JP2009129955A - Optical system, and atomic oscillator - Google Patents

Optical system, and atomic oscillator Download PDF

Info

Publication number
JP2009129955A
JP2009129955A JP2007300183A JP2007300183A JP2009129955A JP 2009129955 A JP2009129955 A JP 2009129955A JP 2007300183 A JP2007300183 A JP 2007300183A JP 2007300183 A JP2007300183 A JP 2007300183A JP 2009129955 A JP2009129955 A JP 2009129955A
Authority
JP
Japan
Prior art keywords
light
gas cell
optical system
atomic oscillator
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007300183A
Other languages
Japanese (ja)
Other versions
JP2009129955A5 (en
Inventor
Hiroshi Nomura
博 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2007300183A priority Critical patent/JP2009129955A/en
Priority to US12/271,057 priority patent/US20090128820A1/en
Publication of JP2009129955A publication Critical patent/JP2009129955A/en
Publication of JP2009129955A5 publication Critical patent/JP2009129955A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
    • G04F5/145Apparatus for producing preselected time intervals for use as timing standards using atomic clocks using Coherent Population Trapping

Abstract

<P>PROBLEM TO BE SOLVED: To provide an atomic oscillator equipped with an optical system which can have a light receiving element and a light emitting element disposed side by side on the same side and facilitates module mounting by shortening a bonding wire electrically connecting the light receiving element, and is improved in S/N. <P>SOLUTION: The optical system 1 is an optical system 1 of the atomic oscillator 100 which controls an oscillation frequency by using a light absorption characteristic caused by a quantum-interference effect when the two resonant light components are incident as coherent lights differing in wavelengths, the optical system 1 including: a coherent light source 2 supplying resonant light 3 to metal atoms in a gas cell 8; a polarization splitting means 4 of transmitting p-polarized light 5 included in the resonant light 3 and converting an optical path of s-polarized light 13; a 1/4λ wavelength plate 6 converting circular polarized light into linear polarized light and vice versa; the gas cell 8 in which gaseous metal atoms are enclosed; a light guide means 10 that guides light 8 after passing through the gas cell 8 back to the gas cell 8; and a photodetector 15 that detects s-polarized light 14a having the optical path converted by the polarization splitting means 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、原子発振器の光学系に関し、さらに詳しくは、原子発振器を構成する光学系に含まれる光源と受光素子の実装技術に関するものである。   The present invention relates to an optical system for an atomic oscillator, and more particularly to a mounting technique for a light source and a light receiving element included in the optical system constituting the atomic oscillator.

ルビジウム、セシウム等のアルカリ金属を用いた原子発振器は、原子のエネルギ遷移を利用する際に、原子をガス状態に保つ必要があるため、原子を気密封入したガスセルを高温に保って動作させている。原子発振器の動作原理は、光とマイクロ波を利用した二重共鳴法と、2種類のレーザ光による量子干渉効果(以下CPT:Coherent Population Trappingと記す)を利用する方法に大別されるが、両者共にガスセルに入射した光が、原子ガスにどれだけ吸収されたかを反対側に設けられた検出器で検出することにより、原子共鳴を検知して制御系にて水晶発振器などの基準信号をこの原子共鳴に同期させて出力を得ている。ここで、CPTを利用した原子発振器は、発光素子、ガスセル、及び受光素子を一体的に構成して光学系を形成している(特許文献1参照)。
US6806784B2
An atomic oscillator using an alkali metal such as rubidium or cesium needs to keep atoms in a gas state when using energy transition of atoms, and therefore operates a gas cell in which atoms are hermetically sealed at a high temperature. . The principle of operation of an atomic oscillator is roughly divided into a double resonance method using light and microwaves, and a method using a quantum interference effect (hereinafter referred to as CPT: Coherent Population Trapping) by two types of laser light. In both cases, the amount of the light incident on the gas cell is detected by the detector provided on the opposite side to detect how much light has been absorbed by the atomic gas, so that the atomic resonance is detected and a reference signal from a crystal oscillator or the like is sent to the control system. Output is obtained in synchronization with atomic resonance. Here, in an atomic oscillator using CPT, a light emitting element, a gas cell, and a light receiving element are integrally formed to form an optical system (see Patent Document 1).
US6808064B2

しかし、特許文献1に開示されている従来の光学系の構成では、図5に示すように発光素子93、ガスセル95、及び受光素子90が縦積みに配置されている。このため、最上面に配置した受光素子90を電気的に接続するボンディングワイヤ91が長くなり、モジュールの実装構造が複雑となるばかりでなく、受光素子90から得られる信号が微弱なためにワイヤに重畳するノイズの影響を受けやすくなりS/N特性が良くないといった問題もある。
また、同一出願人による発明として、図6のように、発光素子102と受光素子104を同一基板112に実装した光学系の場合、ガスセル103の上に反射ミラー110を備え、発光素子102から発光された共鳴光113が、ガスセル103を透過して反射ミラー110により反射されて再びガスセル103に入射して受光素子104により受光される光学系がある。
However, in the configuration of the conventional optical system disclosed in Patent Document 1, the light emitting element 93, the gas cell 95, and the light receiving element 90 are vertically arranged as shown in FIG. For this reason, the bonding wire 91 for electrically connecting the light receiving element 90 arranged on the uppermost surface becomes long, and the mounting structure of the module becomes complicated, and the signal obtained from the light receiving element 90 is weak, so that the wire is used. There is also a problem that the S / N characteristic is not good because it is easily affected by superimposed noise.
In the case of an optical system in which the light emitting element 102 and the light receiving element 104 are mounted on the same substrate 112 as shown in FIG. 6 as an invention by the same applicant, the reflecting mirror 110 is provided on the gas cell 103 and the light emitting element 102 emits light. There is an optical system in which the resonance light 113 transmitted through the gas cell 103 is reflected by the reflection mirror 110 and is incident on the gas cell 103 again and is received by the light receiving element 104.

