JP2009133697A - Luminescence measurement method - Google Patents

Luminescence measurement method Download PDF

Info

Publication number
JP2009133697A
JP2009133697A JP2007309427A JP2007309427A JP2009133697A JP 2009133697 A JP2009133697 A JP 2009133697A JP 2007309427 A JP2007309427 A JP 2007309427A JP 2007309427 A JP2007309427 A JP 2007309427A JP 2009133697 A JP2009133697 A JP 2009133697A
Authority
JP
Japan
Prior art keywords
biological sample
luminescence
image
luminescent
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007309427A
Other languages
Japanese (ja)
Inventor
Ryutaro Akiyoshi
竜太郎 秋吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2007309427A priority Critical patent/JP2009133697A/en
Publication of JP2009133697A publication Critical patent/JP2009133697A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a luminescence measurement method capable of obtaining an accurate quantitative result of each luminescence color from each biological sample, and consequently enabling inspection of multiple items regarding the same biological sample. <P>SOLUTION: The luminescence measurement method comprises forming a biological sample, containing plural predetermined genes which are luminescence-labeled with a different luminescence color from each other; applying a predetermined stimulation to the formed biological sample from an outside of the biological sample; photographing a luminescence image of the biological sample, after the application of the predetermined stimulation by correlating, for each luminescence color, associating the luminescence color with the luminous intensity; and quantitatively measuring luminous intensity of each luminescence color based on the photographed image. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、生体試料(例えば細胞を含む試料)を観察する発光イメージングに関し、特に、同一の生体試料について多項目の検査を行う方法に関するものである。   The present invention relates to luminescence imaging for observing a biological sample (for example, a sample containing cells), and more particularly to a method for performing a multi-item examination on the same biological sample.

生体機能解析に用いられる発光酵素であるルシフェラーゼは、その種類に応じて多様な発光色を持つことが知られている。そして、現状では、すり潰された大量の細胞から、異なる各発光色のシグナルをルミノメーターを用いて同一の測定時間で検出している。しかし、各発光色の正確な定量的結果を得ることが難しい。そこで、大量の細胞を1つの溶解溶液にまとめ、複数色の発光酵素を含む細胞中の各発光酵素による相対光量を同時に測定する特許文献1を用いれば、各発光色の正確な定量的結果を得ることが可能となる。   It is known that luciferase, which is a luminescent enzyme used for biological function analysis, has various luminescent colors depending on its type. At present, signals of different emission colors are detected from a large amount of ground cells using the luminometer in the same measurement time. However, it is difficult to obtain an accurate quantitative result for each emission color. Therefore, if Patent Document 1 is used to collect a large amount of cells in one lysis solution and simultaneously measure the relative light intensity of each luminescent enzyme in cells containing multiple luminescent enzymes, accurate quantitative results of each luminescent color can be obtained. Can be obtained.

特開2007−218774号公報JP 2007-218774 A

しかしながら、従来技術では、大量の細胞を1つの溶解溶液にまとめるので、各細胞から各発光色の正確な定量的結果を得ることができず、ゆえに、同一の細胞について多項目の検査を行うことができないという問題点があった。   However, in the prior art, since a large amount of cells are combined into one lysis solution, it is not possible to obtain an accurate quantitative result of each luminescent color from each cell. Therefore, it is necessary to perform a multi-item inspection on the same cell. There was a problem that could not.

本発明は、上記問題点に鑑みてなされたものであって、各生体試料から各発光色の正確な定量的結果を得ることができ、その結果、同一の生体試料について多項目の検査を行うことができる発光測定方法を提供することを目的とする。   The present invention has been made in view of the above problems, and can obtain an accurate quantitative result of each emission color from each biological sample. As a result, the same biological sample is inspected in multiple items. An object of the present invention is to provide a luminescence measurement method that can be used.

本発明者による鋭意検討の結果、一細胞毎の発光色により発光強度の差が大きいことが判明した。しかも、その差は、各発光色に対応する分光フィルタで分光する際のフィルタ毎の透過率の違いを上回るものであり、定量測定やイメージング性能に影響するほどの大きなものであった。そこで、本発明者は、発光色に起因する発光強度の違いを鑑み、発光色および発光強度の両方の関係を発光色毎に関連付けてイメージングまたは解析するようにして、本発明を完成するに至った。具体的には、例えば、ルシフェラーゼの種類とCCDカメラのダイナミックレンジに応じて、イメージングの際にCCDカメラの露出時間を適切な範囲に調節することによって、上述した課題を解決した。   As a result of intensive studies by the present inventors, it has been found that the difference in emission intensity is large depending on the emission color of each cell. In addition, the difference exceeds the difference in transmittance for each filter when the spectral filter corresponding to each emission color is used, and is so large as to affect quantitative measurement and imaging performance. In view of the difference in emission intensity caused by the emission color, the present inventor completed the present invention by imaging or analyzing the relationship between both emission color and emission intensity for each emission color. It was. Specifically, for example, the above-described problem has been solved by adjusting the exposure time of the CCD camera to an appropriate range during imaging according to the type of luciferase and the dynamic range of the CCD camera.

