JP2009111999A - Multiband antenna - Google Patents

Multiband antenna Download PDF

Info

Publication number
JP2009111999A
JP2009111999A JP2008264160A JP2008264160A JP2009111999A JP 2009111999 A JP2009111999 A JP 2009111999A JP 2008264160 A JP2008264160 A JP 2008264160A JP 2008264160 A JP2008264160 A JP 2008264160A JP 2009111999 A JP2009111999 A JP 2009111999A
Authority
JP
Japan
Prior art keywords
line
multiband antenna
substrate
loop
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008264160A
Other languages
Japanese (ja)
Other versions
JP4858860B2 (en
Inventor
Yasunori Takagi
保規 高木
Tatsuro Ayaka
辰朗 綾香
Hiroshi Okamoto
浩志 岡本
Hiroto Ideno
博人 井手野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008264160A priority Critical patent/JP4858860B2/en
Publication of JP2009111999A publication Critical patent/JP2009111999A/en
Application granted granted Critical
Publication of JP4858860B2 publication Critical patent/JP4858860B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiband antenna, in which a radiation line of which one end is connected with a feeding point and the other end is an open end is formed as a loop-like line having a return part in the middle, capable of easily performing a frequency adjustment for each frequency band while accomplishing, with space saving, a multiband antenna which resonates over a plurality of frequencies, and is capable of widening bands and obtaining excellent gain and radiation characteristic within each frequency band by providing a capacitive coupling section in which a part of the line is disposed face-to-face via dielectrics. <P>SOLUTION: A multiband antenna is provided in which a line of which one end is connected with a feeding point and the other end is an open end is returned in the middle to become a loop-like line, a capacitive coupling section is provided in a part of which the dielectrics are disposed, and which resonates over a plurality of frequencies. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、アンテナ装置に関し、特に、複数のバンド(送受信帯域)に対応可能なアンテナ装置、及びそれを用いた無線通信機器に関する。   The present invention relates to an antenna device, and more particularly to an antenna device capable of supporting a plurality of bands (transmission / reception bands) and a wireless communication device using the antenna device.

近年、携帯電話等の無線通信機器が急速に普及し、通信に使用する帯域も多岐に亘っている。特に、最近の携帯電話では、デュアルバンド方式、トリプルバンド方式、クワッドバンド方式等と呼ばれるように、複数の送受信帯域を一つの携帯電話等の通信機器に装備する例が多くなっている。
かかる状況下、携帯電話等の内蔵アンテナ回路を構成するアンテナとして、上記のような複数の送受信帯域に対応できるマルチバンドアンテナの開発が急がれている。更に、携帯電話等の無線通信機器の更なる小型化の要請により、アンテナ部品の増加傾向にも拘わらず小型化を実現するだけでなく、より高い性能を持つ必要が生じている。
In recent years, wireless communication devices such as mobile phones are rapidly spreading, and the bandwidth used for communication is also wide-ranging. In particular, in recent mobile phones, there are an increasing number of examples in which a plurality of transmission / reception bands are provided in a communication device such as a single mobile phone as called a dual band method, a triple band method, a quad band method, or the like.
Under such circumstances, development of a multiband antenna capable of supporting a plurality of transmission / reception bands as described above is urgently required as an antenna constituting a built-in antenna circuit of a mobile phone or the like. Furthermore, due to the demand for further miniaturization of wireless communication devices such as mobile phones, it is necessary not only to achieve miniaturization, but also to have higher performance despite the increasing trend of antenna components.

従来の携帯電話等に用いられた無線通信機器に装備するマルチバンドアンテナは、例えば、共振周波数の異なる複数のチップアンテナを一つの給電点と接続するようにして小型のマルチバンドアンテナを構成することが提案されている(引用文献1)。
しかしながら、上述したマルチバンドアンテナでは、共振周波数に応じて個別にチップアンテナを設ける必要があり、通信機器の小型、軽量化、あるいは多機能化の伸長に伴う更なる小型化の要求に対して、マルチバンドアンテナの小型化が阻害され、これを満足出来ない状況が生じることがあった。
A multiband antenna equipped in a wireless communication device used in a conventional mobile phone or the like is, for example, a small multiband antenna configured by connecting a plurality of chip antennas having different resonance frequencies to one feeding point. Has been proposed (Cited document 1).
However, in the above-described multiband antenna, it is necessary to provide a chip antenna individually according to the resonance frequency, and in response to the demand for further miniaturization associated with the expansion of the downsizing, weight reduction, or multifunctionality of communication devices, In some cases, miniaturization of the multi-band antenna is hindered, and this cannot be satisfied.

このような小型化の要求に対して、他の例では、ループ状に形成された一つの放射電極を、誘電体や磁性体といった基体に設けて、その開放端を給電部側の電極に所定の間隔を介して対向配置させて結合容量を形成し、前記結合容量を調整することによって、放射電極の基本共振モードの共振周波数を大きく変化させずに、基本共振モードの共振周波数と高次共振モードの共振周波数との間隔を可変制御している(引用文献2)。
特開平09−199939号 特開2002−158529号
In response to such a demand for miniaturization, in another example, a single radiating electrode formed in a loop shape is provided on a substrate such as a dielectric or a magnetic material, and an open end thereof is set as a predetermined electrode on the power feeding unit side. The resonant frequency of the fundamental resonance mode and the higher-order resonance can be obtained without significantly changing the resonant frequency of the fundamental resonant mode of the radiation electrode by forming a coupling capacitor by opposingly arranging them with an interval of, and adjusting the coupling capacitance. The interval with the resonance frequency of the mode is variably controlled (Cited document 2).
JP 09-199939 A JP 2002-158529 A

しかしながら、上述したマルチバンドアンテナでは、誘電体や磁性体を利用して、波長短縮効果によって放射電極の小型化を図っているが、放射電極の全体を基体に設けているため、Qが100を超え共振が鋭く、周波数帯域が狭帯域となり、また放射電極は容量性の影響が強く現れ易く、放射電極の長さや幅によって各共振周波数が大きく変動して、設定が難しいという問題がある。更に、基本共振モードの共振周波数の制御については、何等考慮されていなかった。
そこで本発明では、上記のような種々の課題に鑑みなされたものであり、その目的は、広帯域化が可能で、各周波数帯域内において良好な利得と放射特性が得られるマルチバンドアンテナを省スペースで実現しつつ、各周波数帯域毎の周波数調整を容易に行うことが可能なマルチバンドアンテナを提供することにある。
However, in the above-described multiband antenna, the radiation electrode is miniaturized by using a dielectric material or a magnetic material. However, since the entire radiation electrode is provided on the base, Q is 100. There is a problem that the resonance is sharp, the frequency band is narrow, the capacitive effect of the radiation electrode is strong, and each resonance frequency varies greatly depending on the length and width of the radiation electrode, making it difficult to set. Furthermore, no consideration has been given to the control of the resonance frequency of the fundamental resonance mode.
Therefore, the present invention has been made in view of the various problems as described above, and its purpose is to save a space for a multiband antenna that can be widened and obtains good gain and radiation characteristics in each frequency band. An object of the present invention is to provide a multiband antenna that can be easily adjusted in frequency for each frequency band.

