JP2009148337A - Optical tomographic image display method - Google Patents

Optical tomographic image display method Download PDF

Info

Publication number
JP2009148337A
JP2009148337A JP2007326886A JP2007326886A JP2009148337A JP 2009148337 A JP2009148337 A JP 2009148337A JP 2007326886 A JP2007326886 A JP 2007326886A JP 2007326886 A JP2007326886 A JP 2007326886A JP 2009148337 A JP2009148337 A JP 2009148337A
Authority
JP
Japan
Prior art keywords
light
oct
tomographic image
tooth
acquired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007326886A
Other languages
Japanese (ja)
Inventor
Yasunori Sumi
保徳 角
Tetsuya Nemoto
哲也 根本
Changho Chong
昌鎬 鄭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Center for Geriatrics and Gerontology
Suntech Co
Original Assignee
National Center for Geriatrics and Gerontology
Suntech Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Center for Geriatrics and Gerontology, Suntech Co filed Critical National Center for Geriatrics and Gerontology
Priority to JP2007326886A priority Critical patent/JP2009148337A/en
Publication of JP2009148337A publication Critical patent/JP2009148337A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Endoscopes (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To clearly display sectional images of a caries region of a tooth and of a periodontal pocket. <P>SOLUTION: A scattering suppressant is previously applied to the surface of a tooth, and after that, tomographic images of the tooth and the peripheral area are displayed by an optical interference tomographic image diagnostic apparatus. As the scattering suppressant is previously applied, scattering of light on the surface of the tooth is prevented and the light penetrates into the tooth, and therefore, a clear sectional image can be displayed. Further, the contrast of the periodontal pocket and the caries region to other regions is intensified, so that the clear image can be provided. With this structure, the caries region of the tooth and the periodontal pocket can be accurately, objectively, non-invasively and non-destructively determined, and as a result, accurate treatment and preventive measures can be provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は歯周組織及び歯牙、歯牙齲蝕の診断又は検診のため薬液を応用した歯科用光断層画像表示方法に関するものである。   The present invention relates to a dental optical tomographic image display method using a chemical for diagnosis or examination of periodontal tissue, teeth, and dental caries.

健康に関する現在の国民的な課題としてメタボリックシンドロームなどの生活習慣病の克服が挙げられている。その克服には、生活習慣病の客観的な検診・検査による予防や早期診断・早期治療が不可欠である。口腔機能の低下の原因となり、その有病率が90%を越える歯牙齲蝕は生活習慣病と考えられている。現在の齲蝕診断技術の多くは視診や触診、X線診断が主体で歯科医師の技量や経験により診断が左右される傾向にある。また齲蝕検知液なども使用されているが、正確な歯牙齲蝕領域の検出は困難である。CO,C1等初期歯牙齲蝕において早期かつ適切な診断が求められているにもかかわらず、現状では歯牙齲蝕を早期診断するための検査値を画像化・数値化する客観的な診断技術はほとんど進んでいない。   Current national health issues include overcoming lifestyle-related diseases such as metabolic syndrome. In order to overcome this, prevention by early examination and early treatment and objective diagnosis of lifestyle-related diseases are indispensable. Dental caries that causes a decline in oral function and has a prevalence of over 90% is considered a lifestyle-related disease. Many of the current caries diagnosis techniques are mainly visual inspection, palpation, and X-ray diagnosis, and the diagnosis tends to depend on the skill and experience of the dentist. In addition, although caries detection liquid and the like are used, it is difficult to accurately detect a dental caries region. In spite of the early and appropriate diagnosis of initial dental caries such as CO and C1, the objective diagnostic technique for imaging and digitizing test values for early diagnosis of dental caries is almost advanced. Not.

OCTは90年代初頭に開発され、断層画像診断法としては極めて安全な近赤外光と光学干渉計を応用した技術である。欧米諸国で眼科領域での臨床応用がなされ、現在日本でも広く普及している。OCTについては例えば非特許文献1に原理が記載されている。近い将来、OCTは口腔領域の新たな診断機器となるのみならず、消化器癌、肺癌の診断など臨床分野全般に渡る汎用診断技術として利用される可能性を有している分野である。   OCT was developed in the early 90s, and is a technology that applies extremely safe near-infrared light and an optical interferometer as a tomographic diagnostic method. It has been clinically applied in the ophthalmic field in Western countries and is now widely used in Japan. The principle of OCT is described in Non-Patent Document 1, for example. In the near future, OCT is not only a new diagnostic device for the oral region but also a field that has the potential to be used as a general-purpose diagnostic technique for the entire clinical field such as diagnosis of digestive organ cancer and lung cancer.