すなわち、上述した課題を解決し、目的を達成するために、本発明にかかる発光測定方法は、生体試料からの発光を測定する発光測定方法であって、発光色が互いに異なるように発光標識された複数の所定の遺伝子を含む前記生体試料を作製する作製工程と、前記作製工程で作製した前記生体試料に当該生体試料外から所定の刺激を与える刺激工程と、前記刺激工程で前記所定の刺激が与えられた後の前記生体試料の発光画像を、前記発光色および発光強度の両方の関係を各々の前記発光色ごとに関連付けて撮像する撮像工程と、前記撮像工程で撮像した前記発光画像に基づいて、各々の前記発光色の前記発光強度を定量的に測定する測定工程と、を含むことを特徴とする。   That is, in order to solve the above-described problems and achieve the object, the luminescence measurement method according to the present invention is a luminescence measurement method for measuring luminescence from a biological sample, and is luminescently labeled so that the luminescent colors are different from each other. A preparation step for preparing the biological sample including a plurality of predetermined genes, a stimulation step for applying a predetermined stimulus from outside the biological sample to the biological sample prepared in the preparation step, and the predetermined stimulation in the stimulation step. An imaging step of imaging a luminescent image of the biological sample after being given, in which the relationship between both the luminescent color and the luminescent intensity is associated with each luminescent color, and the luminescent image captured in the imaging step. And a measurement step of quantitatively measuring the emission intensity of each of the emission colors.

また、本発明にかかる発光測定方法は、前記に記載の発光測定方法において、前記撮像工程は、その撮像に用いたカメラのダイナミックレンジと前記発光標識するために用いた発光タンパク質の種類とに応じて当該カメラの露出時間を調節して、前記生体試料の前記発光画像を撮像することを特徴とする。   The luminescence measurement method according to the present invention is the luminescence measurement method described above, wherein the imaging step depends on a dynamic range of a camera used for the imaging and a type of the luminescent protein used for the luminescence labeling. And adjusting the exposure time of the camera to capture the luminescent image of the biological sample.

また、本発明にかかる発光測定方法は、前記に記載の発光測定方法において、前記撮像工程は、前記生体試料の前記発光画像を繰り返し撮像し、前記測定工程は、前記撮像工程で撮像した複数の前記発光画像に基づいて、各々の前記発光色の前記発光強度の経時変化を定量的に測定することを特徴とする。   The luminescence measurement method according to the present invention is the luminescence measurement method described above, wherein the imaging step repeatedly captures the luminescence image of the biological sample, and the measurement step includes a plurality of images captured in the imaging step. Based on the light emission image, the time-dependent change of the light emission intensity of each of the light emission colors is quantitatively measured.

本発明によれば、発光色が互いに異なるように発光標識された複数の所定の遺伝子を含む生体試料を作製し、作製した生体試料に当該生体試料外から所定の刺激を与え、所定の刺激が与えられた後の生体試料の発光画像を、発光色および発光強度の両方の関係を各々の発光色ごとに関連付けて撮像し、撮像した発光画像に基づいて、各々の発光色の発光強度を定量的に測定する。これにより、各生体試料から各発光色の正確な定量的結果を得ることができ、その結果、同一の生体試料について多項目の検査を行うことができるという効果を奏する。   According to the present invention, a biological sample including a plurality of predetermined genes that are luminescently labeled so that the luminescent colors are different from each other is prepared, a predetermined stimulus is applied to the prepared biological sample from outside the biological sample, and the predetermined stimulus is The luminescent image of a given biological sample is imaged by associating the relationship between the luminescent color and luminescent intensity for each luminescent color, and the luminescent intensity of each luminescent color is quantified based on the captured luminescent image. Measure automatically. Thereby, an accurate quantitative result of each luminescent color can be obtained from each biological sample, and as a result, there is an effect that a multi-item inspection can be performed on the same biological sample.

本発明によれば、その撮像に用いたカメラのダイナミックレンジと発光標識するために用いた発光タンパク質の種類とに応じて当該カメラの露出時間を調節して、生体試料の発光画像を撮像する。これにより、各生体試料から各発光色の正確な定量的結果を得ることができ、その結果、同一の生体試料について多項目の検査を行うことができるという効果を奏する。   According to the present invention, a luminescence image of a biological sample is captured by adjusting the exposure time of the camera according to the dynamic range of the camera used for the imaging and the type of photoprotein used for luminescent labeling. Thereby, an accurate quantitative result of each luminescent color can be obtained from each biological sample, and as a result, there is an effect that a multi-item inspection can be performed on the same biological sample.

本発明によれば、生体試料の発光画像を繰り返し撮像し、撮像した複数の発光画像に基づいて、各々の発光色の発光強度の経時変化を定量的に測定する。これにより、所定の刺激による各々の所定の遺伝子の発現状態の経時変化を解析することができるという効果を奏する。   According to the present invention, a luminescence image of a biological sample is repeatedly taken, and a change with time of the luminescence intensity of each luminescent color is quantitatively measured based on the plurality of taken luminescence images. Thereby, there is an effect that it is possible to analyze the temporal change of the expression state of each predetermined gene by a predetermined stimulus.

以下に、本発明にかかる発光測定方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a light emission measuring method according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

まず、本発明にかかる発光測定方法(具体的には撮像工程および解析工程)で用いる発光観察システム100の構成について、図1、図2および図3を参照して説明する。図1は、発光観察システム100の全体構成の一例を示す図である。   First, the configuration of the luminescence observation system 100 used in the luminescence measurement method according to the present invention (specifically, the imaging process and the analysis process) will be described with reference to FIGS. 1, 2, and 3. FIG. 1 is a diagram illustrating an example of the overall configuration of the light emission observation system 100.