しかし、構造上、発光素子102と受光素子104を同一基板上に離して配置する必要があるため、反射ミラー110に所定の傾斜角度を設けなければならない。その結果、反射ミラー110の角度調整が必要であり調整に手間がかかるといった問題がある。また、反射ミラー110が傾斜するために、光学系全体が高くなり、小型化に対して不利となるといった問題がある。
本発明は、かかる課題に鑑み、発光素子から発光した光の波長を偏光素子で1/4λずらして折り返すことにより、ガスセル中を光が往復通過して直交する偏光状態に変換し、偏光分離素子で光路変換されることにより、受光素子と発光素子とをガスセルに対して同一側に近接して併置することが可能となり、受光素子を電気的に接続するボンディングワイヤを短くしてモジュール実装を容易とし、且つ、S/Nを改善した光学系を備えた原子発振器を提供することを目的とする。
However, because of the structure, it is necessary to dispose the light emitting element 102 and the light receiving element 104 apart from each other on the same substrate. Therefore, the reflection mirror 110 must be provided with a predetermined inclination angle. As a result, there is a problem that it is necessary to adjust the angle of the reflection mirror 110 and it takes time and effort. Further, since the reflecting mirror 110 is inclined, there is a problem that the entire optical system becomes high, which is disadvantageous for downsizing.
In view of the above problems, the present invention converts the light emitted from the light emitting element into a polarization state in which the light passes back and forth through the gas cell and is orthogonally crossed by turning the light with the polarizing element shifted by ¼λ. By changing the optical path, it becomes possible to place the light receiving element and the light emitting element close to each other on the same side of the gas cell, and the bonding wire for electrically connecting the light receiving element can be shortened to facilitate module mounting. An object of the present invention is to provide an atomic oscillator including an optical system with improved S / N.

本発明はかかる課題を解決するために、波長が異なるコヒーレント光としての2種類の共鳴光を入射したときの量子干渉効果による光吸収特性を利用して発振周波数を制御する原子発振器の光学系であって、前記共鳴光を出射するコヒーレント光源と、前記コヒーレント光源の出射側に配置され前記共鳴光に含まれるp偏光、或いはs偏光のうち何れか一方の偏光を通過させ、他方の偏光を光路変換して出射する偏光分離手段と、前記偏光分離手段の出射側に配置され円偏光を直線偏光に、若しくはこの逆に変換する1/4λ波長板と、ガス状の金属原子を封入したガスセルと、前記ガスセルを通過した光を折り返し光として再び該ガスセルに導く導光手段と、前記ガスセル及び前記1/4λ波長板を通過し前記偏光分離手段により光路変換された前記折り返し光を検出する光検出手段と、を備えたことを特徴とする。   In order to solve such a problem, the present invention is an optical system of an atomic oscillator that controls an oscillation frequency by utilizing a light absorption characteristic due to a quantum interference effect when two types of resonant light as coherent lights having different wavelengths are incident. A coherent light source that emits the resonant light, and a p-polarized light or an s-polarized light that is arranged on the outgoing side of the coherent light source and that is included in the resonant light, and passes the other polarized light in the optical path. A polarized light separating means for converting and emitting; a quarter-wave plate disposed on the outgoing side of the polarized light separating means for converting circularly polarized light into linearly polarized light or vice versa; and a gas cell enclosing gaseous metal atoms; A light guiding means that guides the light that has passed through the gas cell to the gas cell again as a return light, and passes through the gas cell and the quarter-wave plate and is converted into an optical path by the polarization separation means. And a light detection means for detecting the folded light.

本発明の原子発振器は、レーザ光などのコヒーレント光の量子干渉効果を利用したものである。この方式は、2つの基底準位が共鳴光を受けて、共通の励起準位と共鳴結合している3準位系(例えばΛ型準位系)において、同時に照射される2つの共鳴光の周波数が正確に基底準位1と基底準位2のエネルギ差に一致すると、3準位系は2つの基底準位の重ね合わせの状態になり、励起準位3への励起が停止する。CPTはこの原理を利用して、2つの共鳴光の一方或いは両方の波長を変化させたときに、ガスセルでの光吸収が停止する状態を検出して利用するものである。
そして、本発明の光学系は、コヒーレント光源と光検出手段とをガスセルに対して同一側に実装し、コヒーレント光源からの共鳴光に含まれるp偏光が偏光分離手段を通過して1/4λ波長板により円偏光に変換される。その円偏光はガスセルを通過して導光手段により折り返されて再びガスセルを通過して、1/4λ波長板により直線偏光に変換されてs偏光となり、そのs偏光が光検出手段により検出される。これにより、1つの偏光分離手段により共鳴光をガスセルに往復させることができる。
The atomic oscillator of the present invention utilizes the quantum interference effect of coherent light such as laser light. In this method, two ground levels of two resonant lights irradiated simultaneously in a three-level system (for example, a Λ-type level system) in which two ground levels receive resonant light and are resonantly coupled with a common excitation level. When the frequency exactly matches the energy difference between the ground level 1 and the ground level 2, the three-level system becomes a superposition state of the two ground levels, and the excitation to the excitation level 3 stops. CPT uses this principle to detect and use a state in which light absorption in the gas cell stops when the wavelength of one or both of the two resonance lights is changed.
In the optical system of the present invention, the coherent light source and the light detection means are mounted on the same side with respect to the gas cell, and the p-polarized light contained in the resonance light from the coherent light source passes through the polarization separation means and is ¼λ wavelength. It is converted into circularly polarized light by the plate. The circularly polarized light passes through the gas cell, is folded back by the light guide means, passes through the gas cell again, is converted to linearly polarized light by the quarter-wave plate, and becomes s-polarized light, and the s-polarized light is detected by the light detecting means. . Thereby, resonance light can be reciprocated to the gas cell by one polarization separation means.

また、前記導光手段は、前記ガスセルを通過した円偏光が前記導光手段により反射して同一光路を折り返すように構成されていることを特徴とする。
光がガスセルを通過するときに、ドップラ拡がりという現象が発生する。この現象は、同じ光路を光が往復することでキャンセルすることが期待できる。そこで本発明では、ガスセルを通過した光が同一光路を通過するように導光手段を構成する。これにより、ドップラ拡がりをキャンセルすることが期待できる。
また、前記光検出手段と前記コヒーレント光源とをガスセルに対して同一側に併置したことを特徴とする。
本発明の光学系は、コヒーレント光源と光検出手段とをガスセルに対して同一側に実装し、透過光が光検出手段により受光されるように偏光分離手段を構成した。これにより、ボンディングワイヤが短くなり、信号のS/N特性を改善すると共に、光学系全体の実装も容易にすることができる。
Further, the light guide means is configured such that the circularly polarized light that has passed through the gas cell is reflected by the light guide means and turns back the same optical path.
When light passes through the gas cell, a phenomenon called Doppler spread occurs. This phenomenon can be expected to be canceled by light traveling back and forth on the same optical path. Therefore, in the present invention, the light guide means is configured so that the light passing through the gas cell passes through the same optical path. This can be expected to cancel the Doppler spread.
Further, the light detection means and the coherent light source are juxtaposed on the same side with respect to the gas cell.
In the optical system of the present invention, the coherent light source and the light detection means are mounted on the same side with respect to the gas cell, and the polarization separation means is configured so that the transmitted light is received by the light detection means. As a result, the bonding wire is shortened, the signal S / N characteristic is improved, and the entire optical system can be easily mounted.