一方、歯肉部周辺を観察するため、レーザ励起による蛍光計測やX線撮影等が行われる場合もある。蛍光計測の場合はポケットの深さや内部の状態を正確に把握するのが難しい。X線撮影では透過画像であるため断層が検出できず分解能も低いので、正確な歯槽骨の診断には不適切であり、被爆の危険性があるため、経過観察や治療処置の場合の同時診断等に頻繁に活用することができないという欠点があった。そこで客観的、非接触、非侵襲式で歯周ポケットの深さを測定することが求められている。現在、光干渉断層画像診断装置(OCT装置)が研究されており、歯科分野でも応用が期待されている。
Handbook of Optical Coherence Tomography,p41-43, Mercel Dekker, Inc. 2002
On the other hand, in order to observe the periphery of the gingiva, fluorescence measurement or X-ray imaging by laser excitation may be performed. In the case of fluorescence measurement, it is difficult to accurately grasp the depth and internal state of the pocket. Since X-ray imaging is a transmission image, the tomography cannot be detected and the resolution is low, so it is inappropriate for accurate diagnosis of the alveolar bone, and there is a risk of exposure, so simultaneous diagnosis for follow-up and therapeutic treatment There is a drawback that it cannot be used frequently. Therefore, it is required to measure the depth of the periodontal pocket in an objective, non-contact and non-invasive manner. Currently, optical coherence tomography diagnostic apparatuses (OCT apparatuses) are being studied, and applications are expected in the dental field.
Handbook of Optical Coherence Tomography, p41-43, Mercel Dekker, Inc. 2002

従来のOCT装置では、歯牙齲蝕によってできた歯牙欠損部位や軟化・変質した表層歯質などは画像化できるが、歯牙齲蝕や歯面表層下部の状態の正確な観察ができない。歯牙齲蝕の進行によって脱灰した部分の散乱が表面部分で非常に強く、そのためプローブ光が深部まで到達せず画像情報として乏しいので、歯牙齲蝕によって変化した領域の判別が困難であった。また、歯肉層に覆われた歯肉縁下部の歯牙齲蝕はとくに歯肉で光が吸収されその下の歯部の断層画像を鮮明に得られないという問題があった。   With a conventional OCT apparatus, it is possible to image a tooth defect site caused by tooth caries or a softened / denatured surface layer of the tooth, but it is impossible to accurately observe the state of tooth caries or the lower surface of the tooth surface. Scattering of the decalcified part due to the progress of dental caries is very strong on the surface part, so that the probe light does not reach the deep part and is poor as image information, so it is difficult to discriminate the region changed by tooth caries. In addition, the dental caries in the lower gingival margin covered with the gingival layer has a problem that light is absorbed by the gingiva and a tomographic image of the underlying tooth cannot be clearly obtained.

本発明はこのような従来の問題点に着目してなされたものであって、本発明の歯科用光断層画像表示方法は、歯面、歯牙齲蝕あるいは歯周組織に、歯牙齲蝕部位での光の散乱や正反射、複屈折、などの特性を制御する、あるいは歯牙齲蝕内部にも浸透しうる薬液を塗布することによって、光の深達度を改善し、また歯牙齲蝕領域を明確にすることを目的とする。   The present invention has been made paying attention to such a conventional problem, and the dental optical tomographic image display method of the present invention provides light on a dental caries site on a tooth surface, dental caries or periodontal tissue. To improve the light penetration and to clarify the dental caries area by controlling the characteristics such as scattering, specular reflection, birefringence, etc., or by applying chemicals that can penetrate into the dental caries With the goal.

この課題を解決するために、本発明の光断層画像表示方法は、歯の表面に反射、散乱抑制薬剤を塗布し、OCT装置により光源から光を分岐しその一部を歯槽骨の周辺に照射すると共に、分岐した他方の光を参照鏡に入射し、反射光を干渉させて差分信号を光検出器で検出し、前記OCT装置により取得した前記OCT信号を測定対象に対して光の照射位置を連続的に変化させ、取得した連続した2次元断層画像を抽出し、前記抽出された画像を表示するものである。   In order to solve this problem, the optical tomographic image display method of the present invention applies a reflection / scattering suppression agent to the surface of a tooth, branches light from a light source by an OCT apparatus, and irradiates a part thereof around the alveolar bone. In addition, the other branched light is incident on the reference mirror, the reflected light is made to interfere, a differential signal is detected by a photodetector, and the OCT signal acquired by the OCT apparatus is irradiated with light on the measurement object. Are continuously changed, the acquired continuous two-dimensional tomographic image is extracted, and the extracted image is displayed.

この課題を解決するために、本発明の光断層画像表示方法は、歯牙の齲蝕部分に浸透し、非歯牙齲蝕部分とでコントラストが増すよう屈折率などを調整した薬液を塗布し、OCT装置により光源から光を分岐しその一部を歯槽骨の周辺に照射すると共に、分岐した他方の光を参照鏡に入射し、反射光を干渉させて差分信号を光検出器で検出し、前記OCT装置により取得した前記OCT信号を測定対象に対して光の照射位置を連続的に変化させ、取得した連続した2次元断層画像を抽出し、歯牙齲蝕領域を測定、表示するものである。   In order to solve this problem, the optical tomographic image display method of the present invention applies a chemical solution that adjusts the refractive index so as to penetrate the dental caries portion and increase the contrast with the non-tooth dental caries portion. The OCT device divides the light from the light source and irradiates a part of the light to the periphery of the alveolar bone, enters the other branched light into the reference mirror, interferes with the reflected light, and detects the difference signal with the photodetector. The OCT signal acquired by the method is used to continuously change the irradiation position of light with respect to the measurement target, extract the acquired continuous two-dimensional tomographic image, and measure and display the dental caries region.