図1に示すように、発光観察システム100は、生体試料102を収納した容器103(具体的にはシャーレ、スライドガラス、マイクロプレート、ゲル支持体、微粒子担体など)と、容器103を配置するステージ104と、発光画像撮像ユニット106と、画像解析装置110と、で構成されている。微弱な発光を測定するための発光画像撮像ユニット106をステージ104の下側に配置してもよい。これにより、カバー開閉によるサンプル上方からの外乱光を完全に遮断できて発光画像のS/N比を増すことができる。発光画像撮像ユニット106は、レーザー走査式の光学系であってもよい。   As shown in FIG. 1, the luminescence observation system 100 includes a container 103 (specifically, a petri dish, a slide glass, a microplate, a gel support, a fine particle carrier, etc.) containing a biological sample 102 and a stage on which the container 103 is arranged. 104, a luminescent image capturing unit 106, and an image analysis device 110. A light emission image capturing unit 106 for measuring weak light emission may be disposed below the stage 104. Thereby, disturbance light from above the sample due to opening and closing of the cover can be completely blocked, and the S / N ratio of the luminescent image can be increased. The light emission image capturing unit 106 may be a laser scanning optical system.

生体試料102は、例えば、発光色が互いに異なるように発光関連遺伝子で発光標識された複数の所定の遺伝子を含む生きた細胞である。生体試料102には、当該生体試料の撮像直前に、当該生体試料外から所定の刺激(例えば薬物刺激など)が与えられる。   The biological sample 102 is, for example, a living cell including a plurality of predetermined genes that are luminescently labeled with luminescence-related genes so that the luminescent colors are different from each other. The biological sample 102 is given a predetermined stimulus (for example, drug stimulation) from outside the biological sample immediately before imaging the biological sample.

発光画像撮像ユニット106は、具体的には正立型の発光顕微鏡であり、生体試料102の発光画像を撮像する。発光画像撮像ユニット106は、図示の如く、対物レンズ106aと、ダイクロイックミラー106bと、CCDカメラ106cと、結像レンズ106fと、で構成されている。対物レンズ106aは、具体的には、(開口数/倍率)の値が0.01以上のものである。ダイクロイックミラー106bは、生体試料102から発せられた発光を色別に分離し、2色の発光を用いて発光量や発光強度を色別に測定する場合に用いる。CCDカメラ106cは、対物レンズ106a、ダイクロイックミラー106bおよび結像レンズ106fを介して当該CCDカメラ106cのチップ面に投影された生体試料102の発光画像および明視野画像を撮る。また、CCDカメラ106cは、画像解析装置110と有線または無線で通信可能に接続される。ここで、生体試料102が撮像範囲中に複数存在する場合、CCDカメラ106cは、当該撮像範囲中に含まれる複数の生体試料102の発光画像および明視野画像を撮像してもよい。結像レンズ106fは、対物レンズ106aおよびダイクロイックミラー106bを介して当該結像レンズ106fに入射した像(具体的には生体試料102を含む像)を結像する。なお、図1では、ダイクロイックミラー106bで分離した2つの発光に対応する発光画像を2台のCCDカメラ106cで別々に撮像する場合の一例を示しており、1つの発光を用いる場合には、発光画像撮像ユニット106は、対物レンズ106a、1台のCCDカメラ106cおよび結像レンズ106fで構成されてもよい。 The luminescence image capturing unit 106 is specifically an upright luminescence microscope and captures a luminescence image of the biological sample 102. As shown in the figure, the luminescent image capturing unit 106 includes an objective lens 106a, a dichroic mirror 106b, a CCD camera 106c, and an imaging lens 106f. Specifically, the objective lens 106a has a value of (numerical aperture / magnification) 2 of 0.01 or more. The dichroic mirror 106b is used when light emitted from the biological sample 102 is separated for each color, and the amount of emitted light and the light intensity are measured for each color using two colors of light emission. The CCD camera 106c takes a light emission image and a bright field image of the biological sample 102 projected onto the chip surface of the CCD camera 106c via the objective lens 106a, the dichroic mirror 106b, and the imaging lens 106f. The CCD camera 106c is connected to the image analysis device 110 so as to be able to communicate with each other by wire or wirelessly. Here, when there are a plurality of biological samples 102 in the imaging range, the CCD camera 106c may capture the luminescent images and bright field images of the plurality of biological samples 102 included in the imaging range. The imaging lens 106f forms an image (specifically, an image including the biological sample 102) incident on the imaging lens 106f via the objective lens 106a and the dichroic mirror 106b. Note that FIG. 1 shows an example in which a light emission image corresponding to two light emissions separated by the dichroic mirror 106b is separately captured by the two CCD cameras 106c. The image capturing unit 106 may include an objective lens 106a, a single CCD camera 106c, and an imaging lens 106f.

