JP2009142577A - Heartbeat telemeter system - Google Patents

Heartbeat telemeter system Download PDF

Info

Publication number
JP2009142577A
JP2009142577A JP2007325344A JP2007325344A JP2009142577A JP 2009142577 A JP2009142577 A JP 2009142577A JP 2007325344 A JP2007325344 A JP 2007325344A JP 2007325344 A JP2007325344 A JP 2007325344A JP 2009142577 A JP2009142577 A JP 2009142577A
Authority
JP
Japan
Prior art keywords
data
signal
circuit
biological information
heartbeat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007325344A
Other languages
Japanese (ja)
Inventor
Hisahiro Matsuhashi
久博 松橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IOM KK
Original Assignee
IOM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IOM KK filed Critical IOM KK
Priority to JP2007325344A priority Critical patent/JP2009142577A/en
Publication of JP2009142577A publication Critical patent/JP2009142577A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact heartbeat telemeter system for collecting and displaying heartbeat data of a plurality of subjects in real-time. <P>SOLUTION: The heartbeat telemeter system includes: a slave set (1) for mediating the timing of a signal synchronized with a heartbeat signal and that of the poling signal of a master set, and transmitting the heartbeat data; the master set (2) for controlling a radio line, and receiving the data of the slave set; and a processor part (4) for storing and displaying the received data. Specifically, the heartbeat telemeter system sequentially transmits data by the control of the master set through the use of the same line frequency among a biological information detecting means (1) for detecting periodically generated biological information, a transmitting means (2) for transmitting by radio wave the biological information detected by the biological information detecting means, a means (3) for receiving the biological information transmitted by the transmitting means, a means (4) for receiving the reception data and processing the data, and a plurality of transmission devices use the same frequency of the line to successively perform the transmission of the data by the control of the master set. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、人体から発せられる心拍信号を検知し、その複数人数分の伝送表示を同時に行う心拍テレメータシステムに関する。   The present invention relates to a heart rate telemeter system that detects a heart rate signal emitted from a human body and simultaneously performs transmission display for a plurality of people.

運動を行う場合や日常の生活行動の中で、一分間に心臓が拍動する回数を心拍数として検知表示し、それが上がり過ぎると健康上重大な障害が生ずる場合があるため、運動量や行動を自己管理するための装置は種々のものが開発されており例えば胸に装着したベルトの中に検知装置が組み込まれていてそのデータを腕時計に送信して表示するものを使用すればジョギングなどの軽い運動をしながら心拍数の表示を行う事が出来る(特許文献1参照)。   When exercising or in daily living activities, the number of heart beats per minute is detected and displayed as a heart rate, and if it increases too much, serious health problems may occur. Various devices have been developed for self-management, such as jogging if a detection device is incorporated in the belt worn on the chest and the data is sent to the wristwatch for display. The heart rate can be displayed while performing a light exercise (see Patent Document 1).

ところが、腕時計の中に検知表示装置が組み込まれているものは腕時計を装着している本人が見たい時だけ目視により確認するもので健康管理データとして記録に残したい場合やスポーツトレーナーが選手の状態を把握するときにはその都度記録を取るなどの付随的な行動によりデータを取得していた。加えてスポーツトレーニングや健康管理を目的とする場合は複数人数について同作業を行う必要があり多くの時間と煩雑な作業を必要としていた。   However, if a wristwatch is equipped with a detection display device, it is confirmed by visual inspection only when the person wearing the watch wants to see it. When grasping the data, the data was acquired by incidental actions such as taking a record each time. In addition, for the purpose of sports training and health management, it is necessary to perform the same work for a plurality of people, which requires a lot of time and troublesome work.

一方、心拍データや生体からの各種情報を無線で伝送し複数の被験者のデータを一カ所に集めて集中的に監視を行う方法が旧来から行われており、医療用の心電テレメータなどは心電図の波形をアナログ波形の状態で伝送し複数人数分のデータを表示しそのデータから心拍数などを検出して表示を行っていた。
最近ではディジタル処理を行うと共にこのデータをパーソナルコンピュータに伝送し表示する装置が使用されている(特許文献2参照)。
On the other hand, heart rate data and various information from a living body are transmitted wirelessly and data from multiple subjects are collected in one place for centralized monitoring. Traditionally, electrocardiogram telemeters and the like are used for electrocardiograms. The waveform was transmitted in the form of an analog waveform, data for multiple people was displayed, and the heart rate was detected from the data and displayed.
Recently, an apparatus for performing digital processing and transmitting and displaying this data to a personal computer is used (see Patent Document 2).

