JP2009146636A - Ignition device - Google Patents

Ignition device Download PDF

Info

Publication number
JP2009146636A
JP2009146636A JP2007320495A JP2007320495A JP2009146636A JP 2009146636 A JP2009146636 A JP 2009146636A JP 2007320495 A JP2007320495 A JP 2007320495A JP 2007320495 A JP2007320495 A JP 2007320495A JP 2009146636 A JP2009146636 A JP 2009146636A
Authority
JP
Japan
Prior art keywords
insulator
chm
ignition device
electrode
ground electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007320495A
Other languages
Japanese (ja)
Inventor
Masamichi Shibata
正道 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007320495A priority Critical patent/JP2009146636A/en
Publication of JP2009146636A publication Critical patent/JP2009146636A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Spark Plugs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma ignition device with high durability. <P>SOLUTION: In the plasma ignition device 1 in which gas in a discharge space 140 is made into plasma state by impressing high voltage and high current, is injected inside an engine 40 and carries out ignition to an ignition plug 10 with the discharge space 140 partitioned by a center electrode 110, an insulator 120 and a ground electrode 130, the center electrode 110 is formed in an axis shape, the insulator 120 covers an outer side of the center electrode 110 and extends from a lower end face of the center electrode 110 in an axis direction, and is formed in a nearly cylindrical shape with its lower end open, the ground electrode 130 is fitted at outside of the insulator 120 and forms in a nearly circular shape having an opening part 131 communicating with the opening of the lower end of the insulator 120. With the center electrode 110 as an anode side, and the ground electrode 130 as a cathode side, high voltage of positive potential is impressed and a large current is supplied, a discharge space inner diameter ϕD<SB>CHM</SB>, a ground electrode opening inner diameter ϕD<SB>ORF</SB>, an insulator thickness T<SB>INS</SB>, and a surface discharge distance G<SB>PS</SB>are set in predetermined ranges. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の点火に用いられるプラズマ式点火装置の耐久性向上に関するものである。   The present invention relates to an improvement in durability of a plasma ignition device used for ignition of an internal combustion engine.

近年、自動車等の内燃機関においては、燃焼排気中の環境汚染物質の低減や更なる燃費向上等を図るべく、空燃比の更なる希薄化や過給混合による燃焼が試みられている。このような、希薄燃焼機関や過給混合燃焼機関は着火性が低く、着火性の高い優れた点火性能を有する点火装置の開発が強く望まれている。   In recent years, in internal combustion engines such as automobiles, in order to reduce environmental pollutants in combustion exhaust gas and further improve fuel consumption, combustion by further diluting the air-fuel ratio and supercharging mixing has been attempted. Such lean combustion engines and supercharged mixed combustion engines have low ignitability, and development of an ignition device having excellent ignition performance with high ignitability is strongly desired.

図14に示すようなプラズマ式点火装置1zは、機関に装着した点火プラグ10zの中心電極110zと接地電極130zとの間に放電用電源20zから高電圧を印加するとともに、中心電極110zと接地電極130zとの間に形成された放電空間140z内で放電が発生した直後に、プラズマ発生用電源30zから大電流を供給して、放電空間140z内の気体を高温高圧のプラズマ状態にして、放電空間140zから噴射し、機関の点火を行うことができる。
このようなプラズマ式点火装置は、指向性に富み、かつ容積的に大きな範囲で数千から数万Kの極めて高い温度域を発生させることができるので、均質リーンバーンや成層リーンバーンや過給混合燃焼等の難着火性の燃焼機関に用いる点火装置としての応用が期待されている。
The plasma ignition device 1z as shown in FIG. 14 applies a high voltage from the discharge power source 20z between the center electrode 110z and the ground electrode 130z of the spark plug 10z attached to the engine, and the center electrode 110z and the ground electrode. Immediately after a discharge is generated in the discharge space 140z formed between the discharge space 140z and the plasma generating power source 30z, a large current is supplied to change the gas in the discharge space 140z to a high-temperature and high-pressure plasma state, thereby generating a discharge space. The engine can be ignited from 140z.
Such a plasma ignition device is rich in directivity and can generate an extremely high temperature range of several thousand to several tens of thousands K in a large volume range. It is expected to be applied as an ignition device for use in a combustion engine that is difficult to ignite such as mixed combustion.

特許文献1には、中心電極の汚染を防止すべく、中心電極と中心に該中心電極を保持し縦に伸びる挿入孔を設けた絶縁体と該絶縁体を覆い下端に挿入孔と連通する開口を設けた接地電極とによって構成し、上記挿入孔内に放電ギャップを形成した表面ギャップ型点火プラグが開示されている。   In Patent Document 1, in order to prevent contamination of the center electrode, an insulator provided with an insertion hole extending vertically and holding the center electrode at the center, and an opening covering the insulator and communicating with the insertion hole at the lower end The surface gap type spark plug is disclosed in which a discharge gap is formed in the insertion hole.

また、特許文献2には、プラグの熱価を上げて自己清浄化性を向上すべく、中心電極と側方電極との間のスパーク空隙の周囲の大半を電気絶縁体で包囲して小さな容積の放電空間を形成し、スパーク放電時にこの放電空間内に発生するプラズマ状ガスを前記放電空間に開口した噴出孔より燃料混合気内に噴出させるようにした内燃機関の点火プラグにおいて、前記側方電極を前記噴出孔とは離間して設置したことを特徴とする内燃機関の点火プラグが開示されている。   Further, in Patent Document 2, in order to increase the heat value of the plug and improve the self-cleaning property, most of the periphery of the spark gap between the center electrode and the side electrode is surrounded by an electric insulator and has a small volume. In the ignition plug of the internal combustion engine, a plasma gas generated in the discharge space at the time of spark discharge is ejected into the fuel mixture from the ejection hole opened in the discharge space. An ignition plug for an internal combustion engine is disclosed, in which an electrode is disposed apart from the ejection hole.

特許文献3には、放電空間内の絶縁体内壁の汚染を防ぐべく、スパークギャップの周囲を磁器絶縁体で包囲して小さな容積の放電空間を形成し、スパーク放電時にこの放電空間内に生成するプラズマガスを前記放電空間に形成した噴出孔より燃焼室内の燃料―空気混合気中に噴出させるようにしたプラズマジェット点火プラグにおいて、上記放電空間を形成する上記磁器絶縁体の発火部を燃焼室壁面より適当な長さ突出させ、かつこの発火部を接地電極が包囲するように形成したことを特徴とするプラズマジェット点火プラグが開示されている。
また、特許文献3の技術では、燃焼室内に突出した上記磁器絶縁体の発火部の肉厚を可及的に薄く0.2mm〜2.0mmの範囲に形成することによって、中心電極と接地電極との間に該磁器絶縁体を隔てて強い電界を生成する背後電極効果が付加され、スパークギャップをイオン化することによって放電々圧を低下することができるとされている。
国特許第3581141号明細書 実開昭55−166092号公報 特開昭57−15378号公報
In Patent Document 3, in order to prevent contamination of the insulator body wall in the discharge space, a small volume discharge space is formed by surrounding the periphery of the spark gap with a porcelain insulator and is generated in the discharge space at the time of spark discharge. In a plasma jet ignition plug in which plasma gas is jetted into a fuel-air mixture in a combustion chamber through an ejection hole formed in the discharge space, the ignition portion of the ceramic insulator that forms the discharge space is defined as a wall surface of the combustion chamber There has been disclosed a plasma jet ignition plug characterized in that it protrudes more appropriately and is formed so that a ground electrode surrounds the ignition portion.
Moreover, in the technique of patent document 3, the center electrode and the ground electrode are formed by forming the thickness of the ignition part of the ceramic insulator protruding into the combustion chamber as thin as possible in the range of 0.2 mm to 2.0 mm. The back electrode effect that generates a strong electric field across the porcelain insulator is added between the two and the discharge gap pressure can be reduced by ionizing the spark gap.
Japanese Patent No. 3581141 Japanese Utility Model Publication No. 55-166092 Japanese Patent Laid-Open No. 57-15378

ところが、従来のプラズマ式点火装置においては、図14に示すように、中心電極を陰極側とし、接地電極を陽極側として負の高電圧を印加している。このような構成においては、図13に示すように、放電空間内に発生した高温・高圧のプラズマ状気体の内、質量の大きな陽イオンが中心電極の表面に衝突し、その表面が徐々に侵食される陰極スパッタリングが発生する。陰極スパッタリングの進行により、中心電極と接地電極との距離すなわち放電距離が次第に長くなり、放電距離に比例して放電電圧が次第に上昇し、やがて機関の失火に至る虞がある。また、燃焼室内の特定部位の燃料濃度を上げて着火させようとする成層リーンバーンにおいては、特許文献3にあるように、磁器絶縁体の発火部を燃焼室内に突出させた場合には、燃焼室内の気流に乱れが生じ、狙った特定部位に高温領域を噴射することができなくなり失火に至る虞もある。   However, in the conventional plasma ignition device, as shown in FIG. 14, a negative high voltage is applied with the center electrode on the cathode side and the ground electrode on the anode side. In such a configuration, as shown in FIG. 13, of the high-temperature and high-pressure plasma-like gas generated in the discharge space, a large-mass cation collides with the surface of the central electrode, and the surface gradually erodes. Cathode sputtering occurs. With the progress of cathode sputtering, the distance between the center electrode and the ground electrode, that is, the discharge distance gradually increases, the discharge voltage gradually increases in proportion to the discharge distance, and there is a risk that the engine will eventually be misfired. Further, in a stratified lean burn that attempts to ignite by increasing the fuel concentration of a specific part in the combustion chamber, as disclosed in Patent Document 3, if the ignition portion of the porcelain insulator is projected into the combustion chamber, the combustion There is a possibility that the airflow in the room is disturbed, and the high temperature region cannot be jetted to a specific target site, resulting in misfire.

更に、特許文献2又は、3にあるような、冷間始動時や、くすぶり等によるデポジットの形成が問題となる程度の温度範囲のエネルギ噴射を行うプラズマ式点火装置では、通常のスパークプラグの火花放電による点火でも着火できる程度の希薄燃焼領域においては点火可能であっても、通常のスパークプラグでは点火できない程度まで極めて希薄化した機関では点火できない虞がある。   Furthermore, in a plasma ignition device that performs energy injection in a temperature range that causes a problem of deposit formation due to cold start or smoldering as disclosed in Patent Document 2 or 3, sparks of a normal spark plug Even if ignition is possible in a lean combustion region that can be ignited even by ignition by discharge, there is a possibility that the engine that is extremely diluted to the extent that it cannot be ignited by a normal spark plug cannot be ignited.