ここで、2色の発光を用いて発光量や発光強度を色別に測定する場合、発光画像撮像ユニット106は、図2に示すように、対物レンズ106aと、CCDカメラ106cと、スプリットイメージユニット106dと、結像レンズ106fと、で構成されてもよい。そして、CCDカメラ106cは、スプリットイメージユニット106dおよび結像レンズ106fを介して当該CCDカメラ106cのチップ面に投影された生体試料102の発光画像(スプリットイメージ)および明視野像を撮像してもよい。スプリットイメージユニット106dは、サンプル102から発せられた発光を色別に分離し、ダイクロイックミラー106bと同様、2色の発光を用いて発光量や発光強度を色別に測定する場合に用いる。   Here, when measuring the light emission amount and the light emission intensity for each color using the light emission of two colors, as shown in FIG. 2, the light emission image pickup unit 106 includes an objective lens 106a, a CCD camera 106c, and a split image unit 106d. And the imaging lens 106f. The CCD camera 106c may pick up a light emission image (split image) and a bright field image of the biological sample 102 projected onto the chip surface of the CCD camera 106c via the split image unit 106d and the imaging lens 106f. . The split image unit 106d separates the light emitted from the sample 102 by color, and is used when measuring the light emission amount and light emission intensity by color using two colors of light, similar to the dichroic mirror 106b.

また、複数色の発光を用いて発光量や発光強度を色別に測定する場合(つまり、多色の発光を用いる場合)、発光画像撮像ユニット106は、図3に示すように、対物レンズ106aと、CCDカメラ106cと、フィルターホイール106eと、結像レンズ106fと、で構成されてもよい。そして、CCDカメラ106cは、フィルターホイール106eおよび結像レンズ106fを介して当該CCDカメラ106cのチップ面に投影された生体試料102の発光画像および明視野画像を撮像してもよい。フィルターホイール106eは、生体試料102から発せられた発光をフィルタ交換によって色別に分離し、複数色の発光を用いて発光量や発光強度を色別に測定する場合に用いる。   Further, when measuring the emission amount and emission intensity for each color using light emission of a plurality of colors (that is, when using multicolor light emission), the light emission image pickup unit 106 includes an objective lens 106a and an objective lens 106a as shown in FIG. The CCD camera 106c, the filter wheel 106e, and the imaging lens 106f may be used. Then, the CCD camera 106c may capture a light emission image and a bright field image of the biological sample 102 projected onto the chip surface of the CCD camera 106c via the filter wheel 106e and the imaging lens 106f. The filter wheel 106e is used when light emitted from the biological sample 102 is separated by color by exchanging filters, and the amount of light emitted and the intensity of light emitted are measured for each color using light of a plurality of colors.

図1に戻り、画像解析装置110は、具体的にはパーソナルコンピュータである。そして、画像解析装置110は、図4に示すように、大別して、制御部112と、システムの時刻を計時するクロック発生部114と、記憶部116と、通信インターフェース部118と、入出力インターフェース部120と、入力装置122と、出力装置124と、で構成されており、これら各部はバスを介して接続されている。   Returning to FIG. 1, the image analysis apparatus 110 is specifically a personal computer. As shown in FIG. 4, the image analysis device 110 is roughly divided into a control unit 112, a clock generation unit 114 that measures the system time, a storage unit 116, a communication interface unit 118, and an input / output interface unit. 120, an input device 122, and an output device 124. These units are connected via a bus.

記憶部116は、ストレージ手段であり、具体的には、RAMやROM等のメモリ装置、ハードディスクのような固定ディスク装置、フレキシブルディスク、光ディスク等を用いることができる。そして、記憶部116は制御部112の各部の処理により得られたデータなどを記憶する。通信インターフェース部118は、画像解析装置110と、CCDカメラ106cと、の間における通信を媒介する。すなわち、通信インターフェース部118は他の端末と有線または無線の通信回線を介してデータを通信する機能を有する。入出力インターフェース部120は、入力装置122や出力装置124に接続する。ここで、出力装置124には、モニタ(家庭用テレビを含む)の他、スピーカやプリンタを用いることができる(なお、以下で、出力装置124をモニターとして記載する場合がある。)。また、入力装置122には、キーボードやマウスやマイクの他、マウスと協働してポインティングデバイス機能を実現するモニターを用いることができる。   The storage unit 116 is a storage unit. Specifically, a memory device such as a RAM or a ROM, a fixed disk device such as a hard disk, a flexible disk, an optical disk, or the like can be used. And the memory | storage part 116 memorize | stores the data etc. which were obtained by the process of each part of the control part 112. FIG. The communication interface unit 118 mediates communication between the image analysis device 110 and the CCD camera 106c. That is, the communication interface unit 118 has a function of communicating data with other terminals via a wired or wireless communication line. The input / output interface unit 120 is connected to the input device 122 and the output device 124. Here, in addition to a monitor (including a home television), a speaker or a printer can be used as the output device 124 (hereinafter, the output device 124 may be described as a monitor). In addition to the keyboard, mouse, and microphone, the input device 122 can be a monitor that realizes a pointing device function in cooperation with the mouse.

制御部112は、OS(Operating System)等の制御プログラムや各種の処理手順等を規定したプログラムや所要データを格納するための内部メモリを有し、これらのプログラムに基づいて種々の処理を実行する。そして、制御部112は、大別して、発光画像撮像指示部112aと、発光画像取得部112bと、画像解析部112cと、解析結果出力部112dと、で構成されている。   The control unit 112 has an internal memory for storing a control program such as an OS (Operating System), a program that defines various processing procedures, and necessary data, and executes various processes based on these programs. . The control unit 112 is roughly composed of a light emission image capturing instruction unit 112a, a light emission image acquisition unit 112b, an image analysis unit 112c, and an analysis result output unit 112d.