心拍データを無線で伝送する際に通信制御に伴うノイズが心拍信号を抑圧し計測が困難になる事を防止する為に心拍周期を測定しその間を見ながらデータ処理を行う装置が使用されている(特許文献3参照)。
国際公開番号W096/29005 特表平9−503938号公報 特開2005−318968号公報
When transmitting heart rate data wirelessly, a device is used that measures the heart rate cycle and performs data processing while monitoring the heart rate signal to prevent noise associated with communication control from suppressing the heart rate signal and making measurement difficult. (See Patent Document 3).
International Publication Number W096 / 29005 Japanese National Patent Publication No. 9-503938 JP 2005-318968 A

上述したように、人体からの心拍データやその他の生体情報を検出し伝送するには検知機能を有する小型の送信装置とそれを受信する受信表示装置を使用して行われていたがいずれも装置は複雑で高価なものとなっていた。
また、胸に取り付けるベルトに検出電極を設け、検出されたデータを一旦腕時計型の受信装置に電送して表示する場合、女性が使用するには抵抗感があり、又計測結果は腕時計型の表示装置でのみ表示されていたので外部からはデータを知る事は出来なかった。
As described above, in order to detect and transmit heart rate data and other biological information from the human body, a small transmitter having a detection function and a reception display device that receives the same have been used. Was complicated and expensive.
In addition, when a detection electrode is provided on the belt attached to the chest and the detected data is sent to a wristwatch-type receiving device and displayed once, there is a sense of resistance for use by women, and the measurement results are displayed on a wristwatch-type display. Since it was displayed only on the device, it was not possible to know the data from the outside.

また、子機から検出した心電データや生体情報を親機にデータを伝送し複数人数の心拍データを取得する装置の場合、特許文献2の装置では無線回線の周波数でch(チャンネル)番号を分けて複数の子機を使用する為多くの子機を取り扱う場合は親機が比例的に大型化する問題がある。   Further, in the case of a device that transmits the electrocardiogram data and biometric information detected from the child device to the parent device and obtains heart rate data of a plurality of persons, the device of Patent Document 2 sets the ch (channel) number at the frequency of the wireless line. In order to use a plurality of slave units separately, when handling many slave units, there is a problem that the master unit is proportionally enlarged.

更に、周波数でch(チャンネル)を分割せずに、時間を区切ってデータを伝送する装置が組み込まれていないために一つのchで時分割として受信機を共用し装置を小型化するのは不可能となっている。
一つのchを時分割で使用する場合、子機それぞれが検知している心拍のタイミングと無線の送信、受信動作がタイミング的に同時になる、即ち衝突する可能性は避けられず無作為に時分割とする事はあり得ない為無線部分の回線周波数をフェーズド・ロック・ループ(PLL)やクリスタル切り替えなどで自動的に行う方式では心拍データを送受信する事は極めて困難となる。
Furthermore, since a device for transmitting data by dividing time without dividing channels (channels) by frequency is not incorporated, it is not possible to reduce the size of the device by sharing a receiver as time division in one channel. It is possible.
When one channel is used in time-sharing, the heartbeat timing detected by each slave unit and the wireless transmission / reception operations are synchronized at the same time, that is, the possibility of collision is inevitable and time-sharing Therefore, it is extremely difficult to transmit and receive heart rate data by a system in which the line frequency of the wireless part is automatically set by phased lock loop (PLL) or crystal switching.

上記課題を解決するための請求項1の発明は、親機からの単一または上りと下りの周波数を分けただけの無線回線を使用してポーリング動作により複数の子機からのデータ受信を可能としている。   In order to solve the above-mentioned problem, the invention of claim 1 is capable of receiving data from a plurality of slave units by a polling operation using a single radio link from the base unit or a radio line having only upstream and downstream frequencies separated. It is said.

請求項2の発明は、請求項1の発明において、ポーリング動作により複数の子機からのデータ受信を可能とするために検知した心拍信号から同期成分を生成しタイミング生成回路でポーリング動作とのタイミング調停を行っている。   According to a second aspect of the present invention, in the first aspect of the present invention, a synchronization component is generated from a heartbeat signal detected in order to enable data reception from a plurality of slave units by a polling operation, and a timing with a polling operation is generated by a timing generation circuit Mediation is in progress.