加えて、特許文献3にあるように、接地電極に設けられた噴出孔が放電空間内径よりも小さい場合には、中心電極と接地電極との最短距離は、両極が直接対向する部位となるため、背後電極効果が十分に発揮されず、気中放電が支配的となり、放電電圧が高くなる虞もある。一般に、気体圧力の上昇に伴い絶縁耐圧は上昇するので、従来の構成では、高圧縮時において放電できなくなる虞がある。加えて、特許文献3にあるように、磁器絶縁体の肉厚を0.8mmから2.0mmの範囲に設定した場合には、磁器絶縁体の耐電圧が極めて低い値となる。したがって、背後電極効果を考慮しても、プラズマの発生に先んじて行われる放電空間の絶縁破壊を起こす放電電圧は極めて限定的となり、適用可能な放電距離は極めて短く、狭い電空間から低いエネルギを噴射するに留まり、難着火性の燃焼機関に十分なエネルギを噴射することができず失火に至る虞もある。   In addition, as disclosed in Patent Document 3, when the ejection hole provided in the ground electrode is smaller than the inner diameter of the discharge space, the shortest distance between the center electrode and the ground electrode is a portion where both electrodes are directly opposed to each other. Further, the back electrode effect is not sufficiently exhibited, air discharge becomes dominant, and the discharge voltage may be increased. In general, the withstand voltage increases as the gas pressure increases, so there is a possibility that the conventional configuration may not be able to discharge during high compression. In addition, as described in Patent Document 3, when the thickness of the porcelain insulator is set in the range of 0.8 mm to 2.0 mm, the withstand voltage of the porcelain insulator is a very low value. Therefore, even if the back electrode effect is taken into consideration, the discharge voltage that causes dielectric breakdown of the discharge space that occurs prior to the generation of plasma is extremely limited, the applicable discharge distance is extremely short, and low energy is consumed from a narrow electric space. There is a risk that misinjection may occur because sufficient energy cannot be injected into the inflammable combustion engine.

そこで、本願発明はかかる実情に鑑み、例えば、希薄燃焼機関や過給混合燃焼機関等の難着火性の燃焼機関に用いられるプラズマ式点火装置において、高い着火性能を維持しつつ、陰極スパッタリングによる電極の消耗を抑制して、更なる耐久性の向上を実現したプラズマ式点火装置を提供することを目的とするものである。   Therefore, in view of such a situation, the present invention is an electrode by cathode sputtering while maintaining high ignition performance in a plasma ignition device used in a combustion engine with low ignition such as a lean combustion engine and a supercharged mixed combustion engine. It is an object of the present invention to provide a plasma ignition device that suppresses the exhaustion and realizes further improvement in durability.

請求項1の発明では、燃焼機関に装着され、中心電極と絶縁体と接地電極とによって放電空間を区画した点火プラグと、上記中心電極と上記接地電極との間に高電圧を印加する放電用電源と上記放電空間内に大電流を放出するプラズマ発生用電源とを具備し、
上記放電用電源からの高電圧の印加によって上記放電空間の絶縁を破壊し、上記プラズマ発生用電源からの大電流の放出によって上記放電空間内の気体を高温、高圧のプラズマ状態として、上記燃焼機関内に噴射し、該機関の点火を行うプラズマ式点火装置において、上記中心電極は軸状に形成し、上記絶縁体は、上記中心電極の外側を覆いつつ、上記中心電極下端面から軸方向に延び、その下端が開口する略筒状に形成し、上記接地電極は、上記絶縁体の外側に設けられ、上記絶縁体下端の開口に連通する開口部を有する略環状に形成しつつ、上記中心電極を陽極側とし、上記接地電極を陰極側として、正電位の上記高電圧の印加と上記大電流の供給とを行う。
According to the first aspect of the present invention, there is provided a spark plug mounted on a combustion engine, in which a discharge space is defined by a center electrode, an insulator, and a ground electrode, and for applying a high voltage between the center electrode and the ground electrode. A power source and a plasma generating power source that discharges a large current into the discharge space;
The combustion engine breaks the insulation of the discharge space by applying a high voltage from the discharge power source, and changes the gas in the discharge space to a high temperature, high pressure plasma state by releasing a large current from the plasma generating power source. In the plasma ignition device for injecting into the engine and igniting the engine, the center electrode is formed in an axial shape, and the insulator covers the outside of the center electrode and extends axially from the lower end surface of the center electrode. The ground electrode is formed in a substantially annular shape having an opening that is provided outside the insulator and communicates with the opening at the lower end of the insulator. The application of the positive high voltage and the supply of the large current are performed with the electrode on the anode side and the ground electrode on the cathode side.

請求項1の発明によれば、正コロナが中心電極下端表面に発生する。正コロナは従来の中心電極を陰極とした場合に中心電極表面に発生する負性コロナに比べ、発生電圧はやや高くなるが極めて進展性に優れている。したがって、放電空間の絶縁を破壊し、中心電極と接地電極との間に放電が開始可能となる要求電圧は、従来の中心電極を陰極とした場合よりも低くなる。要求電圧の低下によって、上記放電用高電圧電源の電気容量を小さくできる。上記放電用高電圧電源の容量が小さくなると、放電用高電圧印加時の微弱電流が少なくなり、該微弱電流による上記接地電極の陰極スパッタリングが起こり難くなる。
一方、上記中心電極は、陽極であるため、プラズマ状態となった気体の内、質量の大きな陽イオンは、電気的に反発するため陽イオンの衝突によるスパッタリングを起こし難くなる。したがって、難着火性の燃焼機関において優れた着火性を有しつつ耐久性の高いプラズマ式点火装置が実現できる。
According to the invention of claim 1, the positive corona is generated on the lower surface of the center electrode. The positive corona has a slightly higher generated voltage than the negative corona generated on the surface of the center electrode when the conventional center electrode is used as a cathode, but is extremely excellent in progress. Therefore, the required voltage at which the insulation of the discharge space is broken and the discharge can be started between the center electrode and the ground electrode is lower than that in the case where the conventional center electrode is a cathode. By reducing the required voltage, the electric capacity of the discharge high-voltage power supply can be reduced. When the capacity of the high voltage power source for discharge becomes small, the weak current when the high voltage for discharge is applied decreases, and cathode sputtering of the ground electrode due to the weak current becomes difficult to occur.
On the other hand, since the central electrode is an anode, a cation having a large mass among the gas in a plasma state is electrically repelled, so that it is difficult to cause sputtering due to the collision of the cation. Therefore, a highly durable plasma ignition device can be realized while having excellent ignitability in a non-ignitable combustion engine.

請求項2の発明では、上記接地電極を反接地電極開口部方向に向かって延設したハウジング部を形成し、上記絶縁体を介して上記ハウジング部の上記中心電極と対向する部位を、上記中心電極に対する背後電極となした。   According to a second aspect of the present invention, a housing part is formed in which the ground electrode extends in the direction toward the anti-ground electrode opening, and a portion of the housing part that faces the central electrode is interposed through the insulator. It became the back electrode for the electrode.

請求項2の発明によれば、上記中心電極と上記背後電極との間に強い電界が発生し、更に上記中心電極と上記背後電極の下端に配設された上記接地電極との間に発生した電束が上記放電空間と上記絶縁体とを出入りし、上記中心電極下端面に電束が集中して局部的に電位傾度の高い部位が形成される。このような電界集中によって、上記中心電極表面に更に正コロナが発生しやすくなり、上記放電空間の絶縁破壊が容易となり、更に要求電圧が低くなる。この時の放電は、従来の放電空間内を貫通する気中放電に比べて低い要求電圧において放電可能で、上記絶縁体表面を這うように放電経路を形成する沿面放電となる。したがって、更に耐久性の高いプラズマ式点火装置が実現できる。   According to the invention of claim 2, a strong electric field is generated between the center electrode and the back electrode, and further generated between the center electrode and the ground electrode disposed at the lower end of the back electrode. The electric flux enters and leaves the discharge space and the insulator, and the electric flux is concentrated on the lower end surface of the center electrode, so that a region having a high potential gradient is formed locally. By such electric field concentration, a positive corona is more likely to be generated on the surface of the center electrode, dielectric breakdown of the discharge space is facilitated, and the required voltage is further reduced. The discharge at this time can be discharged at a lower required voltage than the air discharge penetrating the conventional discharge space, and becomes a creeping discharge that forms a discharge path over the surface of the insulator. Therefore, a plasma type ignition device with higher durability can be realized.

請求項3の発明では、上記絶縁体の内径φDCHM(mm)と、上記接地電極開口部の内径φDORF(mm)との関係において、下記式1の関係を満たす。
0.1≦DORF−DCHM・・・ 式1
In the invention of claim 3, the relationship of the following formula 1 is satisfied in the relationship between the inner diameter φD CHM (mm) of the insulator and the inner diameter φD ORF (mm) of the ground electrode opening.
0.1 ≦ D ORF −D CHM・ ・ ・ Equation 1

請求項3の発明によれば、上記中心電極と上記接地電極とが直接対向することがなく、上記中心電極と上記接地電極との間に発生する電界は、必ず上記放電空間と上記絶縁体とを出入りすることになり、上記中心電極の表面で電界集中が起こり、沿面放電を更に起こしやすくなり、要求電圧の低減ができる。よって、更に耐久性の高いプラズマ式点火装置が実現できる。
一方、上記絶縁体内径φDCHMと、上記接地電極開口部内径φDORF(mm)との関係において本発明の範囲を外れる場合には、上記中心電極と上記接地電極とが略直接的に対向することとなり、沿面放電よりも気中放電が支配的となり、要求電圧の上昇を招く虞がある。加えて、接地電極の表面に質量の大きい陽イオンが衝突しやすくなり、陰極スパッタリングによる消耗が激しくなる虞がある。
According to the invention of claim 3, the center electrode and the ground electrode do not directly face each other, and the electric field generated between the center electrode and the ground electrode is always the discharge space and the insulator. As a result, electric field concentration occurs on the surface of the central electrode, and creeping discharge is more likely to occur, and the required voltage can be reduced. Therefore, a plasma ignition device with higher durability can be realized.
On the other hand, when the relationship between the insulator inner diameter φD CHM and the ground electrode opening inner diameter φD ORF (mm) is outside the scope of the present invention, the center electrode and the ground electrode are substantially directly opposed to each other. In other words, the air discharge becomes more dominant than the creeping discharge, which may increase the required voltage. In addition, cations having a large mass are likely to collide with the surface of the ground electrode, and there is a possibility that exhaustion due to cathode sputtering becomes severe.