この課題を解決するために、本発明の光断層画像表示方法は、歯牙の齲蝕罹患部分にOCTで画像検出のために増感物質を塗布し、OCT装置により光源から光を分岐しその一部を歯槽骨の周辺に照射すると共に、分岐した他方の光を参照鏡に入射し、反射光を干渉させて差分信号を光検出器で検出し、前記OCT装置により取得した前記OCT信号を測定対象に対して光の照射位置を連続的に変化させ、取得した連続した2次元断層画像を抽出し、画像の3次元処理を行い立体画像として描出し、齲蝕罹患部位を明確化するものである。   In order to solve this problem, the optical tomographic image display method of the present invention applies a sensitizing substance for image detection by OCT to a carious part of a tooth, branches light from a light source by an OCT apparatus, and a part thereof. Is irradiated on the periphery of the alveolar bone, the other branched light is incident on the reference mirror, the reflected light is interfered, a differential signal is detected by a photodetector, and the OCT signal acquired by the OCT apparatus is measured. In contrast, the irradiation position of light is continuously changed, the acquired continuous two-dimensional tomographic image is extracted, the image is three-dimensionally processed and rendered as a three-dimensional image, and the caries affected part is clarified.

この課題を解決するために、本発明の光断層画像表示方法は、OCT装置により歯部の断層画像を取得する際、歯部に光を照射した際、蛍光などを発生する薬液を塗布し、OCT装置により光源から光を分岐しその一部を歯槽骨の周辺に照射すると共に、分岐した他方の光を参照鏡に入射し、反射光を干渉させて差分信号を光検出器で検出し、前記OCT装置により取得した前記OCT信号を測定対象に対して光の照射位置を連続的に変化させ、取得した連続した2次元断層画像を抽出し、その蛍光分布をOCT断層画像と重ねて、測定、表示するものである。   In order to solve this problem, the optical tomographic image display method of the present invention applies a chemical solution that generates fluorescence when the tooth part is irradiated with light when acquiring a tomographic image of the tooth part with an OCT device, The OCT device divides the light from the light source and irradiates a part of the light to the periphery of the alveolar bone. The other branched light is incident on the reference mirror, the reflected light is interfered, and the differential signal is detected by the photodetector. Measurement of the OCT signal acquired by the OCT apparatus is performed by continuously changing the light irradiation position on the measurement object, extracting the acquired continuous two-dimensional tomographic image, and superimposing the fluorescence distribution on the OCT tomographic image. , To display.

この課題を解決するために、本発明の光断層画像表示方法は、歯周ポケットに、歯肉部あるいは歯部と屈折率の近い薬液を注入し、OCT装置により光源から光を分岐しその一部を歯槽骨の周辺に照射すると共に、分岐した他方の光を参照鏡に入射し、反射光を干渉させて差分信号を光検出器で検出し、前記OCT装置により取得した前記OCT信号を測定対象に対して光の照射位置を連続的に変化させ、取得した連続した2次元断層画像を抽出し、歯肉部と歯周ポケットでの境界、あるいは歯と歯周ポケットでの境界での正反射を抑庄し、歯部の深部まで光を到達させ、歯肉に覆われた部分でも歯部の断層を測定、表示するものである。   In order to solve this problem, the optical tomographic image display method of the present invention injects a chemical solution having a refractive index close to that of a gingival part or a tooth part into a periodontal pocket, branches light from a light source by an OCT apparatus, and a part thereof. Is irradiated on the periphery of the alveolar bone, the other branched light is incident on the reference mirror, the reflected light is interfered, a differential signal is detected by a photodetector, and the OCT signal acquired by the OCT apparatus is measured. The light irradiation position is continuously changed, and the acquired continuous two-dimensional tomographic images are extracted, and regular reflection at the boundary between the gingival part and the periodontal pocket or at the boundary between the tooth and the periodontal pocket is performed. It suppresses the light to reach the deep part of the tooth part, and measures and displays the tomographic fault even in the part covered with gingiva.