請求項3の発明は、請求項1の発明において、ポーリング動作を行う為の基本となるタイミングを生成し、これを各子機に送信して送信時間を指定し、指定された時間毎に送信機から送信されたデータを受信すると共に、受信データをプロセッサに転送する。   According to a third aspect of the present invention, in the first aspect of the present invention, a basic timing for performing a polling operation is generated, and this is transmitted to each slave unit to designate a transmission time and transmitted at a designated time. The data transmitted from the machine is received and the received data is transferred to the processor.

請求項4の発明は、請求項3発明において得られたデータを解析し、目的用途に合致した形で表示を行うと共に、表示中に使用者からマーキング指示の入力がなされた時にデータにもその旨なんらかのマークを付加してメモリーに保存する。   The invention of claim 4 analyzes the data obtained in the invention of claim 3 and displays the data in a form that matches the intended use. When the user inputs a marking instruction during the display, the data is also displayed. Add a mark to the effect and save it in memory.

請求項5の発明は、請求項2の発明において、検知された心拍信号をそのレベルとレベルの経過時間から特徴を抽出して波形を判定し、波形が判定された時点から次の判定までの間の時間を計測してこれを周期データとし、このデータを使用して心拍周期を再現し、ゲート信号として使用する事で心拍信号の発生が予想される時刻に対してプラスマイナス20%程度の間だけアナログ信号を通過させる事が可能となり、結果として心拍信号だけに限定して信号を得る事が出来るためノイズの影響を防ぐとともに、ゲートが閉じている期間は回路の電源を切断して省電力化を行うかもしくは無線回路の制御などの大きなノイズ発生を伴う処理を行う事が可能となる。   According to a fifth aspect of the present invention, in the second aspect of the invention, the detected heartbeat signal is extracted from the level and the elapsed time of the level to determine the waveform, and from the time when the waveform is determined to the next determination By measuring the time between them and using this as cycle data, using this data to reproduce the heartbeat cycle and using it as a gate signal, about +/- 20% of the time when the heartbeat signal is expected to be generated It is possible to pass an analog signal only during the interval, and as a result, the signal can be obtained by limiting to only the heartbeat signal, so that the influence of noise is prevented and the circuit power supply is cut off while the gate is closed. It is possible to perform processing involving generation of large noise such as power generation or control of a radio circuit.

本発明の一実施形態について図面を参照して説明する。本実施形態の心拍テレメータシステムは複数の子機(2)を1台の親機(3)で制御を行い、子機からのデータを収集してプロセッサ部(4)で解析し、表示を行う。   An embodiment of the present invention will be described with reference to the drawings. In the heart rate telemeter system of the present embodiment, a plurality of slave units (2) are controlled by one master unit (3), data from the slave units is collected, analyzed by the processor unit (4), and displayed. .

子機(2)は検知信号の増幅器の後に心拍信号のR波と呼称される最もレベルの大きい部分の持つ周波数成分20Hz〜30Hz付近の周波数成分を選択的に通過させるフィルタにより筋電やノイズによるレベル変動の影響を取り除いた心拍信号を生成する。   The handset (2) is caused by myoelectricity or noise by a filter that selectively passes a frequency component in the vicinity of the highest level called the R wave of the heartbeat signal after the detection signal amplifier. A heartbeat signal from which the influence of level fluctuation is removed is generated.