請求項4の発明では、上記絶縁体の内径φDCHM(mm)と、上記接地電極開口部の内径φDORF(mm)との関係において、下記式2の関係を満たす。
ORF−DCHM≦1.2 ・・・ 式2
In the invention of claim 4, the relationship of the following formula 2 is satisfied in the relationship between the inner diameter φD CHM (mm) of the insulator and the inner diameter φD ORF (mm) of the ground electrode opening.
D ORF− D CHM ≦ 1.2 Equation 2

接地電極開口部の内径φDORFが放電空間の内径φDCHMよりも遙かに大きい場合、すなわちφDORF―φDCHM>1.2である場合には、正電圧印加及び背後電極効果による要求電圧VBDWの低下効果よりも、沿面放電距離GPSの増加による要求電圧VBDWの上昇効果が勝り、本発明の効果が発揮されず、放電できなくなる虞がある。 When the inner diameter φD ORF of the ground electrode opening is much larger than the inner diameter φD CHM of the discharge space, that is, when φD ORF− φD CHM > 1.2, the required voltage V due to the positive voltage application and the back electrode effect V than lowering effect of BDW, surpasses the effect of increasing the required voltage V BDW due to increased creeping discharge distance G PS, not exerted the effects of the present invention, there is a risk that can not be discharged.

請求項5の発明では、上記絶縁体の肉厚TINS(mm)において、下記式3の関係を満たす。
1.75≦TINS・・・ 式3
In invention of Claim 5, in the thickness TINS (mm) of the said insulator, the relationship of following formula 3 is satisfy | filled.
1.75 ≦ T INS Formula 3

請求項5の発明によれば、上記絶縁体が高い着火性を実現可能なプラズマ式点火装置の放電電圧に対して充分な絶縁耐圧を持つ。よって、更に耐久性の高いプラズマ式点火装置が実現できる。
一方、上記絶縁体の肉厚TINS(mm)において本発明の範囲を外れる場合には、上記放電用電源からの印加電圧に対して充分な絶縁耐圧を有さず、上記絶縁体の絶縁破壊に至る虞があり、点火装置としての信頼性が著しく低下する。
According to the invention of claim 5, the insulator has a sufficient withstand voltage against the discharge voltage of the plasma ignition device capable of realizing high ignitability. Therefore, a plasma ignition device with higher durability can be realized.
On the other hand, when the thickness T INS (mm) of the insulator is out of the range of the present invention, it does not have a sufficient withstand voltage with respect to the applied voltage from the discharge power supply, and the insulation breakdown of the insulator The reliability as an ignition device is significantly reduced.

請求項6の発明では、上記絶縁体の肉厚TINS(mm)において、下記式4の関係を満たす。
INS≦3.5・・・ 式4
In the invention of claim 6, the following equation 4 is satisfied in the thickness T INS (mm) of the insulator.
T INS ≦ 3.5 Equation 4

請求項6の発明によれば、背後電極による要求電圧の低下効果が発揮できる。よって、耐久性の高いプラズマ式点火装置が実現できる。
一方、上記絶縁体の肉厚TINSにおいて、本発明の範囲を外れる場合には、背後電極効果が小さくなり、要求電圧の低下を図ることができない虞がある。
According to the sixth aspect of the invention, the effect of reducing the required voltage by the back electrode can be exhibited. Therefore, a highly durable plasma ignition device can be realized.
On the other hand, if the thickness T INS of the insulator is out of the range of the present invention, the back electrode effect may be reduced, and the required voltage may not be reduced.

請求項7の発明では、上記絶縁体の内径φDCHM(mm)において、下記式5の関係を満たす。
0.7≦DCHM・・・ 式5
In the invention of claim 7, the following equation 5 is satisfied in the inner diameter φD CHM (mm) of the insulator.
0.7 ≦ D CHM ... Formula 5

請求項7の発明によれば、充分な耐久性能を確保できる。
一方、上記絶縁体の内径φDCHMにおいて、本発明の範囲を外れる場合には、
中心電極が細すぎるので、極めて高温のプラズマ状態となった気体によって容易に溶融され、著しく耐久性が低下する虞がある。
According to the invention of claim 7, sufficient durability performance can be secured.
On the other hand, if the inner diameter φD CHM of the insulator is outside the scope of the present invention,
Since the center electrode is too thin, it can be easily melted by the gas in an extremely high temperature plasma state, and the durability may be significantly reduced.

請求項8の発明では、上記絶縁体の内径φDCHM(mm)において、下記式6の関係を満たす。
CHM≦2.0・・・ 式6
In invention of Claim 8, in the internal diameter (phi) DCHM (mm) of the said insulator, the relationship of following formula 6 is satisfy | filled .
D CHM ≦ 2.0 Equation 6

請求項8の発明によれば、上記放電空間内の気体がプラズマ状態となったときに、上記燃焼機関の燃焼室内に高いエネルギを噴射でき、難着火性燃焼機関の点火が可能となる。
一方、上記絶縁体の内径φDCHMにおいて、本発明の範囲を外れる場合には、上記放電空間の容積が大きく、上記放電空間内の気体がプラズマ状態となっても、上記放電空間内の圧力が低く上記放電空間から噴射されず失火に至る虞がある。
According to the eighth aspect of the present invention, when the gas in the discharge space is in a plasma state, high energy can be injected into the combustion chamber of the combustion engine, and ignition of the non-ignitable combustion engine becomes possible.
On the other hand, when the inner diameter φD CHM of the insulator is outside the scope of the present invention, the volume of the discharge space is large, and even if the gas in the discharge space is in a plasma state, the pressure in the discharge space is There is a risk of misfiring without being injected from the discharge space.

請求項9の発明では、上記中心電極下端部から上記絶縁体によって形成された上記放電空間開口の出口端までの沿面放電距離GPS(mm)と上記絶縁体の内径φDCHM(mm)とにおいて、下記式7の関係を満たす。
1.8≦GPS/DCHM・・・ 式7
In the invention of claim 9, the creeping discharge distance G PS (mm) from the lower end of the center electrode to the exit end of the discharge space opening formed by the insulator and the inner diameter φD CHM (mm) of the insulator The relationship of the following formula 7 is satisfied.
1.8 ≦ G PS / D CHM ... Formula 7

上記放電用電源からの高電圧の印加によって、上記放電空間の絶縁が破壊され、これに続いて上記プラズマ発生用電源から大電流が供給されると、沿面放電経路に沿って電子が放出され、その近傍の気体が励起され高温、高圧のプラズマ状態となる。請求項9の発明によれば、難着火性の燃焼機関の点火に必要なエネルギの噴射が可能なプラズマ式点火装置が実現可能となる。
一方、上記中心電極下端部から上記絶縁体によって形成された上記放電空間開口の出口端までの沿面放電距離GPSと上記絶縁体の内径φDCHM(mm)とにおいて、本発明の範囲を外れると、放電距離が短過ぎるので、短い放電経路の間で励起される気体が少なくなり、点火に必要なエネルギを噴射できなくなる虞がある。
By applying a high voltage from the discharge power supply, the insulation of the discharge space is broken, and when a large current is subsequently supplied from the plasma generation power supply, electrons are emitted along the creeping discharge path, The nearby gas is excited and becomes a high-temperature, high-pressure plasma state. According to the ninth aspect of the present invention, it is possible to realize a plasma ignition device capable of injecting energy required for ignition of a hardly ignitable combustion engine.
On the other hand, in a creeping discharge distance G PS and the inner diameter [phi] D CHM of the insulator from the center electrode lower end to the outlet end of the discharge space opening formed by the insulator (mm), when out of the range of the present invention Since the discharge distance is too short, there is a possibility that less gas is excited between the short discharge paths and the energy necessary for ignition cannot be injected.

請求項10の発明では、上記中心電極下端部から上記絶縁体によって形成された上記放電空間開口の出口端までの沿面放電距離GPS(mm)と上記絶縁体の内径φDCHM(mm)とにおいて、下記式8の関係を満たす。
PS/DCHM≦2.7・・・ 式8
In the invention of claim 10, the creeping discharge distance G PS (mm) from the lower end of the center electrode to the exit end of the discharge space opening formed by the insulator and the inner diameter φD CHM (mm) of the insulator The relationship of the following formula 8 is satisfied.
G PS / D CHM ≦ 2.7 ... Formula 8

請求項10の発明によれば、適度な印加電圧によって、上記放電空間の絶縁を破壊し、沿面放電経路近傍の適度な量の気体をプラズマ状態にできるので、難着火性の燃焼機関の点火に必要なエネルギの噴射が可能なプラズマ式点火装置が実現可能となる。
一方、上記中心電極下端部から上記絶縁体によって形成された上記放電空間開口の出口端までの沿面放電距離GPSと上記絶縁体の内径φDCHM(mm)とにおいて、本発明の範囲を外れると、放電距離が長すぎるので、要求電圧が印加電圧を越え、放電に至らない虞がある。
According to the invention of claim 10, since the insulation of the discharge space can be broken by an appropriate applied voltage, and an appropriate amount of gas in the vicinity of the creeping discharge path can be brought into a plasma state, so that the ignition of the inflammable combustion engine can be performed. A plasma ignition device capable of injecting necessary energy can be realized.
On the other hand, in a creeping discharge distance G PS and the inner diameter [phi] D CHM of the insulator from the center electrode lower end to the outlet end of the discharge space opening formed by the insulator (mm), when out of the range of the present invention Since the discharge distance is too long, the required voltage exceeds the applied voltage, and there is a possibility that no discharge will occur.

請求項11の発明では、上記絶縁体は、その誘電率εが下記式9の関係を満たす誘電体からなる。
ε≧7.0 ・・・ 式9
In the invention of claim 11, the insulator is made of a dielectric material whose dielectric constant ε satisfies the relationship of the following formula 9.
ε ≧ 7.0 Equation 9

請求項11の発明によれば、上記絶縁体の誘電率は、上記放電空間の誘電率よりも遥かに高いので、上記中心電極と上記接地電極との間に形成される電界の電束の大部分は上記絶縁体内を通過する。したがって、上記中心電極下端部における電位傾度が更に大きくなり、正コロナを発生しやすくなる。よって、要求電圧を更に低くすることが可能となり、難着火性の燃焼機関において優れた着火性を有しつつ耐久性の高いプラズマ式点火装置が実現できる。   According to the eleventh aspect of the invention, since the dielectric constant of the insulator is much higher than the dielectric constant of the discharge space, the electric flux of the electric field formed between the center electrode and the ground electrode is large. The portion passes through the insulator. Therefore, the potential gradient at the lower end of the center electrode is further increased, and a positive corona is likely to be generated. Accordingly, the required voltage can be further reduced, and a highly durable plasma ignition device can be realized while having excellent ignitability in a non-ignitable combustion engine.

請求項12の発明では、上記接地電極の下端面と上記燃焼機関燃焼室の内壁面とを略同一となすべく、上記背後電極の上端部から上記接地電極の下端部に渡る外周面に、ネジ部を形成する。   According to a twelfth aspect of the present invention, in order to make the lower end surface of the ground electrode substantially the same as the inner wall surface of the combustion engine combustion chamber, a screw is provided on the outer peripheral surface extending from the upper end portion of the rear electrode to the lower end portion of the ground electrode. Forming part.