発光画像撮像指示部112aは、通信インターフェース部118を介して、CCDカメラ106cへ発光画像および明視野画像の撮像を指示する。発光画像取得部112bは、CCDカメラ106cで撮像した発光画像および明視野画像を、通信インターフェース部118を介して取得する。制御部112は、発光画像撮像指示部112aを制御して、生体試料102の発光画像および明視野画像を繰り返し撮像する。   The luminescent image capturing instruction unit 112a instructs the CCD camera 106c to capture a luminescent image and a bright field image via the communication interface unit 118. The luminescent image acquisition unit 112b acquires the luminescent image and bright field image captured by the CCD camera 106c via the communication interface unit 118. The control unit 112 controls the emission image capturing instruction unit 112a to repeatedly capture the emission image and the bright field image of the biological sample 102.

ここで、CCDカメラ106cで生体試料102の発光画像を撮像するにあたって、発光色および発光強度の両方の関係を各々の発光色ごとに関連付けておく。換言すると、発光色および発光強度の両方の関係を各々の発光色ごとに関連付けて、生体試料102の発光画像を撮像する。   Here, when the light emission image of the biological sample 102 is picked up by the CCD camera 106c, the relationship between both the light emission color and the light emission intensity is associated with each light emission color. In other words, the relationship between both the emission color and the emission intensity is associated with each emission color, and the emission image of the biological sample 102 is captured.

具体的には、CCDカメラ106cで生体試料102の発光画像を撮像するにあたって、発光画像の撮像に用いたCCDカメラ106cのダイナミックレンジと発光標識するために用いた発光タンパク質の種類とに応じて当該CCDカメラの露出時間を調節する。換言すると、発光画像の撮像に用いたCCDカメラ106cのダイナミックレンジと発光標識するために用いた発光タンパク質の種類とに応じて当該CCDカメラの露出時間を調節して、生体試料102の発光画像を撮像する。   Specifically, when the luminescent image of the biological sample 102 is captured by the CCD camera 106c, the CCD camera 106c is used in accordance with the dynamic range of the CCD camera 106c used for capturing the luminescent image and the type of luminescent protein used for luminescent labeling. Adjust the exposure time of the CCD camera. In other words, the exposure time of the CCD camera is adjusted according to the dynamic range of the CCD camera 106c used to capture the luminescent image and the type of the luminescent protein used for luminescent labeling, so that the luminescent image of the biological sample 102 is obtained. Take an image.

画像解析部112cは、発光画像取得部112bで取得した発光画像に基づいて、各々の発光色の発光強度を定量的に測定する。画像解析部112cは、発光画像取得部112bで取得した複数の発光画像に基づいて、各々の発光色の発光強度の経時変化を定量的に測定する。解析結果出力部112dは、画像解析部112cでの解析結果を出力装置124に出力する。具体的には、解析結果出力部112dは、画像解析部112cで得られた、各々の発光色の発光強度に関する時系列データを、グラフ化して出力装置124に表示する。   The image analysis unit 112c quantitatively measures the emission intensity of each emission color based on the emission image acquired by the emission image acquisition unit 112b. The image analysis unit 112c quantitatively measures the temporal change in the emission intensity of each emission color based on the plurality of emission images acquired by the emission image acquisition unit 112b. The analysis result output unit 112d outputs the analysis result from the image analysis unit 112c to the output device 124. Specifically, the analysis result output unit 112d graphs the time-series data regarding the emission intensity of each emission color obtained by the image analysis unit 112c and displays the graph on the output device 124.

[マルチカラーレポーターアッセイ(AP−1遺伝子群の転写応答)]
AP−1(Activating Protein−1)はFosやJun遺伝子群から構成される転写因子で、細胞外からの様々な刺激に対する応答を制御していることが知られている。細胞が刺激を受けると、c−fosやc−junが活性化し、c−Fos,c−Junタンパク質が合成される。これらのタンパク質は、複合体を形成してAP−1転写因子として機能し、標的遺伝子のプロモーター領域にあるAP−1結合部位に結合して、下流の遺伝子の転写を誘導する。
[Multicolor reporter assay (transcription response of AP-1 gene group)]
AP-1 (Activating Protein-1) is a transcription factor composed of Fos and Jun genes, and is known to control responses to various stimuli from outside the cell. When cells are stimulated, c-fos and c-jun are activated, and c-Fos and c-Jun proteins are synthesized. These proteins form a complex and function as an AP-1 transcription factor, bind to an AP-1 binding site in the promoter region of the target gene, and induce transcription of a downstream gene.

本実施例では、c−fosとAP−1の各プロモーター制御下においたルシフェラーゼの発現を、発光イメージングシステム“LUMINOVIEW”(オリンパス(株)製)を用いて多色でイメージングすることで、シグナル伝達に伴うAP−1遺伝子群の応答の経時変化を追った。   In this example, signal transduction was performed by imaging the expression of luciferase under the control of c-fos and AP-1 promoters in multiple colors using a luminescence imaging system “LUMINOVIEW” (manufactured by Olympus Corporation). The changes over time in the response of the AP-1 gene group accompanying the above were followed.