フィルタを通過した心拍信号はゲート回路を通し後述する制御方法により通過若しくは遮断を行う。ゲート回路は心拍周期再生回路(24c)から得られるゲート信号で開閉され、必要な信号成分以外を遮断する。この様にして選択的に通過させられた心拍信号はR波同期回路でR波の波形から時間あたりのレベルを測定しR波であるか否かの判断を行い、R波であれば周期のカウントを開始する。図5はこの動作を実現する構成を示すもので信号ゲート(24a)を通過した心拍信号は心拍波形測定部(24b)で合致するかどうかを測定し合致するものであれば心拍周期計測部(24d)をスタートさせてその測定結果を出力するとともに心拍周期再生部に送り周期の時間的幅を再現して信号ゲート(24a)を開閉する。この時あらかじめプラスマイナス20%ほどの幅を持たせてゲートを開く事により心拍にゆらぎがあっても補足する事が可能となる。 The heartbeat signal that has passed through the filter is passed or blocked by a control method described later through a gate circuit. The gate circuit is opened and closed by a gate signal obtained from the heartbeat cycle reproduction circuit (24c), and blocks other than necessary signal components. The heartbeat signal selectively passed in this way measures the level per time from the waveform of the R wave by the R wave synchronization circuit and determines whether or not it is an R wave. Start counting. FIG. 5 shows a configuration for realizing this operation. The heartbeat signal passing through the signal gate (24a) is measured by the heartbeat waveform measuring unit (24b) to determine whether or not the heartbeat signal is matched. 24d) is started and the measurement result is output, and the signal gate (24a) is opened and closed by reproducing the time width of the feeding period to the heartbeat period reproduction unit. At this time, it is possible to supplement even if there is fluctuation in the heartbeat by opening the gate with a width of plus or minus 20% in advance.

スイッチ信号検出(25a)、加速度信号検出(25b)、温度センサ検出(25c)は心拍信号の同期とは別に検出され伝送を行う為のデータに変換される。これらの信号に限らず子機(2)は生体信号及び周辺の各種情報を検知してデータ化を行い親機へ伝達する場合もある。   Switch signal detection (25a), acceleration signal detection (25b), and temperature sensor detection (25c) are detected separately from the synchronization of the heartbeat signal and converted into data for transmission. The slave unit (2) is not limited to these signals, and may detect a biological signal and various information around it, convert it to data, and transmit it to the master unit.

心拍周期計測部で得られた周期データとスイッチ信号などの各種信号はタイミング回路からの指示を得てFIFOメモリに伝送され蓄積されると共に、同様に得られたタイミング信号をタイミング回路(27)に送り、無線送受信回路から得られる親機ポーリング信号とのタイミングを調停する事でFIFOのデータを送信するか否かを決定する。   Various signals such as cycle data and switch signals obtained by the heartbeat period measuring unit are transmitted from the timing circuit and stored in the FIFO memory, and the obtained timing signal is similarly stored in the timing circuit (27). It is determined whether or not to transmit the FIFO data by adjusting the timing with the parent device polling signal obtained from the transmission / reception circuit.

図6に示すR波とポーリングのタイミングに於いて、R波の同期が確立されて周期を計測している中で、タイミング制御部は親機からの呼び出しの時間をカウンタにより計測を行いその時間が近くなるとサーチ受信を開始する。この時R波の発生が予測される時間帯であればサーチを中断し、R波の処理が終わった時に再びサーチを開始する。サーチにより親機からの呼び出しを検出した場合子機はすぐに応答処理を開始し、この時仮にR波が発生してもR波の処理を中断し無線の処理を継続する。図7にこの様にその時の状況に応じて処理の優先度合いが変わる状況を示す。   At the timing of the R wave and polling shown in FIG. 6, while the synchronization of the R wave is established and the period is measured, the timing control unit measures the call time from the parent device by using a counter and measures the time. Search reception starts when is near. At this time, if the generation of the R wave is predicted, the search is interrupted, and the search is started again when the processing of the R wave is completed. When a call from the parent device is detected by the search, the child device immediately starts response processing. Even if an R wave is generated at this time, the R wave processing is interrupted and the wireless processing is continued. FIG. 7 shows a situation where the priority of processing changes in accordance with the situation at that time.

図1に示す構成の中で呼び出し1、応答1、の様に順次子機からのデータが親機に伝送され、この順次呼び出しのなかで電波の伝達条件並びに子機側の各種条件により伝達する時としない時があり、これは図2に示す様な状態となる。   In the configuration shown in FIG. 1, data from the slave unit is sequentially transmitted to the master unit such as call 1 and response 1, and is transmitted according to the radio wave transmission conditions and various conditions on the slave unit side in this sequential call. There are times when there is no time, and this is as shown in FIG.