請求項12の発明によれば、放電空間内に発生した極めて高温のプラズマ状態の気体によって加熱された上記接地電極が上記ネジ部を介して上記燃焼機関燃焼室内壁に速やかに放熱するので、陰極スパッタリングによる消耗が更に起こり難くなる。したがって、難着火性の燃焼機関において優れた着火性を有しつつ耐久性の高いプラズマ式点火装置が実現できる。
加えて、上記接地電極が上記燃焼機関の燃焼室内に突出していないので、燃焼室内の気流を乱すことがなく、成層燃焼や均質混合燃焼等の燃焼形式の違いに係わらず、難着火性の燃焼機関において優れた着火性を有しつつ耐久性の高いプラズマ式点火装置が実現できる。
According to the invention of claim 12, since the ground electrode heated by the extremely high temperature plasma gas generated in the discharge space quickly dissipates heat to the combustion engine combustion chamber wall through the screw portion, the cathode Consumption due to sputtering is less likely to occur. Therefore, a highly durable plasma ignition device can be realized while having excellent ignitability in a non-ignitable combustion engine.
In addition, since the ground electrode does not protrude into the combustion chamber of the combustion engine, it does not disturb the air flow in the combustion chamber, and hardly ignitable combustion regardless of the type of combustion such as stratified combustion or homogeneous mixed combustion. A highly durable plasma ignition device having excellent ignitability in an engine can be realized.

本発明の第1の実施形態について、図1を参照して説明する。図1に示すように、本実施形態におけるプラズマ式点火装置1は、点火プラグ10と、高電圧電源として、放電用電源回路20とプラズマ発生用電源回路30とによって構成されている。
点火プラグ10は、後述の中心電極110と絶縁体120と接地電極130とによって構成されている。
A first embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, the plasma ignition device 1 according to this embodiment includes a spark plug 10 and a discharge power supply circuit 20 and a plasma generation power supply circuit 30 as a high-voltage power supply.
The spark plug 10 includes a center electrode 110, an insulator 120, and a ground electrode 130, which will be described later.

中心電極110は、長軸状に形成されている。中心電極110の先端側は、例えばイリジウム、イリジウム合金等の貴金属よりなる導電性材料によって長軸状に形成され、内部には耐食性に優れたNi材料や内部に銅等の良電導性で高熱伝導性の金属材料を内包した中心電極中軸111が形成され、基端側は中心電極ターミナル部113が形成されている。   The center electrode 110 is formed in a long axis shape. The front end side of the center electrode 110 is formed in a long axis shape by a conductive material made of a noble metal such as iridium or an iridium alloy, and has a highly conductive and highly conductive material such as a Ni material having excellent corrosion resistance and a copper inside. A central electrode middle shaft 111 containing a conductive metal material is formed, and a central electrode terminal portion 113 is formed on the base end side.

接地電極130は、略環状をしており、放電空間140を形成する絶縁体120の内周に連通する接地電極開口部130が形成されている。
接地電極130の基端側には、絶縁体120を収納保持するとともに、絶縁体120を介して中心電極110と対向する背後電極132が一体的に形成されている。
背後電極132の基端側から接地電極130の先端に渡る外周面には希薄燃焼機関40に螺結するためのネジ部133が形成されている。
更に、背後電極132の基端側には絶縁体120の中腹を覆うようにハウジング部13が形成され、更にハウジング部13の外周には、ネジ部133をネジ締めするための六角部134が形成され、ハウジング部13の基端側は、絶縁体120を加締め固定する加締め部135が形成されている。
接地電極130及びハウジング部13は、ニッケル、鉄等の金属材料によって形成されている。
The ground electrode 130 has a substantially annular shape, and is formed with a ground electrode opening 130 that communicates with the inner periphery of the insulator 120 that forms the discharge space 140.
On the base end side of the ground electrode 130, the insulator 120 is housed and held, and a back electrode 132 that faces the center electrode 110 through the insulator 120 is integrally formed.
On the outer peripheral surface extending from the base end side of the back electrode 132 to the tip of the ground electrode 130, a threaded portion 133 for screwing to the lean combustion engine 40 is formed.
Further, a housing part 13 is formed on the base end side of the back electrode 132 so as to cover the middle of the insulator 120, and a hexagonal part 134 for screwing the screw part 133 is formed on the outer periphery of the housing part 13. A caulking portion 135 for caulking and fixing the insulator 120 is formed on the base end side of the housing portion 13.
The ground electrode 130 and the housing part 13 are made of a metal material such as nickel or iron.

絶縁体120は、中心電極110を覆いつつ、中心電極110の下端面よりも下方に延びる略筒状に形成され、その内側は、中心電極110の下端面と接地電極開口部131とによって、放電空間140を形成し、中心電極110と接地電極130との間で放電可能となっている。
絶縁体120の中腹は、ハウジング部13によって固定され、ハウジング部13から露出する基端側は、コルゲート状の絶縁体頭部122が形成され、絶縁体頭部122から露出する中心電極ターミナル部113とハウジング部13との間の絶縁リークを防止している。
The insulator 120 is formed in a substantially cylindrical shape that covers the center electrode 110 and extends below the lower end surface of the center electrode 110, and the inside thereof is discharged by the lower end surface of the center electrode 110 and the ground electrode opening 131. A space 140 is formed, and discharge is possible between the center electrode 110 and the ground electrode 130.
The middle of the insulator 120 is fixed by the housing part 13, and a corrugated insulator head 122 is formed on the base end side exposed from the housing part 13, and the center electrode terminal part 113 exposed from the insulator head 122 is formed. Insulation leakage between the housing portion 13 and the housing portion 13 is prevented.

本実施形態において、放電空間140の内径φDCHM(mm)は、φ1.3mmに形成され、接地電極開口部131の内径φDORF(mm)は、φ1.5mmに形成されており、下記式1及び下記式2の関係を満たしている。
0.1≦DORF−DCHM・・・ 式1
ORF−DCHM≦1.2・・・ 式2
更に、絶縁体120の肉厚TINS(mm)は、2.1mmに形成されており、下記式3及び下記式4の関係を満たしている。
1.7≦TINS・・・ 式3
INS≦3.5・・・ 式4
より好ましくは、絶縁体120の肉厚TINSが2.1mm以上に設定するのがよい。絶縁体120の耐電圧が更に高くなり、信頼性が向上する。
加えて、絶縁体120の内径φDCHM(mm)は、φ1.3mmに形成されており、下記式5及び下記式6の関係を満たしている。
0.7≦DCHM・・・ 式5
CHM≦2.0・・・ 式6
中心電極110の下端部から絶縁体120によって形成された放電空間140開口の出口端までの沿面放電距離GPS(mm)は、2.5mm、に形成されており、GPS/DCHMは1.92となり、下記式7及び下記式8の関係を満たしている。
PS/DCHM≧1.8・・・ 式7
PS/DCHM≦2.7・・・ 式8
In the present embodiment, the inner diameter φD CHM (mm) of the discharge space 140 is formed to be φ1.3 mm, and the inner diameter φD ORF (mm) of the ground electrode opening 131 is formed to be φ1.5 mm. And the relationship of the following formula 2 is satisfied.
0.1 ≦ D ORF −D CHM・ ・ ・ Equation 1
D ORF −D CHM ≦ 1.2 Formula 2
Furthermore, the wall thickness T INS (mm) of the insulator 120 is formed to 2.1 mm, which satisfies the relationship of the following formula 3 and the following formula 4.
1.7 ≦ T INS ... Formula 3
T INS ≦ 3.5 Equation 4
More preferably, the thickness T INS of the insulator 120 is set to 2.1 mm or more. The withstand voltage of the insulator 120 is further increased, and the reliability is improved.
In addition, the inner diameter φD CHM (mm) of the insulator 120 is formed to be φ1.3 mm and satisfies the relationship of the following formula 5 and the following formula 6.
0.7 ≦ D CHM ... Formula 5
D CHM ≦ 2.0 Equation 6
The creeping discharge distance G PS (mm) from the lower end of the center electrode 110 to the outlet end of the opening of the discharge space 140 formed by the insulator 120 is 2.5 mm, and G PS / D CHM is 1 .92, which satisfies the relationship of the following formula 7 and the following formula 8.
G PS / D CHM ≧ 1.8 Formula 7
G PS / D CHM ≦ 2.7 ... Formula 8

放電空間140内径φDCHM、接地電極開口部131内径φDORF、絶縁体120肉厚TINS、沿面放電距離GPSを、式1〜式8のいずれか若しくは全てを満たす特定範囲に設定することにより、要求電圧を効果的に下げつつ、発生したプラズマ状態の気体を効率よく点火に利用し、着火性に優れ、かつ、耐久性の高いプラズマ点火装置1が実現できる。 By setting the discharge space 140 inner diameter φD CHM , the ground electrode opening 131 inner diameter φD ORF , the insulator 120 thickness T INS , and the creeping discharge distance G PS to a specific range satisfying any or all of the expressions 1 to 8. Thus, the plasma ignition device 1 having excellent ignitability and high durability can be realized by efficiently using the generated plasma state gas for ignition while effectively reducing the required voltage.

絶縁体120は、耐熱性、機械的強度、高温における絶縁耐力、熱伝導率などに優れた高純度のアルミナ、チタニア等からなり、基端側は、絶縁体材頭部121が形成され、中心電極ターミナル部111とハウジング135との電気絶縁性を確保している。また、絶縁体120の誘電率εAl2O3は、8.5であり、下記式9の関係を満たしている。
ε≧7.0・・・式9
The insulator 120 is made of high-purity alumina, titania, etc. excellent in heat resistance, mechanical strength, dielectric strength at high temperature, thermal conductivity, etc., and an insulating material head 121 is formed on the base end side, and the center Electrical insulation between the electrode terminal portion 111 and the housing 135 is ensured. Further, the dielectric constant ε Al2O3 of the insulator 120 is 8.5, which satisfies the relationship of the following formula 9.
ε ≧ 7.0 ... Equation 9

本発明は、例えば自動車用の直噴式ガソリンエンジンに用いられる均質リーンバーン、成層リーンバーン、過給混合燃焼等の難着火性の燃焼機関40に適用される。難着火性燃焼機関40は、シリンダヘッド410と図略のシリンダブロックとシリンダピストン420とによって燃焼室400が区画され、吸気筒411を開閉する吸気バルブ412、排気筒413を開閉する排気バルブ413、水冷ジャケット415等が設けられている。
シリンダヘッド410に設けられたプラグホール416には、点火プラグ10が、接地電極開口部131を燃焼室400内に開口して、ネジ部133によって螺結されている。 本実施形態において、放電空間140は、シリンダヘッド410の内側に形成され、接地電極130の先端は、シリンダヘッド410の内壁と略面一の状態となっている。
点火プラグ10は、機関40のシリンダヘッド410に機械的に固定されるとともに、接地電極130とシリンダヘッド410とが電気的に接地状態となり、更に、熱的にも結合状態となり、接地電極130及び背後電極132からシリンダヘッド410へ放熱容易となっている。
The present invention is applied to a combustion engine 40 that is difficult to ignite, such as homogeneous lean burn, stratified lean burn, supercharged mixed combustion, and the like used in a direct injection gasoline engine for automobiles, for example. In the inflammable combustion engine 40, a combustion chamber 400 is defined by a cylinder head 410, a cylinder block (not shown), and a cylinder piston 420, and an intake valve 412 that opens and closes an intake cylinder 411, an exhaust valve 413 that opens and closes an exhaust cylinder 413, A water cooling jacket 415 or the like is provided.
In the plug hole 416 provided in the cylinder head 410, the spark plug 10 is screwed by a screw portion 133 with the ground electrode opening 131 opened in the combustion chamber 400. In the present embodiment, the discharge space 140 is formed inside the cylinder head 410, and the tip of the ground electrode 130 is substantially flush with the inner wall of the cylinder head 410.
The spark plug 10 is mechanically fixed to the cylinder head 410 of the engine 40, the ground electrode 130 and the cylinder head 410 are electrically grounded, and are also thermally coupled to each other. Heat dissipation from the back electrode 132 to the cylinder head 410 is facilitated.