本実施例における実験の流れ(手順)について、以下に説明する。
[手順1:本発明の作製工程に相当]c−fosの活性をモニターするレポーターとして、HeLa細胞からクローニングしたc−fosプロモーター領域をpGL4.72(Promega社製)のMCSに挿入し、c−fosプロモーター/RLuc発現ベクター(c−fos/hRL)を作製した。
[手順2:本発明の作製工程に相当]AP−1の応答を観察するために、TransLucent Reporter Vector(Panomics社製)のルシフェラーゼ遺伝子をイリオモテボタル由来のSLGルシフェラーゼ(東洋紡績(株)製)に置換し、AP−1エンハンサー/SLG発現ベクター(AP−1/SLG)を作製した。
[手順3:本発明の作製工程に相当]f35mm−ガラスボトムディッシュに播いたHeLa細胞に、手順1および手順2で作製した2種類のベクターをトランスフェクションして一晩培養し、その後に培地を無血清培地に置き換えてさらに一晩培養した。続いて、培地に、EnduRen(最終濃度60μM)およびルシフェリン(最終濃度500μM)を加えて1時間静置した。
[手順4:本発明の刺激工程に相当]培地にFBS(最終濃度10%)を加えて細胞へ刺激を行った。
[手順5:本発明の撮像工程に相当]ディッシュをLUMINOVIEWにセットした後、15分間隔で20時間に亘り発光画像および明視野画像のタイムラプス撮影を行った。分光フィルタは、c−fos発現解析用としてBA470−490フィルタを、AP−1発現解析用としてBA530−550フィルタを用いた。発光観察条件として、対物レンズの倍率は20倍、露出時間は10分(c−fos発現解析用)および5分(AP−1発現解析用)、binningは1×1、CCDカメラはiXon(ANDOR社製)、である。
[手順6:本発明の測定工程に相当]手順5で撮影した各々のc−fos/hRL発光画像とそれに対応する明視野画像とを重ね合わせ、その重ね合わせた画像に対して複数のROI(Region of Interest:関心領域)を指定した(図5参照)。また、手順5で撮影した各々のAP−1/SLG発光画像とそれに対応する明視野画像とを重ね合わせ、その重ね合わせた画像に対して複数のROIを指定した(図6参照)。そして、指定した各ROIの発光強度を各々の発光画像に基づいて測定し、その発光強度の経時変化をグラフで表示した(図7および図8参照)。
The flow (procedure) of the experiment in this example will be described below.
[Procedure 1: Corresponding to the production process of the present invention] As a reporter for monitoring the activity of c-fos, the c-fos promoter region cloned from HeLa cells was inserted into MCS of pGL4.72 (Promega) and c- A fos promoter / RLuc expression vector (c-fos / hRL) was prepared.
[Procedure 2: Corresponding to the production process of the present invention] In order to observe the response of AP-1, the luciferase gene of TransLucent Reporter Vector (manufactured by Panomics) was transferred to SLG luciferase (manufactured by Toyobo Co., Ltd.) Substitution was carried out to produce an AP-1 enhancer / SLG expression vector (AP-1 / SLG).
[Procedure 3: Corresponding to the production process of the present invention] The two types of vectors prepared in Procedure 1 and Procedure 2 were transfected into HeLa cells seeded in an f35 mm-glass bottom dish and cultured overnight, and then the medium was added. It was replaced with serum-free medium and further cultured overnight. Subsequently, EnduRen (final concentration 60 μM) and luciferin (final concentration 500 μM) were added to the medium and allowed to stand for 1 hour.
[Procedure 4: Corresponds to the stimulation step of the present invention] FBS (final concentration 10%) was added to the medium to stimulate the cells.
[Procedure 5: Corresponding to the imaging step of the present invention] After setting the dish to LUMINOWVIEW, time-lapse photography of the luminescent image and the bright field image was performed at 15-minute intervals for 20 hours. As the spectral filter, a BA470-490 filter was used for c-fos expression analysis, and a BA530-550 filter was used for AP-1 expression analysis. As luminescence observation conditions, the magnification of the objective lens is 20 times, the exposure time is 10 minutes (for c-fos expression analysis) and 5 minutes (for AP-1 expression analysis), the binning is 1 × 1, the CCD camera is iXon (ANDOR ).
[Procedure 6: Corresponds to the measurement step of the present invention] Each c-fos / hRL emission image photographed in Procedure 5 and the bright field image corresponding thereto are superimposed, and a plurality of ROIs ( Region of Interest (region of interest) was specified (see FIG. 5). Further, each AP-1 / SLG emission image photographed in the procedure 5 and the corresponding bright field image were superimposed, and a plurality of ROIs were designated for the superimposed image (see FIG. 6). Then, the emission intensity of each designated ROI was measured based on each emission image, and the change over time of the emission intensity was displayed in a graph (see FIGS. 7 and 8).

以上の実験の結果、血清刺激後の各プロモーターの応答を、シングルセルレベルで検出することができた(図5および図6参照)。また、各遺伝子発現の発光強度の経時変化を示す図7および図8との間で最大発現時期を比較すると、c−fosの応答が先に始まってから、それに遅れてAP−1の応答が始まることが示唆された(図7および図8参照)。これにより、LUMINOVIEWを用いてマルチカラーイメージングを行うことで、同一細胞におけるシグナル伝達の様子を捉えることができ、その結果、より正確な遺伝子発現の解析が可能となった。   As a result of the above experiment, the response of each promoter after serum stimulation could be detected at the single cell level (see FIGS. 5 and 6). Moreover, when the maximum expression time is compared between FIG. 7 and FIG. 8 showing the time-dependent changes in the luminescence intensity of each gene expression, the response of AP-1 was delayed after the c-fos response started first. It was suggested to begin (see FIG. 7 and FIG. 8). Thus, by performing multicolor imaging using LUMINOVIEW, it was possible to capture the state of signal transmission in the same cell, and as a result, more accurate gene expression analysis was possible.