本発明は、一端が給電点と接続し他端が開放端である放射線路を、途中に折り返し部を有するループ状線路となし、線路の一部が誘電体を介して対向配置された容量結合部を備えた、複数の周波数で共振するマルチバンドアンテナであって、前記ループ状線路の給電点から開放端までの線路長により、第1の共振周波数f1を制御し、給電点から容量結合部までの線路及び、容量結合部から折り返し部までの不連続のループ状線路の一部を用い、その線路長と前記容量結合部の容量により第2の共振周波数f2を制御し、給電点から折り返し部までの連続したループ状線路の一部を用い、その線路長により第3の共振周波数f3を制御し、前記第2の共振周波数f2と前記第3の共振周波数f3は、前記第1の共振周波数f1よりも高次の共振周波数であることを特徴とするマルチバンドアンテナである。   In the present invention, a radiation path in which one end is connected to a feeding point and the other end is an open end is formed as a loop-like line having a folded portion in the middle, and a capacitive coupling in which a part of the line is arranged to face each other via a dielectric. A multiband antenna that resonates at a plurality of frequencies, wherein the first resonance frequency f1 is controlled by a line length from a feeding point to an open end of the loop-shaped line, and a capacitive coupling unit from the feeding point And the second resonance frequency f2 is controlled by the length of the line and the capacitance of the capacitive coupling portion, and the loop from the feeding point is used. The third resonance frequency f3 is controlled by using a part of the continuous loop-shaped line up to the part, and the second resonance frequency f2 and the third resonance frequency f3 are controlled by the line length. Higher order than frequency f1 It is a multi-band antenna, which is a frequency.

図16に一般的な逆Fアンテナの模式図を示す。線路を基本波(第1の共振周波数f1)のλ/4(λ;波長)で共振させると、給電点では電流が最大となり、開放端で電流は零となる。電圧は開放端で最大となる。給電点でのインピーダンス整合を考慮すれば、前記線路は基本波の第3次高調波で共振させることが出来るので、単純には周波数比が1(基本波)対3のマルチバンドアンテナが得られる。
しかしながら、現在使用されている無線通信機器の周波数帯域は、代表的携帯電話の周波数帯域を例に取れば、GSM(Global System for Mobile Communications)は凡そ900MHzであり、DCS(Digital Cellular System)1800やPCS(Personal
Communications Service)1900は1.8〜1.9GHzの周波数帯域であり、周波数比で凡そ1対2の関係にある。
このためマルチバンドアンテナでは、基本波の共振周波数を第1の共振周波数f1とすると、この約2倍の周波数を含む帯域内で第2の共振させることが必要となる。
FIG. 16 shows a schematic diagram of a general inverted-F antenna. When the line is resonated at λ / 4 (λ; wavelength) of the fundamental wave (first resonance frequency f1), the current becomes maximum at the feeding point and becomes zero at the open end. The voltage is maximum at the open end. Considering impedance matching at the feeding point, the line can resonate with the third harmonic of the fundamental wave, so that a multiband antenna having a frequency ratio of 1 (fundamental wave) to 3 can be obtained simply. .
However, if the frequency band of a wireless communication device currently used is a typical mobile phone frequency band, GSM (Global System for Mobile Communications) is about 900 MHz, DCS (Digital Cellular System) 1800 or PCS (Personal
(Communications Service) 1900 is a frequency band of 1.8 to 1.9 GHz, and has a one-to-two relationship in terms of frequency ratio.
For this reason, in the multiband antenna, when the resonance frequency of the fundamental wave is the first resonance frequency f1, it is necessary to cause the second resonance within a band including about twice this frequency.

本発明に到るまでのマルチバンドアンテナを図17に示す。線路を途中で折返してループ状線路とすることで、線路間に生じる寄生容量による弱い結合を利用し、図18に示すように3次高調波の周波数を低下させている。しかしながら、それだけでは周波数を低下が不十分であった。
そこで本発明のマルチバンドアンテナでは、ループ状線路の一部に誘電体を配置して他の部位よりも誘電率を高めた容量結合部を設けて、基本波の約2倍の周波数(第2の共振周波数f2)で共振させ、共振周波数の周波数比が凡そ1(基本波)対2のマルチバンドアンテナとしている。
A multiband antenna up to the present invention is shown in FIG. By turning the line back in the middle to form a loop-shaped line, the weak coupling due to the parasitic capacitance generated between the lines is used to reduce the frequency of the third harmonic as shown in FIG. However, this alone was not enough to reduce the frequency.
Therefore, in the multiband antenna of the present invention, a capacitive coupling portion having a dielectric constant disposed on a part of the loop-shaped line and having a higher dielectric constant than other parts is provided, and the frequency (second frequency) is about twice that of the fundamental wave. The resonance frequency f2) is a multiband antenna having a resonance frequency ratio of about 1 (fundamental wave) to 2.

前記容量結合部は3次高調波の電流値が零であり、電圧が最大となる部位からループ状線路の開放端に到る間に設けるのが好ましい。容量結合部に設けられる容量は高周波的に短絡となる。本発明者等は前記容量結合部を通過する経路において、前記ループ状線路を第3の周波数(第3の共振周波数f3)で共振させ、前記第2の共振周波数f2と前記第3の共振周波数f3とを近接させて、電圧定在波比VSWRに優れる周波数帯域を重なるようにして広帯域化したマルチバンドアンテナとすることを着想した。
なお本発明においては、第2の共振周波数f2と第3の共振周波数f3を近接した周波数としているが、離間した周波数としても良いし、略同じ周波数としても良く、対応すべき周波数に応じて適宜設定すれば良い。
It is preferable that the capacitive coupling portion be provided between the portion where the current value of the third harmonic is zero and the voltage reaches the maximum and the open end of the loop-shaped line. The capacitance provided in the capacitive coupling portion is short-circuited in terms of high frequency. The inventors resonate the loop-shaped line at a third frequency (third resonance frequency f3) in the path passing through the capacitive coupling portion, and the second resonance frequency f2 and the third resonance frequency. The idea was to create a multi-band antenna having a wider bandwidth by making f3 close to each other and overlapping frequency bands excellent in the voltage standing wave ratio VSWR.
In the present invention, the second resonance frequency f2 and the third resonance frequency f3 are close to each other, but may be separated from each other, may be substantially the same frequency, and may be appropriately set according to the frequency to be handled. Set it.