放電用電源20は、第1の電源21と、イグニションスイッチ22と点火コイル23と点火コイル駆動回路24と、電子制御装置(ECU)25と、第1の整流素子26とによって構成されている。点火コイル駆動回路24は、ECU25によって開閉制御されるIGBT(絶縁ゲートバイポーラトランジスタ)等のスイッチング素子を含み、第1の電源21からの電圧を点火コイル23によって昇圧した高電圧の点火プラグ10への供給を制御している。放電用電源20においては、イグニションスイッチ22を閉じると、第1の電源21から低圧の一次電圧が点火コイル23の一次コイル231に印加され、一次コイル231に磁化エネルギが蓄えられる。希薄燃焼機関40の運転状態に応じて、ECU25からの指令に従って、点火コイル駆動回路24が開閉制御される。   The discharge power source 20 includes a first power source 21, an ignition switch 22, an ignition coil 23, an ignition coil drive circuit 24, an electronic control unit (ECU) 25, and a first rectifying element 26. The ignition coil drive circuit 24 includes a switching element such as an IGBT (insulated gate bipolar transistor) whose opening and closing is controlled by the ECU 25, and supplies a voltage from the first power supply 21 to the high voltage spark plug 10 that is boosted by the ignition coil 23. The supply is controlled. In the discharge power source 20, when the ignition switch 22 is closed, a low voltage primary voltage is applied from the first power source 21 to the primary coil 231 of the ignition coil 23, and magnetizing energy is stored in the primary coil 231. The ignition coil drive circuit 24 is controlled to open and close in accordance with a command from the ECU 25 according to the operating state of the lean combustion engine 40.

プラズマ発生用電源30は、第2の電源31と、抵抗32と、プラズマ発生用コンデンサ33と、第2の整流素子34とによって構成されている。プラズマ発生用電源30においては、第2の電源31によって、コンデンサ33が充電されている。   The plasma generating power source 30 includes a second power source 31, a resistor 32, a plasma generating capacitor 33, and a second rectifying element 34. In the plasma generating power supply 30, the capacitor 33 is charged by the second power supply 31.

図2、3を参照して、本発明のプラズマ式点火装置の効果について説明する。
図2(a)に示すように、点火信号に従って、点火コイル駆動回路24のスイッチングにより一次コイル231の一次電流が遮断されると、点火コイル23の磁界が変化し、一次コイル231に−数百Vの一次電圧が生じ、更に自己誘導によって、二次コイル232に数〜数十kVの二次電圧が生じる。第1の整流素子26によって、中心電極110には、正電圧が印加され、この電圧が放電空間140の絶縁耐圧を超えると、放電空間140の絶縁が破壊され、中心電極110と接地電極130との間で放電が起こる。
このとき、図2(b)に示すように、中心電極110が陽極となっているので、正コロナが中心電極110の下端表面に発生する。正コロナは従来の中心電極を陰極とした場合に発生する負コロナに比べ、発生電圧はやや高くなるが極めて進展性に優れている。したがって、放電空間140の絶縁を破壊し、中心電極110と接地電極130との間に放電が開始可能となる要求電圧VBDWは低くなる。
The effect of the plasma ignition device of the present invention will be described with reference to FIGS.
As shown in FIG. 2A, when the primary current of the primary coil 231 is cut off by switching of the ignition coil drive circuit 24 in accordance with the ignition signal, the magnetic field of the ignition coil 23 changes, and the primary coil 231 has several hundreds. A primary voltage of V is generated, and a secondary voltage of several to several tens of kV is generated in the secondary coil 232 by self-induction. A positive voltage is applied to the center electrode 110 by the first rectifying element 26, and when this voltage exceeds the dielectric strength voltage of the discharge space 140, the insulation of the discharge space 140 is destroyed, and the center electrode 110 and the ground electrode 130 Discharge occurs between.
At this time, as shown in FIG. 2B, since the center electrode 110 serves as an anode, a positive corona is generated on the lower end surface of the center electrode 110. The positive corona has a slightly higher voltage than the negative corona generated when the conventional center electrode is used as a cathode, but is extremely excellent in progress. Therefore, the required voltage V BDW at which the insulation of the discharge space 140 is broken and the discharge can be started between the center electrode 110 and the ground electrode 130 becomes low.

更に、絶縁体120の材質はアルミナであり、その誘電率εAl2O3は、8.5であり、空気の誘電率εAIRの1.0に比べて遥かに高い。
したがって、中心電極110の端面と接地電極130の開口部131との間に形成される電界の電束の大部分は、絶縁体120の内部を通過することになる。このため、中心電極110と接地電極130との間に形成される放電経路は、従来の中心電極110を陰極とした場合に起こる放電空間140内を貫通する気中放電よりも、絶縁体120の表面を這うように放電経路を形成する沿面放電が支配的となる。
Furthermore, the material of the insulator 120 is alumina, and the dielectric constant ε Al 2 O 3 is 8.5, which is much higher than the dielectric constant ε AIR of air of 1.0.
Therefore, most of the electric flux of the electric field formed between the end face of the center electrode 110 and the opening 131 of the ground electrode 130 passes through the inside of the insulator 120. For this reason, the discharge path formed between the center electrode 110 and the ground electrode 130 has a higher resistance than the air discharge that penetrates the discharge space 140 that occurs when the conventional center electrode 110 is used as a cathode. The creeping discharge that forms the discharge path so as to crawl the surface becomes dominant.

また、接地電極130の基端側は、背後電極132として、中心電極110との間に絶縁体120を介して強い電界を形成し、絶縁体120の内外を電束が出入りすることにより、中心電極110の下端面に電束が集中して局部的に電位傾度の高い部位が形成される。このような電界集中によって、上記中心電極表面に更に正コロナが発生しやすくなり、上記放電空間の絶縁破壊が容易となり、放電空間140の絶縁を破壊するのに必要な要求電圧VBDWが低くなっている。 In addition, a strong electric field is formed between the base electrode side of the ground electrode 130 and the center electrode 110 as the back electrode 132 via the insulator 120, and the electric flux enters and leaves the inside and outside of the insulator 120. The electric flux concentrates on the lower end surface of the electrode 110, and a region having a high potential gradient is formed locally. Due to such electric field concentration, a positive corona is more likely to be generated on the surface of the center electrode, the dielectric breakdown of the discharge space is facilitated, and the required voltage V BDW required to break the insulation of the discharge space 140 is lowered. ing.

放電用電源20からの高電圧の印加によって、中心電極110と接地電極130との間で放電が起こると、コンデンサ33に蓄えられたエネルギが、例えば100A程度の大電流となって第2の整流素子34によって整流されながら流れ、放電空間140内に一気に放出され、100mJ程度の高いエネルギが放電空間140内の気体に与えられる。   When a discharge occurs between the center electrode 110 and the ground electrode 130 due to the application of a high voltage from the discharge power supply 20, the energy stored in the capacitor 33 becomes a large current of about 100 A, for example, and the second rectification. The electric current flows while being rectified by the element 34 and is discharged into the discharge space 140 at once, and high energy of about 100 mJ is given to the gas in the discharge space 140.

このとき、図3(a)、(b)に示すように、放電空間140内の気体が電離され高温・高圧のプラズマ状態となり、接地電極開口部131から噴射長LPZの容積的に大きな高温領域が噴射される。
このとき、中心電極110は、陽極であるため、プラズマ状態となった気体の内、質量の大きな陽イオン50は、電気的に反発するため、中心電極110の表面には、質量の小さい電子51のみが衝突し、陽イオン50の衝突によるスパッタリングを起こし難くなっている。
更に、接地電極130がネジ部132を介してシリンダヘッド410に螺結されているので、プラズマ状態となった気体によって加熱された接地電極130は、速やかにシリンダヘッド410に放熱するので、更に耐久性が向上している。
加えて、接地電極131の下端面がシリンダヘッド410の内壁と略面一となっているので、燃焼室400内の気流に乱れを生じることなく所望の部位にプラズマ状態となった気体が噴射できる。この高温領域は極めて高温であるのに加え、容積的に大きな火炎核に成長し、難着火性の燃焼室400内の混合気を点火することができる。
At this time, as shown in FIGS. 3A and 3B, the gas in the discharge space 140 is ionized to be in a high-temperature / high-pressure plasma state, and the high volume-wise high temperature of the injection length L PZ from the ground electrode opening 131. A region is injected.
At this time, since the central electrode 110 is an anode, the cation 50 having a large mass among the gas in a plasma state is electrically repelled, and thus the electron 51 having a small mass is formed on the surface of the central electrode 110. Only collide, and sputtering due to the collision of the positive ions 50 is difficult to occur.
Furthermore, since the ground electrode 130 is screwed to the cylinder head 410 via the screw portion 132, the ground electrode 130 heated by the gas in the plasma state quickly radiates heat to the cylinder head 410, so that it is further durable. Improved.
In addition, since the lower end surface of the ground electrode 131 is substantially flush with the inner wall of the cylinder head 410, a gas in a plasma state can be injected to a desired portion without disturbing the airflow in the combustion chamber 400. . In addition to being extremely hot, this high temperature region can grow into a large volume flame kernel and ignite the air-fuel mixture in the non-ignitable combustion chamber 400.