以上のように、本発明にかかる発光測定方法は、バイオ、製薬、医療など様々な分野で好適に用いることができる。   As described above, the luminescence measurement method according to the present invention can be suitably used in various fields such as biotechnology, pharmaceuticals, and medicine.

発光観察システム100の全体構成の一例を示す図である。1 is a diagram illustrating an example of an overall configuration of a light emission observation system 100. FIG. 発光観察システム100の発光画像撮像ユニット106の構成の一例を示す図である。2 is a diagram illustrating an example of a configuration of a light emission image capturing unit 106 of the light emission observation system 100. FIG. 発光観察システム100の発光画像撮像ユニット106の構成の一例を示す図である。2 is a diagram illustrating an example of a configuration of a light emission image capturing unit 106 of the light emission observation system 100. FIG. 発光観察システム100の画像解析装置110の構成の一例を示すブロック図である。2 is a block diagram illustrating an example of a configuration of an image analysis device 110 of the light emission observation system 100. FIG. 血清刺激7時間後に撮像した明視野画像とc−fos/hRL発光画像との重ね合わせ画像を示す図である。It is a figure which shows the superimposition image of the bright field image imaged 7 hours after serum stimulation, and a c-fos / hRL light emission image. 血清刺激7時間後に撮像した明視野画像とAP−1/SLG発光画像との重ね合わせ画像を示す図である。It is a figure which shows the superimposition image of the bright-field image imaged 7 hours after serum stimulation, and AP-1 / SLG light emission image. c−fos/hRLの発光強度の経時変化を表すグラフを示す図である。It is a figure which shows the graph showing the time-dependent change of the emitted light intensity of c-fos / hRL. AP−1/SLGの発光強度の経時変化を表すグラフを示す図である。It is a figure which shows the graph showing the time-dependent change of the emitted light intensity of AP-1 / SLG.

符号の説明Explanation of symbols

100 発光観察システム
103 容器(シャーレ)
104 ステージ
106 発光画像撮像ユニット
106a 対物レンズ(発光観察用)
106b ダイクロイックミラー
106c CCDカメラ
106d スプリットイメージユニット
106e フィルターホイール
106f 結像レンズ
110 画像解析装置
112 制御部
112a 発光画像撮像指示部
112b 発光画像取得部
112c 画像解析部
112d 解析結果出力部
114 クロック発生部
116 記憶部
118 通信インターフェース部
120 入出力インターフェース部
122 入力装置
124 出力装置
100 Luminescence observation system
103 container (petri dish)
104 stages
106 Luminous image pickup unit
106a Objective lens (for light emission observation)
106b Dichroic mirror
106c CCD camera
106d Split image unit
106e Filter wheel
106f Imaging lens
110 Image analyzer
112 Control unit
112a Luminous image capturing instruction unit
112b Luminescent image acquisition unit
112c Image analysis unit
112d Analysis result output part
114 Clock generator
116 storage unit
118 Communication interface
120 Input / output interface
122 Input device
124 Output device

Claims (3)

生体試料からの発光を測定する発光測定方法であって、
発光色が互いに異なるように発光標識された複数の所定の遺伝子を含む前記生体試料を作製する作製工程と、
前記作製工程で作製した前記生体試料に当該生体試料外から所定の刺激を与える刺激工程と、
前記刺激工程で前記所定の刺激が与えられた後の前記生体試料の発光画像を、前記発光色および発光強度の両方の関係を各々の前記発光色ごとに関連付けて撮像する撮像工程と、
前記撮像工程で撮像した前記発光画像に基づいて、各々の前記発光色の前記発光強度を定量的に測定する測定工程と、
を含むことを特徴とする発光測定方法。
A luminescence measuring method for measuring luminescence from a biological sample,
A production step of producing the biological sample containing a plurality of predetermined genes that are luminescently labeled so that the luminescent colors are different from each other;
A stimulation step of applying a predetermined stimulus from outside the biological sample to the biological sample prepared in the manufacturing step;
An imaging step of imaging a luminescent image of the biological sample after the predetermined stimulus is given in the stimulation step, by associating a relationship between both the luminescent color and the luminescent intensity for each of the luminescent colors;
A measurement step for quantitatively measuring the emission intensity of each of the emission colors based on the emission image captured in the imaging step;
A method for measuring luminescence, comprising:
前記撮像工程は、前記発光画像の撮像に用いたカメラのダイナミックレンジと前記発光標識するために用いた発光タンパク質の種類とに応じて当該カメラの露出時間を調節して、前記生体試料の前記発光画像を撮像すること
を特徴とする請求項1に記載の発光測定方法。
The imaging step adjusts the exposure time of the camera according to the dynamic range of the camera used for imaging the luminescent image and the type of photoprotein used for the luminescent labeling, and the luminescence of the biological sample. The luminescence measurement method according to claim 1, wherein an image is captured.
前記撮像工程は、前記生体試料の前記発光画像を繰り返し撮像し、
前記測定工程は、前記撮像工程で撮像した複数の前記発光画像に基づいて、各々の前記発光色の前記発光強度の経時変化を定量的に測定すること
を特徴とする請求項1または2に記載の発光測定方法。
The imaging step repeatedly captures the luminescent image of the biological sample,
3. The measurement step according to claim 1, wherein the measurement step quantitatively measures a temporal change in the emission intensity of each of the emission colors based on the plurality of emission images captured in the imaging step. Luminescence measurement method.
JP2007309427A 2007-11-29 2007-11-29 Luminescence measurement method Pending JP2009133697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007309427A JP2009133697A (en) 2007-11-29 2007-11-29 Luminescence measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007309427A JP2009133697A (en) 2007-11-29 2007-11-29 Luminescence measurement method

