサ
14b タービン
15 インタークーラ
18 排気マニホールド
19 排気通路
20 排気浄化触媒
21 アクセルポジションセンサ
22 車速センサ
23 クランクポジションセンサ
30 トランスアクスル
31 動力分割機構
32 減速機
33 電動モータ
34 ジェネレータ
35 パワー制御ユニット
40 インバータ
50 バッテリ
51 SOCセンサ
60 ECU
DESCRIPTION OF SYMBOLS 1 Hybrid system 2 Cylinder 3 EGR passage 4 EGR valve 5 Gas concentration sensor 6 Fuel injection valve 10 Internal combustion engine 11 Intake manifold 13 Intake passage 14 Turbocharger 14a Compressor 14b Turbine 15 Intercooler 18 Exhaust manifold 19 Exhaust passage 20 Exhaust purification catalyst 21 Accelerator Position sensor 22 Vehicle speed sensor 23 Crank position sensor 30 Transaxle 31 Power split mechanism 32 Reducer 33 Electric motor 34 Generator 35 Power control unit 40 Inverter 50 Battery 51 SOC sensor 60 ECU

Claims (5)

動力源として内燃機関及び電動モータを備え、要求出力を内燃機関及び/又は電動モータにより発生出力させるハイブリッドシステムと、
前記内燃機関からの排気の一部をEGRガスとして前記内燃機関の吸気系に流入させるEGR装置と、
前記内燃機関における燃料噴射を停止する燃料カット制御を行う手段と、
前記内燃機関に吸入されるガスのEGR率が前記内燃機関において失火が発生しない所定の限界EGR率以下であるか否かを判定する判定手段と、
前記燃料カット制御の実行中に当該燃料カット制御から通常の燃料噴射制御に復帰すべき条件が成立した場合、当該通常の燃料噴射制御に復帰すべき条件が成立した時点から、前記判定手段により前記EGR率が前記限界EGR率以下になったと判定されるまでの期間中、前記内燃機関について、当該通常の燃料噴射制御に復帰せずに前記燃料カット制御を継続するとともに、前記電動モータについて、前記電動モータのみによって要求出力を発生させるように制御する制御手段と、
を備えることを特徴とするハイブリッドシステムの制御装置。
A hybrid system including an internal combustion engine and an electric motor as a power source, and generating and outputting a required output by the internal combustion engine and / or the electric motor;
An EGR device that causes a part of the exhaust from the internal combustion engine to flow into the intake system of the internal combustion engine as EGR gas;
Means for performing fuel cut control for stopping fuel injection in the internal combustion engine;
Determining means for determining whether an EGR rate of gas sucked into the internal combustion engine is equal to or less than a predetermined limit EGR rate at which misfire does not occur in the internal combustion engine;
When the condition for returning from the fuel cut control to the normal fuel injection control is satisfied during the execution of the fuel cut control, the determination unit performs the determination from the time when the condition for returning to the normal fuel injection control is satisfied. During the period until it is determined that the EGR rate is equal to or less than the limit EGR rate, the internal combustion engine continues the fuel cut control without returning to the normal fuel injection control, and the electric motor Control means for controlling to generate the required output only by the electric motor;
A control apparatus for a hybrid system, comprising:
請求項1において、
前記制御手段は、前記期間中、前記電動モータについては、更に前記内燃機関のクランキングを行うように制御することを特徴とするハイブリッドシステムの制御装置。
In claim 1,
The control device of the hybrid system, wherein the control means controls the electric motor to further crank the internal combustion engine during the period.
請求項1又は2において、
前記制御手段は、前記判定手段により前記EGR率が前記限界EGR率以下になったと判定された場合、前記内燃機関について、前記燃料カット制御から前記通常の燃料噴射制御に復帰するとともに、前記電動モータについて、通常の制御に復帰することを特徴とするハイブリッドシステムの制御装置。
In claim 1 or 2,
The control means returns to the normal fuel injection control from the fuel cut control for the internal combustion engine when the determination means determines that the EGR rate is equal to or less than the limit EGR rate, and the electric motor About the control apparatus of a hybrid system characterized by returning to normal control.
請求項1又は2において、
前記燃料カット制御は、減速状態又は車両停止状態において実行されることを特徴とするハイブリッドシステムの制御装置。
In claim 1 or 2,
The fuel cut control is executed in a deceleration state or a vehicle stop state.
請求項1から3のいずれか1項において、
前記通常の燃料噴射制御に復帰すべき条件とは、減速状態又は車両停止状態からの再加速時に成立する条件であることを特徴とするハイブリッドシステムの制御装置。
In any one of Claim 1 to 3,
The condition for returning to the normal fuel injection control is a condition that is satisfied at the time of re-acceleration from a deceleration state or a vehicle stop state.
JP2007328586A 2007-12-20 2007-12-20 Controller for hybrid system Pending JP2009149195A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007328586A JP2009149195A (en) 2007-12-20 2007-12-20 Controller for hybrid system
PCT/IB2008/003218 WO2009090456A2 (en) 2007-12-20 2008-11-25 Control apparatus and control method for hybrid system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007328586A JP2009149195A (en) 2007-12-20 2007-12-20 Controller for hybrid system

Publications (1)

Publication Number Publication Date
JP2009149195A true JP2009149195A (en) 2009-07-09

Family

ID=40717163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007328586A Pending JP2009149195A (en) 2007-12-20 2007-12-20 Controller for hybrid system

Country Status (2)

Country Link
JP (1) JP2009149195A (en)
WO (1) WO2009090456A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195075A (en) * 2010-03-23 2011-10-06 Honda Motor Co Ltd Hybrid vehicle controller
WO2012137237A1 (en) * 2011-04-01 2012-10-11 トヨタ自動車株式会社 Method of controlling operation of internal combustion engine
JP2013032125A (en) * 2011-08-03 2013-02-14 Toyota Motor Corp Hybrid vehicle, and method of controlling hybrid vehicle
JP2017155725A (en) * 2016-03-04 2017-09-07 マツダ株式会社 Control device of engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013220869A1 (en) * 2013-10-15 2015-05-07 Continental Automotive Gmbh Method for measuring the CO2 content in a gas mixture and air intake system of an internal combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3721088B2 (en) * 2001-03-01 2005-11-30 株式会社日立製作所 Control device for hybrid vehicle
JP3481226B2 (en) * 2001-12-12 2003-12-22 本田技研工業株式会社 Abnormality detection method for hybrid vehicles
JP4229088B2 (en) * 2005-05-27 2009-02-25 トヨタ自動車株式会社 Control device for vehicle drive device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195075A (en) * 2010-03-23 2011-10-06 Honda Motor Co Ltd Hybrid vehicle controller
WO2012137237A1 (en) * 2011-04-01 2012-10-11 トヨタ自動車株式会社 Method of controlling operation of internal combustion engine
JP2013032125A (en) * 2011-08-03 2013-02-14 Toyota Motor Corp Hybrid vehicle, and method of controlling hybrid vehicle
JP2017155725A (en) * 2016-03-04 2017-09-07 マツダ株式会社 Control device of engine
WO2017150077A1 (en) * 2016-03-04 2017-09-08 マツダ株式会社 Engine control device

Also Published As

Publication number Publication date
WO2009090456A3 (en) 2009-09-03
WO2009090456A2 (en) 2009-07-23

Similar Documents

Publication Publication Date Title
JP4197025B2 (en) Hybrid vehicle
KR100565033B1 (en) Emission control apparatus of internal combustion engine and control method for the emission control apparatus
JP3721088B2 (en) Control device for hybrid vehicle
JP4380674B2 (en) Supercharging pressure control device
US20100126142A1 (en) Internal combustion engine exhaust gas control system and control method of internal combustion engine exhaust gas control system
JP4844342B2 (en) Vehicle control device
JP5899104B2 (en) Vehicle control device
WO2009019584A2 (en) Injection amount learning device and injection amount learning method for internal combustion engine
JP6156622B2 (en) Vehicle control device
JP3846223B2 (en) Control device for vehicle having internal combustion engine with supercharger and transmission
JP2010014072A (en) Engine stop control device for hybrid system
JP2009149195A (en) Controller for hybrid system
JP5724844B2 (en) Operation control method for internal combustion engine
JP2006220045A (en) Deceleration control method for vehicle
JP2002038962A (en) Controller for internal combustion engine with turbocharger
JP4548143B2 (en) Exhaust gas purification device for hybrid vehicle
JP2006291894A (en) Control device for internal combustion engine having supercharger with motor
JP2002195064A (en) Control device for internal combustion engine
JP4003715B2 (en) Vehicle control device
JP2006112311A (en) Exhaust emission control system for hybrid vehicle
JP2008280013A (en) Exhaust purification system for internal combustion engine
JP2003269180A (en) Boost control device
JP2006046297A (en) Controller for hybrid vehicle
JP2019132185A (en) Controller of internal combustion engine
JP2010014041A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100112