また、放電用電源20の点火コイル23の二次コイル232には、高電圧の放電後も誘導電流が残存し、これがプラズマ噴射後に極僅かであるが微弱電流として放電空間140内に放出されることが判明した。この時、接地電極130は、高温に加熱されているので、この微弱電流によって電離した陽イオン50の衝突により、陰極スパッタリングを起こす虞がある。点火コイル23から放出される微弱電流は、点火コイルの自己インダクタンスによって、数百μsecから2msec程度継続するため、接地電極130の消耗に対する影響が大きいが、本発明によれば、放電空間140の絶縁を破壊するのに必要な要求電圧VBDWを低下することが可能となり、点火コイル23の自己インダクタンスを小さくできる。点火コイル23の自己インダクタンスが小さくなると、放電後の微弱電流の放出時間が短くなり、該微弱電流による接地電極130の陰極スパッタリングが起こり難くなる。したがって、難着火性の希薄燃焼機関において優れた着火性を有しつつ耐久性の高いプラズマ式点火装置1が実現できる。 In addition, an induced current remains in the secondary coil 232 of the ignition coil 23 of the discharge power supply 20 even after high-voltage discharge, and this is released into the discharge space 140 as a very weak current after plasma injection. It has been found. At this time, since the ground electrode 130 is heated to a high temperature, there is a possibility that cathode sputtering may occur due to the collision of the cation 50 ionized by the weak current. The weak current emitted from the ignition coil 23 continues for several hundred μsec to 2 msec due to the self-inductance of the ignition coil, and thus has a great influence on the consumption of the ground electrode 130. It is possible to reduce the required voltage V BDW necessary to destroy the ignition coil 23, and to reduce the self-inductance of the ignition coil 23. When the self-inductance of the ignition coil 23 is reduced, the discharge time of the weak current after the discharge is shortened, and the cathode sputtering of the ground electrode 130 due to the weak current is less likely to occur. Therefore, it is possible to realize the plasma ignition device 1 having high ignitability and high durability in the hardly ignitable lean combustion engine.

図4に本発明の第1の実施形態において、沿面放電距離GPSを3.0mmに固定した実施例と、従来の中心電極側に負の高電圧を印加した比較例とにおいて、筒内圧力を変化させたときの放電電圧の変化を示す。本図に示すように、本発明によれば、筒内圧力が高くなっても、放電に必要な要求電圧VBDWを従来よりも低く保つことができることが判明した。 In a first embodiment of the present invention in FIG. 4, the embodiment of fixing the creeping discharge distance G PS to 3.0 mm, in a comparative example in which a negative high voltage is applied to the conventional center electrode, cylinder pressure The change of the discharge voltage when changing is shown. As shown in the figure, according to the present invention, it has been found that the required voltage V BDW required for discharge can be kept lower than in the prior art even when the in-cylinder pressure increases.

図5には、沿面放電距離GPSを2.5mm、絶縁体120の肉厚TINSを2.1mm、放電空間140の内径φDCHMを1.3mmに固定し、接地電極開口部131の内径φDORFと内径φDCHMとの差を0から1.6mmまで変化させたときの筒内圧力2MPaにおける放電空間140の絶縁破壊に必要とされる要求電圧VBDWの変化を測定した結果を示す。本図に示すように、φDORFとφDCHMとの差を横軸とし、要求電圧VBDWを縦軸とした特性は、0.5mm付近で要求電圧VBDWが最も低くなる下に突の曲線を描く関係であることが判明した。φDORF−φDCHMを0.1mm以上1.2mm以下の範囲とすることにより要求電圧VBDWを低くできるので、耐久性の向上を図ることが期待できる。 FIG 5, 2.5 mm creeping discharge distance G PS, the thickness T INS insulator 120 2.1 mm, an inner diameter [phi] D CHM of the discharge space 140 is fixed to 1.3 mm, the inner diameter of the ground electrode opening 131 The result of having measured the change of the required voltage VBDW required for the dielectric breakdown of the discharge space 140 in the cylinder pressure 2MPa when changing the difference of ( phi) D ORF and internal diameter ( phi) D CHM from 0 to 1.6 mm is shown. As shown in this figure, the difference between [phi] D ORF and [phi] D CHM the horizontal axis, characteristic of the required voltage V BDW and the vertical axis is the collision under the requested voltage V BDW is lowest in the vicinity of 0.5mm curve It turned out to be a relationship drawing. Since the required voltage V BDW can be lowered by setting φD ORF −φD CHM in the range of 0.1 mm to 1.2 mm, it can be expected to improve durability.

図6には、放電空間140の内径φDCHMを固定し、絶縁体120の肉厚TINSを1.5mm〜4mmまで変化させたときの要求電圧VBDWの変化を測定した結果を示す。本図に示すように、絶縁体120の肉厚TINSが厚くなると徐々に要求電圧VBDWが上昇し、特に絶縁体120の肉厚TINSが3.5mmより厚くなると急激に要求電圧VBDWが高くなることが判明した。一方、絶縁体120の肉厚TINSが1.75mmよりも薄くなると絶縁体120の絶縁耐圧が低くなり、絶縁破壊を招くおそれが生じる。 FIG. 6 shows a result of measuring a change in the required voltage V BDW when the inner diameter φD CHM of the discharge space 140 is fixed and the thickness T INS of the insulator 120 is changed from 1.5 mm to 4 mm. As shown in this figure, when the thickness T INS of the insulator 120 is increased, the required voltage V BDW gradually increases, and particularly when the thickness T INS of the insulator 120 is greater than 3.5 mm, the required voltage V BDW is rapidly increased. Turned out to be high. On the other hand, when the thickness T INS of the insulator 120 is thinner than 1.75 mm, the withstand voltage of the insulator 120 is lowered, which may cause dielectric breakdown.

図7には、放電空間140の内径φDCHMを0.5mm〜2.0mmまで変化させ、耐久試験を行った後の電極の消耗に伴う沿面放電距離GPSのギャップ拡大率の変化を測定した結果を示す。なお、中心電極110は、絶縁体120に覆われる構造なので、中心電極110の直径の最大値は、放電空間140の内径φDCHMに略同一である。本図に示すように、φDCHMが0.7mmより細くなると、急激に電極消耗による沿面放電距離GPSの拡大率大きくなることが判明した。なお、φDCHMが2.0mmより大きくなると、プラズマ状態となった気体が放電空間140から噴射される圧力が低くなり、機関の点火ができなくなる虞を生じる。 Figure 7 is an inside diameter [phi] D CHM of the discharge space 140 is changed from 0.5 mm to 2.0 mm, were measured creeping discharge distance change of the gap enlargement ratio G PS due to wear of the electrode after the durability test Results are shown. Since the center electrode 110 is covered with the insulator 120, the maximum diameter of the center electrode 110 is substantially the same as the inner diameter φD CHM of the discharge space 140. As shown in the figure, when [phi] D CHM is thinner than 0.7 mm, rapidly be greater magnification of creeping discharge distance G PS by electrode wear it was found. When φD CHM is larger than 2.0 mm, the pressure at which the gas in the plasma state is injected from the discharge space 140 becomes low, and there is a possibility that the engine cannot be ignited.

図8には、沿面放電距離GPSと放電空間140内径φDCHMとの比率を1.3から3.5まで変化させ、200mJのエネルギを与えたときに、大気雰囲気下で放電空間140から噴射されるプラズマ状態気体の噴出長LPZを高速度カメラで撮影して測定した結果を示す。本図に示すように、GPSとφDCHMとの比を横軸とし、噴出長LPZを縦軸とした特性は、GPS/φDCHMが1.8から2.7付近で最も噴出長LPZが長くなる上に突の曲線を描く関係であることが判明した。 Figure 8 is a ratio of the creeping discharge distance G PS discharge spaces 140 inside diameter [phi] D CHM varied from 1.3 to 3.5, when given the energy of 200 mJ, the injection from the discharge space 140 in the atmosphere The result of having photographed and measured the ejection length LPZ of the plasma state gas to be measured with a high-speed camera is shown. As shown in the figure, the characteristic in which the ratio of G PS and φD CHM is the horizontal axis and the jet length L PZ is the vertical axis is the maximum jet length when G PS / φD CHM is in the vicinity of 1.8 to 2.7. It has been found that the relationship is such that L PZ becomes longer and a convex curve is drawn.

図9を参照して、絶縁体内径φDCHM(mm)と、接地電極開口部内径φDORF(mm)との関係において本発明の範囲を外れる従来のプラズマ式点火装置の問題点について説明する。本図(a)に示すように、接地電極開口部131aの内径φDORFが放電空間140aの内径φDCHMと略同一又はそれよりも小さい場合、すなわちφDORF―φDCHM<0.1である場合には、中心電極110aと接地電極130aとが略直接的に対向することとなり、沿面放電よりも気中放電が支配的となり、要求電圧VBDWの上昇を招く虞がある。加えて、接地電極130aの表面に質量の大きい陽イオン50が衝突しやすくなり、陰極スパッタリングによる消耗が激しくなる。また、本図(b)に示すように、接地電極開口部131bの内径φDORFが放電空間140bの内径φDCHMよりも遙かに大きい場合、すなわちφDORF―φDCHM>1.2である場合には、正電圧印加及び背後電極効果による要求電圧VBDWの低下効果よりも、沿面放電距離GPSの増加による要求電圧VBDWの上昇効果が勝り、本発明の効果が発揮されず、放電できなくなる虞がある。 With reference to FIG. 9, the problem of the conventional plasma ignition device that falls outside the scope of the present invention in relation to the insulator inner diameter φD CHM (mm) and the ground electrode opening inner diameter φD ORF (mm) will be described. As shown in FIG. 5A, when the inner diameter φD ORF of the ground electrode opening 131a is substantially equal to or smaller than the inner diameter φD CHM of the discharge space 140a, that is, when φD ORF− φD CHM <0.1. In this case, the center electrode 110a and the ground electrode 130a are almost directly opposed to each other, so that the air discharge is more dominant than the creeping discharge, which may increase the required voltage V BDW . In addition, the cation 50 having a large mass is likely to collide with the surface of the ground electrode 130a, and consumption by cathode sputtering becomes severe. Further, as shown in FIG. 5B, when the inner diameter φD ORF of the ground electrode opening 131b is much larger than the inner diameter φD CHM of the discharge space 140b, that is, when φD ORF− φD CHM > 1.2. the, than lowering effect of the required voltage V BDW by applying a positive voltage and a back electrode effect, surpasses the effect of increasing the required voltage V BDW due to increased creeping discharge distance G PS, not exerted the effects of the present invention, it can be discharged There is a risk of disappearing.

図10を参照して、絶縁体120の肉厚TINSが本発明の範囲を外れる従来のプラズマ式点火装置の問題点について説明する。本図(a)に示すように、絶縁体120cの肉厚TINSが薄すぎる場合、即ち、TINS<1.75の場合には、難着火性の燃焼機関の点火に必要なプラズマ状態の気体を噴射するだけの放電空間140cを形成したときに必要となる要求電圧VBDWに対して、絶縁体120cの耐電圧が不足して、絶縁体120cを貫通して絶縁破壊が起こる虞があり、プラズマ式点火装置の信頼性が著しく低下する。また、本図(b)に示すように、絶縁体120dの肉厚TINSが厚すぎる場合、即ち、TINS>3.5の場合には、中心電極110と背後電極132との距離が大きくなるので背後電極効果が小さくなり、要求電圧VBDWの低下を図ることができない虞がある。したがって、プラズマ式点火装置の信頼性が著しく低下する。 With reference to FIG. 10, the problem of the conventional plasma ignition device in which the thickness T INS of the insulator 120 falls outside the scope of the present invention will be described. As shown in this figure (a), when the thickness T INS of the insulator 120c is too thin, that is, when T INS <1.75, the plasma state necessary for ignition of the non-ignitable combustion engine is reduced. The withstand voltage of the insulator 120c may be insufficient with respect to the required voltage V BDW required when the discharge space 140c that only injects the gas is formed, and there is a possibility that dielectric breakdown may occur through the insulator 120c. The reliability of the plasma ignition device is significantly reduced. Further, as shown in FIG. 4B, when the thickness T INS of the insulator 120d is too thick, that is, when T INS > 3.5, the distance between the center electrode 110 and the back electrode 132 is large. Therefore, the back electrode effect is reduced, and there is a possibility that the required voltage V BDW cannot be reduced. Therefore, the reliability of the plasma ignition device is significantly reduced.

図11に、放電空間140の内径φDCHMが、本発明の範囲を外れる従来のプラズマ式点火装置の問題点について説明する。本図(a)に示すように、中心電極110eが細く、放電空間140eの内径φDCHMが小さすぎる場合、即ち、φDCHM<0.7の場合には、中心電極110eが細すぎると、極めて高温のプラズマ状態となった気体によって極めて高温に加熱され、中心電極の極性を正極性にした事により、中心電極110の表面におけるスパッタリングの発生が抑制されたとしても、容易に中心電極110の表面が溶融され、著しく耐久性が低下する虞がある。また、本図(b)に示すように、沿面放電経路の近傍に電子が放出され、放電空間140内において、沿面放電経路近傍、即ち、絶縁体120の内周壁表面近傍の気体がプラズマ状態となるため、中心電極110fが太く、放電空間140fの内径φDCHMが大きすぎる場合、即ち、φDCHM>2.0の場合には、放電空間140fが大きくなりすぎ、沿面放電経路から離れた位置のプラズマ状態とならない気体が多く存在し、放電空間140内の気体が燃焼室400内に噴射されるのに十分な圧力に達せず、失火に至る虞がある。 FIG. 11 illustrates a problem of a conventional plasma ignition device in which the inner diameter φD CHM of the discharge space 140 is outside the scope of the present invention. As shown in FIG. 5A, when the center electrode 110e is thin and the inner diameter φD CHM of the discharge space 140e is too small, that is, when φD CHM <0.7, the center electrode 110e is too thin. Even if the generation of sputtering on the surface of the center electrode 110 is suppressed by being heated to an extremely high temperature by the gas in a high-temperature plasma state and making the polarity of the center electrode positive, the surface of the center electrode 110 is easily May be melted and durability may be significantly reduced. Further, as shown in FIG. 5B, electrons are emitted in the vicinity of the creeping discharge path, and in the discharge space 140, the gas in the vicinity of the creeping discharge path, that is, in the vicinity of the inner peripheral wall surface of the insulator 120 is in a plasma state. Therefore, when the center electrode 110f is thick and the inner diameter φD CHM of the discharge space 140f is too large, that is, when φD CHM > 2.0, the discharge space 140f becomes too large and is located away from the creeping discharge path. There is a large amount of gas that is not in a plasma state, and the gas in the discharge space 140 does not reach a pressure sufficient to be injected into the combustion chamber 400, which may lead to misfire.

図12に、中心電極110下端部から上記絶縁体によって形成された上記放電空間開口の出口端までの沿面放電距離GPSにおいて、本発明の範囲を外れる従来のプラズマ式点火装置の問題点について説明する。本図(a)に示すように、放電空間140の内径φDCHMに比べて沿面放電距離GPSが短い場合、即ち、GPS/DCHM<1.8の場合には、放電距離が短過ぎるので、放電経路の間で励起される気体が少なくなり、燃焼機関の点火に必要なエネルギを噴射できなくなる虞がある。また、本図(b)に示すように、放電空間140の内径φDCHMに比べて沿面放電距離GPSが長い場合、即ち、GPS/DCHM>2.7の場合には、放電距離が長すぎるので、要求電圧VBDWが印加電圧を越え、放電に至らない虞がある。 12, the surface discharge distance G PS from the center electrode 110 lower end to the outlet end of the discharge space opening formed by the insulator, the problem of the conventional plasma ignition system departing from the scope of the present invention described To do. As shown in FIG. 5A, when the creeping discharge distance G PS is shorter than the inner diameter φD CHM of the discharge space 140, that is, when G PS / D CHM <1.8, the discharge distance is too short. Therefore, the gas excited between the discharge paths is reduced, and there is a possibility that the energy required for ignition of the combustion engine cannot be injected. Further, as shown in FIG. 4B, when the creeping discharge distance G PS is longer than the inner diameter φD CHM of the discharge space 140, that is, when G PS / D CHM > 2.7, the discharge distance is Since it is too long, there is a possibility that the required voltage V BDW exceeds the applied voltage and does not lead to discharge.

本発明は、上記実施形態に限定するものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。例えば、上記実施形態においては、放電用電源とプラズマ発生用電源とを異なる電源によって電力供給しているが、Dc−Dcコンバータ等を介装して、ひとつの電源を用いる構成としても良い。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention. For example, in the above embodiment, the discharge power source and the plasma generation power source are supplied by different power sources. However, a single power source may be used via a Dc-Dc converter or the like.

本発明の第1の実施形態におけるプラズマ式点火装置の構成を示す全体図。1 is an overall view showing a configuration of a plasma ignition device according to a first embodiment of the present invention. 本発明の第1の実施形態における効果を示し、(a)は、電圧及び電流変化を示す特性図、(b)は、放電時の状態を示す要部断面図。The effect in the 1st Embodiment of this invention is shown, (a) is a characteristic view which shows a voltage and an electric current change, (b) is principal part sectional drawing which shows the state at the time of discharge. 本発明の第1の実施形態における効果を示し、(b)は、プラズマ発生時の状態を示すプラズマ式点火装置の状態を示す断面図、(c)は、プラズマ発生時の状態を示す要部断面図。The effect in the 1st Embodiment of this invention is shown, (b) is sectional drawing which shows the state of the plasma-type ignition device which shows the state at the time of plasma generation, (c) is the principal part which shows the state at the time of plasma generation Sectional drawing. 比較例とともに本発明の効果を示す特性図。The characteristic view which shows the effect of this invention with a comparative example. は、接地電極開口部内径と放電空間内径との差に起因する要求電圧の変化を示す特性図。FIG. 4 is a characteristic diagram showing a change in required voltage due to a difference between the inner diameter of the ground electrode opening and the inner diameter of the discharge space. は、絶縁体肉厚に起因する要求電圧の変化を示す特性図。FIG. 4 is a characteristic diagram showing a change in required voltage due to the insulator thickness. は、放電空間内径に起因するギャップ拡大率の変化を示す特性図。FIG. 6 is a characteristic diagram showing a change in gap enlargement ratio due to the inner diameter of the discharge space. は、沿面放電距離と放電空間内径との比に起因するプラズマ噴出長の変化を示す特性図。FIG. 4 is a characteristic diagram showing a change in plasma ejection length due to a ratio between a creeping discharge distance and a discharge space inner diameter. (a)、(b)は、従来のプラズマ点火装置の接地電極開口部内径に起因する問題点を示す要部断面図。(A), (b) is principal part sectional drawing which shows the problem resulting from the ground electrode opening part internal diameter of the conventional plasma ignition apparatus. (a)、(b)は、従来のプラズマ点火装置の絶縁体肉厚に起因する問題点を示す要部断面図。(A), (b) is principal part sectional drawing which shows the problem resulting from the insulator thickness of the conventional plasma ignition apparatus. (a)、(b)は、従来のプラズマ点火装置の放電空間内径に起因する問題点を示す要部断面図。(A), (b) is principal part sectional drawing which shows the problem resulting from the discharge space internal diameter of the conventional plasma ignition apparatus. (a)、(b)は、従来のプラズマ点火装置の沿面放電距離に起因する問題点を示す要部断面図。(A), (b) is principal part sectional drawing which shows the problem resulting from the creeping discharge distance of the conventional plasma ignition apparatus. 従来のプラズマ点火装置の問題点を示す要部断面図。Sectional drawing which shows the principal part which shows the problem of the conventional plasma ignition apparatus. 従来のプラズマ点火装置の構成を示す全体図。The whole figure which shows the structure of the conventional plasma ignition apparatus.

符号の説明Explanation of symbols

10 プラズマ式点火プラグ
110 中心電極
120 絶縁体
130 接地電極
131 開口部
140 放電空間
20 放電用電源
30 プラズマ発生用電源
40 燃焼機関
φDCHM 放電空間内径
φDORF 接地電極開口部内径
INS 絶縁体肉厚
PS 沿面放電距離
10 Plasma Spark Plug 110 Center Electrode 120 Insulator 130 Ground Electrode 131 Opening 140 Discharge Space 20 Discharge Power Supply 30 Plasma Generation Power Supply 40 Combustion Engine φD CHM Discharge Space Inner Diameter φD ORF Ground Electrode Opening Inner Diameter T INS Insulator Thickness G PS creeping discharge distance

Claims (12)