図2に示す制御のタイミングは親機(3)のタイミング回路において生成し、その都度得られたデータをデータ復調回路で復調し、パーソナルコンピュータ等のプロセッサーに伝送し表示や蓄積を行うと共に、子機からのデータが画面に表示されている中で、もしくは子機を搭載した被験者の状況を見ながら計測のポイントを蓄積データに併せて逐次メモとして並行記憶を行う事により例えばスポーツ計測などで一斉にスタートを開始した瞬間や何かアクシデントがあった瞬間をデータとともに明確に記録する事が可能となる。   The control timing shown in FIG. 2 is generated in the timing circuit of the master unit (3), and the data obtained each time is demodulated by the data demodulating circuit and transmitted to a processor such as a personal computer for display and storage. While the data from the machine is displayed on the screen, or while observing the situation of the subject equipped with the child machine, the measurement points are combined with the accumulated data and sequentially stored as parallel memos, for example in sports measurements It is possible to clearly record the moment when the start is started or the moment when there is an accident with data.

子機(2)に於いて心拍データを取得する場合、一般的には検出電極(1)を医学目的で多く用いられている胸部誘導のポイントV1〜V6に接続して行われるが、心電波形即ち心拍信号は心臓の周辺つまりV2付近をピークとして体全体でプラス、マイナスのパルス成分として検出する事が出来る。   When the heartbeat data is acquired in the slave unit (2), the detection electrode (1) is generally connected to the points V1 to V6 of the chest lead that are often used for medical purposes. The shape, that is, the heartbeat signal, can be detected as a plus or minus pulse component in the whole body with the peak around the heart, that is, near V2.

一方で検出電極(1)は胸部に粘着テープなどで貼り付けて使用する事が多く、頻繁に計測を行う場合は煩わしいものとなるのを防止する為に図9に示す首輪型として背中の側から首にワンタッチではめ込み計測を行う事で煩わしさもなく、又男女を問わず気軽に複数の被験者が同時に計測を行うことが可能となる。   On the other hand, the detection electrode (1) is often used by sticking to the chest with an adhesive tape or the like, and in order to prevent it from becoming troublesome when measuring frequently, the side of the back as a collar type shown in FIG. It is possible to perform measurement simultaneously by a plurality of subjects regardless of gender by performing measurement with one touch on the neck.

本発明の装置全体の系統図と動作の関係を示す図。The figure which shows the systematic diagram of the whole apparatus of this invention, and the relationship of operation | movement. 同呼び出し応答関係のタイミング図。The timing diagram of the same call response relation. 同子機構成図。FIG. 同親機構成図。FIG. 同子機R波同期回路の動作関係を示す図。The figure which shows the operation | movement relationship of a child machine R wave synchronous circuit. 同子機に於けるR波と無線タイミングの関係を示す図。The figure which shows the relationship between the R wave and radio | wireless timing in the same subunit | mobile_unit. 同子機に於ける処理優先を表す図。The figure showing the processing priority in the same child machine. 同子機の電極を接続する様子を示す図。The figure which shows a mode that the electrode of the same child machine is connected. 同子機の電極を一体化して首の周辺に置く場合の図。The figure in the case of uniting the electrodes of the child machine and placing them around the neck.

符号の説明Explanation of symbols

1 検出部
2 子機
21 生体信号増幅部
22 周波数フィルタ
23 A/D変換回路
24 R波同期回路
24a 信号ゲート
24b 心拍波形測定部
24c 心拍周期再生部
24d 心拍周期計測部
25a スイッチ信号検出
25b 加速度信号検出
25c 温度センサ検出
26 FIFO
27 タイミング回路
28 無線送受信回路
28a 子機アンテナ
29 バッテリ制御回路
3 親機
31 親機アンテナ
32 親機無線送受信回路
33 データ復調回路
34 データ転送回路
35 タイミング回路
4 プロセッサ部
41 プロセッサ
42 表示部
43 データ蓄積部
44 マーキング操作部
DESCRIPTION OF SYMBOLS 1 Detection part 2 Child machine 21 Biological signal amplification part 22 Frequency filter 23 A / D conversion circuit 24 R wave synchronous circuit 24a Signal gate 24b Heartbeat waveform measurement part 24c Heartbeat period reproduction | regeneration part 24d Heartbeat period measurement part 25a Switch signal detection 25b Acceleration signal Detection 25c Temperature sensor detection 26 FIFO
27 Timing circuit 28 Radio transmission / reception circuit 28a Slave unit antenna 29 Battery control circuit 3 Base unit 31 Master unit antenna 32 Base unit radio transmission / reception circuit 33 Data demodulation circuit 34 Data transfer circuit 35 Timing circuit 4 Processor unit 41 Processor 42 Display unit 43 Data storage Part 44 Marking operation part