前記ループ状線路を、一端が給電点と接続する第1線路と、前記第1線路の他端側と接続する第2線路と、前記第2線路の他端と接続する第3線路とを備えたものとし、前記第1線路と前記第3線路を対向させて容量結合部とするのが好ましい。
前記基板はプリント基板を用いるのが好ましく、FR4(ガラスエポキシ基板)等を用いることが出来る。また、アルミナ基板等のセラミック基板を用いることも出来る。第1線路や第3の線路は基板上に設けられた線路であり、低抵抗のAu,Ag,Cu等の良導体で印刷やエッチングによって形成するのが好ましい。第2の線路は加工が容易であるが、外力に対して容易に変形しないリン青銅などの板金で形成するのが好ましい。
A first line having one end connected to a feeding point; a second line connected to the other end of the first line; and a third line connected to the other end of the second line. It is preferable that the first line and the third line be opposed to form a capacitive coupling portion.
The substrate is preferably a printed substrate, and FR4 (glass epoxy substrate) or the like can be used. A ceramic substrate such as an alumina substrate can also be used. The first line and the third line are lines provided on the substrate, and are preferably formed by printing or etching with a good conductor such as low resistance Au, Ag, or Cu. The second line is easy to process, but is preferably formed of a sheet metal such as phosphor bronze that is not easily deformed by an external force.

前記容量結合部は前記基板に設けるのが好ましく、第1線路と第3線路を基板の同一面上に所定の間隔をもって面して配置し、又は第1線路と第3線路を基板の異なる面上に所定の間隔をもって対向して配置して形成することが出来る。
前記第1線路と前記第3線路は帯状の線路として構成されており、その縁部を対向させたり、あるいは基板を挟んで対向させたりすることで結合容量を形成することが出来る。また、第1線路及び/又は第3線路から延びる容量結合用導体部(電極パターン)を設けて、前記容量結合部を形成しても良い。
The capacitive coupling part is preferably provided on the substrate, and the first line and the third line are arranged on the same surface of the substrate with a predetermined interval, or the first line and the third line are different surfaces of the substrate. It can be formed by being opposed to each other at a predetermined interval.
The first line and the third line are configured as belt-like lines, and a coupling capacitor can be formed by making the edges face each other or face each other with a substrate interposed therebetween. Further, a capacitive coupling conductor (electrode pattern) extending from the first line and / or the third line may be provided to form the capacitive coupling part.

本発明においては、第2線路に延長導体部を設けて基板に形成された容量形成用電極と接続し、前記容量形成用電極と第3線路を前記基板の同一面上に所定の間隔をもって面して配置し、又は前記容量形成用電極と第3線路を前記基板の異なる面上に所定の間隔をもって対向して配置して、容量結合部を追加形成しても良い。
また基板上に、前記基板と誘電率が異なる誘電体片を配置し、前記誘電体片に容量形成用電極形成して第2線路に延長導体部と接続し、第3線路と対向させて容量結合部を追加形成しても良い。
In the present invention, an extended conductor portion is provided on the second line and connected to a capacitor forming electrode formed on the substrate, and the capacitor forming electrode and the third line are arranged on the same surface of the substrate with a predetermined interval. Alternatively, a capacitive coupling portion may be additionally formed by arranging the capacitance forming electrode and the third line so as to face each other on a different surface of the substrate with a predetermined interval.
In addition, a dielectric piece having a dielectric constant different from that of the substrate is disposed on the substrate, a capacitance forming electrode is formed on the dielectric piece, the second line is connected to the extension conductor portion, and the capacitor is opposed to the third line. A coupling portion may be additionally formed.

本発明においては、更にループ状線路の給電点側から分岐する分岐線路を設けて第4の共振周波数f4を制御しても良い。分岐線路を前記ループ状線路の一部と並設して配置しても良い。共振周波数の調整においては、分岐線路とループ状線路とは電磁気的干渉が少ない程、それぞれ独立して調整が可能であるため好ましい。電磁気的な結合が生じる場合には共振周波数の調整は難しくなるが、分岐線路とループ状線路を短くすることも可能となるため、小型化においては好ましい。   In the present invention, the fourth resonance frequency f4 may be controlled by providing a branch line that further branches from the feeding point side of the loop-shaped line. A branch line may be arranged in parallel with a part of the loop-shaped line. In adjusting the resonance frequency, it is preferable that the branch line and the loop line have less electromagnetic interference because they can be adjusted independently. When electromagnetic coupling occurs, it is difficult to adjust the resonance frequency, but the branch line and the loop line can be shortened, which is preferable in downsizing.

本発明によれば、広帯域化が可能で、各周波数帯域内において良好なVSWR特性が得られるマルチバンドアンテナを省スペースで実現しつつ、各周波数帯域毎の周波数調整を容易に行うことが可能なマルチバンドアンテナを提供することが出来る。   According to the present invention, it is possible to easily adjust the frequency for each frequency band while realizing a multiband antenna capable of widening the band and obtaining a good VSWR characteristic in each frequency band in a space-saving manner. A multiband antenna can be provided.

本発明の実施形態について、図面を参照して詳細に説明する。尚、以下に説明する実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
まず、本発明のマルチバンドアンテナの基本的特徴について説明する。図1は、本発明のマルチバンドアンテナの基本構成を説明するための図である。本発明のマルチバンドアンテナ1は、図1に示すように、放射電路であるループ状線路10の一端側の端部に給電点が設けられ、高周波回路20と接続すると共に、他端側が開放端35となっている。
ループ状線路10は折返し部40を備え、給電点から折返し部40間の線路において、少なくとも一部が、折返し部40から開放端までの線路と並設される。更に本実施例では、放射線路の開放端35と、給電点側から折返し部40までの線路との間で容量を形成した容量結合部35を設けている。そして給電点から高周波回路20との間に、整合回路200としてシャントインダクタを接続している。
Embodiments of the present invention will be described in detail with reference to the drawings. The embodiments described below do not limit the invention according to the claims, and all the combinations of features described in the embodiments are not necessarily essential to the solution means of the invention. Absent.
First, basic features of the multiband antenna of the present invention will be described. FIG. 1 is a diagram for explaining a basic configuration of a multiband antenna according to the present invention. As shown in FIG. 1, the multiband antenna 1 of the present invention is provided with a feeding point at one end of a loop-shaped line 10 that is a radiating electric circuit, and is connected to a high-frequency circuit 20 and the other end is an open end. 35.
The loop-shaped line 10 includes a folded portion 40, and at least a part of the line between the feeding point and the folded portion 40 is juxtaposed with the line from the folded portion 40 to the open end. Furthermore, in this embodiment, a capacitive coupling portion 35 is provided in which a capacitance is formed between the open end 35 of the radiation path and the line from the feeding point side to the folded portion 40. A shunt inductor is connected as a matching circuit 200 between the feeding point and the high-frequency circuit 20.