燃焼機関に装着され、中心電極と絶縁体と接地電極とによって放電空間を区画した点火プラグと、上記中心電極と上記接地電極との間に高電圧を印加する放電用電源と上記放電空間内に大電流を放出するプラズマ発生用電源とを具備し、
上記放電用電源からの高電圧の印加によって上記放電空間の絶縁を破壊し、上記プラズマ発生用電源からの大電流の放出によって上記放電空間内の気体を高温、高圧のプラズマ状態として、上記燃焼機関の燃焼室内に噴射し、該機関の点火を行うプラズマ式点火装置において、
上記中心電極は軸状に形成し、
上記絶縁体は、上記中心電極の外側を覆いつつ、上記中心電極下端面から軸方向に延び、その下端が開口する略筒状に形成し、
上記接地電極は、上記絶縁体の外側に設けられ、上記絶縁体下端の開口に連通する開口部を有する略環状に形成しつつ、
上記中心電極を陽極側とし、上記接地電極を陰極側として、正電位の上記高電圧の印加と上記大電流の供給とを行うことを特徴とするプラズマ式点火装置。
A spark plug that is mounted on a combustion engine and divides a discharge space by a center electrode, an insulator, and a ground electrode, a discharge power source that applies a high voltage between the center electrode and the ground electrode, and the discharge space A power source for generating plasma that emits a large current,
The combustion engine breaks the insulation of the discharge space by applying a high voltage from the discharge power source, and changes the gas in the discharge space to a high temperature, high pressure plasma state by releasing a large current from the plasma generating power source. In a plasma ignition device for injecting into the combustion chamber and igniting the engine,
The center electrode is formed in an axial shape,
The insulator is formed in a substantially cylindrical shape that extends in the axial direction from the lower end surface of the center electrode while covering the outside of the center electrode, and the lower end of the insulator opens.
The ground electrode is provided outside the insulator and is formed in a substantially annular shape having an opening communicating with the opening at the lower end of the insulator.
A plasma ignition device characterized in that application of the positive high voltage and supply of the large current are performed with the central electrode as the anode side and the ground electrode as the cathode side.
上記接地電極を反接地電極開口部方向に向かって延設したハウジング部を形成し、上記絶縁体を介して上記ハウジング部の上記中心電極と対向する部位を、上記中心電極に対する背後電極となしたことを特徴とする請求項1に記載のプラズマ式点火装置。   A housing portion is formed by extending the ground electrode in the direction toward the opening of the anti-ground electrode, and a portion facing the center electrode of the housing portion via the insulator serves as a back electrode for the center electrode. The plasma ignition device according to claim 1. 上記絶縁体の内径φDCHM(mm)と、上記接地電極開口部の内径φDORF(mm)との関係において、下記式1の関係を満たすことを特徴とする請求項1又は2に記載のプラズマ式点火装置。
0.1≦DORF−DCHM・・・ 式1
3. The plasma according to claim 1, wherein a relationship of the following formula 1 is satisfied in a relationship between an inner diameter φD CHM (mm) of the insulator and an inner diameter φD ORF (mm) of the ground electrode opening. Type ignition device.
0.1 ≦ D ORF −D CHM・ ・ ・ Equation 1
上記絶縁体の内径φDCHM(mm)と、上記接地電極開口部の内径φDORF(mm)との関係において、下記式2の関係を満たすことを特徴とする請求項1ないし3のいずれか1項に記載のプラズマ式点火装置。
ORF−DCHM≦1.2・・・ 式2
4. The relationship between the inner diameter φD CHM (mm) of the insulator and the inner diameter φD ORF (mm) of the ground electrode opening satisfies the relationship of the following expression (2): 4. The plasma ignition device according to item.
D ORF −D CHM ≦ 1.2 Formula 2
上記絶縁体の肉厚TINS(mm)において、下記式3の関係を満たすことを特徴とする請求項1ないし4のいずれか1項に記載のプラズマ式点火装置。
1.75≦TINS・・・ 式3
5. The plasma ignition device according to claim 1, wherein a thickness T INS (mm) of the insulator satisfies a relationship of the following expression (3).
1.75 ≦ T INS Formula 3
上記絶縁体の肉厚TINS(mm)において、下記式4の関係を満たすことを特徴とする請求項1ないし5のいずれか1項に記載のプラズマ式点火装置。
INS≦3.5・・・ 式4
The plasma ignition device according to any one of claims 1 to 5, wherein a thickness T INS (mm) of the insulator satisfies a relationship of the following expression (4).
T INS ≦ 3.5 Equation 4
上記絶縁体の内径φDCHM(mm)において、下記式5の関係を満たすことを特徴とする請求項1ないし6のいずれか1項に記載のプラズマ式点火装置。
0.7≦DCHM・・・ 式5
7. The plasma ignition device according to claim 1, wherein an inner diameter φD CHM (mm) of the insulator satisfies a relationship of the following formula (5).
0.7 ≦ D CHM ... Formula 5
上記絶縁体の内径φDCHM(mm)において、下記式6の関係を満たすことを特徴とする請求項1ないし7のいずれか1項に記載のプラズマ式点火装置。
CHM≦2.0・・・ 式6
8. The plasma ignition device according to claim 1, wherein an inner diameter φD CHM (mm) of the insulator satisfies a relationship of the following formula (6).
D CHM ≦ 2.0 Equation 6
上記中心電極下端部から上記絶縁体によって形成された上記放電空間開口の出口端までの沿面放電距離GPS(mm)と上記絶縁体の内径φDCHM(mm)とにおいて、下記式7の関係を満たすことを特徴とする請求項1ないし8のいずれか1項に記載のプラズマ式点火装置。
1.8≦GPS/DCHM・・・ 式7
In the creeping discharge distance G PS (mm) from the lower end of the center electrode to the exit end of the discharge space opening formed by the insulator and the inner diameter φD CHM (mm) of the insulator, The plasma ignition device according to any one of claims 1 to 8, wherein the plasma ignition device is satisfied.
1.8 ≦ G PS / D CHM ... Formula 7
上記中心電極下端部から上記絶縁体によって形成された上記放電空間開口の出口端までの沿面放電距離GPS(mm)と上記絶縁体の内径φDCHM(mm)とにおいて、下記式8の関係を満たすことを特徴とする請求項1ないし9のいずれか1項に記載のプラズマ式点火装置。
PS/DCHM≦2.7・・・ 式8
In the creeping discharge distance G PS (mm) from the lower end of the center electrode to the exit end of the discharge space opening formed by the insulator and the inner diameter φD CHM (mm) of the insulator, The plasma ignition device according to any one of claims 1 to 9, wherein the plasma ignition device is satisfied.
G PS / D CHM ≦ 2.7 ... Formula 8
上記絶縁体は、その誘電率εが下記式9の関係を満たす誘電体からなる請求項1ないし10のいずれか1項に記載のプラズマ式点火装置。
ε≧7.0・・・ 式9
The plasma ignition device according to any one of claims 1 to 10, wherein the insulator is made of a dielectric whose dielectric constant ε satisfies the relationship of the following formula (9).
ε ≧ 7.0 ... Formula 9
上記接地電極の下端面と上記燃焼機関燃焼室の内壁面とを略同一となすべく、上記背後電極の上端部から上記接地電極の下端部に渡る外周面に、ネジ部を形成したことを特徴とする請求項1ないし11のいずれか1項に記載のプラズマ式点火装置。   In order to make the lower end surface of the ground electrode substantially the same as the inner wall surface of the combustion engine combustion chamber, a screw portion is formed on the outer peripheral surface extending from the upper end portion of the back electrode to the lower end portion of the ground electrode. The plasma ignition device according to any one of claims 1 to 11.
JP2007320495A 2007-12-12 2007-12-12 Ignition device Pending JP2009146636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007320495A JP2009146636A (en) 2007-12-12 2007-12-12 Ignition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007320495A JP2009146636A (en) 2007-12-12 2007-12-12 Ignition device

Publications (1)

Publication Number Publication Date
JP2009146636A true JP2009146636A (en) 2009-07-02

Family

ID=40917021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007320495A Pending JP2009146636A (en) 2007-12-12 2007-12-12 Ignition device

Country Status (1)

Country Link
JP (1) JP2009146636A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011036832A1 (en) * 2009-09-25 2011-03-31 日本特殊陶業株式会社 Spark plug and process for producing spark plug
JP2012154218A (en) * 2011-01-25 2012-08-16 Daihatsu Motor Co Ltd Spark-ignition control method for spark-ignition internal combustion engine
KR20140050098A (en) * 2011-08-19 2014-04-28 페더럴-모굴 이그니션 컴퍼니 Corona igniter including temperature control features
JP2015064952A (en) * 2013-09-24 2015-04-09 日本特殊陶業株式会社 Plasma jet plug
JP2016031814A (en) * 2014-07-28 2016-03-07 日本特殊陶業株式会社 Plasma jet plug

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011036832A1 (en) * 2009-09-25 2011-03-31 日本特殊陶業株式会社 Spark plug and process for producing spark plug
JP2011070928A (en) * 2009-09-25 2011-04-07 Ngk Spark Plug Co Ltd Spark plug, and process for producing spark plug
EP2482396A1 (en) * 2009-09-25 2012-08-01 NGK Sparkplug Co., Ltd. Spark plug and process for producing spark plug
US8564184B2 (en) 2009-09-25 2013-10-22 Ngk Spark Plug Co., Ltd. Spark plug and process for producing spark plug
EP2482396A4 (en) * 2009-09-25 2013-12-25 Ngk Spark Plug Co Spark plug and process for producing spark plug
JP2012154218A (en) * 2011-01-25 2012-08-16 Daihatsu Motor Co Ltd Spark-ignition control method for spark-ignition internal combustion engine
KR20140050098A (en) * 2011-08-19 2014-04-28 페더럴-모굴 이그니션 컴퍼니 Corona igniter including temperature control features
JP2014524647A (en) * 2011-08-19 2014-09-22 フェデラル−モーグル・イグニション・カンパニー Corona igniter with temperature control function
KR101904517B1 (en) * 2011-08-19 2018-10-04 페더럴-모굴 이그니션 컴퍼니 Corona igniter including temperature control features
JP2015064952A (en) * 2013-09-24 2015-04-09 日本特殊陶業株式会社 Plasma jet plug
JP2016031814A (en) * 2014-07-28 2016-03-07 日本特殊陶業株式会社 Plasma jet plug
US9478947B2 (en) 2014-07-28 2016-10-25 Ngk Spark Plug Co., Ltd. Plasma jet spark plug

Similar Documents

Publication Publication Date Title
JP5691662B2 (en) Non-thermal equilibrium plasma ignition device
JP4778301B2 (en) Plasma jet ignition plug and its ignition device
US20120242215A1 (en) Copper core combustion cup for pre-chamber spark plug
JP2008177142A (en) Plasma type ignition device
JP2011515005A (en) Plasma plug for internal combustion engine
JP2009146636A (en) Ignition device
JP4424384B2 (en) Plasma ignition device
JP2010257949A (en) Plasma-jet spark plug
WO2013077382A1 (en) Spark plug and internal combustion engine
US9640952B2 (en) High power semi-surface gap plug
JP4582097B2 (en) Plasma ignition device
JP2010218768A (en) Plasma type ignition plug
JP2008186743A (en) Plasma type ignition device
JP2009041427A (en) Plasma ignition device
JP2009283380A (en) Ignition device
JP2010003605A (en) Plasma ignition device
US10305259B2 (en) Car ignition device and ignition accelerator
US6858974B2 (en) Spark plug for internal combustion engine
JP5520257B2 (en) Ignition device, ignition system, and plasma jet ignition plug
JP7202002B2 (en) spark plug
JP2010019203A (en) Plasma type ignition device
JPS6123636B2 (en)
JP2007303285A (en) Ion current detection device
US6078130A (en) Spark plug with specific construction to avoid unwanted surface discharge
JP2010174691A (en) Method for controlling ignition of plasma-type igniter and plasma-type igniter using the method