このような特徴を有する本発明によれば、OCTの非侵襲性、高空間分解能、客観性、同時性などの特性を生かし、歯牙齲蝕の診断へのOCTの臨床応用を行うことが可能となりより正確な歯牙齲蝕領域や歯周ポケットの判定を客観的、非侵襲、非破壊に実現でき、そのことによって正確な治療や予防策を講じることができる。
1.診断面においては、非侵襲下にて、齲蝕が画像化・数値化でき客観性のある適切な診断が可能となる。
2.診療面においては、偽害作用がなく診療中に同時に頻繁に診断に利用できるので、治療精度の向上が期待できる。
3.健診面においては、口腔内診査を行う歯科医師の主観に頼る歯科健診ではなく、CO,C1等初期歯牙齲蝕の画像診断が可能となり、客観性のある口腔検診システムを構築することができる。患者にも画像情報を的確に提供できインフォームドコンセントにも有効に利用することができる。齲蝕の早期客観的診断により早期治療が可能となり医療費の適正化にも寄与することが期待できる。
According to the present invention having such characteristics, it becomes possible to make clinical application of OCT to diagnosis of dental caries by taking advantage of non-invasive characteristics, high spatial resolution, objectivity, and synchronism of OCT. It is possible to objectively, non-invasively and non-destructively determine the dental caries region and periodontal pocket, thereby enabling accurate treatment and preventive measures.
1. On the diagnostic side, caries can be imaged and digitized under non-invasive conditions, and an appropriate and objective diagnosis can be made.
2. In terms of medical care, there is no false harm effect and it can be frequently used for diagnosis at the same time during medical care, so improvement in treatment accuracy can be expected.
3. On the medical examination side, it is possible to construct an objective oral examination system by enabling image diagnosis of initial dental caries such as CO and C1, rather than a dental examination that relies on the subjectivity of the dentist performing the intraoral examination. . Image information can be accurately provided to patients and can be effectively used for informed consent. Early objective diagnosis of dental caries enables early treatment and can be expected to contribute to the optimization of medical costs.

図1は本発明の実施の形態1による波長走査型光断層表示システムの全体構成を示すブロック図である。本図において波長走査型光源には一定の周波数範囲の光信号を発振する低コヒーレントのレーザ光源10を用いる。このレーザ光源10の出力は光ファイバ11に与えられる。この光ファイバ11の中間部分には、他の光ファイバ12を接近させて干渉させる結合部13が設けられる。光ファイバ12の一端には、レーザ光源10から結合部13を介して得られた光信号を平行光とするコリメートレンズ14、光をスキャニングするスキャニングミラー15が設けられる。スキャニングミラー15は紙面に垂直な軸を中心にして一定範囲で回動することによって平行光の反射角度を変化させるものである。対物レンズ16はこの反射光を受光する位置に配置し、測定部位へ光を集束すると共に水平方向にスキャニング(走査)する。又光ファイバ11の他端には、コリメートレンズ17を介して参照ミラー18が光軸に垂直に設けられている。ここで結合部13から参照ミラー18までの光学距離L1と、結合部13から測定部位の表面までの光学距離L2とを等しくしておく。さて光ファイバ12の他端にはレンズ20を介してフォトダイオード21を接続する。フォトダイオード21は、参照ミラー18からの反射光と測定部位で反射された光の干渉光を受光することによって、そのビート信号を電気信号として得る受光素子である。ここで光ファイバ11,12と結合部13、コリメートレンズ14、スキャニングミラー15、対物レンズ16、コリメートレンズ17、参照ミラー18は干渉光学計を構成している。   FIG. 1 is a block diagram showing the overall configuration of a wavelength scanning optical tomographic display system according to Embodiment 1 of the present invention. In this figure, a low-coherent laser light source 10 that oscillates an optical signal in a certain frequency range is used as the wavelength scanning light source. The output of the laser light source 10 is given to the optical fiber 11. In the middle portion of the optical fiber 11, a coupling portion 13 is provided that causes another optical fiber 12 to approach and interfere. One end of the optical fiber 12 is provided with a collimating lens 14 that converts the optical signal obtained from the laser light source 10 through the coupling unit 13 into parallel light, and a scanning mirror 15 that scans the light. The scanning mirror 15 changes the reflection angle of parallel light by rotating within a certain range about an axis perpendicular to the paper surface. The objective lens 16 is arranged at a position for receiving the reflected light, and focuses the light on the measurement site and scans (scans) it in the horizontal direction. A reference mirror 18 is provided at the other end of the optical fiber 11 through a collimating lens 17 perpendicular to the optical axis. Here, the optical distance L1 from the coupling portion 13 to the reference mirror 18 is set equal to the optical distance L2 from the coupling portion 13 to the surface of the measurement site. A photodiode 21 is connected to the other end of the optical fiber 12 through a lens 20. The photodiode 21 is a light receiving element that receives the reflected light from the reference mirror 18 and the interference light of the light reflected by the measurement site to obtain the beat signal as an electrical signal. Here, the optical fibers 11 and 12, the coupling portion 13, the collimating lens 14, the scanning mirror 15, the objective lens 16, the collimating lens 17, and the reference mirror 18 constitute an interference optical meter.

さてフォトダイオード21の出力は増幅器22を介して信号処理部23に入力される。信号処理部25は後述するように干渉計から得られる受光信号をフーリエ変換することによって、断層画像信号を得るものである。   The output of the photodiode 21 is input to the signal processing unit 23 via the amplifier 22. The signal processing unit 25 obtains a tomographic image signal by Fourier transforming a light reception signal obtained from the interferometer, as will be described later.