また、少なくとも前記ガスセル、又は/及び、導光手段が前記同一光路上に配置されていることを特徴とする。
ガスセルと導光手段は、光が通過する光路にのみ構成されていれば十分である。従って、光が通過しない場所にあるガスセルと導光手段は特に必要ではない。そこで本発明では、光路になる部分のみにガスセル、又は/及び、導光手段を配置するように構成する。これにより、ガスセルと導光手段の大きさを最小限にして、部品コストを低減することができる。
また、前記導光手段は、反射部材により構成されていることを特徴とする。
導光手段に入射した円偏光を同じ光路に折り返すにはミラー等の反射部材が最適である。これにより、円偏光が入射した光路と同じ光路に戻ることができる。
In addition, at least the gas cell or / and the light guiding means are arranged on the same optical path.
It is sufficient that the gas cell and the light guide means are configured only in the optical path through which light passes. Therefore, the gas cell and the light guide means in a place where light does not pass are not particularly necessary. Therefore, in the present invention, the gas cell or / and the light guiding means are arranged only in the portion that becomes the optical path. Thereby, the size of a gas cell and a light guide means can be minimized, and component costs can be reduced.
Further, the light guiding means is constituted by a reflecting member.
A reflective member such as a mirror is optimal for turning back the circularly polarized light incident on the light guiding means in the same optical path. Thereby, it can return to the same optical path as the optical path in which circularly polarized light entered.

また、前記コヒーレント光は、レーザ光であることを特徴とする。
普通の光は、いろいろな波長が混ざり位相がランダムな光である。これに対してレーザ光は波長の単色性が良く、位相の揃った光である。このような光の波長や位相の安定性の尺度としてコヒーレンスが定義されている。コヒーレンスが良い、すなわち波長や位相が安定な光は量子干渉効果を起こすことができる。その点ではレーザ光は最適である。
また、前記ガス状の金属原子は、ルビジウム、又はセシウムであることを特徴とする。
セシウム原子を使えば、精度の高い原子発振器を実現できる。また、ルビジウム原子は手軽に広く普及している。よって、原子発振器の要求性能とコストを考慮して、いずれかの金属原子を選ぶことができる。
The coherent light is laser light.
Ordinary light is light in which various wavelengths are mixed and the phase is random. On the other hand, laser light has good monochromaticity in wavelength and is light with a uniform phase. Coherence is defined as a measure of the stability of the wavelength and phase of light. Light with good coherence, that is, with stable wavelength and phase, can cause a quantum interference effect. In that respect, laser light is optimal.
The gaseous metal atom is rubidium or cesium.
If cesium atoms are used, a highly accurate atomic oscillator can be realized. In addition, rubidium atoms are widely spread easily. Therefore, any metal atom can be selected in consideration of the required performance and cost of the atomic oscillator.

また、前記コヒーレント光源から出射した光を集光し、且つ平行光に補正する受動光学素子を前記コヒーレント光源と前記ガスセルとの間に配置したことを特徴とする。
光学系には、コヒーレント光源から出射した光を集光して、平行光になるように補正するためにレンズや波長板といった受動光学素子が使用される。この受動光学素子は、ガスセルに入射する前であればどこに配置しても構わない。そこで本発明では、受動光学素子をコヒーレント光源とガスセルとの間に配置する。これにより、光を正確に導光手段に入射させることができる。
また、上記構成による光学系を原子発振器に備えたことを特徴とする。
ガスセルを複数回通過する構造としたことで、より大きなEIT信号を得る光学系とすることができるので、S/Nが向上した高性能な原子発振器を提供することができる。
In addition, a passive optical element that collects the light emitted from the coherent light source and corrects the light into parallel light is disposed between the coherent light source and the gas cell.
In the optical system, a passive optical element such as a lens or a wave plate is used to collect the light emitted from the coherent light source and correct it to become parallel light. This passive optical element may be disposed anywhere before entering the gas cell. Therefore, in the present invention, the passive optical element is disposed between the coherent light source and the gas cell. Thereby, light can be accurately incident on the light guide means.
Further, the optical system having the above configuration is provided in an atomic oscillator.
By adopting a structure that passes through the gas cell a plurality of times, it is possible to provide an optical system that obtains a larger EIT signal, so that a high-performance atomic oscillator with improved S / N can be provided.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。
図1は本発明の実施形態に係る原子発振器の光学系の要部構成図である。この光学系1は、波長が異なるコヒーレント光としての2種類の共鳴光を入射したときの量子干渉効果による光吸収特性を利用して発振周波数を制御する原子発振器100の光学系1であって、共鳴光3を出射するコヒーレント光源2と、コヒーレント光源2の出射側に配置され共鳴光3に含まれるp偏光(直線偏光)を通過させs偏光(直線偏光)を光路変換する偏光分離手段4と、偏光分離手段4の出射側に配置され直線偏光を円偏光に若しくはこの逆に変換する1/4λ波長板6と、ガス状の金属原子を封入したガスセル8と、ガスセル8を通過した光を再びガスセル8に導く導光手段10と、偏光分離手段4により光路変換されたs偏光を検出する光検出器(光検出手段)15と、を備えている。
原子発振器100は光検出器15の出力信号により、発振周波数を制御する周波数制御回路11を更に備えて構成されている。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the components, types, combinations, shapes, relative arrangements, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention only unless otherwise specified. .
FIG. 1 is a configuration diagram of a main part of an optical system of an atomic oscillator according to an embodiment of the present invention. This optical system 1 is an optical system 1 of an atomic oscillator 100 that controls an oscillation frequency by using a light absorption characteristic due to a quantum interference effect when two types of resonant light as coherent lights having different wavelengths are incident. A coherent light source 2 that emits the resonant light 3, and a polarization separation unit 4 that is disposed on the emission side of the coherent light source 2 and passes the p-polarized light (linearly polarized light) included in the resonant light 3 and changes the optical path of the s-polarized light (linearly polarized light). The quarter-wave plate 6 disposed on the exit side of the polarization separating means 4 for converting linearly polarized light into circularly polarized light or vice versa, a gas cell 8 enclosing gaseous metal atoms, and light passing through the gas cell 8 A light guide unit 10 that leads to the gas cell 8 again, and a photodetector (light detection unit) 15 that detects s-polarized light whose optical path has been changed by the polarization separation unit 4 are provided.
The atomic oscillator 100 is further provided with a frequency control circuit 11 that controls the oscillation frequency based on the output signal of the photodetector 15.

尚、導光手段10により反射された円偏光11は折り返し光として再びガスセル8に入射されて円偏光12となり、1/4λ波長板6によりs偏光13(直線偏光)に変換されて、偏光分離手段4に入射される。また、本発明の主旨は、原子発振器を構成する光学系の構成にあるので、原子発振器の周波数制御についての詳細な説明は省略する。
即ち、本実施形態の原子発振器100は、レーザ光などのコヒーレント光の量子干渉効果を利用したものである。この方式は、2つの基底準位が共鳴光を受けて、共通の励起準位と共鳴結合している3準位系(例えばΛ型準位系)において、同時に照射される2つの共鳴光の周波数が正確に基底準位1と基底準位2のエネルギ差に一致すると、3準位系は2つの基底準位の重ね合わせの状態になり、励起準位3への励起が停止する。
CPTはこの原理を利用して、2つの共鳴光の一方或いは両方の波長を変化させたときに、ガスセルでの光吸収が停止する状態を検出して利用するものである。
そして、本発明の光学系1は、コヒーレント光源2と光検出器15とをガスセルに対して同一側に実装し、コヒーレント光源2からの共鳴光3に含まれるp偏光5が偏光分離手段4を通過して1/4λ波長板6により円偏光7に変換される。その円偏光7はガスセル8を通過して導光手段10により折り返されて、折り返し光として再びガスセル8を通過して、1/4λ波長板6により直線偏光に変換されてs偏光13となり、そのs偏光13が偏光分離手段4で分離され光検出器15により検出される。これにより、1つの偏光分離手段4により共鳴光3をガスセル8に往復させることができる。
The circularly polarized light 11 reflected by the light guiding means 10 is again incident on the gas cell 8 as reflected light to become circularly polarized light 12, and is converted into s-polarized light 13 (linearly polarized light) by the ¼λ wavelength plate 6 to separate the polarized light. Incident on the means 4. Also, since the gist of the present invention is the configuration of the optical system that constitutes the atomic oscillator, a detailed description of the frequency control of the atomic oscillator is omitted.
That is, the atomic oscillator 100 of the present embodiment uses the quantum interference effect of coherent light such as laser light. In this method, two ground levels of two resonant lights irradiated simultaneously in a three-level system (for example, a Λ-type level system) in which two ground levels receive resonant light and are resonantly coupled with a common excitation level. When the frequency exactly matches the energy difference between the ground level 1 and the ground level 2, the three-level system becomes a superposition state of the two ground levels, and the excitation to the excitation level 3 stops.
CPT uses this principle to detect and use a state in which light absorption in the gas cell stops when the wavelength of one or both of the two resonance lights is changed.
In the optical system 1 of the present invention, the coherent light source 2 and the photodetector 15 are mounted on the same side with respect to the gas cell, and the p-polarized light 5 included in the resonance light 3 from the coherent light source 2 is used as the polarization separation means 4. It passes through and is converted into circularly polarized light 7 by the quarter-wave plate 6. The circularly polarized light 7 passes through the gas cell 8 and is folded back by the light guiding means 10, passes through the gas cell 8 again as folded light, is converted into linearly polarized light by the ¼λ wavelength plate 6, and becomes s-polarized light 13, The s-polarized light 13 is separated by the polarization separation means 4 and detected by the photodetector 15. Thereby, the resonance light 3 can be reciprocated to the gas cell 8 by one polarization separation means 4.

図2はCPT方式による原子の3準位系を説明する一例である。原子発振器に用いられるルビジウムやセシウムの基底準位は、核スピン−電子スピン相互作用による超微細構造により2種類の基底準位に分かれている。これらの基底準位の原子は光を吸収して、よりエネルギーの高い準位へ励起する。
また、図2の様に2つの基底準位が光を受けて、共通の励起準位と共鳴結合している状態を2光子共鳴と言う。
図2において、基底準位1(23)と基底準位2(24)は準位のエネルギが若干異なるため、共鳴光もそれぞれ共鳴光1(20)と共鳴光2(22)と波長が若干異なる。同時に照射される共鳴光1(20)と共鳴光2(22)の周波数差(波長の差)が正確に基底準位1(23)と基底準位2(24)のエネルギ差に一致すると、図2の系は2つの基底準位の重ね合わせ状態になり、励起準位21への励起が停止する。CPTはこの原理を利用して、共鳴光1(20)と共鳴光2(22)のどちらかまたは両方の波長を変化させたときに、ガスセル3での光吸収(つまり励起準位21への転換)が停止する状態を検出、利用する方式である。この光吸収が停止する状態でガスセル3を通過する透過光をEIT信号と呼ぶ。
FIG. 2 is an example for explaining a three-level system of atoms by the CPT method. The rubidium and cesium ground levels used in the atomic oscillator are divided into two kinds of ground levels by the hyperfine structure due to the nuclear spin-electron spin interaction. These ground level atoms absorb light and excite to higher energy levels.
A state in which two ground levels receive light and are resonantly coupled to a common excitation level as shown in FIG. 2 is called two-photon resonance.
In FIG. 2, since the ground level 1 (23) and the ground level 2 (24) have slightly different level energies, the resonant light also has slightly different wavelengths from the resonant light 1 (20) and the resonant light 2 (22), respectively. Different. When the frequency difference (wavelength difference) between the resonant light 1 (20) and the resonant light 2 (22) irradiated at the same time exactly matches the energy difference between the ground level 1 (23) and the ground level 2 (24), The system shown in FIG. 2 enters a superposition state of two ground levels, and excitation to the excitation level 21 stops. The CPT utilizes this principle to absorb light in the gas cell 3 (that is, to the excitation level 21) when the wavelength of one or both of the resonant light 1 (20) and the resonant light 2 (22) is changed. This is a method of detecting and using a state where the conversion is stopped. The transmitted light that passes through the gas cell 3 in a state where the light absorption is stopped is called an EIT signal.

図3は本発明の第1の実施形態に係る光学系の構成を模式化した図である。この光学系1Aは、基板38上に発光素子(図1のコヒーレント光源2)30と受光素子(図1の光検出器15)37を併置し、夫々の素子がボンディングワイヤ25により基板38に電気的に接続されている。そして、スペーサ31a、31bにより所定の距離を確保して、その上に発光素子30から発光されたコヒーレント光40を集光したり、平行光に変換したり、或いは偏光状態を変える受動光学素子32を備え、その上にビームスプリッタ33と、ビームスプリッタ33により光路変換されたs偏光を基板38に導く第2ミラー39が備えられている。そして、スペーサ45a、45bにより所定の距離を確保して、その上に1/4λ波長板36とガスセル34と第1ミラー35を重ね合わせている。   FIG. 3 is a diagram schematically showing the configuration of the optical system according to the first embodiment of the present invention. In this optical system 1A, a light emitting element (coherent light source 2 in FIG. 1) 30 and a light receiving element (photodetector 15 in FIG. 1) 37 are placed on a substrate 38, and each element is electrically connected to the substrate 38 by a bonding wire 25. Connected. Then, a predetermined distance is secured by the spacers 31 a and 31 b, and the coherent light 40 emitted from the light emitting element 30 is condensed thereon, converted into parallel light, or the passive optical element 32 that changes the polarization state. And a second mirror 39 for guiding the s-polarized light whose optical path has been changed by the beam splitter 33 to the substrate 38. A predetermined distance is secured by the spacers 45a and 45b, and the quarter-wave plate 36, the gas cell 34, and the first mirror 35 are overlaid thereon.

次に、図3により概略動作について説明する。発光素子30から発光されたコヒーレント光40は、受動光学素子32により集光されて平行光に補正されてビームスプリッタ(偏光分離手段)33に入射する。コヒーレント光40には、p偏光とs偏光が含まれているが、ビームスプリッタ33はp偏光のみを通過させる。通過したp偏光41は、1/4λ波長板36により円偏光に変換され、ガスセル34に入射する。
ガスセル34は2つの波長を有するp偏光41の一方或いは両方の波長を変化させたときに、光吸収が停止するように動作する。ガスセル34を通過したp偏光41は第1ミラー35により反射され、同じ光路を通って再びガスセル34に入射する。ここで、光がガスセル34を通過するときに、ドップラ拡がりという現象が発生することが知られているが、これについて補足する。セル内の原子には速度の速いものから遅いものまで色々の速度のものが混在して分布している。このうち速度の速い原子(励起状態の原子)がEIT現象に寄与すると、ドップラー効果により原子から見た光の波長が見かけ上変化するため、EIT現象における検出幅(ガスセルでの光吸収が停止する波長の範囲)を広げてしまうことが知られている。なお、この現象は、同じ光路を光が往復することでキャンセルすることが期待できる。
Next, the schematic operation will be described with reference to FIG. The coherent light 40 emitted from the light emitting element 30 is collected by the passive optical element 32, corrected to parallel light, and incident on a beam splitter (polarization separating means) 33. The coherent light 40 includes p-polarized light and s-polarized light, but the beam splitter 33 passes only p-polarized light. The p-polarized light 41 that has passed is converted into circularly polarized light by the quarter-wave plate 36 and enters the gas cell 34.
The gas cell 34 operates so that light absorption stops when the wavelength of one or both of the p-polarized light 41 having two wavelengths is changed. The p-polarized light 41 that has passed through the gas cell 34 is reflected by the first mirror 35 and enters the gas cell 34 again through the same optical path. Here, it is known that a phenomenon called Doppler spread occurs when light passes through the gas cell 34, and this will be supplemented. The atoms in the cell are distributed in various speeds from fast to slow. Among these, when fast-velocity atoms (excited atoms) contribute to the EIT phenomenon, the wavelength of light seen from the atoms apparently changes due to the Doppler effect, so that the detection width in the EIT phenomenon (light absorption in the gas cell stops). It is known to widen the range of wavelengths. Note that this phenomenon can be expected to be canceled by light traveling back and forth on the same optical path.

そこで本実施形態では、ガスセル34を通過した円偏光42が同一光路を通過するように第1ミラー35をp偏光41の光路と直交するように構成する。これにより、p偏光41は全反射されてドップラ拡がりをキャンセルすることが期待できる。ガスセル34を通過した円偏光42は、1/4λ波長板36によりs偏光(直線偏光)に変換されて再びビームスプリッタ33に入射する。ビームスプリッタ33はp偏光は通過させるが、s偏光は通過させないで光路変換する特性をもったもの(PBS)を使用し、s偏光43は直角に光路変換されて第2ミラー39に入射して、直角に反射されて受光素子37により受光される。尚、発光素子30として面発光型レーザ(VCSEL)、受光素子37としてフォトダイオードが良く使用される。
尚、光学系1Aは、コヒーレント光源30と受光素子37とをガスセルに対し同一側に実装し、透過光が受光素子37により受光されるようにビームスプリッタ33と第2ミラー39を構成した。これにより、ボンディングワイヤ25が短くなり、信号のS/N特性を改善すると共に、光学系1A全体の実装も容易にすることができる。
また、共鳴光40に含まれるp偏光はビームスプリッタ33をそのまま通過するが、s偏光はビームスプリッタ33により光路が変換される。そこで本発明では、ビームスプリッタ33を通過したp偏光が1/4λ波長板36を通過することにより円偏光に変換し、その円偏光41がガスセル34を通過して第1ミラー35により反射されて同じ光路を折り返して、再びガスセル34を通過して1/4λ波長板36によりs偏光に変換されてビームスプリッタ33により光路変換される。これにより、1つのビームスプリッタ33により光路を分離することができる。
Therefore, in the present embodiment, the first mirror 35 is configured to be orthogonal to the optical path of the p-polarized light 41 so that the circularly polarized light 42 that has passed through the gas cell 34 passes through the same optical path. Thereby, it can be expected that the p-polarized light 41 is totally reflected and cancels the Doppler spread. The circularly polarized light 42 that has passed through the gas cell 34 is converted into s-polarized light (linearly polarized light) by the ¼λ wavelength plate 36 and is incident on the beam splitter 33 again. The beam splitter 33 uses the one having a characteristic of changing the optical path without passing the s-polarized light (PBS) (PBS), and the s-polarized light 43 is optically changed at a right angle and incident on the second mirror 39. , Reflected at right angles and received by the light receiving element 37. A surface emitting laser (VCSEL) is often used as the light emitting element 30 and a photodiode is often used as the light receiving element 37.
In the optical system 1A, the coherent light source 30 and the light receiving element 37 are mounted on the same side of the gas cell, and the beam splitter 33 and the second mirror 39 are configured so that transmitted light is received by the light receiving element 37. Thereby, the bonding wire 25 is shortened, the S / N characteristic of the signal is improved, and the entire optical system 1A can be easily mounted.
The p-polarized light contained in the resonance light 40 passes through the beam splitter 33 as it is, but the optical path of the s-polarized light is converted by the beam splitter 33. Therefore, in the present invention, the p-polarized light that has passed through the beam splitter 33 is converted into circularly-polarized light by passing through the quarter-wave plate 36, and the circularly-polarized light 41 passes through the gas cell 34 and is reflected by the first mirror 35. The same optical path is folded back, passes through the gas cell 34 again, is converted to s-polarized light by the quarter-wave plate 36, and is converted by the beam splitter 33. Thereby, the optical path can be separated by one beam splitter 33.

尚、本実施形態のコヒーレント光源30は、レーザ光を使用している。レーザ光は波長の単色性が良く、位相の揃った光である。このような光の波長や位相の安定性の尺度としてコヒーレンスが定義されている。コヒーレンスが良い、すなわち波長や位相が安定な光は量子干渉効果を起こすことができる。その点ではレーザ光は最適である。
また、ガスセル34に使用するガス状の金属原子は、ルビジウム、又はセシウムである。1次原子標準器に使われるセシウム原子を使えば、精度の高い原子発振器を実現できる。また、2次標準器で使われるルビジウム原子は手軽に広く普及しているため、これを使えば一般的には小型で低価格な原子発振器を実現できる。
従って、金属原子に何を用いるかは、使用目的により選択すればよい。なお、本実施形態ではルビジウム、セシウムを用いたがΛ型準位系等の3準位系を持った原子であればどのような原子であっても構わない。
また、偏光分離手段によりp偏光を通過し、s偏光を光路変換するとしているが、s偏光を通過し、p偏光を光路変換しても構わない。
Note that the coherent light source 30 of the present embodiment uses laser light. Laser light has good monochromaticity in wavelength and has a uniform phase. Coherence is defined as a measure of the stability of the wavelength and phase of light. Light with good coherence, that is, with stable wavelength and phase, can cause a quantum interference effect. In that respect, laser light is optimal.
The gaseous metal atom used in the gas cell 34 is rubidium or cesium. By using the cesium atom used in the primary atom standard, a highly accurate atomic oscillator can be realized. In addition, since rubidium atoms used in secondary standards are easily and widely used, it is generally possible to realize a small and low-priced atomic oscillator.
Therefore, what is used for the metal atom may be selected according to the purpose of use. In this embodiment, rubidium and cesium are used, but any atom may be used as long as it has a three-level system such as a Λ-type system.
Further, although it is assumed that the p-polarized light is passed and the s-polarized light is optically path-converted by the polarization separating means, the s-polarized light may be passed and the p-polarized light is optically path-converted.

図4は本発明の第2の実施形態に係る光学系の構成を模式化した図である。同じ構成要素には図3と同じ参照番号を付して説明する。この光学系1Bは、ガスセル46と第1ミラー47が、光路をカバーする範囲内に構成している点である。即ち、ガスセル46と第1ミラー47は、光が通過する光路にのみ構成されていれば十分である。
従って、光が通過しない場所にあるガスセル46と第1ミラー47は特に必要ではない。そこで本実施形態では、光路になる部分のみにガスセル46、又は/及び、第1ミラー47を配置するように構成する。これにより、ガスセル46と第1ミラー47の大きさを最小限にして、部品コストを低減することができる。また、1/4λ波長板36も光路にあれば十分であるので、同じように大きさを最小限にすることができる。
FIG. 4 is a diagram schematically showing the configuration of an optical system according to the second embodiment of the present invention. The same components will be described with the same reference numerals as in FIG. The optical system 1B is that the gas cell 46 and the first mirror 47 are configured within a range covering the optical path. That is, it is sufficient that the gas cell 46 and the first mirror 47 are configured only in an optical path through which light passes.
Therefore, the gas cell 46 and the first mirror 47 in a place where light does not pass are not particularly necessary. Therefore, in the present embodiment, the gas cell 46 and / or the first mirror 47 is arranged only in the portion that becomes the optical path. Thereby, the size of the gas cell 46 and the first mirror 47 can be minimized, and the component cost can be reduced. Further, since it is sufficient that the quarter-wave plate 36 is also in the optical path, the size can be minimized in the same manner.

本発明の実施形態に係る原子発振器の光学系の要部構成図である。It is a principal part block diagram of the optical system of the atomic oscillator which concerns on embodiment of this invention. CPT方式による原子の3準位系を説明する図である。It is a figure explaining the 3 level system of an atom by a CPT system. 本発明の第1の実施形態に係る光学系の構成を模式化した図である。1 is a diagram schematically illustrating a configuration of an optical system according to a first embodiment of the present invention. 本発明の第2の実施形態に係る光学系の構成を模式化した図である。It is the figure which modeled the structure of the optical system which concerns on the 2nd Embodiment of this invention. 特許文献1に開示されている従来の光学系の構成を示す図である。It is a figure which shows the structure of the conventional optical system currently disclosed by patent document 1. FIG. 同一出願人による光学系の構成を示す図である。It is a figure which shows the structure of the optical system by the same applicant.

符号の説明Explanation of symbols

1 光学系、2 コヒーレント光源、3 共鳴光、4 偏光分離手段、5 p偏光、6 1/4λ波長板、7円偏光、8 ガスセル、10 導光手段、14 s偏光、15 光検出器、16 周波数制御回路、100 原子発振器   DESCRIPTION OF SYMBOLS 1 Optical system, 2 Coherent light source, 3 Resonance light, 4 Polarization separation means, 5 p polarization, 6 1/4 (lambda) wavelength plate, 7 circular polarization, 8 Gas cell, 10 Light guide means, 14 s polarization, 15 Photodetector, 16 Frequency control circuit, 100 atomic oscillator

Claims (9)

波長が異なるコヒーレント光としての2種類の共鳴光を入射したときの量子干渉効果による光吸収特性を利用して発振周波数を制御する原子発振器の光学系であって、
前記共鳴光を出射するコヒーレント光源と、
前記コヒーレント光源の出射側に配置され前記共鳴光に含まれるp偏光、或いはs偏光のうち何れか一方の偏光を通過させ、他方の偏光を光路変換して出射する偏光分離手段と、
前記偏光分離手段の出射側に配置され円偏光を直線偏光に、若しくはこの逆に変換する1/4λ波長板と、
ガス状の金属原子を封入したガスセルと、
前記ガスセルを通過した光を折り返し光として再び該ガスセルに導く導光手段と、
前記ガスセル及び前記1/4λ波長板を通過し前記偏光分離手段により光路変換された前記折り返し光を検出する光検出手段と、を備えたことを特徴とする原子発振器の光学系。
An optical system of an atomic oscillator that controls an oscillation frequency by utilizing a light absorption characteristic due to a quantum interference effect when two types of resonance light as coherent light having different wavelengths are incident,
A coherent light source that emits the resonant light;
A polarization separation unit that is arranged on the emission side of the coherent light source and transmits either one of the p-polarized light and the s-polarized light included in the resonance light, and changes the optical path of the other polarized light and emits the polarized light;
A quarter-wave plate disposed on the exit side of the polarization separation means for converting circularly polarized light into linearly polarized light or vice versa;
A gas cell containing gaseous metal atoms,
A light guiding means for guiding the light that has passed through the gas cell to the gas cell again as folded light; and
An optical system for an atomic oscillator, comprising: a light detection unit that detects the return light that has passed through the gas cell and the quarter-wave plate and has been optically path-converted by the polarization separation unit.
前記導光手段は、前記ガスセルを通過した光が前記導光手段により反射して同一光路を折り返すように構成されていることを特徴とする請求項1に記載の原子発振器の光学系。   2. The optical system of an atomic oscillator according to claim 1, wherein the light guide means is configured such that light that has passed through the gas cell is reflected by the light guide means and turns back the same optical path. 前記光検出手段と前記コヒーレント光源とを、前記ガスセルに対して同一側に併置したことを特徴とする請求項1に記載の原子発振器の光学系。   2. The optical system of an atomic oscillator according to claim 1, wherein the light detection means and the coherent light source are juxtaposed on the same side with respect to the gas cell. 少なくとも前記ガスセル、又は/及び、導光手段が前記同一光路上に配置されていることを特徴とする請求項2に記載の原子発振器の光学系。   3. The optical system of an atomic oscillator according to claim 2, wherein at least the gas cell or / and the light guiding means are arranged on the same optical path. 前記導光手段は、反射部材により構成されていることを特徴とする請求項1、2又は4に記載の原子発振器の光学系。   5. The optical system of an atomic oscillator according to claim 1, wherein the light guide means is constituted by a reflecting member. 前記コヒーレント光は、レーザ光であることを特徴とする請求項1に記載の原子発振器の光学系。   The optical system for an atomic oscillator according to claim 1, wherein the coherent light is laser light. 前記ガス状の金属原子は、ルビジウム、又はセシウムであることを特徴とする請求項1に記載の原子発振器の光学系。   2. The optical system of an atomic oscillator according to claim 1, wherein the gaseous metal atom is rubidium or cesium. 前記コヒーレント光源から発光された光を集光し、且つ平行光に補正する受動光学素子を前記コヒーレント光源と前記ガスセルとの間に配置したことを特徴とする請求項1乃至7の何れか一項に記載の原子発振器の光学系。   8. The passive optical element that collects the light emitted from the coherent light source and corrects the light into parallel light is disposed between the coherent light source and the gas cell. 9. An optical system of an atomic oscillator described in 1. 請求項1乃至8の何れか一項に記載の光学系を備えたことを特徴とする原子発振器。   An atomic oscillator comprising the optical system according to any one of claims 1 to 8.
JP2007300183A 2007-11-20 2007-11-20 Optical system, and atomic oscillator Withdrawn JP2009129955A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007300183A JP2009129955A (en) 2007-11-20 2007-11-20 Optical system, and atomic oscillator
US12/271,057 US20090128820A1 (en) 2007-11-20 2008-11-14 Optical system and atomic oscillator background

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007300183A JP2009129955A (en) 2007-11-20 2007-11-20 Optical system, and atomic oscillator

Publications (2)

Publication Number Publication Date
JP2009129955A true JP2009129955A (en) 2009-06-11
JP2009129955A5 JP2009129955A5 (en) 2011-01-13

Family

ID=40641594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007300183A Withdrawn JP2009129955A (en) 2007-11-20 2007-11-20 Optical system, and atomic oscillator

Country Status (2)

Country Link
US (1) US20090128820A1 (en)
JP (1) JP2009129955A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035402A (en) * 2009-08-03 2011-02-17 Northrop Grumman Systems Corp Atomic clock system and method
JP2011237401A (en) * 2010-02-04 2011-11-24 Honeywell Internatl Inc Design and method for stabilizing vcsel of chip scale atomic clock
JP2011257375A (en) * 2010-02-04 2011-12-22 Honeywell Internatl Inc Chip scale atomic clock with two thermal zones
KR20120126035A (en) * 2010-07-14 2012-11-20 세이코 엡슨 가부시키가이샤 Optical module and atomic oscillator
US9136851B2 (en) 2013-02-14 2015-09-15 Ricoh Company, Ltd. Atomic oscillator, method of detecting coherent population trapping resonance and magnetic sensor
JP2018085719A (en) * 2016-10-11 2018-05-31 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Atomic clock system
JP2018146310A (en) * 2017-03-02 2018-09-20 株式会社リコー Magnetic sensor and biomagnetic measuring device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2473886B1 (en) 2009-09-04 2013-05-29 CSEM Centre Suisse D'electronique Et De Microtechnique SA Device for atomic clock
CH703111A1 (en) * 2010-05-07 2011-11-15 Suisse Electronique Microtech Device for enabling double passage of laser beam into gas cell of coherent-population-trapping atomic clock, has polarizer arranged between output of laser beam and splitter to protect laser diode from retro reflections emitted by elements
WO2011026251A1 (en) * 2009-09-04 2011-03-10 Csem Centre Suisse D'electronique Et De Microtechnique S.A. Device for an atomic clock
JP2011158384A (en) * 2010-02-02 2011-08-18 Seiko Epson Corp Particulate detector
EP2498151B1 (en) * 2011-03-09 2014-09-24 Rolex Sa Wristwatch with atomic oscillator
EP2498150A1 (en) 2011-03-09 2012-09-12 CSEM Centre Suisse D'electronique Et De Microtechnique SA Atomic clock
US20140028405A1 (en) * 2012-07-27 2014-01-30 Qualcomm Incorporated Low power microfabricated atomic clock
JP2015088622A (en) * 2013-10-30 2015-05-07 セイコーエプソン株式会社 Optical module and atomic oscillator
CN105515580B (en) * 2014-10-14 2020-07-14 精工爱普生株式会社 Quantum interference device, atomic oscillator, electronic apparatus, and moving object
JP2017183377A (en) * 2016-03-29 2017-10-05 セイコーエプソン株式会社 Quantum interference device, atomic oscillator, electronic apparatus and mobile
WO2020113147A1 (en) * 2018-11-29 2020-06-04 Rydberg Technologies Inc. A waveguide etalon

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263321A (en) * 1988-08-30 1990-03-02 Yokogawa Electric Corp Frequency standard
JPH07193499A (en) * 1993-12-27 1995-07-28 Anritsu Corp Atomic oscillator
US6320472B1 (en) * 1999-01-26 2001-11-20 Kernco, Inc. Atomic frequency standard
JP2003141771A (en) * 2001-11-06 2003-05-16 Sharp Corp Optical pickup device
JP2004062934A (en) * 2002-07-25 2004-02-26 Olympus Corp Optical head
JP2005522887A (en) * 2002-04-09 2005-07-28 カリフォルニア インスティテュート オブ テクノロジー Atomic clock based on opto-electronic oscillator
JP2007178274A (en) * 2005-12-28 2007-07-12 Seiko Epson Corp Atomic frequency acquisition apparatus and atomic clock

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4469443A (en) * 1982-06-01 1984-09-04 The United States Of America As Represented By The Secretary Of The Navy Atmospheric transmissometer
DE3477514D1 (en) * 1983-07-22 1989-05-03 Oki Electric Ind Co Ltd Apparatus for measuring optical transmission factor
JPH0315742A (en) * 1989-03-23 1991-01-24 Anritsu Corp Gas detector
US5327105A (en) * 1991-12-31 1994-07-05 Westinghouse Electric Corp. Gas cell for a miniaturized atomic frequency standard
US6015969A (en) * 1996-09-16 2000-01-18 The Regents Of The University Of California Multiple-wavelength spectroscopic quantitation of light-absorbing species in scattering media
US6806784B2 (en) * 2001-07-09 2004-10-19 The National Institute Of Standards And Technology Miniature frequency standard based on all-optical excitation and a micro-machined containment vessel
US7098744B2 (en) * 2002-12-18 2006-08-29 Hrl Laboratories, Llc Method and apparatus for generating two frequencies having a frequency separation equal to the atomic frequency of an atomic species
DE10336097B3 (en) * 2003-08-06 2005-03-10 Testo Ag Sighting device for a radiometer and method
US7064835B2 (en) * 2003-09-02 2006-06-20 Symmetricom, Inc. Miniature gas cell with folded optics
US7521928B2 (en) * 2006-11-07 2009-04-21 Trustees Of Princeton University Subfemtotesla radio-frequency atomic magnetometer for nuclear quadrupole resonance detection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263321A (en) * 1988-08-30 1990-03-02 Yokogawa Electric Corp Frequency standard
JPH07193499A (en) * 1993-12-27 1995-07-28 Anritsu Corp Atomic oscillator
US6320472B1 (en) * 1999-01-26 2001-11-20 Kernco, Inc. Atomic frequency standard
JP2003141771A (en) * 2001-11-06 2003-05-16 Sharp Corp Optical pickup device
JP2005522887A (en) * 2002-04-09 2005-07-28 カリフォルニア インスティテュート オブ テクノロジー Atomic clock based on opto-electronic oscillator
JP2004062934A (en) * 2002-07-25 2004-02-26 Olympus Corp Optical head
JP2007178274A (en) * 2005-12-28 2007-07-12 Seiko Epson Corp Atomic frequency acquisition apparatus and atomic clock

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035402A (en) * 2009-08-03 2011-02-17 Northrop Grumman Systems Corp Atomic clock system and method
JP2011237401A (en) * 2010-02-04 2011-11-24 Honeywell Internatl Inc Design and method for stabilizing vcsel of chip scale atomic clock
JP2011257375A (en) * 2010-02-04 2011-12-22 Honeywell Internatl Inc Chip scale atomic clock with two thermal zones
KR101658264B1 (en) 2010-07-14 2016-09-20 세이코 엡슨 가부시키가이샤 Optical module and atomic oscillator
KR101336453B1 (en) 2010-07-14 2013-12-04 세이코 엡슨 가부시키가이샤 Optical module and atomic oscillator
KR20120126035A (en) * 2010-07-14 2012-11-20 세이코 엡슨 가부시키가이샤 Optical module and atomic oscillator
KR20160111350A (en) * 2010-07-14 2016-09-26 세이코 엡슨 가부시키가이샤 Optical module and atomic oscillator
KR101690467B1 (en) 2010-07-14 2016-12-27 세이코 엡슨 가부시키가이샤 Optical module and atomic oscillator
US9136851B2 (en) 2013-02-14 2015-09-15 Ricoh Company, Ltd. Atomic oscillator, method of detecting coherent population trapping resonance and magnetic sensor
US9917592B2 (en) 2013-02-14 2018-03-13 Ricoh Company, Ltd. Atomic oscillator, method of detecting coherent population trapping resonance and magnetic sensor
JP2018085719A (en) * 2016-10-11 2018-05-31 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Atomic clock system
US10539929B2 (en) 2016-10-11 2020-01-21 Northrop Grumman Systems Corporation Atomic clock system
US10725431B2 (en) 2016-10-11 2020-07-28 Northrop Grumman Systems Corporation Atomic clock system
JP2018146310A (en) * 2017-03-02 2018-09-20 株式会社リコー Magnetic sensor and biomagnetic measuring device

Also Published As

Publication number Publication date
US20090128820A1 (en) 2009-05-21

Similar Documents

Publication Publication Date Title
JP2009129955A (en) Optical system, and atomic oscillator
JP4952603B2 (en) Atomic oscillator
WO2015015628A1 (en) Magnetic field measuring device
US10215816B2 (en) Magnetic field measuring apparatus
US7701302B2 (en) Atomic frequency acquiring apparatus and atomic clock
CN105515580B (en) Quantum interference device, atomic oscillator, electronic apparatus, and moving object
US7911611B2 (en) Optical system of atomic oscillator and atomic oscillator
JP6741072B2 (en) Atomic oscillator and electronic equipment
US10921191B2 (en) Atomic sensing method and chip-scale atomic sensor
JP2009089116A (en) Optical module for atomic oscillator
JP5892321B2 (en) Optical module and atomic oscillator for an atomic oscillator
JP4941249B2 (en) Optical system and atomic oscillator
JP2009231688A (en) Optical system and atomic oscillator
JP2009141048A (en) Optical system and atomic oscillator
JP2009049623A (en) Atomic oscillator
US20150116046A1 (en) Optical module and atomic oscillator
JP2001036189A (en) Laser oscillation frequency stabilizing device
JP2009123729A (en) Optical system and atomic oscillator
JP2009194418A (en) Atomic oscillator
JP5181815B2 (en) Optical system and atomic oscillator
JP2009283810A (en) Optical system, and atomic oscillator
JP6069886B2 (en) Quantum interference device, atomic oscillator, electronic device, and quantum interference method
JP2009182562A (en) Optical system and atomic oscillator
JP2009232335A (en) Optical system and atomic oscillator
JP2007157937A (en) Semiconductor laser module and its fabrication process

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120411