Claims (5)

周期的に発生する生体情報を検出する生体情報検出手段(1)と、前記生体情報検出手段で検出した生体情報を無線伝送送信する送信手段(2)と、前記送信手段で送信した前記生体情報を受信する手段(3)と、前記受信データを受け取りデータ処理を行う手段(4)と、複数の送信装置が同じ回線周波数を使用して親機の制御により順次データ伝送ができることを特徴とする心拍テレメータシステム。   Biological information detection means (1) for detecting biological information generated periodically, transmission means (2) for wirelessly transmitting and transmitting biological information detected by the biological information detection means, and the biological information transmitted by the transmission means Means (3) for receiving the received data, means (4) for receiving the received data and processing the data, and a plurality of transmitting devices can sequentially transmit data under the control of the master unit using the same line frequency. Heart rate telemeter system. 前記生体情報検出手段(1)及び送信手段(2)に於いて、生態情報検出手段(1)からの信号を増幅する増幅回路(21)と、前記増幅された信号から必要な周波数成分だけを抽出する周波数フィルタ(22)と、前記周波数フィルタで抽出された信号をアナログ値からディジタル値に変換するA/D変改回路(23)と、前記A/D変換された信号から心電波形の中のR波部分を検出してその周期に同期をかけるR波同期回路(24)と、前記R波同期回路で得られたデータを順次送り出す為のFIFO型メモリ(26)と、前記FIFO型メモリのデータを無線回線で送信する無線送受信回路(28)を有し、前記無線送受信回路は前記R波同期回路で得られたタイミングを参照して無線部を制御するタイミング回路と、前記タイミング回路の指示に応じてバッテリからの回路への電源供給を制御するバッテリ制御回路を有することを特徴とする請求項1に記載の心拍テレメータシステム。   In the biological information detection means (1) and transmission means (2), an amplification circuit (21) for amplifying a signal from the biological information detection means (1), and only a necessary frequency component from the amplified signal is obtained. A frequency filter to be extracted (22), an A / D conversion circuit (23) for converting a signal extracted by the frequency filter from an analog value to a digital value, and an electrocardiographic waveform from the A / D converted signal. An R-wave synchronization circuit (24) for detecting the R-wave portion therein and synchronizing the period thereof, a FIFO-type memory (26) for sequentially sending out the data obtained by the R-wave synchronization circuit, and the FIFO-type A wireless transmission / reception circuit (28) for transmitting data in the memory through a wireless line, wherein the wireless transmission / reception circuit refers to a timing obtained by the R-wave synchronization circuit and controls a wireless unit; Heart telemetry system according to claim 1, characterized in that it comprises a battery control circuit for controlling the power supply to the circuit from the battery in response to an instruction of the circuit. 前記生体情報を受信する手段(3)に於いて、アンテナ31で受信した無線信号を受信する手段(32)と、前記受信手段により得られた受信信号からデータを復調するデータ復調回路(33)と、前記データ復調回路のデータをプロセッサに転送するデータ転送回路(34)と、これら受信装置(3)を制御するタイミング回路を有する事を特徴とする請求項1に記載の心拍テレメータシステム。   In the means (3) for receiving the biological information, means (32) for receiving a radio signal received by the antenna 31, and a data demodulation circuit (33) for demodulating data from the received signal obtained by the receiving means. The heart rate telemeter system according to claim 1, further comprising a data transfer circuit (34) for transferring data of the data demodulation circuit to a processor, and a timing circuit for controlling the receiving device (3). 前記データ処理を行う手段(4)において、受け取ったデータを解析処理する手段(41)と、前記解析処理データを蓄積する手段(43)と、前記解析データを表示する手段(42)と、前記表示データに時刻表示や何かしらの意味を持つマークを付けるマーキングの手段(44)を有する事を特徴とする請求項1に記載の心拍テレメータシステム。   In the data processing means (4), means (41) for analyzing the received data, means (43) for storing the analysis processing data, means (42) for displaying the analysis data, 2. The heart rate telemeter system according to claim 1, further comprising marking means (44) for marking the display data with a time display or a mark having some meaning. 前記R波同期回路(24)は、心拍信号を通過させる信号ゲート(24a)と、前記信号ゲートを通過した信号の波形を計測し判定する心拍波形測定部(24b)と、前記心拍は計測定部で得られた信号を使用して周期計測を行う心拍周期計測部(24d)と、前記心拍周期計測部で得られた周期情報を使用して心拍周期と同等の信号を再生してゲート信号として与える心拍周期再生部(24c)を有する事を特徴とする請求項2に記載の心拍テレメータシステム。
The R-wave synchronization circuit (24) includes a signal gate (24a) that allows a heartbeat signal to pass through, a heartbeat waveform measurement unit (24b) that measures and determines the waveform of the signal that has passed through the signal gate, and the heartbeat is measured by a meter. A heart rate cycle measurement unit (24d) that performs cycle measurement using the signal obtained by the unit, and reproduces a signal equivalent to the heart rate cycle by using the cycle information obtained by the heart rate cycle measurement unit to generate a gate signal The heart rate telemeter system according to claim 2, further comprising a heart rate cycle reproduction unit (24c) provided as
JP2007325344A 2007-12-18 2007-12-18 Heartbeat telemeter system Pending JP2009142577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007325344A JP2009142577A (en) 2007-12-18 2007-12-18 Heartbeat telemeter system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007325344A JP2009142577A (en) 2007-12-18 2007-12-18 Heartbeat telemeter system