図2にマルチバンドアンテナの等価回路を示す。ここでは線路間や、線路とグランドとの間に生じる寄生容量については省略している。図中、インダクタL1〜L3はループ状線路10で形成されるインダクタンス成分を、コンデンサCgは容量結合部35で形成されるキャパシタンス成分を表している。
なお、インダクタL1〜L3はループ状線路の部分で形成される等価インダクタンスであって、インダクタL1は容量結合部35から折返し部40までの間に形成されるインダクタンスである。インダクタL2は折返し部40から開放端35までの間に形成されるインダクタンスである。インダクタL3は給電点から折返し部40までの間に形成されるインダクタンスである。
FIG. 2 shows an equivalent circuit of the multiband antenna. Here, the parasitic capacitance generated between the lines or between the line and the ground is omitted. In the figure, inductors L1 to L3 represent inductance components formed by the loop-shaped line 10, and a capacitor Cg represents a capacitance component formed by the capacitive coupling portion 35.
The inductors L <b> 1 to L <b> 3 are equivalent inductances formed by a loop line portion, and the inductor L <b> 1 is an inductance formed between the capacitive coupling portion 35 and the folded portion 40. The inductor L2 is an inductance formed between the folded portion 40 and the open end 35. The inductor L3 is an inductance formed between the feeding point and the folded portion 40.

本発明のマルチバンドアンテナは、第1〜第3の周波数で共振するように構成されている。図3(a)〜図3(c)は第1〜第3の共振を説明するための図である。
基本波は第1の共振周波数f1で共振するように構成され、波長λの略1/4λとなる電気長を有する線路により形成され、
インダクタL1〜L3の直列回路で構成される。第2の共振は、インダクタL2、L3とコンデンサCgとの直列共振回路により、第3の共振は、インダクタL1、L3の直列共振回路により生じる。なお図示しない寄生容量はインダクタと並列に接続し、あるいはグランドとの間に接続される。
The multiband antenna of the present invention is configured to resonate at the first to third frequencies. FIG. 3A to FIG. 3C are diagrams for explaining the first to third resonances.
The fundamental wave is configured to resonate at the first resonance frequency f1, and is formed by a line having an electrical length that is approximately ¼λ of the wavelength λ.
It consists of a series circuit of inductors L1 to L3. The second resonance is generated by a series resonance circuit of inductors L2 and L3 and a capacitor Cg, and the third resonance is generated by a series resonance circuit of inductors L1 and L3. A parasitic capacitance (not shown) is connected in parallel with the inductor, or is connected between the ground.

図4のマルチバンドアンテナの周波数特性図に示すように、ループ状線路10の全体の線路長を長くすると、第1の周波数帯での共振周波数f1、第2の周波数帯での共振周波数f2、第3の周波数帯での共振周波数f3(図中共振周波数f3を省略している)は低周波側に移動し、短くすると低周波側に移動する。
容量結合部35に形成される結合容量によって、ループ状線路の全体の線路長を一定とした場合に、第2の共振周波数f2を制御することが出来る。図5に示したマルチバンドアンテナの周波数特性図に示すように、第2の共振周波数f2と第3の共振周波数f3とを近接させて、電圧定在波比に優れる周波数帯域を広帯域化することが可能となる。
As shown in the frequency characteristic diagram of the multiband antenna of FIG. 4, when the entire line length of the loop-shaped line 10 is increased, the resonance frequency f1 in the first frequency band, the resonance frequency f2 in the second frequency band, The resonance frequency f3 in the third frequency band (resonance frequency f3 in the figure is omitted) moves to the low frequency side, and when it is shortened, it moves to the low frequency side.
The second resonance frequency f2 can be controlled by the coupling capacitance formed in the capacitive coupling unit 35 when the entire line length of the loop-shaped line is constant. As shown in the frequency characteristic diagram of the multiband antenna shown in FIG. 5, the second resonance frequency f2 and the third resonance frequency f3 are brought close to each other to widen the frequency band having an excellent voltage standing wave ratio. Is possible.

図6は本発明に係るマルチバンドアンテナの斜視図である。図中、基板裏側の構造が明確となるように基板45を透過して示している。基板にはグランドパターンが設けられていない非グランド領域が形成されており、グランド領域から前記非グランド領域へ延びる線路10a(第1線路)の端部に半田接続され、基板45に立設して板金で構成されたループ状の線路10b(第2線路)が配置されている。線路10bは途中で線路10aの端部側に折返され、基板に設けられた切欠き部を通じて基板裏面に到り、主面側の導体と並んで端部側へ水平に延び、その端部は基板45の裏面に形成された線路10c(第3線路)と接続する。前記線路10cは基板45を介して線路10aと対向して配置されてコンデンサCgを形成する。線路10aの端部側を容量結合部30として構成している。
線路10bを基板に立設してグランド領域との距離を離すことで、その影響を減じることが出来る。また、このようなマルチバンドアンテナではQを100以下となり、帯域を広げることが出来る。マルチバンドアンテナのQを小さくしすぎると、アンテナとしての機能が劣化するため、使用周波数帯において、好ましくは10〜90程度とする。より好ましくは15から50である。
FIG. 6 is a perspective view of a multiband antenna according to the present invention. In the drawing, the substrate 45 is shown in a transparent manner so that the structure on the back side of the substrate becomes clear. A non-ground region without a ground pattern is formed on the substrate, and is soldered to the end of a line 10a (first line) extending from the ground region to the non-ground region. A loop-shaped line 10b (second line) made of sheet metal is disposed. The line 10b is folded back to the end side of the line 10a, reaches the back of the substrate through a notch provided in the substrate, extends horizontally to the end side along with the conductor on the main surface side, It connects with the track | line 10c (3rd track | line) formed in the back surface of the board | substrate 45. FIG. The line 10c is arranged to face the line 10a via the substrate 45 to form a capacitor Cg. The end side of the line 10 a is configured as a capacitive coupling unit 30.
The effect can be reduced by standing the line 10b on the substrate and separating the distance from the ground region. Further, in such a multiband antenna, Q can be 100 or less, and the band can be widened. If the Q of the multi-band antenna is too small, the function as an antenna is deteriorated. More preferably, it is 15-50.