又信号処理部23からの出力は画像処理部24に与えられる。画像処理部24は後述するように2次元画像から歯周ポケットや歯槽骨の高さレベルを検出し、表示画像を検出するものである。こうして生成された表示画像は表示部25によって表示される。   The output from the signal processing unit 23 is given to the image processing unit 24. As will be described later, the image processing unit 24 detects the height level of the periodontal pocket and the alveolar bone from the two-dimensional image, and detects the display image. The display image generated in this way is displayed by the display unit 25.

次に本実施の形態の動作について説明する。この実施の形態では測定前にあらかじめ歯面に光の散乱を抑える散乱抑制薬液を塗布しておく。この薬剤としては、例えば5%メタクリル酸メチル−p−スチレンスルホン酸共重合体の水性マルジョンの(A)液と2.13%シュウ酸(B)液を使用時に等量混合するMSコートを用いる。こうして前述したようにレーザ光源10を駆動し、これによって光ファイバ11を介して信号光が参照ミラー18及び物体にまで照射され、その反射光が結合部13を介して得られる。そのビート周波数がフォトダイオード21に得られる。これを増幅することによって信号処理部23に得られる。又信号処理部23ではフォトダイオード21の出力をフーリエ変換することにより断層画像が得られる。そしてスキャニングミラー15を回動させることによって光の入射位置を変化させ、これによって2次元の断面画像を得ることができる。   Next, the operation of the present embodiment will be described. In this embodiment, a scattering suppression chemical solution that suppresses light scattering is applied to the tooth surface in advance before measurement. As this medicine, for example, an MS coat in which an aqueous emulsion (A) solution of a 5% methyl methacrylate-p-styrenesulfonic acid copolymer and a 2.13% oxalic acid (B) solution are mixed in an equal amount at the time of use is used. . Thus, as described above, the laser light source 10 is driven, whereby the signal light is irradiated to the reference mirror 18 and the object via the optical fiber 11, and the reflected light is obtained via the coupling portion 13. The beat frequency is obtained in the photodiode 21. It is obtained in the signal processing unit 23 by amplifying this. The signal processing unit 23 obtains a tomographic image by Fourier transforming the output of the photodiode 21. Then, the incident position of the light is changed by rotating the scanning mirror 15, whereby a two-dimensional cross-sectional image can be obtained.

このように適切な薬剤を塗布しておくことによって、表面での散乱が少なくなり光が深部まで到達し、より深い領域までのOCT画像を鮮明に表示することができる。又、この干渉計自体又は測定対象をスキャニングミラー15による光の走査方向と垂直に移動させることにより、3次元断面画像を得ることができる。   By applying an appropriate medicine in this manner, scattering on the surface is reduced, light reaches the deep part, and an OCT image up to a deeper region can be clearly displayed. Further, a three-dimensional cross-sectional image can be obtained by moving the interferometer itself or the measurement object in a direction perpendicular to the light scanning direction by the scanning mirror 15.

また歯牙齲蝕に前述したMSコートを塗布するようにしてもよい。この薬液は、軟化した歯牙齲蝕部により浸透しやすく健常部には浸透しにくい。つまり、意図的に屈折率差の大きい境界を作れば、正反射により歯牙齲蝕領域の境界が鮮明に画像化される。   Moreover, you may make it apply | coat MS coat mentioned above to dental caries. This chemical solution easily penetrates into the softened dental caries portion and hardly penetrates into the healthy portion. That is, if a boundary having a large refractive index difference is intentionally created, the boundary of the dental caries region is clearly imaged by regular reflection.

次に図2Aは齲蝕のない状態での薬剤を塗布しない状態での歯牙の断層画像の一例を示す図、図2Bは前述したMSコートを塗布した場合の歯牙の断層画像を示す図である。これらの図に示すように、物質を塗布した場合には、表面の反射を抑えることができ、その内部の状態をより明確に認識することもできる。   Next, FIG. 2A is a diagram showing an example of a tomographic image of a tooth in a state where there is no caries and a state where no medicine is applied, and FIG. 2B is a diagram showing a tomographic image of a tooth when the above-described MS coat is applied. As shown in these figures, when a substance is applied, reflection of the surface can be suppressed, and the internal state can be recognized more clearly.

又図3Aは初期の齲蝕C1の状態にある歯牙の、物質を塗布しない場合の断層画像を示す図、図3BはMSコートを塗布した状態での同一部分での断層画像を示す図である。これらの図に示すように、物質を塗布することにより、表面の反射を抑えることができる。又齲蝕部分での光の散乱を防止することができ、内部の状態を的確に把握することもできる。   FIG. 3A is a diagram showing a tomographic image of a tooth in the initial caries C1 state when no substance is applied, and FIG. 3B is a diagram showing a tomographic image of the same part when an MS coat is applied. As shown in these drawings, surface reflection can be suppressed by applying a substance. Moreover, scattering of light at the caries portion can be prevented, and the internal state can be accurately grasped.

塗布する物質は前述したMSコートに限らず種々の物質を用いることもできる。例えば塗布物質として歯周組織と屈折率の近い薬液を選択してもよい。そして歯周ポケットに塗布・注入することによって、歯肉部と歯周ポケットでの境界、歯と歯周ポケットでの境界での正反射を抑圧し、歯部の深部まで光を到達させ、歯肉に覆われた部分でも歯の断層を鮮明に画像化することができる。   The material to be applied is not limited to the above-described MS coating, and various materials can be used. For example, a chemical solution having a refractive index close to that of the periodontal tissue may be selected as the application substance. And by applying and injecting into the periodontal pocket, the regular reflection at the boundary between the gingival part and the periodontal pocket and the boundary between the tooth and the periodontal pocket is suppressed, the light reaches the deep part of the tooth part, and the gingiva Even in the covered part, the tooth slice can be clearly imaged.

更に塗布物質として屈折率の低い薬液を選択し、歯周ポケットに塗布・注入することによって、歯と歯肉部の境界を明瞭化し、歯周ポケット全体およびポケット底部のアタッチメント部位をOCT画像上でより鮮明に描出することができる。   Furthermore, by selecting a drug solution with a low refractive index as the application substance and applying and injecting it into the periodontal pocket, the boundary between the teeth and the gingival part is clarified, and the attachment part of the entire periodontal pocket and the bottom of the pocket is more visible on the OCT image. Can be drawn clearly.

ここで塗布物質として光に作用し蛍光などを発生する効果をもつ薬液などであれば、その蛍光の発光分布をOCT画像と筒時に記録することによって、歯牙齲蝕を検出することも可能である。 Here, if the coating material is a chemical solution that acts on light and generates fluorescence, etc., dental caries can be detected by recording the emission distribution of the fluorescence at the time of the OCT image.

本発明の実施の形態による光断層画像表示装置を示すブロック図である。It is a block diagram which shows the optical tomographic image display apparatus by embodiment of this invention. 齲蝕のない状態での薬剤を塗布しない状態での歯牙の断層画像の一例を示す図である。It is a figure which shows an example of the tomographic image of a tooth in the state which has not applied the chemical | medical agent in the state without a caries. MSコートを塗布した場合の歯牙の断層画像を示す図本実施の形態による2次元画像の一例を示す図である。The figure which shows the tomographic image of a tooth | gear at the time of apply | coating MS coat It is a figure which shows an example of the two-dimensional image by this Embodiment. 初期の齲蝕C1の状態にある歯牙の、物質を塗布しない場合の断層画像を示す図である。It is a figure which shows the tomographic image in the case of not applying a substance of the tooth in the state of initial caries C1. 初期の齲蝕C1の状態にある歯牙の、MSコートを塗布した状態での断層画像を示す図である。It is a figure which shows the tomographic image in the state which applied the MS coat of the tooth in the state of the initial caries C1.

符号の説明Explanation of symbols

1 レーザ光源
11,12 光ファイバ
13 分岐部
14,17 コリメートレンズ
15 可動ミラー
16 対物レンズ
18 参照ミラー
21 フォトダイオード
23 信号処理部
24 画像処理部
25 表示部
DESCRIPTION OF SYMBOLS 1 Laser light source 11,12 Optical fiber 13 Branch part 14,17 Collimating lens 15 Movable mirror 16 Objective lens 18 Reference mirror 21 Photodiode 23 Signal processing part 24 Image processing part 25 Display part

Claims (5)

歯の表面に反射、散乱抑制薬剤を塗布し、
OCT装置により光源から光を分岐しその一部を歯槽骨の周辺に照射すると共に、分岐した他方の光を参照鏡に入射し、反射光を干渉させて差分信号を光検出器で検出し、
前記OCT装置により取得した前記OCT信号を測定対象に対して光の照射位置を連続的に変化させ、取得した連続した2次元断層画像を抽出し、
前記抽出された画像を表示する光断層画像表示方法。
Apply a reflection / scattering inhibitor to the tooth surface,
The OCT device divides the light from the light source and irradiates a part of the light to the periphery of the alveolar bone. The other branched light is incident on the reference mirror, the reflected light is interfered, and the differential signal is detected by the photodetector.
The OCT signal acquired by the OCT apparatus is continuously changed in the irradiation position of light with respect to the measurement object, and the acquired continuous two-dimensional tomographic image is extracted.
An optical tomographic image display method for displaying the extracted image.
歯牙の齲蝕部分に浸透し、非歯牙齲蝕部分とでコントラストが増すよう屈折率などを調整した薬液を塗布し、
OCT装置により光源から光を分岐しその一部を歯槽骨の周辺に照射すると共に、分岐した他方の光を参照鏡に入射し、反射光を干渉させて差分信号を光検出器で検出し、
前記OCT装置により取得した前記OCT信号を測定対象に対して光の照射位置を連続的に変化させ、取得した連続した2次元断層画像を抽出し、
歯牙齲蝕領域を測定、表示する光断層画像表示方法。
Apply a chemical solution that adjusts the refractive index so that it penetrates the carious part of the tooth and increases the contrast with the non-dental carious part,
The OCT device divides the light from the light source and irradiates a part of the light to the periphery of the alveolar bone. The other branched light is incident on the reference mirror, the reflected light is interfered, and the differential signal is detected by the photodetector.
The OCT signal acquired by the OCT apparatus is continuously changed in the irradiation position of light with respect to the measurement object, and the acquired continuous two-dimensional tomographic image is extracted.
An optical tomographic image display method for measuring and displaying a dental caries region.
歯牙の齲蝕罹患部分にOCTで画像検出のために増感物質を塗布し、
OCT装置により光源から光を分岐しその一部を歯槽骨の周辺に照射すると共に、分岐した他方の光を参照鏡に入射し、反射光を干渉させて差分信号を光検出器で検出し、
前記OCT装置により取得した前記OCT信号を測定対象に対して光の照射位置を連続的に変化させ、取得した連続した2次元断層画像を抽出し、
画像の3次元処理を行い立体画像として描出し、齲蝕罹患部位を明確化する光断層画像表示方法。
Apply a sensitizer to the carious part of the tooth for image detection with OCT,
The OCT device divides the light from the light source and irradiates a part of the light to the periphery of the alveolar bone. The other branched light is incident on the reference mirror, the reflected light is interfered, and the differential signal is detected by the photodetector.
The OCT signal acquired by the OCT apparatus is continuously changed in the irradiation position of light with respect to the measurement object, and the acquired continuous two-dimensional tomographic image is extracted.
An optical tomographic image display method for performing three-dimensional processing of an image and rendering it as a three-dimensional image to clarify a caries affected part.
OCT装置により歯部の断層画像を取得する際、歯部に光を照射した際、蛍光などを発生する薬液を塗布し、
OCT装置により光源から光を分岐しその一部を歯槽骨の周辺に照射すると共に、分岐した他方の光を参照鏡に入射し、反射光を干渉させて差分信号を光検出器で検出し、
前記OCT装置により取得した前記OCT信号を測定対象に対して光の照射位置を連続的に変化させ、取得した連続した2次元断層画像を抽出し、
その蛍光分布をOCT断層画像と重ねて、測定、表示する光断層画像表示方法。
When acquiring a tomographic image of a tooth with an OCT apparatus, when a tooth is irradiated with light, a chemical solution that generates fluorescence is applied,
The OCT device divides the light from the light source and irradiates a part of the light to the periphery of the alveolar bone. The other branched light is incident on the reference mirror, the reflected light is interfered, and the differential signal is detected by the photodetector.
The OCT signal acquired by the OCT apparatus is continuously changed in the irradiation position of light with respect to the measurement object, and the acquired continuous two-dimensional tomographic image is extracted.
An optical tomographic image display method for measuring and displaying the fluorescence distribution superimposed on an OCT tomographic image.
歯周ポケットに、歯肉部あるいは歯部と屈折率の近い薬液を注入し、
OCT装置により光源から光を分岐しその一部を歯槽骨の周辺に照射すると共に、分岐した他方の光を参照鏡に入射し、反射光を干渉させて差分信号を光検出器で検出し、
前記OCT装置により取得した前記OCT信号を測定対象に対して光の照射位置を連続的に変化させ、取得した連続した2次元断層画像を抽出し、
歯肉部と歯周ポケットでの境界、あるいは歯と歯周ポケットでの境界での正反射を抑庄し、歯部の深部まで光を到達させ、歯肉に覆われた部分でも歯部の断層を測定、表示する光断層画像表示方法。
Inject a drug solution with a refractive index close to that of the gingiva or teeth in the periodontal pocket,
The OCT device divides the light from the light source and irradiates a part of the light to the periphery of the alveolar bone. The other branched light is incident on the reference mirror, the reflected light is interfered, and the differential signal is detected by the photodetector.
The OCT signal acquired by the OCT apparatus is continuously changed in the irradiation position of light with respect to the measurement object, and the acquired continuous two-dimensional tomographic image is extracted.
Suppresses regular reflection at the boundary between the gingiva and the periodontal pocket, or at the boundary between the tooth and the periodontal pocket. Optical tomographic image display method for measurement and display.
JP2007326886A 2007-12-19 2007-12-19 Optical tomographic image display method Pending JP2009148337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007326886A JP2009148337A (en) 2007-12-19 2007-12-19 Optical tomographic image display method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007326886A JP2009148337A (en) 2007-12-19 2007-12-19 Optical tomographic image display method

Publications (1)

Publication Number Publication Date
JP2009148337A true JP2009148337A (en) 2009-07-09

Family

ID=40918238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007326886A Pending JP2009148337A (en) 2007-12-19 2007-12-19 Optical tomographic image display method

Country Status (1)

Country Link
JP (1) JP2009148337A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011784A2 (en) * 2010-07-22 2012-01-26 경북대학교 산학협력단 Testing device for flat surface display device and method for testing using same
JP2014176416A (en) * 2013-03-13 2014-09-25 Yoshida Dental Mfg Co Ltd Probe for light interference tomographic image generation device
JP2015004632A (en) * 2013-06-24 2015-01-08 株式会社リコー Permeation process measurement device and permeation process measurement method
CN104780822A (en) * 2012-07-19 2015-07-15 独立行政法人国立长寿医疗研究中心 Measurement/display method and measurement/display device for dental plaque, gum and alveolar bone
WO2016075804A1 (en) * 2014-11-14 2016-05-19 オリンパス株式会社 Organism observation apparatus, pharmaceutical liquid supply device, and organism observation method
WO2016103425A1 (en) * 2014-12-25 2016-06-30 オリンパス株式会社 Living body observation device and living body observation method
WO2019112090A1 (en) * 2017-12-07 2019-06-13 한국광기술원 Composite imaging device for structural/functional images of tooth

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011784A2 (en) * 2010-07-22 2012-01-26 경북대학교 산학협력단 Testing device for flat surface display device and method for testing using same
WO2012011784A3 (en) * 2010-07-22 2012-05-03 경북대학교 산학협력단 Testing device for flat surface display device and method for testing using same
CN104780822A (en) * 2012-07-19 2015-07-15 独立行政法人国立长寿医疗研究中心 Measurement/display method and measurement/display device for dental plaque, gum and alveolar bone
US9445724B2 (en) 2012-07-19 2016-09-20 National Center For Geriatrics And Gerontology Method and apparatus for measuring and displaying dental plaque
US10251558B2 (en) 2012-07-19 2019-04-09 National Center For Geriatrics And Gerontology Method and apparatus for measuring and displaying dental plaque, gingiva, and alveolar bone
JP2014176416A (en) * 2013-03-13 2014-09-25 Yoshida Dental Mfg Co Ltd Probe for light interference tomographic image generation device
JP2015004632A (en) * 2013-06-24 2015-01-08 株式会社リコー Permeation process measurement device and permeation process measurement method
WO2016075804A1 (en) * 2014-11-14 2016-05-19 オリンパス株式会社 Organism observation apparatus, pharmaceutical liquid supply device, and organism observation method
WO2016103425A1 (en) * 2014-12-25 2016-06-30 オリンパス株式会社 Living body observation device and living body observation method
JPWO2016103425A1 (en) * 2014-12-25 2017-10-05 オリンパス株式会社 Living body observation apparatus and living body observation method
WO2019112090A1 (en) * 2017-12-07 2019-06-13 한국광기술원 Composite imaging device for structural/functional images of tooth

Similar Documents

Publication Publication Date Title
Shimada et al. Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations
Nakagawa et al. Validation of swept source optical coherence tomography (SS-OCT) for the diagnosis of smooth surface caries in vitro
Shimada et al. Noninvasive cross‐sectional imaging of proximal caries using swept‐source optical coherence tomography (SS‐OCT) in vivo
JP6177777B2 (en) Measurement display method and measurement display device for dental plaque, gingiva and alveolar bone
Imai et al. Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro
Shimada et al. Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries
Fried et al. Early caries imaging and monitoring with near-infrared light
Popescu et al. Assessment of early demineralization in teeth using the signal attenuation in optical coherence tomography images
Shemesh et al. The ability of optical coherence tomography to characterize the root canal walls
Espigares et al. Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography
Nakajima et al. Detection of occlusal caries in primary teeth using swept source optical coherence tomography
Shimada et al. 3D imaging of proximal caries in posterior teeth using optical coherence tomography
Park et al. Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: an ex vivo study
JP2009148337A (en) Optical tomographic image display method
Walther et al. In vivo imaging in the oral cavity by endoscopic optical coherence tomography
Nakajima et al. Noninvasive cross‐sectional imaging of incomplete crown fractures (cracks) using swept‐source optical coherence tomography
Al-Azri et al. Optical coherence tomography use in the diagnosis of enamel defects
Iino et al. Detection of a second mesiobuccal canal in maxillary molars by swept-source optical coherence tomography
Fried et al. In vivo near-IR imaging of occlusal lesions at 1310 nm
JP5062816B2 (en) Reflective tomography system
Park et al. Optical coherence tomography to evaluate variance in the extent of carious lesions in depth
Akhter et al. Using Technological Diagnostic Tools to Find Early Caries: A Systematic Review
Park et al. OCT assessment of non-cavitated occlusal carious lesions by variation of incidence angle of probe light and refractive index matching
Rashed et al. Evaluation of root canal anatomy of maxillary premolars using swept-source optical coherence tomography in comparison with dental operating microscope and cone beam computed tomography
Lee et al. Classification of human gingival sulcus using swept-source optical coherence tomography: In vivo imaging

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100712