JP2009124911A - Power-feeding controller - Google Patents

Power-feeding controller Download PDF

Info

Publication number
JP2009124911A
JP2009124911A JP2007298691A JP2007298691A JP2009124911A JP 2009124911 A JP2009124911 A JP 2009124911A JP 2007298691 A JP2007298691 A JP 2007298691A JP 2007298691 A JP2007298691 A JP 2007298691A JP 2009124911 A JP2009124911 A JP 2009124911A
Authority
JP
Japan
Prior art keywords
power
load
power supply
bus
emergency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007298691A
Other languages
Japanese (ja)
Inventor
Kazuo Sato
和生 佐藤
Ineko Hirose
稲子 広瀬
Naomiki Matsushita
直幹 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AREFU NET KK
Original Assignee
AREFU NET KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AREFU NET KK filed Critical AREFU NET KK
Priority to JP2007298691A priority Critical patent/JP2009124911A/en
Publication of JP2009124911A publication Critical patent/JP2009124911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power-feeding controller which keeps supplying power to an emergency power bus line load without bringing the in-station power generator to a stop even when a breaker in a substation on the transmission system side is opened and a power interruption is caused due to an interruption of incoming power during parallel operation of the transmission system from the substation and an in-station power generator. <P>SOLUTION: The power-feeding controller includes: a power interruption detecting means which is configured to supply power to the emergency power bus line load and to a regular power bus line load other than the emergency power bus line load and detects the occurrence of power interruption on the transmission system during parallel operation; and a load cut-off means which, based on a detection signal from the power interruption detecting means, cuts off the regular power bus line load from a power generator. The power interruption detecting means commits no malfunction in detecting power interruption and detects a power interruption at high speed, so that the occurrence of power interruption is recognized when a purchase power drops below a minimum purchase power. The load cut-off means is configured to ensure high-speed cut-off, so that a load to be cut off is selectively forecasted to allow the power generator to operate continuously without excessive fluctuation of a load to the power generator during a synchronous operation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、変電所からの送電系統と所内発電機との並列運転により負荷への給電を行うように構成している給電制御装置に関するもので、特に、送電系統の停電発生時においても継続して、非常用電源母線負荷又は重要負荷への給電を続行するための給電制御装置に関する。   The present invention relates to a power supply control device configured to supply power to a load by parallel operation of a power transmission system from a substation and an on-site generator, and in particular, continues even when a power failure occurs in the power transmission system. The present invention relates to a power supply control device for continuing power supply to an emergency power supply bus load or an important load.

非常用電源母線負荷およびそれ以外の一般電源母線負荷へそれぞれ給電するように構成されている従来の給電制御装置においては、送電系統と所内発電機との並列運転中に、送電系統に停電が発生した場合、停電が発生したことを検出して所定時間以内に停電検出信号に基づいて一般電源母線負荷を所内発電機から切り離す手段を講じている(特許公報1を参照)。
一般電源母線負荷を所内発電機から切り離すこととしたのは、送電系統に停電が発生した場合に所内発電機が非常用電源母線負荷およびそれ以外の一般電源母線負荷へ給電することは、所内発電機自体の過負荷状態を招き、それが原因となり電力供給が不能となり、結果として停電を招くこととなるため、これを回避するためである。
In conventional power supply control devices configured to supply power to the emergency power bus load and other general power bus loads, a power failure occurs in the power transmission system during parallel operation of the power transmission system and the on-site generator. In such a case, it is detected that a power failure has occurred and a means for disconnecting the general power supply bus load from the in-house generator is taken based on the power failure detection signal within a predetermined time (see Patent Publication 1).
The reason why the general power bus load is disconnected from the on-site generator is that the on-site power generator supplies power to the emergency power bus load and other general power bus loads when a power failure occurs in the transmission system. This is to avoid an overload state of the machine itself, which causes power supply to be disabled, resulting in a power failure.

しかし、非常電源母線の電力使用量が、非常電源母線に繋がる発電機の発電量より多い場合が存在する。この場合、停電が発生したことを検出して所定時間以内に停電検出信号に基づいて一般電源母線負荷を所内発電機から切り離す手段を講じたとしても、所内発電機は過負荷状態が継続して発電機自体の損傷を招くか、過負荷状態が継続した場合に自動停止機能が作動して非常電源母線負荷設備の停止を招くことになるといった問題がある。
また、一般的には停電検出は不足電圧継電器などを利用して行うが、その場合に誤動作防止の観点から停電検出時間が秒単位と長いため、一般電源母線負荷の切り離しが遅れ、発電機が正常運転できる可能性は低いといった問題がある。
However, there are cases where the amount of power used by the emergency power bus is greater than the amount of power generated by the generator connected to the emergency power bus. In this case, even if it is detected that a power failure has occurred and a means for disconnecting the general power bus load from the on-site generator is taken within a predetermined time based on the power failure detection signal, the on-site generator will continue to be overloaded. There is a problem that the generator itself is damaged, or that the automatic stop function is activated when the overload state continues and the emergency power supply bus load equipment is stopped.
Generally, power failure detection is performed using an undervoltage relay, etc., but in that case, the power failure detection time is as long as seconds from the standpoint of preventing malfunctions, so the disconnection of the general power bus load is delayed, and the generator There is a problem that the possibility of normal operation is low.

実開平6−41350号公報Japanese Utility Model Publication No. Hei 6-41350

上述の問題点に対応すべく、本発明は、変電所からの送電系統と所内発電機との並列運転中に、送電系統側の変電所の遮断器が開放され受電電力の供給が断たれる停電が発生した場合でも、所内発電機を停止させることなく、非常用電源母線負荷に対して連続して電力を供給し続けることが可能な給電制御装置を提供することを目的とする。   In order to cope with the above-mentioned problems, the present invention cuts off the supply of received power by opening the circuit breaker of the substation on the power transmission system side during parallel operation of the power transmission system from the substation and the on-site generator. An object of the present invention is to provide a power supply control device capable of continuously supplying power to an emergency power supply bus load without stopping an on-site generator even when a power failure occurs.

上記目的を達成するため、本発明の給電制御装置は、非常用電源母線負荷および該非常用電源母線負荷以外の一般電源母線負荷へそれぞれ給電するように構成され、並列運転時に送電系統に停電が発生したことを検出する停電検出手段と、該停電検出手段による検出信号に基づいて前記一般電源母線負荷を前記発電機から切り離す負荷遮断手段を備えた給電制御装置において、負荷遮断手段は運転中の発電機の能力合計値の65〜85%負荷となるように、給電制御装置若しくは中央監視装置が、非常用電源母線負荷の各負荷の停電前の使用電力実績値から給電対象負荷を決定し、該給電対象負荷以外の負荷を遮断することを特徴とする。 In order to achieve the above object, the power supply control device of the present invention is configured to supply power to an emergency power supply bus load and a general power supply bus load other than the emergency power supply bus load, respectively. In a power supply control device comprising a power failure detection means for detecting occurrence and a load interruption means for separating the general power supply bus load from the generator based on a detection signal from the power failure detection means, the load interruption means is in operation. The power supply control device or the central monitoring device determines the power supply target load from the actual power used before the power failure of each load of the emergency power bus load so that the load becomes 65 to 85% of the total capacity of the generator . A load other than the load to be fed is cut off.

停電検出手段が動作すると非常用母線と一般母線の連絡遮断器を開路し非常電源母線を独立運転するのであるが、単に停電検出信号に基づいて一般電源母線負荷を発電機から切り離し、非常電源母線負荷のみに給電することとした場合、非常電源母線の電力使用量が非常電源母線に繋がる発電機発電量より多くなる非常電源母線負荷の構成では、発電機が過負荷状態となることが予想される。   When the power failure detection means is activated, the emergency circuit bus and the general bus are disconnected and the emergency power bus is operated independently.However, based on the power failure detection signal, the general power bus load is disconnected from the generator, and the emergency power bus When power is supplied only to the load, it is expected that the generator will be overloaded in an emergency power bus load configuration where the power usage of the emergency power bus is greater than the generator power generation connected to the emergency power bus. The

このため、運転中の発電機の能力合計値の65〜85%負荷となるように非常用電源母線負荷の各負荷の停電前の使用電力実績値から給電対象負荷を決定し、その他の負荷を遮断することとしたものである。
ここで、運転中の発電機の能力合計値の65〜85%負荷となるようにした2つの理由を説明する。1つ目の理由は負荷変動を考慮したものである。また2つ目の理由は、電源品質を考慮したものである。停電が発生した時、負荷を遮断する迄の間は発電機が過負荷状態となるため、発電機につながる原動機の回転数が若干低下することから、発電機負荷を15〜35%減らす(すなわち、発電機の能力の65〜85%負荷とする。)ことにより、回転数が低下した状態から規定回数に上昇する迄の時間を短くして、供給電源の品質を高めるためである。
For this reason, the load to be fed is determined from the actual power used before the power failure of each load of the emergency power supply bus load so that it becomes 65 to 85% of the total capacity of the generator in operation, and other loads It was decided to cut off.
Here, two reasons why the load is 65 to 85% of the total capacity of the generator in operation will be described. The first reason is that the load fluctuation is taken into consideration. The second reason is that the power quality is taken into consideration. When a power failure occurs, the generator is overloaded until the load is cut off, so the number of revolutions of the prime mover connected to the generator decreases slightly, so the generator load is reduced by 15 to 35% (ie The load is 65 to 85% of the capacity of the generator.) By this, it is possible to shorten the time from when the rotational speed is reduced to when the rotational speed is increased to the specified number of times, thereby improving the quality of the power supply.

ここで、上述の停電検出手段は、受電電力量が所定割合まで低下したことを検出する手段であることが好ましい。
停電検出手段として送電系統からの受電電力の低下をトリガーとして停電を検出することとしたのは、ミリ秒単位で停電を検出するためである。発電機の連絡母線切外しを停電検出から遮断まで200ミリ秒以下で遮断し、非常用母線単独運転をすると、発電機は過負荷に耐え継続して非常用電源母線負荷に電力供給が可能となるため、ミリ秒単位で停電検出する必要があるのである。
なお、一般的に用いる停電検出手段として不足電圧継電器などがあるが、この場合、上述したように停電検出時間は秒単位となり、発電機の連絡母線切外しを停電検出から遮断まで200ミリ秒以下で遮断することは難しい。
Here, the power failure detection means described above is preferably a means for detecting that the amount of received power has decreased to a predetermined rate.
The reason for detecting a power failure as a power failure detection means triggered by a decrease in received power from the power transmission system is to detect a power failure in milliseconds. If the disconnection of the generator's connecting bus is cut off in 200 milliseconds or less from the detection of power failure to the shutdown, and the emergency bus is operated independently, the generator can continue to withstand overload and supply power to the emergency power bus load. Therefore, it is necessary to detect a power failure in milliseconds.
In addition, there is an undervoltage relay or the like as a commonly used power failure detection means, but in this case, the power failure detection time is in seconds as described above, and the connection bus disconnection of the generator is 200 milliseconds or less from the power failure detection to the cutoff. It is difficult to block with.

具体的には、送電系統からの受電電力量が最低使用電力量の40%以下に低下したことを検出することがより好ましい。例えば、買電最低電力500kwの場合において、買電量200kw以下に下がると停電とするのである。これは、非常用電源母線負荷の瞬間的な負荷変動が、最低使用電力量の50〜60%になる可能性があり、それに伴う誤作動を回避するためである。   Specifically, it is more preferable to detect that the amount of received power from the power transmission system has decreased to 40% or less of the minimum amount of power used. For example, in the case of a minimum power purchase power of 500 kw, a power failure occurs when the power purchase amount falls below 200 kw. This is because an instantaneous load fluctuation of the emergency power supply bus load may be 50 to 60% of the minimum power consumption, and a malfunction caused thereby is avoided.

この負荷遮断手段は、具体的には、遠隔の中央監視装置に非常用電源母線負荷の各負荷の停電前の実績値データを送り、該実績値データに基づいて該中央監視装置において給電対象負荷が決定され、停電検出した際に前記給電対象負荷以外の負荷を遮断するのが好ましい。
中央監視装置に、非常用電源母線負荷の各負荷の実績値データが監視のためにデータ伝送されている場合に、停電前の実績値データから中央監視装置側において給電対象負荷を決定することとするものである。
ここで給電対象負荷の決定の仕方は、あらかじめ各負荷に対して優先順位のパラメータを設定し、各負荷の停電前の使用電力実績値を優先順位の高いものから加算していき、運転中の発電機の能力合計値の70〜80%となるまでの負荷を給電対象負荷とするものである。
Specifically, the load shut-off means sends the actual value data before power failure of each load of the emergency power supply bus load to the remote central monitoring device, and the central monitoring device based on the actual value data When a power failure is detected, it is preferable to shut off loads other than the power supply target load.
When the actual value data of each load of the emergency power supply bus load is transmitted to the central monitoring device for monitoring, determining the power supply load on the central monitoring device side from the actual value data before the power failure To do.
Here, the method for determining the load to be fed is to set the priority parameters for each load in advance, and add the actual power used before power failure for each load from the highest priority. A load up to 70 to 80% of the total capacity value of the generator is set as a power supply target load.

また、上述の負荷遮断手段における負荷遮断は、開閉動作時間が所定時間以下である直動式真空遮断器を用いることが好ましい。直動式真空遮断器を使用することで開閉動作時間を数十ミリ秒で行うことが可能となり、高速作動のシーケンサーによる制御と相俟って、停電検知から実際の負荷を遮断するまでの時間が100ミリ秒程度とできるのである。発電機の連絡母線切外しを停電検出から遮断まで200ミリ秒以下で遮断できることから、発電機は過負荷に耐え連続して非常用電源母線負荷に電力供給できることとなる。   Moreover, it is preferable to use a direct acting type vacuum circuit breaker whose opening / closing operation time is a predetermined time or less for the load breaking in the load breaking means described above. Using a direct-acting vacuum circuit breaker makes it possible to perform opening and closing operations in tens of milliseconds. Combined with control by a high-speed sequencer, the time from power failure detection to actual load interruption Is about 100 milliseconds. Since the disconnection of the connecting bus of the generator can be interrupted in 200 milliseconds or less from the detection of power failure to the interruption, the generator can withstand an overload and continuously supply power to the emergency power bus load.

また、上述の給電制御装置において、停電検出手段による停電検出から負荷遮断手段による負荷遮断までの動作が、200ミリ秒以内に行われるように構成されていることで、停電検出から負荷遮断動作までの間、発電機は過負荷に耐え、非常用母線に連続して電力を供給できることとなる。   Further, in the above-described power supply control device, the operation from the power failure detection by the power failure detection means to the load interruption by the load interruption means is performed within 200 milliseconds, so that from the power failure detection to the load interruption operation. During this time, the generator will withstand overload and be able to continuously supply power to the emergency bus.

本発明の給電制御装置によれば、送電系統側の変電所の遮断器が開放され受電電力の供給が断たれる停電が発生した場合でも、非常電源母線の電力使用量が非常電源母線に繋がる発電機発電量より多くなる非常電源母線負荷の構成となっているか否かに関わらず、所内発電機を停止させることなく、非常用電源母線負荷に対して連続して電力を供給し続けることができるといった効果がある。   According to the power supply control device of the present invention, even when a power failure occurs in which the breaker of the substation on the transmission system side is opened and the supply of received power is cut off, the power usage of the emergency power supply bus is connected to the emergency power supply bus. Regardless of the configuration of the emergency power bus load that exceeds the generator power generation amount, it is possible to continuously supply power to the emergency power bus load without stopping the on-site generator. There is an effect that can be done.

以下、本発明の実施形態について、図面を参照しながら詳細に説明していく。ただし、本発明の範囲は、図示例に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the scope of the present invention is not limited to the illustrated examples.

図1に、本発明の給電制御装置の系統図の一実施例を示す。
図1において、送電系統8に主遮断器6を介して、構内連絡母線負荷が接続されている。構内連絡母線負荷は、非常用母線負荷20とその他の一般母線負荷30で構成されている。非常用母線負荷20は非常用母線2から電力供給を受け、一般母線負荷30は一般母線3から電力供給を受けている。非常用母線2と一般母線3の間は、母線連絡遮断器7が設けられている。給電制御装置1は、非常用電源母線負荷20およびそれ以外の一般電源母線負荷30へそれぞれ給電するように構成され、並列運転時に送電系統8に停電が発生したことを検出する停電検出手段4と、停電検出手段4による検出信号に基づいて一般電源母線負荷30を発電機から切り離す負荷遮断手段5を備える。この停電検出手段4は送電系統8からの受電電力量の低下を検出する。また、負荷遮断手段5は運転中の発電機の能力合計値の70〜80%負荷となるように非常用電源母線負荷20の各負荷の停電前の使用電力実績値から給電対象負荷を決定し、その他の負荷を遮断する。
In FIG. 1, one Example of the systematic diagram of the electric power feeding control apparatus of this invention is shown.
In FIG. 1, a premises communication bus load is connected to the power transmission system 8 via a main circuit breaker 6. The local communication bus load is composed of an emergency bus load 20 and other general bus loads 30. The emergency bus load 20 receives power from the emergency bus 2, and the general bus load 30 receives power from the general bus 3. A bus bar breaker 7 is provided between the emergency bus 2 and the general bus 3. The power supply control device 1 is configured to supply power to the emergency power supply bus load 20 and the other general power supply bus load 30, respectively, and a power failure detection means 4 that detects that a power failure has occurred in the power transmission system 8 during parallel operation. The load interrupting means 5 for disconnecting the general power bus load 30 from the generator based on the detection signal from the power failure detection means 4 is provided. This power failure detection means 4 detects a decrease in the amount of received power from the power transmission system 8. Further, the load interrupting means 5 determines the power supply target load from the actual power used before the power failure of each load of the emergency power bus load 20 so that the load is 70 to 80% of the total capacity of the generator in operation. Shut off other loads.

ここで非常用電源母線負荷の各負荷の停電前の使用電力実績値から給電対象負荷を決定するアルゴリズムについて図2を参照しながら説明する。
図2に示すように、例えば、非常用電源母線負荷として負荷a1〜a5の5つの負荷があり、その優先順位として優先度(重要度)の高いものから、a3→a2→a1→a5→a4 と設定されているものとする。停電前、2つの発電機(G1,G2)が運転しており、その発電機の能力合計値が1200kwとする。また、停電前の各負荷の使用電力実績値として、下表1の3通りのケースを考える。また、負荷遮断手段は運転中の発電機(G1,G2)の能力合計値の80%負荷となるように各負荷の停電前の使用電力実績値から給電対象負荷を決定するものとする。
Here, an algorithm for determining the power supply target load from the actual power used before the power failure of each load of the emergency power bus load will be described with reference to FIG.
As shown in FIG. 2, for example, there are five loads a1 to a5 as emergency power supply bus loads, and the priority (importance) is high in order of priority from a3 → a2 → a1 → a5 → a4. Is set. Before the power failure, two generators (G1, G2) are operating, and the total capacity value of the generators is 1200 kW. Also, consider the three cases shown in Table 1 below as actual power consumption values for each load before a power failure. Moreover, a load interruption means shall determine electric power feeding object load from the used electric power actual value before a power failure of each load so that it may become 80% load of the capability total value of the generator (G1, G2) in operation.

上記想定の場合、ケース1では停電前の各負荷の使用電力実績値の合計1150kwが、運転中の発電機の能力合計値が1200kwを下回っており、仮に全負荷(a1〜a5)に対して給電したとしても発電機が過負荷状態にならない。しかし、この場合でも負荷変動が予想されることから、負荷変動と電源品質を考慮して、運転中の発電機の能力合計値の80%、すなわち、1200×0.8=960kw となるまでの負荷を給電対象負荷とする。この場合、優先順位(a3→a2→a1→a5→a4)の高いものから使用電力実績値を加算していくと、a3→a2→a1→a5 の使用電力実績値の合計値が950kw となることから、この4つの負荷を給電対象負荷とするのである。   In the case of the above assumption, in case 1, the total used power value of each load before the power outage is 1150 kW, and the total capacity of the operating generator is less than 1200 kW. Even if power is supplied, the generator will not be overloaded. However, even in this case, since load fluctuation is expected, considering load fluctuation and power supply quality, 80% of the total capacity of the generator in operation, that is, 1200 × 0.8 = 960 kw The load is the power supply target load. In this case, when the actual power usage values are added in descending order of priority (a3 → a2 → a1 → a5 → a4), the total value of the actual power usage values a3 → a2 → a1 → a5 is 950 kW. Therefore, these four loads are set as power supply target loads.

次に、ケース2では停電前の各負荷の使用電力実績値の合計1250kwが、運転中の発電機の能力合計値が1200kwを上回っており、全負荷(a1〜a5)に対して給電した場合には発電機が過負荷状態になる。この場合、優先順位(a3→a2→a1→a5→a4)の高いものから使用電力実績値を加算していくと、a3→a2→a1→a5 の使用電力実績値の合計値が950kw となることから、この4つの負荷を給電対象負荷とするのである。   Next, in Case 2, when the total power used by each load before the power outage is 1250 kW, the total capacity of the operating generator exceeds 1200 kW, and power is supplied to all loads (a1 to a5). The generator will be overloaded. In this case, when the actual power usage values are added in descending order of priority (a3 → a2 → a1 → a5 → a4), the total value of the actual power usage values a3 → a2 → a1 → a5 is 950 kW. Therefore, these four loads are set as power supply target loads.

また同様に、ケース3では停電前の各負荷の使用電力実績値の合計1250kwが、運転中の発電機の能力合計値が1200kwを上回っており、全負荷(a1〜a5)に対して給電した場合には発電機が過負荷状態になる。この場合、優先順位(a3→a2→a1→a5→a4)の高いものから使用電力実績値を加算していくと、a3→a2→a1 の使用電力実績値の合計値が900kw となり、a3→a2→a1→a5 の使用電力実績値の合計値が1050kw となることから、a3,a2,a1の3つの負荷を給電対象負荷とするのである。   Similarly, in case 3, the total power usage value of each load before the power outage is 1250 kW, and the total capacity of the operating generator exceeds 1200 kW, and power is supplied to all loads (a1 to a5). In some cases, the generator is overloaded. In this case, when the actual power usage values are added in descending order of priority (a3 → a2 → a1 → a5 → a4), the total value of the actual power usage values a3 → a2 → a1 becomes 900 kw, and a3 → Since the total value of the actual power usage values of a2 → a1 → a5 is 1050 kW, the three loads a3, a2 and a1 are set as the power supply target loads.

次に、停電検出手段4についてその動作を説明する。停電検出手段4の停電検出処理フローを図3に示す。図3のフローに示すように、停電検出処理は、送電系統8の送電線からの受電電力を常時モニタ(監視)している(ステップS11)。送電線からの受電電力が最低使用電力の40%以下に下がると停電と認識し(ステップS12)、停電検出信号を出力する(ステップS13)。   Next, the operation of the power failure detection means 4 will be described. The power failure detection processing flow of the power failure detection means 4 is shown in FIG. As shown in the flow of FIG. 3, the power failure detection process constantly monitors (monitors) the received power from the power transmission line of the power transmission system 8 (step S11). When the received power from the transmission line falls below 40% of the minimum power consumption, it is recognized as a power failure (step S12), and a power failure detection signal is output (step S13).

次に、負荷遮断手段5についてその動作を説明する。負荷遮断手段5の負荷遮断処理フローを図4に示す。図4のフローに示すように、負荷遮断処理は、非常用母線負荷の各負荷の実績値データを読込む(ステップS21)。実績値データの読込みは、給電制御装置若しくは中央監視装置で行う。中央監視装置へ実績値データを伝送する方法としては、信号ケーブルか通信ケーブルを用いる。   Next, the operation of the load interrupting means 5 will be described. FIG. 4 shows a load cutoff process flow of the load cutoff means 5. As shown in the flow of FIG. 4, in the load shedding process, the actual value data of each load of the emergency bus load is read (step S21). The actual value data is read by the power supply control device or the central monitoring device. A signal cable or a communication cable is used as a method of transmitting performance value data to the central monitoring device.

次に、給電制御装置の給電電力の実績値データから発電機の能力(合計値)の65〜85%の負荷となるように、給電する負荷を決定する(ステップS22)。この決定は、給電制御装置若しくは中央監視装置で行う。負荷決定のアルゴリズムは上述した通りである。そして、停電検出手段4において停電が検出されると(ステップS23)、上記ステップS22において決定された給電対象負荷以外の負荷を遮断する(ステップS24)。   Next, the load to be fed is determined so as to be a load of 65 to 85% of the capacity (total value) of the generator from the actual value data of the feed power of the feed control device (step S22). This determination is performed by the power supply control device or the central monitoring device. The algorithm for determining the load is as described above. When a power failure is detected by the power failure detection means 4 (step S23), loads other than the power supply target load determined in step S22 are blocked (step S24).

図5に、給電制御装置と中央監視装置の概略システム構成を示す。図5に示されるように、中央監視装置と給電制御装置は通信ネットワークで接続されるケース(図5(1))と、信号ケーブルで接続されるケース(図5(2))がある。図5(1)の場合は、給電制御装置は、データ通信手段を用いて停電検出信号および各負荷の使用電力実績値を中央監視装置にデータ送信し、中央監視装置から給電対象負荷の情報をデータ受信する。また、図5(2)の場合は、給電制御装置は、停電検出信号および各負荷の使用電力実績値を中央監視装置に信号出力し、中央監視装置から給電対象負荷の情報を信号入力する。   FIG. 5 shows a schematic system configuration of the power supply control device and the central monitoring device. As shown in FIG. 5, there are a case where the central monitoring device and the power supply control device are connected by a communication network (FIG. 5 (1)) and a case where they are connected by a signal cable (FIG. 5 (2)). In the case of FIG. 5 (1), the power supply control device transmits the power failure detection signal and the actual power usage value of each load to the central monitoring device using the data communication means, and receives information on the power supply target load from the central monitoring device. Receive data. In the case of FIG. 5 (2), the power supply control device outputs a power failure detection signal and the actual power usage value of each load to the central monitoring device, and inputs information on the power supply target load from the central monitoring device.

給電制御装置若しくは中央監視装置で、停電前の給電制御装置の給電電力の実績値から予測し、運転中の発電機の電力供給能力に応じ、予め給電負荷を決定する。各負荷の個別負荷遮断器の入り切りシーケンスは停電待ちとして、非常用母線負荷の個別負荷遮断器を停電検出と同時に入り切りし非常用母線負荷の負荷を制御するのである。   The power supply control device or the central monitoring device predicts from the actual value of the power supply of the power supply control device before the power failure, and determines the power supply load in advance according to the power supply capability of the operating generator. The on / off sequence of the individual load circuit breaker for each load waits for a power failure, and the individual load circuit breaker for the emergency bus load is turned on and off simultaneously with the detection of the power failure to control the load on the emergency bus load.

具体的には、負荷遮断手段は、高速A/D電力変換器、直動式真空遮断器、シーケンサーによる制御を用いることで、100ミリ秒の遮断が可能となる。100ミリ秒の遮断が可能という根拠を以下に詳しく述べる。先ず、高速A/D電力変換に要する時間は20ミリ秒以下である。また、直動式真空遮断器を使用し開閉動作させるのに要する時間は40ミリ秒以下である。さらに、シーケンサーの性能仕様として、受電電力の読込みデータの入力から遮断器開閉指令出力までの動作時間が10ミリ秒以下の装置を採用しハード構成すると、受電電力低下(停電検出)後、約70ミリ秒で連絡母線遮断ができる。
すなわち、商用電源の停電検出をトリガーとして、非常用母線と一般母線の連絡遮断器の開速度を100ミリ秒以下の高速で遮断し、発電機は変電所からの送電系統との並列運転から独立運転に切替わるのである。
Specifically, the load interrupting means can control for 100 milliseconds by using a high-speed A / D power converter, a direct acting vacuum circuit breaker, and control by a sequencer. The grounds that 100 milliseconds can be blocked will be described in detail below. First, the time required for high-speed A / D power conversion is 20 milliseconds or less. Further, the time required to open and close using the direct acting vacuum circuit breaker is 40 milliseconds or less. Furthermore, as a performance specification of the sequencer, if a device with an operating time of 10 milliseconds or less from the input of received power reading data to the output of the circuit breaker switching command is adopted and configured in hardware, about 70 after the received power is reduced (power failure detection). The communication bus can be cut off in milliseconds.
In other words, with the detection of a power failure of the commercial power supply as a trigger, the opening speed of the contact breaker between the emergency bus and the general bus is shut off at a high speed of 100 milliseconds or less, and the generator is independent from the parallel operation with the transmission system from the substation. It switches to driving.

また、長期停電の場合の電源供給方法として、非常用母線負荷に電源供給して発電機余力がある場合は、給電制御装置若しくは中央監視装置で、非常用母線負荷ならびに一般母線負荷の負荷予測値を計算して、発電機の最大供給能力の範囲内まで、非常用母線負荷ならびに一般母線負荷を遮断・投入し負荷制限する。
仮に、停止中の発電機が有り、非常用母線負荷ならびに一般母線負荷への供給電力が不足する場合は、停止中の発電機を起動して、順次、負荷予測した発電出力に合わせ個別に負荷遮断器を投入する。
Also, as a power supply method in the event of a long-term power outage, if power is supplied to the emergency bus load and the generator has surplus power, the power supply control device or the central monitoring device will use the predicted load values for the emergency bus load and general bus load. Is calculated, and the emergency bus load and general bus load are shut off and turned on to limit the load within the range of the maximum supply capacity of the generator.
If there is a generator that is stopped and the power supply to the emergency bus load and general bus load is insufficient, start the generator that is stopped and load the load separately according to the predicted power output. Turn on the circuit breaker.

本発明の給電制御装置は、変電所からの送電系統と所内発電機系統との並列運転により負荷への給電を行うように構成されており、非常電源母線の電力使用量が非常電源母線に繋がる発電機発電量より多くなる非常電源母線負荷の構成となっている給電制御装置に有用である。又、発電機発電量より少ない非常電源母線負荷の構成でも有用である。   The power supply control device of the present invention is configured to supply power to a load by parallel operation of a power transmission system from a substation and an in-house generator system, and the power usage of the emergency power supply bus is connected to the emergency power supply bus. This is useful for a power supply control device having an emergency power bus load that is greater than the amount of power generated by a generator. It is also useful in the configuration of an emergency power bus load that is smaller than the generator power generation amount.

本発明の給電制御装置の系統図の一実施例Example of system diagram of power supply control device of the present invention 停電前の使用電力実績値から給電対象負荷を決定するアルゴリズムAlgorithm for determining the load to be fed from the actual power consumption before the power failure 停電検出処理フローチャートPower failure detection process flowchart 負荷遮断処理フローチャートLoad cutoff process flowchart 給電制御装置と中央監視装置の概略システム構成図Schematic system configuration diagram of power supply control device and central monitoring device

符号の説明Explanation of symbols

1 給電制御装置
2 非常用母線
3 一般母線
4 停電検出手段
5 負荷遮断手段
6 主遮断器
7 母線連絡遮断器
8 送電系統
9 個別負荷遮断器
20 非常用母線負荷
30 一般母線負荷
DESCRIPTION OF SYMBOLS 1 Power supply control apparatus 2 Emergency bus 3 General bus 4 Power failure detection means 5 Load interruption means 6 Main circuit breaker 7 Bus connection breaker 8 Power transmission system 9 Individual load circuit breaker 20 Emergency bus load 30 General bus load

Claims (6)

非常用電源母線負荷および該非常用電源母線負荷以外の一般電源母線負荷へそれぞれ給電するように構成され、並列運転時に送電系統に停電が発生したことを検出する停電検出手段と、該停電検出手段による検出信号に基づいて前記一般電源母線負荷を前記発電機から切り離す負荷遮断手段を備えた給電制御装置において、前記負荷遮断手段は運転中の発電機の能力合計値の65〜85%負荷となるように、給電制御装置若しくは中央監視装置が、非常用電源母線負荷の各負荷の停電前の使用電力実績値から給電対象負荷を決定し、該給電対象負荷以外の負荷を遮断するものであることを特徴とする給電制御装置。   A power failure detection means configured to supply power to the emergency power bus load and a general power bus load other than the emergency power bus load, and to detect that a power failure has occurred in the power transmission system during parallel operation, and the power failure detection means In the power supply control device provided with the load shut-off means for disconnecting the general power supply bus load from the generator based on the detection signal by the load, the load shut-off means becomes a load of 65 to 85% of the total capacity value of the operating generator. As described above, the power supply control device or the central monitoring device determines the power supply target load from the actual power consumption value before each power outage of each load of the emergency power supply bus load, and cuts off the load other than the power supply target load. A power supply control device characterized by the above. 前記停電検出手段は送電系統からの受電電力量が所定割合まで低下したことを検出する手段であることを特徴とする請求項1に記載の給電制御装置。   The power supply control device according to claim 1, wherein the power failure detection means is means for detecting that the amount of received power from the power transmission system has decreased to a predetermined rate. 前記停電検出手段は、送電系統からの受電電力量が最低使用電力量の40%以下に低下したことを検出する手段であることを特徴とする請求項1に記載の給電制御装置。   The power supply control device according to claim 1, wherein the power failure detection unit is a unit that detects that the amount of received power from the power transmission system has decreased to 40% or less of the minimum amount of power used. 前記負荷遮断手段は、遠隔の中央監視装置に対して非常用電源母線負荷の各負荷の停電前の実績値データを送り、該実績値データに基づいて前記中央監視装置において給電対象負荷が決定され、停電検出した際に前記給電対象負荷以外の負荷を選択遮断するものであることを特徴とする請求項1に記載の給電制御装置。   The load interrupting means sends actual value data before power failure of each load of the emergency power supply bus load to a remote central monitoring device, and the power supply target load is determined in the central monitoring device based on the actual value data The power supply control device according to claim 1, wherein when a power failure is detected, a load other than the power supply target load is selectively cut off. 前記負荷遮断手段における負荷遮断は、開閉動作時間が所定時間以下である直動式真空遮断器を用いたものであることを特徴とする請求項1に記載の給電制御装置。   The power supply control device according to claim 1, wherein the load interruption in the load interruption means uses a direct acting vacuum circuit breaker whose opening / closing operation time is a predetermined time or less. 前記停電検出手段による停電検出から前記負荷遮断手段による負荷遮断までの動作が、200ミリ秒以内に行われるように構成されている請求項1乃至5のいずれかに記載の給電制御装置。   The power supply control device according to any one of claims 1 to 5, wherein an operation from a power failure detection by the power failure detection means to a load interruption by the load interruption means is performed within 200 milliseconds.
JP2007298691A 2007-11-16 2007-11-16 Power-feeding controller Pending JP2009124911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007298691A JP2009124911A (en) 2007-11-16 2007-11-16 Power-feeding controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007298691A JP2009124911A (en) 2007-11-16 2007-11-16 Power-feeding controller

Publications (1)

Publication Number Publication Date
JP2009124911A true JP2009124911A (en) 2009-06-04

Family

ID=40816457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007298691A Pending JP2009124911A (en) 2007-11-16 2007-11-16 Power-feeding controller

Country Status (1)

Country Link
JP (1) JP2009124911A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179749A (en) * 2012-02-28 2013-09-09 Noritz Corp Electrical apparatus
JP2014082837A (en) * 2012-10-15 2014-05-08 Tokyo Gas Co Ltd Power-feeding system and power-feeding method
JP2014103813A (en) * 2012-11-21 2014-06-05 Toyota Industries Corp Power system
JP2014128160A (en) * 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd Offshore power generation facility and operation method therefor
JP2019062609A (en) * 2017-09-25 2019-04-18 東京瓦斯株式会社 Power supply system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395818A (en) * 1986-10-13 1988-04-26 株式会社東芝 Selective load cut-off controller
JPH04275029A (en) * 1991-02-28 1992-09-30 Kawasaki Steel Corp Load interrupting device at time of parallel off fault
JPH06296330A (en) * 1993-04-08 1994-10-21 Shikoku Sogo Kenkyusho:Kk Countermeasure equipment against instantaneous voltage drop
JP2000156935A (en) * 1998-11-18 2000-06-06 Tokyo Gas Co Ltd Method and apparatus for controlling self power generation system
JP2000184600A (en) * 1998-12-16 2000-06-30 Meidensha Corp Selected load cut-off apparatus
JP2003235164A (en) * 2002-02-06 2003-08-22 Fuji Electric Co Ltd Method and apparatus for controlling received power
JP2004218970A (en) * 2003-01-16 2004-08-05 Daikin Ind Ltd Refrigerating plant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395818A (en) * 1986-10-13 1988-04-26 株式会社東芝 Selective load cut-off controller
JPH04275029A (en) * 1991-02-28 1992-09-30 Kawasaki Steel Corp Load interrupting device at time of parallel off fault
JPH06296330A (en) * 1993-04-08 1994-10-21 Shikoku Sogo Kenkyusho:Kk Countermeasure equipment against instantaneous voltage drop
JP2000156935A (en) * 1998-11-18 2000-06-06 Tokyo Gas Co Ltd Method and apparatus for controlling self power generation system
JP2000184600A (en) * 1998-12-16 2000-06-30 Meidensha Corp Selected load cut-off apparatus
JP2003235164A (en) * 2002-02-06 2003-08-22 Fuji Electric Co Ltd Method and apparatus for controlling received power
JP2004218970A (en) * 2003-01-16 2004-08-05 Daikin Ind Ltd Refrigerating plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179749A (en) * 2012-02-28 2013-09-09 Noritz Corp Electrical apparatus
JP2014082837A (en) * 2012-10-15 2014-05-08 Tokyo Gas Co Ltd Power-feeding system and power-feeding method
JP2014103813A (en) * 2012-11-21 2014-06-05 Toyota Industries Corp Power system
JP2014128160A (en) * 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd Offshore power generation facility and operation method therefor
JP2019062609A (en) * 2017-09-25 2019-04-18 東京瓦斯株式会社 Power supply system

Similar Documents

Publication Publication Date Title
EP1479149B1 (en) Circuit protection system
JP5792824B2 (en) Power supply system, distributed power supply system, management device, and power supply control method
US20040130838A1 (en) Circuit protection system
US20030212473A1 (en) Processing system for a power distribution system
US20070002506A1 (en) Circuit protection system
CN106787973A (en) Drive control device and method for yaw motor of wind generating set
JP2009124911A (en) Power-feeding controller
KR20200030819A (en) Module for supplying power and system for supplying power
JP2007043802A (en) Uninterruptible power supply and distribution panel
WO2021135767A1 (en) Rapid load regulation method for multi-loop power supply distribution network
JP2008278666A (en) Uninterruptible power supply device
JP6301206B2 (en) Power storage device and control program
KR20090037554A (en) Uninterruptible power supply a sequential control type
KR102407417B1 (en) Module for supplying power and system for supplying power
KR100955806B1 (en) The automatic power transfer device for selection connection of the normal power and photovoltaic power supply to load detecting power state of the load
JP7353357B2 (en) Power supply equipment and power supply system
KR102515332B1 (en) Module for supplying power, system for supplying power and method for controlling system for supplying power
CN112366811A (en) Power supply switching device and method for automatically detecting running state of generator
KR102518223B1 (en) System for supplying power
KR20200031043A (en) Module for supplying power and system for supplying power
CN112689936A (en) Power supply system
JP4256315B2 (en) Distributed power control system
JP2015231316A (en) Power storage system
KR20200030820A (en) System for supplying power
US11621580B2 (en) Microgrid switchover using zero-cross detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111126

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20111226

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121220