Publications (1)

Publication Number Publication Date
JP2009133697A true JP2009133697A (en) 2009-06-18

Family

ID=40865720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007309427A Pending JP2009133697A (en) 2007-11-29 2007-11-29 Luminescence measurement method

Country Status (1)

Country Link
JP (1) JP2009133697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271103B1 (en) 2012-01-31 2013-06-04 삼성테크윈 주식회사 Method and apparatus of measuring concentration of sample using a general camera

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180361A (en) * 1998-12-15 2000-06-30 Fuji Photo Film Co Ltd Photographing system
JP2001103956A (en) * 1999-10-12 2001-04-17 Toyo Ink Mfg Co Ltd Light emission inspection system
JP2005249760A (en) * 2004-03-01 2005-09-15 Atoo Kk Method of measuring feeble light spectrum, and instrument therefor
WO2006061985A1 (en) * 2004-12-07 2006-06-15 Toyo B-Net Co., Ltd. Luciferase emission method and emission reagent for multicolor simultaneous measurement
JP2007108154A (en) * 2005-09-14 2007-04-26 Olympus Corp Method for detecting biological sample continuously or for long period
WO2007074929A1 (en) * 2005-12-27 2007-07-05 Olympus Corporation Device and method for capturing image of a sample originating from organism
JP2007218774A (en) * 2006-02-17 2007-08-30 Toyobo Co Ltd Method of measuring multi-color emission
JP2007298379A (en) * 2006-04-28 2007-11-15 Hamamatsu Photonics Kk Device and method for measuring light emission

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180361A (en) * 1998-12-15 2000-06-30 Fuji Photo Film Co Ltd Photographing system
JP2001103956A (en) * 1999-10-12 2001-04-17 Toyo Ink Mfg Co Ltd Light emission inspection system
JP2005249760A (en) * 2004-03-01 2005-09-15 Atoo Kk Method of measuring feeble light spectrum, and instrument therefor
WO2006061985A1 (en) * 2004-12-07 2006-06-15 Toyo B-Net Co., Ltd. Luciferase emission method and emission reagent for multicolor simultaneous measurement
JP2007108154A (en) * 2005-09-14 2007-04-26 Olympus Corp Method for detecting biological sample continuously or for long period
WO2007074929A1 (en) * 2005-12-27 2007-07-05 Olympus Corporation Device and method for capturing image of a sample originating from organism
WO2007074923A1 (en) * 2005-12-27 2007-07-05 Olympus Corporation Apparatus for measuring luminescence dose and method of measuring luminescence
JP2007218774A (en) * 2006-02-17 2007-08-30 Toyobo Co Ltd Method of measuring multi-color emission
JP2007298379A (en) * 2006-04-28 2007-11-15 Hamamatsu Photonics Kk Device and method for measuring light emission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271103B1 (en) 2012-01-31 2013-06-04 삼성테크윈 주식회사 Method and apparatus of measuring concentration of sample using a general camera

Similar Documents

Publication Publication Date Title
JP5259207B2 (en) Cell image analysis apparatus and method and software thereof
JP5927251B2 (en) Luminescence measurement method and luminescence measurement system
Charwat et al. Potential and limitations of microscopy and Raman spectroscopy for live-cell analysis of 3D cell cultures
JP2019530847A5 (en)
US8786720B2 (en) Biological specimen observation method
Kobayashi et al. Potentiometric dye imaging for pheochromocytoma and cortical neurons with a novel measurement system using an integrated complementary metal–oxide–semiconductor imaging device
US20160155239A1 (en) Cell Tracking Device and Method, and Storage Medium Non-Transitory Storing Computer-Readable Cell Tracking Programs
JP2010156612A (en) Image processing device, image processing program, image processing method, and virtual microscope system
JP4429577B2 (en) Intracellular reaction measuring device and intracellular reaction measuring method
JP2009133697A (en) Luminescence measurement method
JP6461204B2 (en) Method for generating three-dimensional luminescent image and imaging system
JPWO2018193612A1 (en) Correlation calculating device, correlation calculating method, and correlation calculating program
JP5060931B2 (en) Calcium measurement method
JP2011196853A (en) Virtual slide inspection method and virtual slide inspection apparatus
JP6058241B1 (en) Image analysis apparatus, image analysis system, and operation method of image analysis apparatus
CN213843031U (en) Antibody detection device
WO2012147492A1 (en) Image processing device, image processing method, image processing program, and virtual microscope system
WO2022249583A1 (en) Information processing device, biological sample observation system, and image generation method
US20030128424A1 (en) Laser scanning confocal microscope apparatus, image recording method, and recording medium
CN108507985B (en) Four-dimensional fluorescence resonance energy transfer efficiency visual microscopic analysis system and method
JP5596931B2 (en) Receptor expression level analysis method
JP5567777B2 (en) Signal transduction analysis method and signal transduction analysis system
De Mey et al. Fast 4D microscopy
WO2023189393A1 (en) Biological sample observation system, information processing device, and image generation method
JP2009074937A (en) Image processor and image processing program

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101124

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Effective date: 20120417

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120618

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20120710

Free format text: JAPANESE INTERMEDIATE CODE: A02