Publications (1)

Publication Number Publication Date
JP2009142577A true JP2009142577A (en) 2009-07-02

Family

ID=40913899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007325344A Pending JP2009142577A (en) 2007-12-18 2007-12-18 Heartbeat telemeter system

Country Status (1)

Country Link
JP (1) JP2009142577A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011255051A (en) * 2010-06-10 2011-12-22 National Univ Corp Shizuoka Univ R-wave detector and r-wave measuring system
JP2013188279A (en) * 2012-03-13 2013-09-26 Casio Computer Co Ltd Human body information collecting apparatus
CN114979176A (en) * 2022-05-11 2022-08-30 江苏领焰智能科技股份有限公司 Network-based dimming data hot backup method, system, equipment and storage medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011255051A (en) * 2010-06-10 2011-12-22 National Univ Corp Shizuoka Univ R-wave detector and r-wave measuring system
JP2013188279A (en) * 2012-03-13 2013-09-26 Casio Computer Co Ltd Human body information collecting apparatus
CN114979176A (en) * 2022-05-11 2022-08-30 江苏领焰智能科技股份有限公司 Network-based dimming data hot backup method, system, equipment and storage medium

Similar Documents

Publication Publication Date Title
CN101073494B (en) Non-invasive life evidence monitor, monitor system and method
US20140155767A1 (en) Biological information measurement apparatus, biological information measurement system, biological information measurement method, and program
CN103179897B (en) A method and a system for monitoring of sleep and other physiological conditions
US20100185062A1 (en) Portable system and method for monitoring of a heart and other body functions
US20150119726A1 (en) Electronic apparatus and communication control method
CN108024788B (en) Device and method for determining a fetal heart rate
CN105078437A (en) Wearable human abnormity monitoring and alarming system and working method thereof
FI127952B (en) System and method for heart rate monitoring of an object
US20160150958A1 (en) Live holter
CN101006914A (en) Portable wireless device for monitoring physiological signals
US20210345270A1 (en) Method for synchronization of a multitude of wearable devices
WO2018076555A1 (en) Method and apparatus for wearable devices to measure blood pressure
CN105326481B (en) A kind of hurtless measure dynamic glucose concentration early warning system
KR100956795B1 (en) Bio signal sensing apparatus
JP2009142577A (en) Heartbeat telemeter system
Volmer et al. Wireless body sensor network for low-power motion-tolerant syncronized vital sign measurment
US11969251B2 (en) Apparatus for generating an electrocardiogram
JPH09322882A (en) Body mounted type health information collector
KR100918575B1 (en) Multi-Vital Sign Wireless Monitoring System
US9486154B2 (en) Device and method for recording physiological signal
JP4216631B2 (en) Physiological information acquisition system
JPWO2014106873A1 (en) Portable electrocardiograph
JPH1128196A (en) Telemeter system
CN109480797B (en) Intelligent health auxiliary system based on health bracelet
JP2012034840A (en) Wireless bioinformation sensing system