本実施例では、導体10bを基板裏面側で折返しているが、主面側で折返し基板に設けたスルーホールを通じて線路10cと接続しても良い。また、主面に線路10cを設けて、その縁部が線路10aと面するようにし、主面側で折返した線路10bの端部を接続しても良い。   In this embodiment, the conductor 10b is folded on the back side of the substrate, but may be connected to the line 10c through a through hole provided in the folded substrate on the main surface side. Alternatively, the line 10c may be provided on the main surface so that the edge of the line 10c faces the line 10a, and the end of the line 10b turned back on the main surface side may be connected.

(実施例1)
本発明に係る実施例について、図面を参照して詳細に説明する。図7は、本発明の一実施例に係るマルチバンドアンテナを説明するための図である。尚、本実施例のマルチバンドアンテナの基本的な構成は図6に示したものと略同じなので、相違点を中心に説明する。
図7に示したマルチバンドアンテナは、非グランド領域へ延びる線路10a(第1線路)の端部に容量結合用導体部10dを設け、前記端部と接続する線路10b(第2線路)を、基板45の主面側導体10b1と裏面側導体10b2とに分け、これらを基板45に設けたスルーホールで接続している。線路10bの端部と接続する線路10c(第3線路)は、前記容量結合用導体部10dと基板45を介して対向し、容量結合部30を形成している。線路10cの端部は容量結合部30から更に延びている。
図8は容量結合部30を基板の上面側から見た平面図である。容量結合用導体部10dは長さaで形成され、線路10c(長さb)と全面が対向している。
図9は本実施例に係るマルチバンドアンテナの等価回路を示す。線路10c(第3線路)が容量結合用導体部10dよりも長く形成されており、その分コンデンサCgの先にンダクタL2−2が接続される。この場合、インダクタL2−2、L3とコンデンサCgの直列共振回路による共振が現れるが、延長部が短ければ、その共振点はマルチバンドアンテナが用いられる周波数よりも高周波となる。
(Example 1)
Embodiments according to the present invention will be described in detail with reference to the drawings. FIG. 7 is a diagram for explaining a multiband antenna according to an embodiment of the present invention. The basic configuration of the multiband antenna of this embodiment is substantially the same as that shown in FIG.
The multiband antenna shown in FIG. 7 is provided with a capacitive coupling conductor 10d at the end of a line 10a (first line) extending to the non-ground region, and a line 10b (second line) connected to the end is provided. The main surface side conductor 10b1 and the back surface side conductor 10b2 of the substrate 45 are divided and connected by through holes provided in the substrate 45. A line 10c (third line) connected to the end of the line 10b is opposed to the capacitive coupling conductor 10d via the substrate 45 to form a capacitive coupling 30. The end of the line 10 c further extends from the capacitive coupling unit 30.
FIG. 8 is a plan view of the capacitive coupling portion 30 as viewed from the upper surface side of the substrate. The capacitive coupling conductor 10d is formed with a length a, and the entire surface faces the line 10c (length b).
FIG. 9 shows an equivalent circuit of the multiband antenna according to the present embodiment. The line 10c (third line) is formed longer than the capacitive coupling conductor 10d, and the inductor L2-2 is connected to the end of the capacitor Cg accordingly. In this case, resonance due to the series resonance circuit of the inductors L2-2 and L3 and the capacitor Cg appears. However, if the extension is short, the resonance point becomes higher than the frequency at which the multiband antenna is used.

図10は、本発明に係るマルチバンドアンテナのVSWRの周波数特性図である。図中No.1として示した試料を基準とし、容量結合用導体部10dは長さaを長くして結合を強めた試料をNo.2とし、線路10cの延長部を短くした試料をNo.3としている容量結合部の結合を強めると高周波側のVSWR特性が低周波側に移動し、線路10cの延長部を短くすると、高周波側のVSWR特性に大きな影響を与えずに、低周波側のVSWR特性を制御する事が出来た。なお、ループ状線路10において、線路10bの長さを変えると低周波側、高周波側の双方のVSWR特性が変化した。
本実施例によれば、一つのループ状線路で広帯域なマルチアンテナを得ることが出来た。
FIG. 10 is a frequency characteristic diagram of the VSWR of the multiband antenna according to the present invention. No. No. 1 is used as a reference, and the capacitive coupling conductor 10d is a sample in which the length a is increased to increase the coupling. No. 2 is a sample in which the extension of the line 10c is shortened. When the coupling of the capacitive coupling part 3 is strengthened, the VSWR characteristic on the high frequency side moves to the low frequency side, and if the extension of the line 10c is shortened, the VSWR characteristic on the high frequency side is not greatly affected. The VSWR characteristics could be controlled. Note that, in the loop-shaped line 10, when the length of the line 10b was changed, the VSWR characteristics on both the low frequency side and the high frequency side were changed.
According to this example, a broadband multi-antenna can be obtained with one loop-shaped line.

(実施例2)
図11は他の実施例に係るマルチバンドアンテナの側面図である。
図11に示したマルチバンドアンテナは、非グランド領域へ延びる線路10aの端部に線路10b(第2線路)を接続し、前記線路10bは基板45の主面側で折返され、基板の裏面に形成された帯状の電極とスルーホールで接続している。前記帯状電極は前記スルーホールとの接続点を挟んで、容量結合用導体部10dと線路10cを構成している。
本実施例においても、一つのループ状線路で広帯域なマルチアンテナを得ることが出来た。
(Example 2)
FIG. 11 is a side view of a multiband antenna according to another embodiment.
In the multiband antenna shown in FIG. 11, a line 10b (second line) is connected to an end of a line 10a extending to a non-ground region, and the line 10b is folded on the main surface side of the substrate 45 and is connected to the back surface of the substrate. It is connected to the formed belt-like electrode through a through hole. The strip electrode constitutes a capacitive coupling conductor 10d and a line 10c across a connection point with the through hole.
Also in this example, a broadband multi-antenna can be obtained with one loop-shaped line.

(実施例3)
図12は他の実施例に係るマルチバンドアンテナの側面図である。
図12に示したマルチバンドアンテナは、基板45の主面側に位置する線路10bの途中に延長導体部16を設けて、前記基板に形成された容量形成用電極10dと接続し、前記容量形成用電極10dと線路10cを対向して配置し、前記容量結合部30を形成している。本実施例においても、一つのループ状線路で広帯域なマルチアンテナを得ることが出来た。
(Example 3)
FIG. 12 is a side view of a multiband antenna according to another embodiment.
The multiband antenna shown in FIG. 12 is provided with an extended conductor portion 16 in the middle of the line 10b located on the main surface side of the substrate 45, and is connected to the capacitance forming electrode 10d formed on the substrate. The electrode 10d for use and the line 10c are arranged facing each other to form the capacitive coupling portion 30. Also in this example, a broadband multi-antenna can be obtained with one loop-shaped line.

(実施例4)
図13は他の実施例に係るマルチバンドアンテナの斜視図であり、図14はその側面図である。また図15はマルチバンドアンテナの模式図である。
本実施例に係るマルチアンテナは、ループ状線路10の給電点側から分岐し、第4の共振周波数f4を制御する分岐線路を備えている。前記分岐線路は前記ループ状線路の線路10bと並設される。本実施例においても、一つのループ状線路で広帯域なマルチアンテナを得ることが出来、更に分岐線路によって第4の共振周波数f4を制御することが出来た。
Example 4
FIG. 13 is a perspective view of a multiband antenna according to another embodiment, and FIG. 14 is a side view thereof. FIG. 15 is a schematic diagram of a multiband antenna.
The multi-antenna according to the present embodiment includes a branch line that branches from the feeding point side of the loop line 10 and controls the fourth resonance frequency f4. The branch line is juxtaposed with the line 10b of the loop line. Also in the present embodiment, a broadband multi-antenna can be obtained with one loop line, and the fourth resonance frequency f4 can be controlled with the branch line.

本発明によれば、広帯域化が可能で、各周波数帯域内において良好な利得と放射特性が得られるマルチバンドアンテナを省スペースで実現しつつ、各周波数帯域毎の周波数調整を容易に行うことが可能なマルチバンドアンテナを提供することが出来る。   According to the present invention, it is possible to easily adjust the frequency for each frequency band while realizing a multiband antenna capable of widening the band and obtaining good gain and radiation characteristics in each frequency band in a space-saving manner. A possible multiband antenna can be provided.

本発明の一実施例に係るマルチバンドアンテナの模式図である。It is a schematic diagram of the multiband antenna which concerns on one Example of this invention. 本発明の一実施例に係るマルチバンドアンテナの等価回路図である。1 is an equivalent circuit diagram of a multiband antenna according to an embodiment of the present invention. 本発明の一実施例に係るマルチバンドアンテナの3つの共振回路の等価回路図である。It is an equivalent circuit diagram of three resonant circuits of the multiband antenna which concerns on one Example of this invention. 本発明の一実施例に係るマルチバンドアンテナのVSWRの周波数特性図である。It is a frequency characteristic figure of VSWR of the multiband antenna which concerns on one Example of this invention. 本発明の一実施例に係るマルチバンドアンテナのVSWRの周波数特性図である。It is a frequency characteristic figure of VSWR of the multiband antenna which concerns on one Example of this invention. 本発明の他の実施例に係るマルチバンドアンテナの斜視図である。It is a perspective view of the multiband antenna which concerns on the other Example of this invention. 本発明の他の実施例に係るマルチバンドアンテナの斜視図である。It is a perspective view of the multiband antenna which concerns on the other Example of this invention. 本発明の他の実施例に係るマルチバンドアンテナの容量結合部の平面拡大図である。It is a plane enlarged view of the capacitive coupling part of the multiband antenna which concerns on the other Example of this invention. 本発明の他の実施例に係るマルチバンドアンテナの等価回路図である。It is the equivalent circuit schematic of the multiband antenna which concerns on the other Example of this invention. 本発明の他の実施例に係るマルチバンドアンテナのVSWRの周波数特性図である。It is a frequency characteristic figure of VSWR of the multiband antenna which concerns on the other Example of this invention. 本発明の他の実施例に係るマルチバンドアンテナの側面図である。It is a side view of the multiband antenna which concerns on the other Example of this invention. 本発明の他の実施例に係るマルチバンドアンテナの側面図である。It is a side view of the multiband antenna which concerns on the other Example of this invention. 本発明の他の実施例に係るマルチバンドアンテナの斜視図である。It is a perspective view of the multiband antenna which concerns on the other Example of this invention. 本発明の他の実施例に係るマルチバンドアンテナの側面図である。It is a side view of the multiband antenna which concerns on the other Example of this invention. 本発明の他の実施例に係るマルチバンドアンテナの模式図である。It is a schematic diagram of the multiband antenna which concerns on the other Example of this invention. 従来の逆Fアンテナの模式図である。It is a schematic diagram of the conventional inverted F antenna. 従来のマルチバンドアンテナの模式図である。It is a schematic diagram of the conventional multiband antenna. 従来のマルチバンドアンテナのVSWRの周波数特性図である。It is a frequency characteristic figure of VSWR of the conventional multiband antenna.

符号の説明Explanation of symbols

1 マルチバンドアンテナ
10 ループ状線路
20 高周波回路
30 容量結合部
45 基板
DESCRIPTION OF SYMBOLS 1 Multiband antenna 10 Loop line 20 High frequency circuit 30 Capacitance coupling part 45 Board | substrate

Claims (9)

一端が給電点と接続し他端が開放端である放射線路を、途中に折り返し部を有するループ状線路となし、線路の一部が誘電体を介して対向配置された容量結合部を備えた、複数の周波数で共振するマルチバンドアンテナであって、
前記ループ状線路の給電点から開放端までの線路長により、第1の共振周波数f1を制御し、給電点から容量結合部までの線路及び、容量結合部から折り返し部までの不連続のループ状線路の一部を用い、その線路長と前記容量結合部の容量により第2の共振周波数f2を制御し、
給電点から折り返し部までの連続したループ状線路の一部を用い、その線路長により第3の共振周波数f3を制御し、
前記第2の共振周波数f2と前記第3の共振周波数f3は、前記第1の共振周波数f1よりも高次の共振周波数であることを特徴とするマルチバンドアンテナ。
A radiation path whose one end is connected to the feeding point and the other end is an open end is formed as a loop-shaped line having a folded part in the middle, and a part of the line is provided with a capacitive coupling part arranged oppositely via a dielectric. A multiband antenna that resonates at multiple frequencies,
The first resonance frequency f1 is controlled by the line length from the feed point to the open end of the loop-like line, and the line from the feed point to the capacitive coupling part and the discontinuous loop form from the capacitive coupling part to the folded part Using a part of the line, the second resonance frequency f2 is controlled by the line length and the capacitance of the capacitive coupling unit,
Using a part of a continuous loop-shaped line from the feeding point to the folded portion, the third resonance frequency f3 is controlled by the line length,
The multiband antenna, wherein the second resonance frequency f2 and the third resonance frequency f3 are higher-order resonance frequencies than the first resonance frequency f1.
前記第2の共振周波数f2と前記第3の共振周波数f3とを近接させて、電圧定在波比に優れる周波数帯域を広帯域化したことを特徴とする請求項1に記載のマルチバンドアンテナ。   2. The multiband antenna according to claim 1, wherein the second resonance frequency f <b> 2 and the third resonance frequency f <b> 3 are close to each other to widen a frequency band having an excellent voltage standing wave ratio. 前記ループ状線路が、一端が給電点と接続する第1線路と、前記第1線路の他端側と接続する第2線路と、前記第2線路の他端と接続する第3線路とを備え、前記第1線路と前記第3線路を対向させて容量結合部としたことを特徴とする請求項1又は2に記載のマルチバンドアンテナ。   The loop line includes a first line having one end connected to a feeding point, a second line connected to the other end of the first line, and a third line connected to the other end of the second line. The multiband antenna according to claim 1, wherein the first line and the third line are opposed to each other to form a capacitive coupling unit. マルチバンドアンテナを支持する基板を備え、第1線路を前記基板の第1面上に、第3線路を第2面上に形成して互いが面するように配置し、第2線路を前記基板の第1面側と第2面側に立設させたことを特徴とする請求項3に記載のマルチバンドアンテナ。   A substrate supporting a multiband antenna is provided, the first line is formed on the first surface of the substrate, the third line is formed on the second surface and arranged to face each other, and the second line is disposed on the substrate. The multiband antenna according to claim 3, wherein the multiband antenna is erected on the first surface side and the second surface side. マルチバンドアンテナを支持する基板を備え、第1線路と第3線路とを前記基板の第1面上に形成して、互いの縁部が向かい合うように配置し、第2線路を前記基板に立設させたことを特徴とする請求項3に記載のマルチバンドアンテナ。   A substrate for supporting a multiband antenna is provided, the first line and the third line are formed on the first surface of the substrate, arranged so that the edges of each other face each other, and the second line stands on the substrate. The multiband antenna according to claim 3, wherein the multiband antenna is provided. 前記第1線路に、前記第2線路との接続部から延長した延長導体部を設け、前記延長導体部を前記第3線路と対向させて容量結合用導体部としたことを特徴とする請求項4又は5に記載のマルチバンドアンテナ。   The first line is provided with an extended conductor extending from a connection portion with the second line, and the extended conductor is opposed to the third line to form a capacitive coupling conductor. The multiband antenna according to 4 or 5. 前記ループ状線路が、一端が給電点と接続する第1線路と、前記第1線路の他端側と接続する第2線路と、前記第2線路の他端と接続する第3線路とを備え、
前記第2線路の途中を基板側に延長した延長導体部を設け、前記基板に形成された容量形成用電極と接続し、前記容量形成用電極と前記第3線路を前記基板の同一面上に所定の間隔をもって縁部が対向するようにして配置し、又は前記容量形成用電極と前記第3線路を前記基板の異なる面上に所定の間隔をもって対向して配置し、前記容量結合部を形成したことを特徴とする請求項1又は2に記載のマルチバンドアンテナ。
The loop line includes a first line having one end connected to a feeding point, a second line connected to the other end of the first line, and a third line connected to the other end of the second line. ,
An extended conductor portion extending in the middle of the second line to the substrate side is provided, connected to a capacitor forming electrode formed on the substrate, and the capacitor forming electrode and the third line are on the same surface of the substrate Arrangement is made so that edges are opposed to each other with a predetermined interval, or the capacitance forming electrode and the third line are arranged opposite to each other on a different surface of the substrate with a predetermined interval to form the capacitive coupling portion. The multiband antenna according to claim 1 or 2, wherein the multiband antenna is provided.
ループ状線路の給電点側から分岐する分岐線路を設けて第4の共振周波数f4を制御することを特徴とする請求項1乃至7のいずれかに記載のマルチバンドアンテナ。   The multiband antenna according to any one of claims 1 to 7, wherein a branch line that branches from a feeding point side of the loop-shaped line is provided to control the fourth resonance frequency f4. 前記分岐線路を前記ループ状線路と並設することを特徴とする請求項8に記載のマルチバンドアンテナ。   The multiband antenna according to claim 8, wherein the branch line is juxtaposed with the loop line.
JP2008264160A 2007-10-10 2008-10-10 Multiband antenna Expired - Fee Related JP4858860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008264160A JP4858860B2 (en) 2007-10-10 2008-10-10 Multiband antenna

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007264890 2007-10-10
JP2007264890 2007-10-10
JP2008264160A JP4858860B2 (en) 2007-10-10 2008-10-10 Multiband antenna

Publications (2)

Publication Number Publication Date
JP2009111999A true JP2009111999A (en) 2009-05-21
JP4858860B2 JP4858860B2 (en) 2012-01-18

Family

ID=40779928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008264160A Expired - Fee Related JP4858860B2 (en) 2007-10-10 2008-10-10 Multiband antenna

Country Status (1)

Country Link
JP (1) JP4858860B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109345A (en) * 2009-11-16 2011-06-02 Mitsubishi Cable Ind Ltd Substrate for antenna device and antenna device
WO2012070213A1 (en) * 2010-11-24 2012-05-31 三菱マテリアル株式会社 Antenna apparatus
WO2012086182A1 (en) * 2010-12-24 2012-06-28 パナソニック株式会社 Antenna device
WO2012124247A1 (en) * 2011-03-16 2012-09-20 パナソニック株式会社 Antenna device, and wireless communication device
WO2013008356A1 (en) * 2011-07-11 2013-01-17 パナソニック株式会社 Antenna device and wireless communication device
WO2013051187A1 (en) * 2011-10-06 2013-04-11 パナソニック株式会社 Antenna device and wireless communication device
WO2013051188A1 (en) * 2011-10-06 2013-04-11 パナソニック株式会社 Antenna device and wireless communication device
WO2013061502A1 (en) * 2011-10-27 2013-05-02 パナソニック株式会社 Antenna device and wireless communication device
JP2015053548A (en) * 2013-09-05 2015-03-19 富士通株式会社 Antenna device
US9461356B2 (en) 2011-06-02 2016-10-04 Panasonic Intellectual Property Management Co., Ltd. Dual-band inverted-F antenna apparatus provided with at least one antenna element having element portion of height from dielectric substrate
US9660687B2 (en) 2011-09-22 2017-05-23 Qualcomm Incorporated Front-end circuit for band aggregation modes
JP2017152888A (en) * 2016-02-24 2017-08-31 三菱電機株式会社 Antenna device
JPWO2021090499A1 (en) * 2019-11-08 2021-05-14

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009539A (en) * 2000-05-08 2002-01-11 Alcatel Integrated antenna for mobile phone
JP2007036338A (en) * 2005-07-22 2007-02-08 Anten Corp Antenna
JP2007088975A (en) * 2005-09-26 2007-04-05 Toshiba Corp Wireless device
JP2008141739A (en) * 2006-11-08 2008-06-19 Hitachi Metals Ltd Antenna system and radio communication device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009539A (en) * 2000-05-08 2002-01-11 Alcatel Integrated antenna for mobile phone
JP2007036338A (en) * 2005-07-22 2007-02-08 Anten Corp Antenna
JP2007088975A (en) * 2005-09-26 2007-04-05 Toshiba Corp Wireless device
JP2008141739A (en) * 2006-11-08 2008-06-19 Hitachi Metals Ltd Antenna system and radio communication device using the same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109345A (en) * 2009-11-16 2011-06-02 Mitsubishi Cable Ind Ltd Substrate for antenna device and antenna device
US9190721B2 (en) 2010-11-24 2015-11-17 Mitsubishi Materials Corporation Antenna device
WO2012070213A1 (en) * 2010-11-24 2012-05-31 三菱マテリアル株式会社 Antenna apparatus
JP2012114667A (en) * 2010-11-24 2012-06-14 Mitsubishi Materials Corp Antenna apparatus
WO2012086182A1 (en) * 2010-12-24 2012-06-28 パナソニック株式会社 Antenna device
JPWO2012086182A1 (en) * 2010-12-24 2014-05-22 パナソニック株式会社 Antenna device
US8681053B2 (en) 2010-12-24 2014-03-25 Panasonic Corporation Antenna apparatus resonating in frequency bands in inverted F antenna apparatus
CN102884679A (en) * 2010-12-24 2013-01-16 松下电器产业株式会社 Antenna device
JP5364848B2 (en) * 2010-12-24 2013-12-11 パナソニック株式会社 Antenna device
CN102884679B (en) * 2010-12-24 2015-08-19 松下电器产业株式会社 Antenna assembly
WO2012124247A1 (en) * 2011-03-16 2012-09-20 パナソニック株式会社 Antenna device, and wireless communication device
JP5178970B2 (en) * 2011-03-16 2013-04-10 パナソニック株式会社 ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE
CN102893455A (en) * 2011-03-16 2013-01-23 松下电器产业株式会社 Antenna device, and wireless communication device
WO2012124248A1 (en) * 2011-03-16 2012-09-20 パナソニック株式会社 Antenna device, and wireless communication device
US9461356B2 (en) 2011-06-02 2016-10-04 Panasonic Intellectual Property Management Co., Ltd. Dual-band inverted-F antenna apparatus provided with at least one antenna element having element portion of height from dielectric substrate
JP5260811B1 (en) * 2011-07-11 2013-08-14 パナソニック株式会社 ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE
WO2013008356A1 (en) * 2011-07-11 2013-01-17 パナソニック株式会社 Antenna device and wireless communication device
US8933853B2 (en) 2011-07-11 2015-01-13 Panasonic Intellectual Property Corporation Of America Small antenna apparatus operable in multiple bands
US9660687B2 (en) 2011-09-22 2017-05-23 Qualcomm Incorporated Front-end circuit for band aggregation modes
JPWO2013051188A1 (en) * 2011-10-06 2015-03-30 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE
US9070980B2 (en) 2011-10-06 2015-06-30 Panasonic Intellectual Property Corporation Of America Small antenna apparatus operable in multiple bands including low-band frequency and high-band frequency and increasing bandwidth including high-band frequency
CN103201905A (en) * 2011-10-06 2013-07-10 松下电器产业株式会社 Antenna device and wireless communication device
WO2013051188A1 (en) * 2011-10-06 2013-04-11 パナソニック株式会社 Antenna device and wireless communication device
WO2013051187A1 (en) * 2011-10-06 2013-04-11 パナソニック株式会社 Antenna device and wireless communication device
CN103229356A (en) * 2011-10-27 2013-07-31 松下电器产业株式会社 Antenna device and wireless communication device
US9019163B2 (en) 2011-10-27 2015-04-28 Panasonic Intellectual Property Corporation Of America Small antenna apparatus operable in multiple bands including low-band frequency and high-band frequency with ultra wide bandwidth
WO2013061502A1 (en) * 2011-10-27 2013-05-02 パナソニック株式会社 Antenna device and wireless communication device
JP2015053548A (en) * 2013-09-05 2015-03-19 富士通株式会社 Antenna device
JP2017152888A (en) * 2016-02-24 2017-08-31 三菱電機株式会社 Antenna device
JPWO2021090499A1 (en) * 2019-11-08 2021-05-14
JP7315694B2 (en) 2019-11-08 2023-07-26 Fcnt株式会社 Antenna device and wireless communication device

Also Published As

Publication number Publication date
JP4858860B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4858860B2 (en) Multiband antenna
US10819031B2 (en) Printed circuit board antenna and terminal
US7170456B2 (en) Dielectric chip antenna structure
US7777677B2 (en) Antenna device and communication apparatus
CA2813829C (en) A loop antenna for mobile handset and other applications
JP4868128B2 (en) ANTENNA DEVICE AND RADIO COMMUNICATION DEVICE USING THE SAME
US7242364B2 (en) Dual-resonant antenna
JP5178970B2 (en) ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE
US20170077599A1 (en) Multi-antenna and radio apparatus including thereof
JP2005510927A (en) Dual band antenna device
JP2006115448A (en) Wide-band built-in antenna
JP2002158529A (en) Surface-mounted antenna structure and communications equipment provided with the same
JP2005295493A (en) Antenna device
JP2001284954A (en) Surface mount antenna, frequency control and setting method for dual resonance therefor and communication equipment provided with surface mount antenna
KR100756312B1 (en) Resonance frequency and input impedance control the multiplex frequency band internal antenna which it is possible
US20160079676A1 (en) Wifi patch antenna with dual u-shaped slots
KR20050085045A (en) Chip antenna, chip antenna unit and radio communication device using them
JP6288299B2 (en) Antenna device and communication device
JP2005020266A (en) Multiple frequency antenna system
JP2010087752A (en) Multiband antenna
JP6624650B2 (en) antenna
JP4158704B2 (en) Antenna device
JPH09232854A (en) Small planar antenna system for mobile radio equipment
JP2010130100A (en) Multiband antenna apparatus
JP4232626B2 (en) Antenna device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111020

R150 Certificate of patent or registration of utility model

Ref document number: 4858860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees