JP2009124342A - Optical transmission system - Google Patents

Optical transmission system Download PDF

Info

Publication number
JP2009124342A
JP2009124342A JP2007294768A JP2007294768A JP2009124342A JP 2009124342 A JP2009124342 A JP 2009124342A JP 2007294768 A JP2007294768 A JP 2007294768A JP 2007294768 A JP2007294768 A JP 2007294768A JP 2009124342 A JP2009124342 A JP 2009124342A
Authority
JP
Japan
Prior art keywords
optical
power
transmission system
transmitter
optical signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007294768A
Other languages
Japanese (ja)
Other versions
JP4925334B2 (en
Inventor
Noritake Miyoshi
紀武 三好
Takashi Yamada
崇史 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007294768A priority Critical patent/JP4925334B2/en
Publication of JP2009124342A publication Critical patent/JP2009124342A/en
Application granted granted Critical
Publication of JP4925334B2 publication Critical patent/JP4925334B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the transmission capacity by increasing the number of multi-values of a multi-level code, in a WDM multiplex transmission system. <P>SOLUTION: In this optical transmission system provided with a transmitter for generating a plurality of optical signals with different wavelenghs, a receiver for performing power composition of the plurality of optical signals transmitted from the transmitter via an optical fiber to be one multi-level code; the transmitter is configured so as to transmit the plurality of optical signals while making the power of one or more optical signals from among the plurality of optical signals which differ from the power of the other optical signals. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光源手段で発生した異なる波長の複数の光信号の送信を行う際に、伝送容量の増大を図った光伝送方式に関するものである。   The present invention relates to an optical transmission system in which a transmission capacity is increased when a plurality of optical signals having different wavelengths generated by a light source means are transmitted.

光通信方式として波長分割多重(WDM)伝送方式が実用化されている。一般的なWDM伝送方式は、図7に示すように、送信器100では複数の光源・変調器110で発生した複数波長の光信号を波長合波器120で合波して光ファイバ300を経由して送信し、受信器200ではその合波光信号を波長分波器210を用いて波長毎に分波し、分波された波長チャネル毎に光受信器220を用いて信号を電気信号に変換する。   A wavelength division multiplexing (WDM) transmission system has been put to practical use as an optical communication system. In a general WDM transmission system, as shown in FIG. 7, the transmitter 100 combines optical signals of a plurality of wavelengths generated by a plurality of light sources / modulators 110 by a wavelength multiplexer 120 and passes through an optical fiber 300. The receiver 200 demultiplexes the combined optical signal for each wavelength using the wavelength demultiplexer 210, and converts the signal into an electrical signal using the optical receiver 220 for each demultiplexed wavelength channel. To do.

一方、受信装置の経済化、特に一対多通信の下り伝送方式における経済的伝送容量拡大技術として、WDM多値伝送方式が提案されている(非特許文献1)。これは、図8に示すように、送信器100では複数の光源・変調器110で発生した複数波長の光信号を波長合波器120で合波して光ファイバ300を経由して送信し、受信器200では単一の光受信器230により信号を多値論理符号として受信する。   On the other hand, a WDM multi-level transmission scheme has been proposed as an economical transmission capacity expansion technique in the downstream transmission scheme of the one-to-many communication, particularly in the receiver apparatus (Non-Patent Document 1). As shown in FIG. 8, the transmitter 100 multiplexes optical signals of a plurality of wavelengths generated by a plurality of light sources / modulators 110 by a wavelength multiplexer 120 and transmits it via an optical fiber 300. In the receiver 200, the signal is received as a multi-level logic code by the single optical receiver 230.

図8に示すWDM多値伝送方式は、複数波長の光信号を分波することなく1つの光受信器230で一括受信し、強度変調型多値論理符号化を行うため、高価な光分波器210を用いることなく、経済的な伝送容量の拡大が実現できる。この方式は、特にアクセスネットワークで用いられている図9に示すようなPONなどの一対多通信における下り伝送方式として有効である。400は光分配器(パワースプリッタ)である。このWDM多値伝送方式は、ネットワーク上に複数存在するユーザ宅内装置の受信器200のコストを低減することができるため、高い経済効果が得られる。
三好 外四名、「多波長一括受信多値化技術の提案」、2007年電子情報通信学会通信ソサイエティ大会、B−10−58、2007年9月
In the WDM multilevel transmission system shown in FIG. 8, since optical signals of a plurality of wavelengths are collectively received by one optical receiver 230 without being demultiplexed and intensity modulation type multilevel logic encoding is performed, an expensive optical demultiplexing is performed. Economical expansion of transmission capacity can be realized without using the device 210. This method is particularly effective as a downlink transmission method in one-to-many communication such as PON as shown in FIG. 9 used in an access network. Reference numeral 400 denotes an optical distributor (power splitter). Since this WDM multi-level transmission method can reduce the cost of the receivers 200 of the user in-home devices existing on the network, a high economic effect can be obtained.
Four people from Miyoshi, “Proposal of multi-wavelength reception multilevel technology”, 2007 IEICE Communication Society, B-10-58, September 2007

しかしながら、非特許文献1のWDM多値伝送方式では、複数の光源・変調器110から出力される光信号のパワーはほぼ同じであるため、多値符号の多値数が「光源・変調器数+1」となる。例えば3つの光源・変調器110を用いた場合には、多値符号としで“0”、“1”、“2”、“3”の4通りである。そのため、一度に送信できる情報量は光源・変調器110の数をNとするとlog(N+1)である。前述の図7で説明したWDM伝送方式では情報量はNであるため、非特許文献1のWDM多値伝送方式は光源・変調器110の数の増加に対して情報量の増加が少ないといった課題がある。図10にWDM伝送方式とWDM多値伝送方式の情報量の比較結果を示す。 However, in the WDM multi-level transmission method of Non-Patent Document 1, the power of the optical signals output from the plurality of light sources / modulators 110 is almost the same, so the multi-level number of the multi-level code is “number of light sources / modulators”. +1 ". For example, when three light sources / modulators 110 are used, there are four types of multilevel codes, “0”, “1”, “2”, and “3”. Therefore, the amount of information that can be transmitted at once is log 2 (N + 1), where N is the number of light sources / modulators 110. Since the amount of information is N in the WDM transmission method described with reference to FIG. 7 described above, the WDM multilevel transmission method of Non-Patent Document 1 has a problem that the increase in the amount of information is small as the number of light sources / modulators 110 increases. There is. FIG. 10 shows a comparison result of the information amount between the WDM transmission system and the WDM multilevel transmission system.

一方、PON方式においては、1つのブランチにつながっているユーザまでの距離は様々であり、距離が遠くなるほど光ファイバ中での信号の減衰が大きい。そのため、仕様の最長距離において信号が受信できるよう、送信パワーや伝送速度が律速される。すなわち距離の近い受信器に対しては、より少ないパワーでの伝送、より高速な伝送が可能であるにもかかわらず、遠い距離に合わせてハイパワー、低速な伝送を行うため、非効率であるという課題がある。   On the other hand, in the PON system, the distance to the user connected to one branch varies, and the attenuation of the signal in the optical fiber increases as the distance increases. Therefore, transmission power and transmission speed are limited so that a signal can be received at the longest distance of the specification. In other words, it is inefficient for receivers that are close to each other because high power and low speed transmission are performed in accordance with a long distance even though transmission with less power and higher speed transmission are possible. There is a problem.

本発明の目的は、伝送容量の増大を図り、さらに伝送路での減衰による影響を改善した光伝送方式を提供することである。   An object of the present invention is to provide an optical transmission system in which the transmission capacity is increased and the influence of attenuation in the transmission path is improved.

上記目的を達成するために、請求項1にかかる発明は、波長の異なる複数の光信号を発生する送信器と、光伝送路を経由して前記送信器から送信された前記複数の光信号をパワー合成して1つの多値符号とする受信器とを備える光伝送方式において、前記送信器は、前記複数の光信号のうちの1つ以上の光信号のパワーを他の光信号のパワーと異ならせて送信することを特徴とする。
請求項2にかかる発明は、請求項1に記載の光伝送方式において、前記送信器は、前記波長の異なる複数の光信号を発生する複数の光源手段を備え、該複数の光源手段のうちの1つ以上が、発生する光信号のパワーを制御するパワー制御手段、又は発生した光信号のパワーを減衰させるパワー減衰手段を備えることを特徴とする。
請求項3にかかる発明は、請求項2の記載の光伝送方式において、前記送信器は、前記複数の光源手段から送信する波長の異なる光信号のそれぞれについて、そのパワーが大きいほど、全ての光信号の波長の平均値に近い波長に割り当てることを特徴とする。
請求項4にかかる発明は、請求項1に記載の光伝送方式において、前記受信器は、受信したアナログ信号を所望の多値数の多値符号に変換する可変多値符号変換手段を備えることを特徴とする。
請求項5にかかる発明は、請求項2又は3に記載の1つの送信器と請求項4に記載の複数の受信器とを光伝送路で接続して時分割多重の光通信網を構成し、受信信号のレベル差が識別可能となる範囲内において、前記複数の受信器のうち、前記送信器との間の通信網での減衰量が少ない受信器に対しては前記多値数を大きくし、前記送信器との間の通信網での減衰量が大きい受信器に対しては前記多値数を小さくすることを特徴とする。
請求項6にかかる発明は、請求項5に記載の光伝送方式において、前記複数の受信器のうち、設定した多値符号の多値数の大きい受信器には短い通信時間を割当て、設定した多値符号の多値数の小さい受信器には長い通信時間を割当てることを特徴とする。
In order to achieve the above object, an invention according to claim 1 includes a transmitter that generates a plurality of optical signals having different wavelengths, and the plurality of optical signals transmitted from the transmitter via an optical transmission line. In an optical transmission system including a receiver that combines powers into one multilevel code, the transmitter uses the power of one or more optical signals of the plurality of optical signals as the power of other optical signals. It is characterized by transmitting differently.
According to a second aspect of the present invention, in the optical transmission system according to the first aspect, the transmitter includes a plurality of light source means for generating a plurality of optical signals having different wavelengths, and the transmitter includes: One or more includes a power control unit for controlling the power of the generated optical signal or a power attenuation unit for attenuating the power of the generated optical signal.
According to a third aspect of the present invention, in the optical transmission system according to the second aspect, the transmitter transmits all light as the power of each of the optical signals having different wavelengths transmitted from the plurality of light source units increases. It is characterized in that it is assigned to a wavelength close to the average value of the signal wavelengths.
According to a fourth aspect of the present invention, in the optical transmission system according to the first aspect, the receiver includes variable multilevel code conversion means for converting the received analog signal into a multilevel code having a desired multilevel number. It is characterized by.
According to a fifth aspect of the present invention, a time division multiplexing optical communication network is configured by connecting one transmitter according to the second or third aspect and a plurality of receivers according to the fourth aspect through an optical transmission line. In the range where the level difference of the received signal can be identified, the multi-level number is increased for a receiver having a small attenuation amount in the communication network with the transmitter among the plurality of receivers. The multi-value number is reduced for a receiver having a large attenuation in a communication network with the transmitter.
According to a sixth aspect of the present invention, in the optical transmission system according to the fifth aspect, among the plurality of receivers, a short communication time is allocated and set to a receiver having a large multi-level number of the set multi-level code. A long communication time is allocated to a receiver having a small multi-level number of the multi-level code.

本発明によれば、複数の光信号のうちの1つ以上の光信号のパワーを他の光信号のパワーと異ならせて送信するので、WDM多値伝送方式において、光源手段の数に対して従来以上の多値数の多値符号を生成でき、伝送容量を増加させることができる。また、送信光信号のパワーが大きいほど平均波長側に波長の割り当てを行うことで、受信特性を改善できる。また、受信側で所望の多値数の多値符号に可変して変換できるようにすることで、これをPON方式に適用すれば、PONブランチ全体での伝送容量を増加させ、近傍のユーザに対して多値符号の多値数を大きくして高速伝送を行い、低消費電力な伝送を行うことが可能となる。更に多値符号の多値数を大きくできない、すなわち信号の減衰が大きい受信器に対しては、割り当て時間を長くすることで、その受信器に対しての最低保証帯域を増加させることが可能となる。   According to the present invention, since the power of one or more optical signals of a plurality of optical signals is transmitted differently from the power of other optical signals, the number of light source means in the WDM multilevel transmission system It is possible to generate a multi-level code with a multi-level number higher than that of the conventional one, and to increase the transmission capacity. Also, the reception characteristics can be improved by assigning the wavelength to the average wavelength side as the power of the transmission optical signal is larger. In addition, by enabling conversion to a multi-level code having a desired multi-level number on the receiving side, if this is applied to the PON system, the transmission capacity of the entire PON branch is increased, and a nearby user can be increased. On the other hand, high-speed transmission can be performed by increasing the multi-level number of the multi-level code, and transmission with low power consumption can be performed. Furthermore, for a receiver that cannot increase the number of multi-level codes, that is, with a large signal attenuation, it is possible to increase the minimum guaranteed bandwidth for that receiver by increasing the allocation time. Become.

<実施例1(請求項1対応)>
実施例1では、WDM多値伝送方式において、送信器が、波長の異なる複数の光信号のうちの1つ以上の光信号のパワーを他の光信号と異ならせて送信するようにする。
<Example 1 (corresponding to claim 1)>
In the first embodiment, in the WDM multi-level transmission method, the transmitter transmits one or more optical signals of a plurality of optical signals having different wavelengths different from other optical signals.

図1はその光信号の説明図である。この図1では4つの光源・変調器(光源手段)を用いた例で説明する。ここでは、4つの光源・変調器から発生する光信号への割り当て波長をλ1、λ2、λ3、λ4で表し、そのパワーを高さで表した。従来法では、図1(a)に示すように、各光源・変調器の出力波長λ1〜λ4の光信号が同じパワーであるので、作ることのできる多値符号の多値数は5(“0”、“1”、“2”、“3”、“4”)である。   FIG. 1 is an explanatory diagram of the optical signal. In FIG. 1, an example using four light sources / modulators (light source means) will be described. Here, the wavelengths assigned to the optical signals generated from the four light sources and modulators are represented by λ1, λ2, λ3, and λ4, and the power is represented by the height. In the conventional method, as shown in FIG. 1A, since the optical signals of the output wavelengths λ1 to λ4 of the light sources and modulators have the same power, the multilevel number of multilevel codes that can be generated is 5 (“ 0 ”,“ 1 ”,“ 2 ”,“ 3 ”,“ 4 ”).

一方、本実施例では、光源・変調器毎の光信号のパワーを変えている。例えば、図1(b)に示すように、4つの光源・変調器の波長λ1〜λ4の光信号のパワーが、“1”、“1/2”、“1/4”、“1/8”であるとすると、それらの組み合わせにより、多値符号の多値数は、“0”、“1/8”、・・・、“15/8”の16となる。なお、波長λ1〜λ4の光信号毎のパワーを全て異なる値にしなくても、多値数は増加する。例えば、図1(c)に示すように、波長λ1〜λ4の光信号のパワーを“1”、“1”、“1/2”、“1/4”としたときには多値符号の多値数は12となる。   On the other hand, in this embodiment, the power of the optical signal for each light source / modulator is changed. For example, as shown in FIG. 1B, the powers of the optical signals of the wavelengths λ1 to λ4 of the four light sources / modulators are “1”, “1/2”, “1/4”, “1/8”. Assuming that the number of multi-level codes is 16 by “0”, “1/8”,..., “15/8”. Note that the multi-value number increases even if the powers of the optical signals having wavelengths λ1 to λ4 are not all different values. For example, as shown in FIG. 1 (c), when the powers of the optical signals having wavelengths λ1 to λ4 are “1”, “1”, “1/2”, “1/4”, the multilevel code multilevel The number is 12.

このように、波長の異なる複数の光信号のうちの少なくとも1つ以上の光信号のパワーを他の光信号と異ならせることによって、光源・変調器の数に対して従来以上の多値数の多値符号を生成でき、伝送容量を増加させることができる。   In this way, by making the power of at least one optical signal of a plurality of optical signals having different wavelengths different from those of other optical signals, the number of light sources / modulators is more than the conventional multi-value number. A multi-level code can be generated, and the transmission capacity can be increased.

<実施例2(請求項2対応)>
実施例2では、送信器において、波長の異なる複数の光信号を発生する複数の光源・変調器(光源手段)を備え、該複数の光源・変調器のうちの1つ以上が、発生する光信号のパワーを制御するパワー制御手段、又は発生した光信号のパワーを減衰させるパワー減衰手段を備えるようにする。
<Example 2 (corresponding to claim 2)>
In the second embodiment, the transmitter includes a plurality of light sources / modulators (light source means) that generate a plurality of optical signals having different wavelengths, and one or more of the plurality of light sources / modulators generate light. Power control means for controlling the power of the signal or power attenuation means for attenuating the power of the generated optical signal is provided.

図2はその送信器100の説明図である。図2(a)では、送信器100に、3個の光源・変調器110のそれぞれのLDドライバ回路111に対して光信号のパワー制御を行うパワー制御回路130を備えている。112はレーザダイオードである。ここでは、LDドライバ回路111とパワー制御回路130がパワー制御手段を構成する。   FIG. 2 is an explanatory diagram of the transmitter 100. In FIG. 2A, the transmitter 100 includes a power control circuit 130 that performs power control of an optical signal for each of the LD driver circuits 111 of the three light sources / modulators 110. Reference numeral 112 denotes a laser diode. Here, the LD driver circuit 111 and the power control circuit 130 constitute power control means.

通常のレーザダイオードは入力する電流量に応じて光信号のパワーが変化するので、各波長の光信号のパワーが適切になるよう、波長毎、つまりレーザダイオード112毎に電流を制御すればよい。そして、レーザダイオード112が発生する光出力の一部をモニタし、パワー制御回路130において一定の出力になるよう電流量のフィードバック制御を行う(図示省略)。   Since an ordinary laser diode changes the power of an optical signal according to the amount of current input, the current may be controlled for each wavelength, that is, for each laser diode 112, so that the power of the optical signal of each wavelength is appropriate. Then, a part of the light output generated by the laser diode 112 is monitored, and the power control circuit 130 performs feedback control of the current amount so as to obtain a constant output (not shown).

図2(b)はレーザダイオード112の後段に光信号のパワーを減衰させる光減衰器113を追加し、この減衰器113をパワー制御回路130で制御するよう構成したものである。ここでは、パワー制御回路130と光減衰器113がパワー減衰手段を構成する。   In FIG. 2B, an optical attenuator 113 for attenuating the power of the optical signal is added after the laser diode 112, and the attenuator 113 is controlled by the power control circuit 130. Here, the power control circuit 130 and the optical attenuator 113 constitute power attenuating means.

<実施例3(請求項3対応)>
実施例3では、送信器において、複数の光源・変調器(光源手段)から送信する波長の異なる光信号のそれぞれについて、そのパワーが大きいほど、その光信号に全ての光信号の波長の平均値に近い波長を割り当てるようにする。
<Example 3 (corresponding to claim 3)>
In the third embodiment, in the transmitter, for each of the optical signals having different wavelengths transmitted from a plurality of light sources / modulators (light source means), the larger the power is, the average value of the wavelengths of all the optical signals in the optical signal. A wavelength close to is assigned.

図3はその光信号の割り当ての説明図である。ここでは、実施例2(図2)の3個の光源・変調器110を用い、各光源・変調器110の光信号のパワー(強度比)を“1”、“1/2”、“1/4”とした場合について説明する。一般に、非特許文献1のWDM多重伝送方式においては、波長分散の影響により、各波長の光信号が受信器に到着するまでの時間にズレが生じる。このため、光受信器において閾値判定を行う際に、そのズレが前後の符号に影響を与えるため、受信特性が劣化する。   FIG. 3 is an explanatory diagram of the allocation of the optical signal. Here, the three light sources / modulators 110 of the second embodiment (FIG. 2) are used, and the power (intensity ratio) of the optical signal of each light source / modulator 110 is “1”, “1/2”, “1”. A case where / 4 "is set will be described. In general, in the WDM multiplex transmission system of Non-Patent Document 1, there is a shift in the time until the optical signal of each wavelength arrives at the receiver due to the influence of chromatic dispersion. For this reason, when the threshold determination is performed in the optical receiver, the deviation affects the preceding and following codes, so that the reception characteristics are deteriorated.

そこで、本実施例では、受信時の符号間干渉の影響を軽減する送信光信号のパワーと波長配置との最適な組合せを提案する。本実施例では、光信号のパワーが大きいものから順番に、使用する3個の光信号の波長の相加平均値に近い波長を割り当てる。ここでは、図3(b)に示すように、パワーが“1”で最も大きい光信号を、平均の波長、つまり中間の周波数に割り当て、パワーが“1/4”で最も小さい光信号を低い周波数に割り当て、パワーが“1/2”の光信号を高い周波数に割り当てる。なお、図3(a)は、パワーが小さいものから順番に、使用する3個の光信号の波長の平均値に近い波長を割り当てたものである。   Therefore, in this embodiment, an optimum combination of the power of the transmission optical signal and the wavelength arrangement that reduces the influence of intersymbol interference during reception is proposed. In the present embodiment, the wavelengths close to the arithmetic average value of the wavelengths of the three optical signals to be used are assigned in order from the power of the optical signal. Here, as shown in FIG. 3B, the largest optical signal with power “1” is assigned to the average wavelength, that is, an intermediate frequency, and the smallest optical signal with power “1/4” is low. An optical signal having a power of “½” is assigned to a high frequency. In FIG. 3A, wavelengths close to the average value of the wavelengths of the three optical signals to be used are assigned in order from the power having the smallest power.

本実施例を適用しない場合と適用した場合について、光伝送シミュレーションにより得られたアイパターンを図3(a)、(b)に示す。ただし、波長間隔100GHz、波長分散20ps/nm/km、各光源・変調器110の変調周波数2.5GHzとし、伝送距離5kmとした。   FIGS. 3A and 3B show eye patterns obtained by the optical transmission simulation when the present embodiment is not applied and when it is applied. However, the wavelength interval was 100 GHz, the wavelength dispersion was 20 ps / nm / km, the modulation frequency of each light source / modulator 110 was 2.5 GHz, and the transmission distance was 5 km.

図3(a)、(b)のように各波長の光信号のパワーを設定した送信器を用いた場合、(a)においては、強度方向にも時間方向にもアイ開口が小さいため、閾値判定が困難である。一方、本実施例に従って波長配置を制御した(b)の場合においては、(a)の場合と比較して、アイ開口が強度、時間方向どちらにも大きく開いており、閾値値判定が(a)の場合よりも容易となる。   When using a transmitter in which the power of the optical signal of each wavelength is set as shown in FIGS. 3A and 3B, the eye opening is small in both the intensity direction and the time direction in FIG. Judgment is difficult. On the other hand, in the case of (b) in which the wavelength arrangement is controlled according to the present embodiment, the eye opening is greatly opened in both the intensity and the time direction as compared with the case of (a), and the threshold value determination is (a ).

<実施例4(請求項4対応)>
実施例4では、受信器において、受信したアナログ信号を所望の多値数の多値符号に変換する可変多値符号変換手段を備えるようにする。
<Example 4 (corresponding to claim 4)>
In the fourth embodiment, the receiver includes variable multi-level code conversion means for converting the received analog signal into a multi-level code having a desired multi-level number.

図4は本実施例の光受信器230の構成を示す図である。光受信器230は、光電変換回路231、A/D変換回路232、多値判別回路233、多値数設定回路234、および閾値設定回路235を備える。A/D変換回路232、多値判別回路233、多値数設定回路234、および閾値設定回路235が可変多値符号変換手段を構成する。   FIG. 4 is a diagram showing the configuration of the optical receiver 230 of this embodiment. The optical receiver 230 includes a photoelectric conversion circuit 231, an A / D conversion circuit 232, a multi-value discrimination circuit 233, a multi-value number setting circuit 234, and a threshold value setting circuit 235. The A / D conversion circuit 232, the multilevel discrimination circuit 233, the multilevel number setting circuit 234, and the threshold setting circuit 235 constitute variable multilevel code conversion means.

入力された光信号は、光電変換回路231によりアナログの電気信号へと変換される。得られた電気信号を多値信号に変換する際に、多値数が可変となっているため、離散値にするための閾値も変化する。そのため、多値数設定回路234からの設定多値数情報に基づき閾値設定回路235がA/D変換回路232の閾値を設定する。A/D変換回路232の出力は通常固定のビット幅を持っており、かつ設定された閾値によって様々な離散信号が出力され得る。そこで、A/D変換回路232の出力を多値数設定回路234からの設定多値数情報に基づき多値判別回路233により判別することで、正しいフォーマットの電気多値信号へと変換される。   The input optical signal is converted into an analog electric signal by the photoelectric conversion circuit 231. When the obtained electrical signal is converted into a multi-value signal, the multi-value number is variable, so that the threshold value for making a discrete value also changes. Therefore, the threshold value setting circuit 235 sets the threshold value of the A / D conversion circuit 232 based on the set multi-value number information from the multi-value number setting circuit 234. The output of the A / D conversion circuit 232 normally has a fixed bit width, and various discrete signals can be output according to a set threshold value. Therefore, the output of the A / D conversion circuit 232 is discriminated by the multi-value discrimination circuit 233 based on the set multi-value number information from the multi-value number setting circuit 234, so that it is converted into an electric multi-value signal having a correct format.

<実施例5(請求項5)>
実施例5では、1個の送信器と複数の受信器とを光ファイバで接続して時分割多重の光通信網を構成し、受信信号のレベル差が識別可能となる範囲内において多値符号の多値数を制御する。そして、複数の受信器のうち、送信器との間の通信網での減衰量が少ない受信器に対しては多値数を大きくし、前記送信器との間の通信網での減衰量が大きい受信器に対しては多値数を小さくするようにする。
<Example 5 (Claim 5)>
In the fifth embodiment, one transmitter and a plurality of receivers are connected by an optical fiber to form a time division multiplexing optical communication network, and a multi-level code is within a range in which a level difference of received signals can be identified. Controls the multivalued number of. And among a plurality of receivers, a multi-value number is increased for a receiver having a small amount of attenuation in the communication network with the transmitter, and the amount of attenuation in the communication network with the transmitter is For large receivers, the multi-level number is made small.

1つの光ファイバを複数のユーザで共有するPON方式やバス型方式では、各ユーザまでの光ファイバの長さが異なるため、光信号の減衰量が異なる。また、光信号を減衰させるコネクタなどの使用数の違いなどにより、各ユーザにおける光信号の受信パワーは異なる。光信号のパワーが減衰すると、多値符号間のレベル差が少なくなり、信号が雑音に埋もれて識別が難しくなる。   In the PON system and the bus type system in which one optical fiber is shared by a plurality of users, the optical fiber length to each user is different, and thus the attenuation amount of the optical signal is different. In addition, the reception power of the optical signal for each user differs depending on the difference in the number of connectors used to attenuate the optical signal. When the power of the optical signal is attenuated, the level difference between the multi-level codes is reduced, and the signal is buried in noise, making it difficult to identify.

そこで、従来の方式では、最も減衰量の大きいユーザが受信する時に多値信号のレベル差を識別できるパワーの光信号を出力する必要があった。   Therefore, in the conventional system, it is necessary to output an optical signal having a power that can identify the level difference of the multilevel signal when the user with the largest attenuation receives.

これに対し、本実施例では、距離が短いなどパワー減衰量の少ないユーザの受信レベル差は減衰の大きいユーザのものより大きいため、パワー減衰量の少ないユーザについては、同じレベル差になるまで多値数を大きくし、帯域を増大させることを提案する。   On the other hand, in this embodiment, the reception level difference of a user with a small amount of power attenuation such as a short distance is larger than that of a user with a large amount of attenuation. We propose increasing the number of values and increasing the bandwidth.

図5に波長がλ2、λ3、λ4の3つ光信号を発生する光源・変調器を用いた例を示す。送信時の波長λ2、λ3、λ4の光信号のパワーをそれぞれ同じ“a”、“a”、“a”(dBm)とすると、送信時に波長λ2、λ3の光信号を合波した多値符号P1と、波長λ2、λ3、λ4の光信号を合波した多値符号P2と間のパワー差は“a”であるが、減衰量rが大きくなるにつれそのパワー差が減少し、受信側での多値符号P1’,P2’のパワー差は“a−r”となる(図5(a))。   FIG. 5 shows an example using a light source / modulator that generates three optical signals having wavelengths λ2, λ3, and λ4. Assuming that the powers of optical signals of wavelengths λ2, λ3, and λ4 at transmission are the same “a”, “a”, and “a” (dBm), a multi-level code that combines optical signals of wavelengths λ2 and λ3 at the time of transmission The power difference between P1 and the multilevel code P2 obtained by combining the optical signals of wavelengths λ2, λ3, and λ4 is “a”. However, as the attenuation amount r increases, the power difference decreases. The power difference between the multi-level codes P1 ′ and P2 ′ is “ar” (FIG. 5A).

同様に、送信時の波長λ2、λ3、λ4の光信号のパワーを“a”、“a”、“a−3”(dBm)とした多値符号P3,P4の場合は、そのパワー差は“a−3”であるが、受信側の多値符号P3’,P4’のパワー差は“a−3−r”となる(図5(b))。さらに、送信時の波長λ2、λ3、λ4の光信号のパワーを“a”、“a−3”、“a−6”(dBm)とした多値符号P5,P6の場合は、そのパワー差は“a−6”であるが、受信側での多値符号P5’,P6’のパワー差は“a−6−r”となる(図5(c))。   Similarly, in the case of multilevel codes P3 and P4 in which the powers of optical signals of wavelengths λ2, λ3, and λ4 at transmission are “a”, “a”, and “a-3” (dBm), the power difference is Although “a-3”, the power difference between the multilevel codes P3 ′ and P4 ′ on the receiving side is “a-3-r” (FIG. 5B). Further, in the case of multilevel codes P5 and P6 in which the powers of optical signals of wavelengths λ2, λ3, and λ4 at the time of transmission are “a”, “a-3”, and “a-6” (dBm), the power difference Is "a-6", but the power difference between the multilevel codes P5 'and P6' on the receiving side is "a-6-r" (FIG. 5 (c)).

受信誤りを実用上起こさずに受信するためには、受信した多値符号の間には一定以上のパワー差が必要である。このパワー差の値をbとする。受信時のパワー差がbを上回る範囲において多値符号を識別可能であるため、伝送路内の減衰量をrとすると、送信時のパワー差が“a”(dBm)の場合には、“r<a−b”の範囲で受信可能である。また、送信時のパワー差が“a−3”(dBm)の場合、“a−6”(dBm)には、それぞれ“r<a−b−3”、“r<a−b−6”の範囲で受信可能である。   In order to receive without causing a reception error in practice, a power difference of a certain level or more is required between the received multilevel codes. Let this power difference be b. Since the multi-level code can be identified in the range where the power difference at the time of reception exceeds b, assuming that the attenuation in the transmission path is r, when the power difference at the time of transmission is “a” (dBm), “ Reception is possible within a range of r <a−b ″. When the power difference during transmission is “a-3” (dBm), “a <6” (dBm) has “r <a−b−3” and “r <a−b−6”, respectively. Can be received in the range of.

時分割多重を用いたPONやバス型方式では、ユーザ毎に通信時間を区切るので、上記のように減衰量rの少ないユーザに対しては、多値符号の多値数を大きくすることで、帯域を増大させることが可能となる。   In the PON or bus type system using time division multiplexing, since the communication time is divided for each user, by increasing the multi-level number of the multi-level code for the user having a small attenuation r as described above, The bandwidth can be increased.

<実施例6(請求項6対応)>
実施例6では、複数の受信器のうち、設定した多値符号の多値数の大きい受信器には短い通信時間を割当て、設定した多値符号の多値数の小さい受信器には長い通信時間を割当てるようにする。
<Example 6 (corresponding to claim 6)>
In the sixth embodiment, among a plurality of receivers, a short communication time is allocated to a receiver having a large multi-level number of a set multi-level code, and a long communication is performed to a receiver having a small multi-level number of a set multi-level code. Allocate time.

前述の実施例5で示した方式は、減衰量の少ないユーザは伝送速度が速く、減衰量の多いユーザは伝送速度が遅いというADSLに似た特性を持つ。しかし、ADSLは各ユーザの通信が独立であるSS方式であるのに対して、PONやバス型では多重方式でファイバを共有している。   The method shown in the fifth embodiment has a characteristic similar to ADSL, in which a user with a small amount of attenuation has a high transmission rate and a user with a large amount of attenuation has a low transmission rate. However, ADSL is an SS system in which each user's communication is independent, whereas a PON or bus type shares a fiber in a multiplex system.

そこで、本実施例では、時分割多重を用いたPONやバス型方式において、ユーザ毎に割り当てる通信時間を制御し、減衰量が少なく多値符号の多値数の大きいユーザには伝送速度が速くなるので短い通信時間T3を割り当て、減衰量が多く多値符号の多値数の小さいユーザには伝送速度が遅くなるので長い通信時間T1を割り当てる(図6)。図6において、P11〜P16は3波長の光信号を合波した多値符号である。これにより、全体の伝送容量を上げつつ、遠いユーザの伝送速度を上げることが可能となる。   Therefore, in this embodiment, in the PON or bus type system using time division multiplexing, the communication time allocated to each user is controlled, and the transmission speed is high for users with a small amount of attenuation and a large number of multi-level codes. Therefore, a short communication time T3 is assigned, and a user with a large attenuation and a small multi-value number of the multi-value code is assigned a long communication time T1 because the transmission speed is slow (FIG. 6). In FIG. 6, P11 to P16 are multilevel codes obtained by multiplexing optical signals of three wavelengths. Thereby, it is possible to increase the transmission speed of a distant user while increasing the overall transmission capacity.

実施例1の光信号の説明図である。6 is an explanatory diagram of an optical signal according to the first embodiment. 実施例2の送信器の構成を示すブロック図である。6 is a block diagram illustrating a configuration of a transmitter according to Embodiment 2. FIG. 実施例3の光信号の波長割当ての説明図である。It is explanatory drawing of the wavelength allocation of the optical signal of Example 3. FIG. 実施例4の光受信器の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of an optical receiver according to a fourth embodiment. 実施例5の多値符号減衰の説明図である。It is explanatory drawing of the multi-value code attenuation | damping of Example 5. FIG. 実施例6の多値符号の通信時間割り当ての説明図である。It is explanatory drawing of the communication time allocation of the multi-level code of Example 6. 従来のWDM伝送方式のブロック図である。It is a block diagram of the conventional WDM transmission system. 従来のWDM多重伝送方式のブロック図である。It is a block diagram of the conventional WDM multiplex transmission system. 一対多通信の下り伝送方式のブロック図である。It is a block diagram of the downlink transmission system of one-to-many communication. WDM伝送方式とWDM多重伝送方式の伝送情報量の比較特性図である。It is a comparison characteristic figure of the transmission information amount of a WDM transmission system and a WDM multiplex transmission system.

符号の説明Explanation of symbols

100:送信器、110:光源・変調器、111:LDドライバ回路、112:レーザダイオード、113:光減衰器、120:波長合波器
200:受信器、210:波長分波器、220:光受信器、230:光受信器、231:光電変換回路、232:A/D変換回路、233:多値判別回路、234:多値数設定回路、235:閾値設定回路
300:光ファイバ
400:光分配器
100: transmitter 110: light source / modulator 111: LD driver circuit 112: laser diode 113 113 optical attenuator 120: wavelength multiplexer 200: receiver 210: wavelength demultiplexer 220: light Receiver: 230: Optical receiver, 231: Photoelectric conversion circuit, 232: A / D conversion circuit, 233: Multi-value discrimination circuit, 234: Multi-value number setting circuit, 235: Threshold setting circuit 300: Optical fiber 400: Light Distributor

Claims (6)

波長の異なる複数の光信号を発生する送信器と、光伝送路を経由して前記送信器から送信された前記複数の光信号をパワー合成して1つの多値符号とする受信器とを備える光伝送方式において、
前記送信器は、前記複数の光信号のうちの1つ以上の光信号のパワーを他の光信号のパワーと異ならせて送信することを特徴とする光伝送方式。
A transmitter that generates a plurality of optical signals having different wavelengths, and a receiver that combines the plurality of optical signals transmitted from the transmitter via an optical transmission path to form one multi-level code. In the optical transmission system,
The transmitter transmits the power of one or more optical signals out of the plurality of optical signals different from the power of other optical signals.
請求項1に記載の光伝送方式において、
前記送信器は、前記波長の異なる複数の光信号を発生する複数の光源手段を備え、該複数の光源手段のうちの1つ以上が、発生する光信号のパワーを制御するパワー制御手段、又は発生した光信号のパワーを減衰させるパワー減衰手段を備えることを特徴とする光伝送方式。
The optical transmission system according to claim 1,
The transmitter comprises a plurality of light source means for generating a plurality of optical signals having different wavelengths, and a power control means for controlling the power of the optical signal generated by one or more of the plurality of light source means, or An optical transmission system comprising power attenuating means for attenuating the power of a generated optical signal.
請求項2の記載の光伝送方式において、
前記送信器は、前記複数の光源手段から送信する波長の異なる光信号のそれぞれについて、そのパワーが大きいほど、全ての光信号の波長の平均値に近い波長に割り当てることを特徴とする光伝送方式。
The optical transmission system according to claim 2,
The transmitter, for each of the optical signals having different wavelengths transmitted from the plurality of light source means, assigns a wavelength closer to the average value of the wavelengths of all the optical signals as the power is larger .
請求項1に記載の光伝送方式において、
前記受信器は、受信したアナログ信号を所望の多値数の多値符号に変換する可変多値符号変換手段を備えることを特徴とする光伝送方式。
The optical transmission system according to claim 1,
An optical transmission system characterized in that the receiver comprises variable multilevel code conversion means for converting a received analog signal into a multilevel code having a desired multilevel number.
請求項2又は3に記載の1つの送信器と請求項4に記載の複数の受信器とを光伝送路で接続して時分割多重の光通信網を構成し、受信信号のレベル差が識別可能となる範囲内において、
前記複数の受信器のうち、前記送信器との間の通信網での減衰量が少ない受信器に対しては前記多値数を大きくし、前記送信器との間の通信網での減衰量が大きい受信器に対しては前記多値数を小さくすることを特徴とする光伝送方式。
A transmitter according to claim 2 or 3 and a plurality of receivers according to claim 4 are connected by an optical transmission line to form a time division multiplexing optical communication network, and a difference in received signal level is identified. To the extent possible
Among the plurality of receivers, for a receiver having a small amount of attenuation in the communication network with the transmitter, the multilevel number is increased, and the amount of attenuation in the communication network with the transmitter is increased. An optical transmission system characterized in that the multi-value number is reduced for a receiver having a large value.
請求項5に記載の光伝送方式において、
前記複数の受信器のうち、設定した多値符号の多値数の大きい受信器には短い通信時間を割当て、設定した多値符号の多値数の小さい受信器には長い通信時間を割当てることを特徴とする光伝送方式。
In the optical transmission system according to claim 5,
Among the plurality of receivers, a short communication time is allocated to a receiver having a large multi-level number of a set multi-level code, and a long communication time is allocated to a receiver having a small multi-level number of a set multi-level code. An optical transmission system characterized by
JP2007294768A 2007-11-13 2007-11-13 Optical transmission system Expired - Fee Related JP4925334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007294768A JP4925334B2 (en) 2007-11-13 2007-11-13 Optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007294768A JP4925334B2 (en) 2007-11-13 2007-11-13 Optical transmission system

Publications (2)

Publication Number Publication Date
JP2009124342A true JP2009124342A (en) 2009-06-04
JP4925334B2 JP4925334B2 (en) 2012-04-25

Family

ID=40816040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007294768A Expired - Fee Related JP4925334B2 (en) 2007-11-13 2007-11-13 Optical transmission system

Country Status (1)

Country Link
JP (1) JP4925334B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093600A (en) * 2008-10-09 2010-04-22 Nippon Telegr & Teleph Corp <Ntt> Optical transmission method, and optical transmission system
JP2016005193A (en) * 2014-06-18 2016-01-12 日本電信電話株式会社 Optical access system, terminator, home device and optical access method
WO2016112789A1 (en) * 2015-01-13 2016-07-21 Huawei Technologies Co., Ltd. Optical power supply and a system for summation of parallel modulated signals of different wavelengths
CN107113063A (en) * 2015-01-13 2017-08-29 华为技术有限公司 The optical power system linked for D/A

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8551463B2 (en) 2007-10-22 2013-10-08 Living Proof, Inc. Hair care compositions and methods of treating hair

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5448102A (en) * 1977-09-05 1979-04-16 Cselt Centro Studi Lab Telecom Optical fiber multiilevel signal transmitter
JPS5737941A (en) * 1980-08-13 1982-03-02 Fujitsu Ltd Optical output circuit
JPS60194844A (en) * 1984-03-16 1985-10-03 Hitachi Cable Ltd Optical transmission system superimposing two-signal
JPS635633A (en) * 1986-06-25 1988-01-11 Nec Corp Optical multivalued communication system
JP2002333603A (en) * 2001-05-08 2002-11-22 Mitsubishi Electric Corp Multi-level modulation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5448102A (en) * 1977-09-05 1979-04-16 Cselt Centro Studi Lab Telecom Optical fiber multiilevel signal transmitter
JPS5737941A (en) * 1980-08-13 1982-03-02 Fujitsu Ltd Optical output circuit
JPS60194844A (en) * 1984-03-16 1985-10-03 Hitachi Cable Ltd Optical transmission system superimposing two-signal
JPS635633A (en) * 1986-06-25 1988-01-11 Nec Corp Optical multivalued communication system
JP2002333603A (en) * 2001-05-08 2002-11-22 Mitsubishi Electric Corp Multi-level modulation device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093600A (en) * 2008-10-09 2010-04-22 Nippon Telegr & Teleph Corp <Ntt> Optical transmission method, and optical transmission system
JP2016005193A (en) * 2014-06-18 2016-01-12 日本電信電話株式会社 Optical access system, terminator, home device and optical access method
WO2016112789A1 (en) * 2015-01-13 2016-07-21 Huawei Technologies Co., Ltd. Optical power supply and a system for summation of parallel modulated signals of different wavelengths
CN107113063A (en) * 2015-01-13 2017-08-29 华为技术有限公司 The optical power system linked for D/A
CN107210818A (en) * 2015-01-13 2017-09-26 华为技术有限公司 For adding optical power source and system with the parallel modulated signal of different wave length
EP3235148A4 (en) * 2015-01-13 2017-12-27 Huawei Technologies Co. Ltd. Optical power system for digital-to-analog link
CN107113063B (en) * 2015-01-13 2020-04-14 华为技术有限公司 Optical power system for digital/analog link
CN111541491A (en) * 2015-01-13 2020-08-14 华为技术有限公司 Optical power system for digital/analog link
CN111541491B (en) * 2015-01-13 2022-11-11 华为技术有限公司 Optical power system for digital/analog link

Also Published As

Publication number Publication date
JP4925334B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
US9768879B2 (en) Device and method for transmitting multicarrier signals
KR100870897B1 (en) High performance optical network system based on reflective semiconductor optical amplifier
JP4701192B2 (en) Transmission system and transmission method
WO2011130982A1 (en) Passive optical network system based on optical code division multiple access and optical line terminal thereof
US20200389248A1 (en) Optical transmission system
JP4925334B2 (en) Optical transmission system
US20020114034A1 (en) Split wave method and apparatus for transmitting data in long-haul optical fiber systems
Rochette et al. Analysis of the spectral efficiency of frequency-encoded OCDMA systems with incoherent sources
JP6821679B2 (en) Optical network unit and optical network unit
US20160254862A1 (en) Wavelength multiplexing transmission system
Udalcovs et al. Spectral and energy efficiency considerations in mixed-line rate WDM networks with signal quality guarantee
CN105721098A (en) OLT (Optical Line Terminal) in symmetrical TWDM-PON (Time and Wavelength Division Multiplexing-Passive Optical Network) system for realizing high-speed transmission through low-speed optical device
KR20060134643A (en) Wavelength-division-multiplexed passive optical network using wavelength-locked optical transmitter
JP5014303B2 (en) Optical transmission method and optical transmission system
RU2423796C1 (en) Method of controlling data stream transfer rate and device for realising said method
RU2421793C1 (en) Method to send multi-protocol information flows and device for its realisation
JP4849632B2 (en) Optical transmission method, encoding method, optical transmission system, and optical transmitter
CN105743600A (en) ONU (Optical Network Unit) in symmetrical TWDM-PON (Time and Wavelength Division Multiplexing-Passive Optical Network) system for realizing high speed transmission with low speed optical instrument
JP2008244847A (en) Wavelength multiplexing apparatus
RU2481709C2 (en) Method of transmitting multi-protocol data streams and apparatus for realising said method
Müller et al. Cost-Efficient Capacity Scaling using Multi-Wavelength Transponders and Adaptive Modulation
JP5000595B2 (en) Optical communication system and optical transmitter
US10063317B2 (en) Network management with per-node cross-phase-modulation (XPM) compensation
Colombo Reconfigurable DP-16QAM/QPSK transponders for the transmission of coherent 200 Gb/s carriers in a flexgrid super-channel arrangement
Asif et al. Flexible space division multiplexed WDM-PON with 16-QAM point-to-point and PolSK modulated multicast overlay services

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees