JP2009103549A - Device for measuring state of quantity of rolling bearing unit - Google Patents

Device for measuring state of quantity of rolling bearing unit Download PDF

Info

Publication number
JP2009103549A
JP2009103549A JP2007274707A JP2007274707A JP2009103549A JP 2009103549 A JP2009103549 A JP 2009103549A JP 2007274707 A JP2007274707 A JP 2007274707A JP 2007274707 A JP2007274707 A JP 2007274707A JP 2009103549 A JP2009103549 A JP 2009103549A
Authority
JP
Japan
Prior art keywords
hub
sensor
bearing unit
supported
rolling bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007274707A
Other languages
Japanese (ja)
Inventor
Eisei Doi
永生 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007274707A priority Critical patent/JP2009103549A/en
Publication of JP2009103549A publication Critical patent/JP2009103549A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a structure enhancing a degree of freedom of arrangement of sensors 7a, 7b opposed to a face to be inspected of an encoder 4. <P>SOLUTION: An outer ring 1 is joined and fixed on a knuckle 14 in a state where an axial inner end of the outer ring 1 composing a bearing unit for supporting a wheel is internally fitted in a support hole 15 of a comparatively small diameter provided on the knuckle 14 of a suspension in an assembled state to a vehicle. In addition, a cover 5a holding a sensor holder 6a embedding each sensor 7a, 7b is internally fitted and fixed in a mounting hole 20 of a comparatively small diameter provided on the knuckle 14. The above problem is solved by adopting such a composition and making the outer diameter size of the sensor holder 6a larger than the inner diameter size of the support hole 15. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明に係る転がり軸受ユニットの状態量測定装置は、転がり軸受ユニットを構成するハブと静止側軌道輪との間に作用する外力等の状態量を測定する為に利用する。更に、この求めた状態量を、自動車等の車両の走行安定性確保を図る為に利用する。   The state quantity measuring device for a rolling bearing unit according to the present invention is used for measuring a state quantity such as an external force acting between a hub constituting the rolling bearing unit and a stationary side race. Further, the obtained state quantity is used for ensuring the running stability of a vehicle such as an automobile.

自動車の車輪は懸架装置に対し、複列アンギュラ型等の転がり軸受ユニットにより回転自在に支持する。又、自動車の走行安定性を確保する為に、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)、更には、電子制御式ビークルスタビリティコントロールシステム(ESC)等の車両用走行安定化装置が使用されている。この様な各種車両用走行安定化装置を制御する為には、車輪の回転速度、車体に加わる各方向の加速度等を表す信号が必要になる。そして、より高度の制御を行う為には、車輪を介して上記転がり軸受ユニットに加わる荷重(例えばラジアル荷重とアキシアル荷重との一方又は双方)の大きさを知る事が好ましい場合がある。   The wheel of the automobile is rotatably supported by the suspension device by a rolling bearing unit such as a double row angular type. In addition, in order to ensure the running stability of automobiles, anti-brake brake system (ABS), traction control system (TCS), and electronically controlled vehicle stability control system (ESC) etc. Is used. In order to control such various vehicle running stabilization devices, signals representing the rotational speed of the wheels, acceleration in each direction applied to the vehicle body, and the like are required. In order to perform higher-level control, it may be preferable to know the magnitude of a load (for example, one or both of a radial load and an axial load) applied to the rolling bearing unit via a wheel.

この様な事情に鑑みて、特許文献1には、特殊なエンコーダを使用して、転がり軸受ユニットに加わる荷重の大きさを測定する発明が記載されている。図2〜3は、この特許文献1に記載された構造ではないが、この特許文献1に記載された構造と同じ荷重の測定原理を採用している、転がり軸受ユニットの状態量測定装置に関する従来構造の第1例を示している。この従来構造の第1例は、使用時にも回転しない静止側軌道輪である外輪1の内径側に、使用時に車輪を支持固定した状態でこの車輪と共に回転するハブ2を、複数個の転動体3、3を介して、回転自在に支持している。これら各転動体3、3には、互いに逆向きの接触角と共に、予圧を付与している。尚、図示の例では、上記転動体3として玉を使用しているが、重量が嵩む自動車用の軸受ユニットの場合には、玉に代えて円すいころを使用する場合もある。   In view of such circumstances, Patent Document 1 describes an invention in which a special encoder is used to measure the magnitude of a load applied to a rolling bearing unit. 2 to 3 are not related to the structure described in Patent Document 1, but are related to a state quantity measuring device for a rolling bearing unit that employs the same load measurement principle as the structure described in Patent Document 1. The 1st example of a structure is shown. In the first example of this conventional structure, a hub 2 that rotates together with a wheel 2 in a state where the wheel is supported and fixed at the time of use is fixed to a plurality of rolling elements on the inner diameter side of an outer ring 1 that is a stationary raceway that does not rotate even when used. 3 and 3 are rotatably supported. A preload is applied to each of the rolling elements 3 and 3 together with contact angles opposite to each other. In the illustrated example, a ball is used as the rolling element 3, but in the case of an automobile bearing unit that is heavy, a tapered roller may be used instead of the ball.

又、上記ハブ2の軸方向内端部(軸方向に関して「内」とは、自動車への組み付け状態で車両の幅方向中央側を言い、各図の右側。反対に、自動車への組み付け状態で車両の幅方向外側となる、各図の左側を、軸方向に関して「外」と言う。本明細書全体で同じ。)には、円筒状のエンコーダ4を、上記ハブ2と同心に支持固定している。又、上記外輪1の軸方向内端開口を塞ぐ、金属板製で有底円筒状のカバー5の内側に、合成樹脂製のセンサホルダ6を介して、1対のセンサ7a、7bを支持固定している。そして、この状態で、これら両センサ7a、7bの検出部を、上記エンコーダ4の被検出面である外周面に近接対向させている。   The inner end of the hub 2 in the axial direction ("inside" in the axial direction means the center side in the width direction of the vehicle in the assembled state in the automobile, and the right side of each figure. On the contrary, in the assembled state in the automobile. The left side of each figure on the outer side in the width direction of the vehicle is referred to as “outside” in the axial direction. The same applies to the entire specification.) The cylindrical encoder 4 is supported and fixed concentrically with the hub 2. ing. Also, a pair of sensors 7a and 7b are supported and fixed inside a metal plate-made bottomed cylindrical cover 5 that closes the axially inner end opening of the outer ring 1 via a synthetic resin sensor holder 6. is doing. In this state, the detection portions of both the sensors 7 a and 7 b are made to face and face each other on the outer peripheral surface that is the detection surface of the encoder 4.

このうちのエンコーダ4は、磁性金属板製である。このエンコーダ4の先半部(軸方向内半部)には、透孔8、8と柱部9、9とを、円周方向に関して交互に且つ等間隔で配置している。これら各透孔8、8と各柱部9、9との境界は、上記被検出面の軸方向(幅方向)に対し同じ角度だけ傾斜させると共に、この軸方向に対する傾斜方向を、上記被検出面の軸方向中間部を境に互いに逆方向としている。従って、上記各透孔8、8と上記各柱部9、9とは、軸方向中間部が円周方向に関して最も突出した「く」字形となっている。そして、上記境界の傾斜方向が互いに異なる、上記被検出面の軸方向外半部と軸方向内半部とのうち、軸方向外半部を第一特性変化部10とし、軸方向内半部を第二特性変化部11としている。   Of these, the encoder 4 is made of a magnetic metal plate. Through holes 8 and 8 and column portions 9 and 9 are alternately arranged at equal intervals in the circumferential direction in the front half (axially inner half) of the encoder 4. The boundaries between the through holes 8 and 8 and the pillars 9 and 9 are inclined by the same angle with respect to the axial direction (width direction) of the detection surface, and the inclination direction with respect to the axial direction is determined by the detection target. The directions are opposite to each other with the axial middle portion of the surface as a boundary. Accordingly, each of the through holes 8 and 8 and each of the column portions 9 and 9 has a "<" shape with an axially intermediate portion protruding most in the circumferential direction. And among the axially outer half part and the axially inner half part of the detected surface, the boundary inclination directions are different from each other, the axially outer half part is defined as the first characteristic changing part 10, and the axially inner half part Is the second characteristic changing unit 11.

又、上記センサホルダ6は、上記カバー5の径方向内側の奥端部に保持固定されており、この奥端部に存在する円板部12と、この円板部12の外周縁部分から軸方向外方に延出する円筒部13とを備える。そして、この円筒部13内に、上記両センサ7a、7bを包埋支持している。これら両センサ7a、7bはそれぞれ、永久磁石と、検出部を構成する、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子とから成る。そして、これら両センサ7a、7bのうち、一方のセンサ7aの検出部を上記第一特性変化部10に、他方のセンサ7bの検出部を上記第二特性変化部11に、それぞれ近接対向させている。上記外輪1と上記ハブ2との間にアキシアル荷重が作用しておらず、これら外輪1とハブ2とがアキシアル方向に相対変位していない、中立状態で、上記各透孔8、8及び柱部9、9の軸方向中間部で円周方向に関して最も突出した部分が、上記両センサ7a、7bの検出部同士の間の丁度中央位置に存在する様に、各部材の軸方向の設置位置を規制している。同じ状態で、上記両センサ7a、7bの検出部と、上記エンコーダ4の外周面の特性変化の位相との関係が所定通りになる様に、上記両センサ7a、7bの円周方向の設置位置を規制している。   Further, the sensor holder 6 is held and fixed at the inner end in the radial direction of the cover 5, and the disc portion 12 existing at the inner end portion and the outer peripheral edge portion of the disc portion 12 are pivoted. And a cylindrical portion 13 extending outward in the direction. The two sensors 7a and 7b are embedded and supported in the cylindrical portion 13. Each of these sensors 7a and 7b is composed of a permanent magnet and a magnetic sensing element such as a Hall IC, a Hall element, an MR element, or a GMR element that constitutes a detection unit. Of these sensors 7a and 7b, the detection part of one sensor 7a is close to the first characteristic change part 10 and the detection part of the other sensor 7b is close to the second characteristic change part 11, respectively. Yes. No axial load is applied between the outer ring 1 and the hub 2, and the outer rings 1 and the hub 2 are not displaced relative to each other in the axial direction. The axial position of each member is such that the most protruding portion in the circumferential direction at the axially intermediate portion of the portions 9 and 9 is located at the central position between the detection portions of the sensors 7a and 7b. Is regulated. In the same state, the installation positions of the sensors 7a and 7b in the circumferential direction so that the relationship between the detection portions of the sensors 7a and 7b and the phase of the characteristic change of the outer peripheral surface of the encoder 4 is as specified. Is regulated.

上述の様に構成する転がり軸受ユニットの状態量測定装置の場合、上記中立状態では、上記両センサ7a、7bの検出部は、上記エンコーダ4の外周面のうちで、上記最も突出した部分から軸方向に同じだけずれた部分に対向する。この為、上記両センサ7a、7bの出力信号同士の間の位相差は、上記所定の関係により定まる値となる。これに対し、上記外輪1とハブ2との間にアキシアル荷重が作用し、これら外輪1とハブ2とがアキシアル方向に相対変位した場合には、上記両センサ7a、7bの検出部は、上記エンコーダ4の外周面のうちで、上記アキシアル荷重の作用方向(上記相対変位の方向)に応じた方向に、このアキシアル荷重(相対変位)の大きさに応じた分だけずれた部分に対向する。この結果、上記両センサ7a、7bの出力信号同士の間の位相差は、上記アキシアル荷重の作用方向に応じた方向に、このアキシアル荷重の大きさに応じた分だけずれる。従って、この位相差に基づいて、上記外輪1とハブ2とのアキシアル方向の相対変位の向き及び大きさ、並びに、これら外輪1とハブ2との間に作用しているアキシアル荷重の作用方向及び大きさを求められる。尚、上記位相差(位相差比=位相差/1周期)に基づいて上記アキシアル方向の相対変位及び荷重を算出する処理は、図示しない演算器により行う。この為、この演算器のメモリ中には、予め理論計算や実験により調べておいた、上記位相差(比)と、上記アキシアル方向の相対変位又は荷重との関係を表す、式やマップを記憶させておく。   In the state quantity measuring device of the rolling bearing unit configured as described above, in the neutral state, the detecting portions of the sensors 7a and 7b are shafts from the most protruding portion of the outer peripheral surface of the encoder 4. Opposite the same part in the direction. For this reason, the phase difference between the output signals of the sensors 7a and 7b is a value determined by the predetermined relationship. On the other hand, when an axial load acts between the outer ring 1 and the hub 2 and the outer ring 1 and the hub 2 are relatively displaced in the axial direction, the detecting portions of the sensors 7a and 7b are Out of the outer peripheral surface of the encoder 4, it faces a portion that is shifted in the direction corresponding to the acting direction of the axial load (the direction of the relative displacement) by an amount corresponding to the magnitude of the axial load (relative displacement). As a result, the phase difference between the output signals of the sensors 7a and 7b is shifted in the direction corresponding to the direction of action of the axial load by an amount corresponding to the magnitude of the axial load. Therefore, based on this phase difference, the direction and magnitude of the relative displacement in the axial direction between the outer ring 1 and the hub 2, the direction of the axial load acting between the outer ring 1 and the hub 2, and The size is required. The processing for calculating the relative displacement and the load in the axial direction based on the phase difference (phase difference ratio = phase difference / 1 period) is performed by a calculator (not shown). For this reason, in the memory of this computing unit, formulas and maps representing the relationship between the phase difference (ratio) and the relative displacement or load in the axial direction, which have been examined in advance by theoretical calculation or experiment, are stored. Let me.

尚、上述した従来構造の第1例の場合には、エンコーダの被検出面にその検出部を対向させるセンサの数を、2個としている。これに対し、図示は省略するが、特許文献2〜3及び特願2006−345849には、当該センサの数を3個以上とする事で、多自由度の変位或いは外力を求められる構造が記載されている。   In the case of the first example of the conventional structure described above, the number of sensors that make the detection portion face the detection surface of the encoder is two. On the other hand, although not shown in the drawings, Patent Documents 2 to 3 and Japanese Patent Application No. 2006-345849 describe structures in which displacement or external force with multiple degrees of freedom is obtained by setting the number of sensors to three or more. Has been.

次に、図4〜5は、転がり軸受ユニットの状態量測定装置に関する、従来構造の第2例を示している。この従来構造の第2例の場合、ハブ2の軸方向内端部に外嵌固定した、磁性金属板製で円筒状のエンコーダ4aの先半部に、スリット状の透孔8a、8aと柱部9a、9aとを、円周方向に関して交互に且つ等間隔で配置している。これら各透孔8a、8aと各柱部9a、9aとの境界はそれぞれ、上記エンコーダ4aの軸方向に対し同方向に同じ角度だけ傾斜した、直線状である。又、外輪1の軸方向内端部にカバー5及びセンサホルダ6を介して支持した1対のセンサ7a、7bの検出部を、上記被検出面の上下2個所位置に近接対向させている。   Next, FIGS. 4-5 has shown the 2nd example of the conventional structure regarding the state quantity measuring apparatus of a rolling bearing unit. In the case of the second example of this conventional structure, slit-like through holes 8a and 8a and a column are formed on the tip half of a magnetic metal plate and cylindrical encoder 4a that is fitted and fixed to the inner end of the hub 2 in the axial direction. The portions 9a and 9a are alternately arranged at equal intervals in the circumferential direction. The boundaries between the through holes 8a and 8a and the pillars 9a and 9a are linear shapes that are inclined by the same angle in the same direction with respect to the axial direction of the encoder 4a. Further, the detection portions of a pair of sensors 7a and 7b supported on the inner end portion in the axial direction of the outer ring 1 via the cover 5 and the sensor holder 6 are placed close to and opposed to the two upper and lower positions of the detected surface.

自動車の車輪支持用転がり軸受ユニットの場合、上記外輪1と上記ハブ2との間に加わるアキシアル荷重は、このハブ2に結合固定した車輪を構成するタイヤの外周面と路面との接地面から入力される。この接地面は、上記外輪1及びハブ2の回転中心よりも径方向外方に存在する為、上記アキシアル荷重はこれら外輪1とハブ2との間に、純アキシアル荷重としてではなく、これら外輪1及びハブ2の中心軸と上記接地面の中心とを含む(鉛直方向の)仮想平面内での、モーメントを伴って加わる。この様なモーメントが上記外輪1と上記ハブ2との間に加わると、このハブ2の中心軸がこの外輪1の中心軸に対して傾く。これに伴い、上記エンコーダ4aの上端部が軸方向に関して何れかの方向に、同じく下端部がこれと逆方向に、それぞれ変位する。この結果、上記エンコーダ4aの外周面の上下両端部にそれぞれの検出部を近接対向させた、上記両センサ7a、7bの出力信号の位相が、それぞれ中立位置に対して、逆方向にずれる。即ち、これら両センサ7a、7bの出力信号同士の間の位相差が、上記アキシアル荷重の作用方向及び大きさに応じて変化する。従って、これら両センサ7a、7bの出力信号同士の間の位相差に基づいて、上記アキシアル荷重の作用方向及び大きさを求められる。   In the case of a rolling bearing unit for supporting a wheel of an automobile, an axial load applied between the outer ring 1 and the hub 2 is input from a ground contact surface between a tire outer peripheral surface and a road surface constituting a wheel coupled and fixed to the hub 2. Is done. Since this ground contact surface exists radially outward from the center of rotation of the outer ring 1 and the hub 2, the axial load is not between the outer ring 1 and the hub 2 but as a pure axial load. And a moment in a virtual plane (in the vertical direction) including the center axis of the hub 2 and the center of the ground plane. When such a moment is applied between the outer ring 1 and the hub 2, the central axis of the hub 2 is inclined with respect to the central axis of the outer ring 1. Accordingly, the upper end of the encoder 4a is displaced in any direction with respect to the axial direction, and the lower end is similarly displaced in the opposite direction. As a result, the phases of the output signals of the sensors 7a and 7b, in which the detection units are placed close to and opposed to the upper and lower ends of the outer peripheral surface of the encoder 4a, are shifted in the opposite directions with respect to the neutral positions. That is, the phase difference between the output signals of both the sensors 7a and 7b changes in accordance with the acting direction and magnitude of the axial load. Therefore, the action direction and magnitude of the axial load can be obtained based on the phase difference between the output signals of both the sensors 7a and 7b.

次に、図6〜7は、転がり軸受ユニットの状態量測定装置に関する、従来構造の第3例を示している。この従来構造の第3例の場合、ハブ2の軸方向内端部に外嵌固定した、磁性金属板製で円筒状のエンコーダ4bの先半部に、透孔8b、8bと柱部9b、9bとを、円周方向に関して交互に且つ等間隔で配置している。これら各透孔8b、8bはそれぞれ、径方向から見た形状を台形として、それぞれの円周方向に関する幅寸法を、軸方向に関して漸次変化させている。又、外輪1の軸方向内端部にカバー5及びセンサホルダ6を介して支持した1個のセンサ7aの検出部を、被検出面である、上記エンコーダ4bの先半部外周面の円周方向一部(図示の例では、下端部)に近接対向させている。この様に構成する従来構造の第3例の場合、アキシアル荷重に基づいて上記外輪1とハブ2とがアキシアル方向に相対変位すると、上記センサ7aの出力信号のデューティ比(高電位継続時間/1周期)が変化する。従って、このデューティ比に基づいて、上記相対変位の向き及び大きさ、更には上記アキシアル荷重の作用方向及び大きさを求められる。   Next, FIGS. 6 to 7 show a third example of a conventional structure related to a state quantity measuring device for a rolling bearing unit. In the case of the third example of this conventional structure, through holes 8b and 8b and a column portion 9b are formed in the tip half of a cylindrical encoder 4b made of a magnetic metal plate that is fitted and fixed to the inner end of the hub 2 in the axial direction. 9b are arranged alternately at equal intervals in the circumferential direction. Each of these through holes 8b, 8b has a trapezoidal shape when viewed from the radial direction, and gradually changes the width dimension in the circumferential direction with respect to the axial direction. Further, the detection portion of one sensor 7a supported on the inner end in the axial direction of the outer ring 1 via the cover 5 and the sensor holder 6 is a circumference of the outer peripheral surface of the front half of the encoder 4b, which is a detected surface. It is made to face and oppose part of the direction (lower end in the illustrated example). In the third example of the conventional structure configured as described above, when the outer ring 1 and the hub 2 are relatively displaced in the axial direction based on the axial load, the duty ratio of the output signal of the sensor 7a (high potential duration time / 1 (Period) changes. Therefore, based on this duty ratio, the direction and magnitude of the relative displacement, and further the direction and magnitude of the axial load can be obtained.

ところで、上述した各従来構造の様に、外輪1の軸方向内端部に装着したカバー5内にセンサ7a(7b)を設置する構造を採用する場合には、このセンサ7a(7b)をこのカバー5内の所望の位置に配置する設計が難しくなる場合がある。この理由に就いて、図8を参照しつつ、以下に説明する。
尚、図8に示した車輪支持用軸受ユニットの状態量測定装置は、前記特願2006−345849に記載されているもの(先発明の構造)であり、上述した従来構造の第1〜3例と同様、外輪1の軸方向内側に装着したカバー5内にセンサ7a(7b)を設置している。この先発明の構造の場合には、ハブ2の軸方向内端部に支持固定したエンコーダ4の外周面のうち、第一、第二各特性変化部10、11の円周方向3個所ずつ(合計6個所)に、それぞれセンサ7a(7b)の検出部を1個ずつ近接対向させている(図8では、便宜上、4個のセンサ7a、7bのみを図示している)。そして、これら各センサ7a、7bを、上記カバー5内に保持固定した、センサホルダ6内に包埋している。この様な先発明の構造によれば、上記各センサ7a、7bの出力信号同士の間の位相差比に基づいて、上記外輪1とハブ2との間の多自由度の相対変位、並びに、これら外輪1とハブ2との間に作用する多自由度の外力を求められる。但し、この点は本発明の特徴部分ではない為、これ以上の詳しい説明は省略する。
By the way, when adopting a structure in which the sensor 7a (7b) is installed in the cover 5 attached to the inner end of the outer ring 1 in the axial direction as in the conventional structures described above, the sensor 7a (7b) It may be difficult to design the cover 5 at a desired position. The reason for this will be described below with reference to FIG.
Note that the state quantity measuring device for the wheel supporting bearing unit shown in FIG. 8 is the one described in the Japanese Patent Application No. 2006-345849 (the structure of the prior invention), and the first to third examples of the conventional structure described above. Similarly to the above, the sensor 7a (7b) is installed in the cover 5 mounted on the inner side in the axial direction of the outer ring 1. In the case of the structure according to the prior invention, three circumferential positions of the first and second characteristic changing portions 10 and 11 in the outer circumferential surface of the encoder 4 supported and fixed to the inner end portion in the axial direction of the hub 2 (total Each of the detection portions of the sensors 7a (7b) is closely opposed to each other at six locations (in FIG. 8, only four sensors 7a and 7b are shown for convenience). These sensors 7 a and 7 b are embedded in a sensor holder 6 that is held and fixed in the cover 5. According to such a structure of the prior invention, based on the phase difference ratio between the output signals of the sensors 7a and 7b, a multi-degree-of-freedom relative displacement between the outer ring 1 and the hub 2, and A multi-degree of freedom external force acting between the outer ring 1 and the hub 2 is required. However, since this point is not a characteristic part of the present invention, further detailed explanation is omitted.

何れにしても、上記カバー5を装着した車輪支持用軸受ユニットを車両に組み付ける際には、図8の(A)→(B)に示す様に、この車輪支持用軸受ユニットの軸方向内端部を、懸架装置を構成するナックル14に設けた円形の支持孔15の内側に挿入する。これにより、この支持孔15に、上記外輪1の軸方向内端寄り部分の外周面に設けた嵌合用円筒面部16を、がたつきなく内嵌する。これと共に、上記ナックル14の軸方向外側面に、上記外輪1の外周面に設けた結合フランジ17の軸方向内側面を突き当てる。そして、この状態で、上記結合フランジ17を上記ナックル14に対し、図示しないボルトにより結合固定する。従って、上述した挿入作業を行える様にすべく、上記カバー5の外径寸法は、上記嵌合用円筒面部16の外径寸法以下にする必要がある。そして、この様な寸法規制の結果、上記カバー5内の空間が狭くなる為、このカバー5内での上記各センサ7a、7bの配置の自由度が制限される。特に、図8に示した先発明の構造の様に、上記各センサ7a、7bの数を3個以上(6個)とする構造を採用する場合には、これら各センサ7a、7bの数の増加に伴って、これら各センサ7a、7bと共に上記カバー5内に配置すべきリード線(信号取り出し用、電力供給用)の本数が増える。この為、上記カバー5内での上記各センサ7a、7bの配置の自由度が、より制限される。
従って、上述した各従来構造及び先発明の構造の様に、外輪1の軸方向内端部に装着したカバー5内にセンサ7a(7b)を設置する構造を採用する場合には、このセンサ7a(7b)をこのカバー5の内の所望の位置に配置する設計が難しくなる場合がある。
In any case, when assembling the wheel support bearing unit with the cover 5 mounted on the vehicle, as shown in FIGS. 8A to 8B, the axially inner end of the wheel support bearing unit is shown. The part is inserted inside a circular support hole 15 provided in the knuckle 14 constituting the suspension device. Accordingly, the fitting cylindrical surface portion 16 provided on the outer peripheral surface of the outer ring 1 near the inner end in the axial direction is fitted into the support hole 15 without rattling. At the same time, the axially inner side surface of the coupling flange 17 provided on the outer peripheral surface of the outer ring 1 is abutted against the axially outer surface of the knuckle 14. In this state, the coupling flange 17 is coupled and fixed to the knuckle 14 with a bolt (not shown). Therefore, the outer diameter of the cover 5 needs to be equal to or smaller than the outer diameter of the fitting cylindrical surface portion 16 so that the above-described insertion operation can be performed. As a result of such dimensional restrictions, the space in the cover 5 is narrowed, so that the degree of freedom of arrangement of the sensors 7a and 7b in the cover 5 is limited. In particular, when adopting a structure in which the number of the sensors 7a and 7b is three or more (six) as in the structure of the prior invention shown in FIG. 8, the number of the sensors 7a and 7b Along with the increase, the number of lead wires (for signal extraction and power supply) to be arranged in the cover 5 together with the sensors 7a and 7b increases. For this reason, the freedom degree of arrangement | positioning of each said sensor 7a, 7b in the said cover 5 is restrict | limited more.
Accordingly, when the structure in which the sensor 7a (7b) is installed in the cover 5 attached to the inner end in the axial direction of the outer ring 1 as in the above-described conventional structures and the structure of the previous invention, the sensor 7a It may be difficult to design (7b) at a desired position in the cover 5.

特開2006−317420号公報JP 2006-317420 A 特開2006−322928号公報JP 2006-322928 A 特開2006−194673号公報JP 2006-194673 A

本発明の転がり軸受ユニットの状態量測定装置は、上述の様な事情に鑑み、エンコーダの被検出面に対向させるセンサの配置の自由度を高められる構造を実現すべく発明したものである。   The state quantity measuring device for a rolling bearing unit according to the present invention has been invented in order to realize a structure capable of increasing the degree of freedom of arrangement of a sensor opposed to a detection surface of an encoder in view of the above-described circumstances.

本発明の転がり軸受ユニットの状態量測定装置は、転がり軸受ユニットと、状態量測定装置とを備える。
このうちの転がり軸受ユニットは、使用時に車両の懸架装置に支持固定された状態で回転しない静止側軌道輪と、複数個の転動体を介してこの静止側軌道輪と同心に支持され、使用時に車輪を支持固定した状態でこの車輪と共に回転するハブとを備える。
又、上記状態量測定装置は、エンコーダと、少なくとも1個のセンサと、演算器とを備える。
このうちのエンコーダは、上記ハブの端部にこのハブと同心に支持固定されたものであって、このハブと同心の被検出面を備え、この被検出面の特性を円周方向に関して交互に変化させている。
又、上記センサは、検出部を上記エンコーダの被検出面に対向させた状態で、使用時にも回転しない部分に支持固定されていて、上記被検出面の特性変化に対応して出力信号を変化させる。
又、上記演算器は、上記センサの出力信号に基づいて、上記ハブの回転速度と、上記外輪と上記ハブとの間の相対変位と、これら外輪とハブとの間に作用する外力とのうちの、少なくとも1種類の状態量を算出する機能を有する。
The rolling bearing unit state quantity measuring apparatus of the present invention includes a rolling bearing unit and a state quantity measuring apparatus.
Of these, the rolling bearing unit is supported concentrically with the stationary side bearing ring through a plurality of rolling elements and not stationary while being supported and fixed to the suspension system of the vehicle. And a hub that rotates together with the wheel while the wheel is supported and fixed.
The state quantity measuring device includes an encoder, at least one sensor, and a calculator.
Of these, the encoder is supported and fixed concentrically with the hub at the end of the hub, and includes a detected surface concentric with the hub, and the characteristics of the detected surface are alternately set in the circumferential direction. It is changing.
In addition, the sensor is supported and fixed to a portion that does not rotate during use with the detection portion facing the detection surface of the encoder, and changes the output signal in response to a change in the characteristics of the detection surface. Let
Further, the computing unit is based on an output signal of the sensor, and includes a rotation speed of the hub, a relative displacement between the outer ring and the hub, and an external force acting between the outer ring and the hub. It has a function of calculating at least one kind of state quantity.

特に、本発明の転がり軸受ユニットの状態量測定装置に於いては、上記センサを支持固定する部分である、使用時にも回転しない部分が、上記懸架装置の一部分(ナックル、アクスルキャリパ等の一部分)である。
この様な特徴を有する本発明を実施する場合には、例えば請求項2に記載した様に、上記センサを、少なくとも環状部を有する合成樹脂製のセンサホルダ内に包埋支持した状態で、上記懸架装置の一部分に支持固定する。
In particular, in the state quantity measuring device of the rolling bearing unit of the present invention, the portion that supports and fixes the sensor, and the portion that does not rotate during use is part of the suspension device (part of the knuckle, axle caliper, etc.). It is.
When carrying out the present invention having such characteristics, for example, as described in claim 2, the sensor is embedded and supported in a sensor holder made of synthetic resin having at least an annular portion. Support and fix to a part of the suspension system.

上述の様に構成する本発明の転がり軸受ユニットの状態量測定装置によれば、前述した各従来構造や先発明の構造の様に、静止側軌道輪である外輪の軸方向内端部に装着したカバーの内側空間をセンサの配置空間とする構造に比べて、センサの配置の自由度を高められる。即ち、前述した様に、上記各従来構造や先発明の構造の場合には、上記カバーの外径寸法を、懸架装置を構成するナックルに設けた支持孔の内径寸法(この支持孔に内嵌する上記外輪の軸方向内端部の外径寸法)よりも小さくする必要がある。この為、上記カバーの内側空間、即ち、上記センサの配置空間の外径寸法は、必然的に、上記支持孔の内径寸法よりも小さくなる。これに対し、本発明の場合には、懸架装置の一部分にセンサを支持固定する為、このセンサの配置空間の外径寸法を、上記支持孔の内径寸法よりも大きくする事が可能となる。従って、本発明の場合には、上記各従来構造や先発明の構造に比べて、センサの配置の自由度を高められる。この結果、センサを所望の位置に配置する設計が容易になる。   According to the state quantity measuring device of the rolling bearing unit of the present invention configured as described above, it is attached to the inner end in the axial direction of the outer ring which is a stationary side race ring, as in the above-described conventional structures and the structure of the previous invention. Compared to the structure in which the inner space of the cover is the sensor placement space, the degree of freedom of sensor placement can be increased. That is, as described above, in the case of each of the conventional structures and the structures of the prior invention, the outer diameter dimension of the cover is set to the inner diameter dimension of the support hole provided in the knuckle constituting the suspension device. It is necessary to make it smaller than the outer diameter dimension of the inner end portion in the axial direction of the outer ring. For this reason, the outer diameter dimension of the inner space of the cover, that is, the sensor arrangement space is necessarily smaller than the inner diameter dimension of the support hole. On the other hand, in the case of the present invention, since the sensor is supported and fixed to a part of the suspension device, it is possible to make the outer diameter dimension of the arrangement space of the sensor larger than the inner diameter dimension of the support hole. Therefore, in the case of the present invention, the degree of freedom of sensor arrangement can be increased as compared with the conventional structures and the structures of the previous invention. As a result, it is easy to design the sensor at a desired position.

図1は、本発明の実施の形態の1例を示している。尚、本例の特徴は、複数個(6個)のセンサ7a、7bの支持構造にある。その他の部分の構造及び作用は、前述の図8に示した先発明の構造と同様である為、同等部分には同一符号を付して重複する説明を省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。   FIG. 1 shows an example of an embodiment of the present invention. A feature of this example is a support structure for a plurality (six) of sensors 7a and 7b. Since the structure and operation of the other parts are the same as the structure of the prior invention shown in FIG. 8 described above, the same reference numerals are given to the equivalent parts, and redundant explanations are omitted or simplified. The description will focus on the characteristic part.

本例の場合も、上記先発明の構造の場合と同様、車輪支持用軸受ユニットを車両に組み付けた状態で、図示の様に、外輪1の軸方向内端部を、懸架装置を構成するナックル14に結合固定している。具体的には、このナックル14に設けた支持孔15に、上記外輪1の軸方向内端寄り部分の外周面に設けた嵌合用円筒面部16を、がたつきなく内嵌している。これと共に、上記ナックル14の軸方向外側面に、上記外輪1の外周面に設けた結合フランジ17の軸方向内側面を突き当てている。そして、この状態で、上記結合フランジ17を上記ナックル14に対し、図示しないボルトにより結合固定している。但し、本例の場合、上記外輪1の内端部には、上記各センサ7a、7bを支持固定していない。   Also in the case of this example, as in the case of the structure of the previous invention, the knuckle that constitutes the suspension device is formed on the inner end in the axial direction of the outer ring 1 with the wheel support bearing unit assembled to the vehicle as shown in the figure. 14 is fixedly coupled. Specifically, the fitting cylindrical surface portion 16 provided on the outer peripheral surface of the outer ring 1 near the inner end in the axial direction is fitted into the support hole 15 provided in the knuckle 14 without rattling. At the same time, the axially inner side surface of the coupling flange 17 provided on the outer peripheral surface of the outer ring 1 is abutted against the axially outer surface of the knuckle 14. In this state, the coupling flange 17 is coupled and fixed to the knuckle 14 with a bolt (not shown). However, in this example, the sensors 7a and 7b are not supported and fixed to the inner end of the outer ring 1.

本例の場合、上記各センサ7a、7bは、上記ナックル14に支持固定している。この為に、このナックル14の一部で、上記支持孔15の軸方向内側に隣接する部分に、その内径寸法がこの支持孔15の内径寸法よりも大きい円形の取付孔20を、この支持孔15と同心に設けている。そして、この取付孔20の内側に上記各センサ7a、7bを、カバー5a及びセンサホルダ6aを介して支持している。このうちのカバー5aは、金属板により全体を有底円筒状に形成しており、底板部18と、この底板部18の外周縁部から軸方向外方に向け延出した円筒部19とを備える。そして、上記取付孔20にこの円筒部19を、軸方向内側から締り嵌めで内嵌(圧入)する事により、この取付孔20を塞いでいる。又、上記センサホルダ6aは、合成樹脂により一体形成したもので、上記カバー5aの内側に保持固定している。この様なセンサホルダ6aは、上記底板部18の内面(軸方向外側面)に添設した円板部21と、上記円筒部12aの内周面に添設した、断面矩形の円環部22とを備える。又、上記各センサ7a、7bはそれぞれ、この円環部22の内周面の表層部に包埋している。そして、この状態で、これら各センサ7a、7bの検出部を、それぞれハブ2の軸方向内端部に支持固定したエンコーダ4の外周面に設けた第一、第二各特性変化部10、11の円周方向複数個所に近接対向させている。尚、この状態で、上記各センサ7a、7bに接続したハーネス23を、上記カバー5aの底板部18の一部に形成した通孔24を通じて外部に導出している。   In the case of this example, the sensors 7 a and 7 b are supported and fixed to the knuckle 14. For this purpose, a circular mounting hole 20 whose inner diameter dimension is larger than the inner diameter dimension of the support hole 15 is formed in a part of the knuckle 14 adjacent to the inner side in the axial direction of the support hole 15. 15 and concentric. The sensors 7a and 7b are supported inside the mounting hole 20 via the cover 5a and the sensor holder 6a. Of these, the cover 5a is formed of a metal plate in the shape of a bottomed cylinder, and includes a bottom plate portion 18 and a cylindrical portion 19 that extends outward in the axial direction from the outer peripheral edge portion of the bottom plate portion 18. Prepare. Then, the mounting hole 20 is closed by fitting (press-fitting) the cylindrical portion 19 into the mounting hole 20 from the inner side in the axial direction. The sensor holder 6a is integrally formed of synthetic resin and is held and fixed inside the cover 5a. Such a sensor holder 6a includes a disc portion 21 attached to the inner surface (axially outer surface) of the bottom plate portion 18 and an annular portion 22 having a rectangular cross section attached to the inner peripheral surface of the cylindrical portion 12a. With. The sensors 7a and 7b are embedded in the surface layer portion of the inner peripheral surface of the annular portion 22, respectively. In this state, the first and second characteristic changing portions 10 and 11 are provided on the outer peripheral surface of the encoder 4 in which the detection portions of the sensors 7a and 7b are supported and fixed at the inner end portions in the axial direction of the hub 2, respectively. Are placed close to each other in the circumferential direction. In this state, the harness 23 connected to the sensors 7a and 7b is led out to the outside through a through hole 24 formed in a part of the bottom plate portion 18 of the cover 5a.

上述の様に構成する本例の転がり軸受ユニットの状態量測定装置によれば、前述の図8に示した先発明の構造の様に、外輪1の軸方向内端部に装着したカバー5の内側空間を、複数個(6個)のセンサ7a、7bの配置空間とする構造に比べて、これら各センサ7a、7bの配置の自由度を高められる。即ち、前述した様に、上記先発明の構造の場合には、上記カバー5の外径寸法を、ナックル14の支持孔15の内径寸法(この支持孔15に内嵌する上記外輪1の嵌合用円筒面部16の外径寸法)よりも小さくする必要がある。この為、上記カバー5の内側空間、即ち、上記各センサ7a、7bの配置空間の外径寸法は、必然的に、上記支持孔15の内径寸法よりも小さくなる。これに対して本例の場合には、その内側空間を上記各センサ7a、7bの配置空間としたカバー5aを、上記ナックル14の一部に設けた、その内径寸法が上記支持孔15の内径寸法よりも大きい取付孔20に内嵌固定している。この為、上記カバー5aの内側空間、即ち、上記各センサ7a、7bの配置空間(センサホルダ6a)の外径寸法を、上記支持孔15の内径寸法よりも大きくできる。従って、本例の場合には、上記先発明の構造に比べて、上記各センサ7a、7bの配置の自由度を高められる。この結果、これら各センサ7a、7bを所望の位置に配置する設計が容易になる。   According to the state quantity measuring device of the rolling bearing unit of the present example configured as described above, the cover 5 attached to the inner end in the axial direction of the outer ring 1 as in the structure of the previous invention shown in FIG. Compared to a structure in which the inner space is an arrangement space for a plurality of (six) sensors 7a and 7b, the degree of freedom of arrangement of these sensors 7a and 7b can be increased. That is, as described above, in the case of the structure of the above invention, the outer diameter of the cover 5 is set to the inner diameter of the support hole 15 of the knuckle 14 (for fitting the outer ring 1 fitted into the support hole 15. It is necessary to make it smaller than the outer diameter dimension of the cylindrical surface portion 16. For this reason, the outer diameter dimension of the inner space of the cover 5, that is, the arrangement space of the sensors 7 a and 7 b inevitably becomes smaller than the inner diameter dimension of the support hole 15. On the other hand, in the case of this example, a cover 5a having the inner space as an arrangement space for the sensors 7a and 7b is provided in a part of the knuckle 14, and the inner diameter is the inner diameter of the support hole 15. It is fitted and fixed in the mounting hole 20 larger than the dimension. For this reason, the inner diameter of the cover 5 a, that is, the outer diameter of the arrangement space (sensor holder 6 a) of the sensors 7 a and 7 b can be made larger than the inner diameter of the support hole 15. Therefore, in the case of this example, the degree of freedom of arrangement of the sensors 7a and 7b can be increased as compared with the structure of the prior invention. As a result, it is easy to design the sensors 7a and 7b at desired positions.

尚、本発明は、上述した実施の形態の構造に限らず、特許請求の範囲に記載された要件を満たす、各種の構造を対象として実施可能である。例えば、本発明は、前述の図2〜7に示した各従来構造の様な、エンコーダ4、4a、4bとセンサ7a、7bとの組み合わせを採用した構造を対象として実施する事もできる。又、本発明は、エンコーダとして永久磁石製のもの(被検出面にS極とN極とを交互に配置したもの)を組み込んだ構造(この構造では、センサ側に永久磁石を組み込む必要はない)や、エンコーダの被検出面を円輪面とし、且つ、この被検出面にセンサの検出部を軸方向に対向させる事で、静止側軌道輪とハブとの間に作用するラジアル荷重を測定可能とした構造を対象として実施する事もできる。   The present invention is not limited to the structure of the above-described embodiment, and can be implemented for various structures that satisfy the requirements described in the claims. For example, the present invention can be implemented for a structure that employs a combination of encoders 4, 4a, 4b and sensors 7a, 7b, such as the conventional structures shown in FIGS. In addition, the present invention has a structure in which an encoder made of a permanent magnet (an S pole and an N pole are alternately arranged on the detection surface) is incorporated (in this structure, there is no need to incorporate a permanent magnet on the sensor side). ), Or by measuring the radial load acting between the stationary race ring and the hub by making the detection surface of the encoder an annular surface and making the detection part of the sensor face the detection surface in the axial direction. It can also be implemented for a possible structure.

本発明の実施の形態の1例を、懸架装置を構成するナックルに結合固定した状態で示す断面図。Sectional drawing which shows one example of embodiment of this invention in the state couple | bonded and fixed to the knuckle which comprises a suspension apparatus. 転がり軸受ユニットの状態量測定装置の従来構造の第1例を示す断面図。Sectional drawing which shows the 1st example of the conventional structure of the state quantity measuring apparatus of a rolling bearing unit. この第1例に組み込むエンコーダの一部を径方向から見た図。The figure which looked at a part of encoder incorporated in this 1st example from the diameter direction. 転がり軸受ユニットの状態量測定装置の従来構造の第2例を示す断面図。Sectional drawing which shows the 2nd example of the conventional structure of the state quantity measuring apparatus of a rolling bearing unit. この第2例に組み込むエンコーダの一部を径方向から見た図。The figure which looked at a part of encoder incorporated in this 2nd example from the diameter direction. 転がり軸受ユニットの状態量測定装置の従来構造の第3例を示す断面図。Sectional drawing which shows the 3rd example of the conventional structure of the state quantity measuring apparatus of a rolling bearing unit. この第3例に組み込むエンコーダの一部を径方向から見た図。The figure which looked at a part of encoder incorporated in this 3rd example from the diameter direction. 転がり軸受ユニットの状態量測定装置の従来構造の第4例を、(A)は懸架装置を構成するナックルに結合固定する前の状態で、(B)は結合固定した後の状態で、それぞれ示す断面図。A fourth example of a conventional structure of a state quantity measuring device for a rolling bearing unit is shown in a state before (A) is coupled and fixed to a knuckle constituting a suspension device, and (B) is a state after coupled and fixed. Sectional drawing.

符号の説明Explanation of symbols

1 外輪
2 ハブ
3 転動体
4、4a、4b エンコーダ
5、5a カバー
6、6a センサホルダ
7a、7b センサ
8、8a、8b 透孔
9、9a、9b 柱部
10 第一特性変化部
11 第二特性変化部
12、12a 円板部
13、13a 円筒部
14 ナックル
15 支持孔
16 嵌合用円筒面部
17 結合フランジ
18 底板部
19 円筒部
20 取付孔
21 円板部
22 円環部
23 ハーネス
24 通孔
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Hub 3 Rolling element 4, 4a, 4b Encoder 5, 5a Cover 6, 6a Sensor holder 7a, 7b Sensor 8, 8a, 8b Through-hole 9, 9a, 9b Pillar part 10 First characteristic change part 11 Second characteristic Change part 12, 12a Disc part 13, 13a Cylindrical part 14 Knuckle 15 Support hole 16 Fitting cylindrical surface part 17 Connection flange 18 Bottom plate part 19 Cylindrical part 20 Mounting hole 21 Disc part 22 Ring part 23 Harness 24 Through hole

Claims (2)

転がり軸受ユニットと、状態量測定装置とを備え、
このうちの転がり軸受ユニットは、使用時に車両の懸架装置に支持固定された状態で回転しない静止側軌道輪と、複数個の転動体を介してこの静止側軌道輪と同心に支持され、使用時に車輪を支持固定した状態でこの車輪と共に回転するハブとを備えたものであり、
上記状態量測定装置は、エンコーダと、少なくとも1個のセンサと、演算器とを備えたものであって、
このうちのエンコーダは、上記ハブの端部にこのハブと同心に支持固定されたものであって、このハブと同心の被検出面を備え、この被検出面の特性を円周方向に関して交互に変化させたものであり、
上記センサは、検出部を上記エンコーダの被検出面に対向させた状態で、使用時にも回転しない部分に支持固定されていて、上記被検出面の特性変化に対応して出力信号を変化させるものであり、
上記演算器は、上記センサの出力信号に基づいて、上記ハブの回転速度と、上記外輪と上記ハブとの間の相対変位と、これら外輪とハブとの間に作用する外力とのうちの、少なくとも1種類の状態量を算出する機能を有するものである、
転がり軸受ユニットの状態量測定装置に於いて、
上記センサを支持固定する部分である使用時にも回転しない部分が、上記懸架装置の一部分である事を特徴とする転がり軸受ユニットの状態量測定装置。
A rolling bearing unit and a state quantity measuring device;
Of these, the rolling bearing unit is supported concentrically with the stationary side bearing ring through a plurality of rolling elements and not stationary while being supported and fixed to the suspension system of the vehicle. It is equipped with a hub that rotates with this wheel while the wheel is supported and fixed,
The state quantity measuring device includes an encoder, at least one sensor, and a computing unit,
Of these, the encoder is supported and fixed concentrically with the hub at the end of the hub, and includes a detected surface concentric with the hub, and the characteristics of the detected surface are alternately set in the circumferential direction. Is a change,
The sensor is supported and fixed to a portion that does not rotate during use with the detection unit facing the detection surface of the encoder, and changes the output signal in response to a change in characteristics of the detection surface. And
The computing unit is based on the output signal of the sensor, among the rotational speed of the hub, the relative displacement between the outer ring and the hub, and the external force acting between the outer ring and the hub, It has a function of calculating at least one kind of state quantity.
In the state quantity measuring device of the rolling bearing unit,
A state quantity measuring device for a rolling bearing unit, wherein a portion which does not rotate during use, which is a portion for supporting and fixing the sensor, is a part of the suspension device.
センサが、少なくとも環状部を有する合成樹脂製のセンサホルダ内に包埋支持された状態で、懸架装置の一部分に支持固定されている、請求項1に記載した転がり軸受ユニットの状態量測定装置。   The state quantity measuring device of a rolling bearing unit according to claim 1, wherein the sensor is supported and fixed to a part of the suspension device in a state of being embedded and supported in a sensor holder made of synthetic resin having at least an annular portion.
JP2007274707A 2007-10-23 2007-10-23 Device for measuring state of quantity of rolling bearing unit Pending JP2009103549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007274707A JP2009103549A (en) 2007-10-23 2007-10-23 Device for measuring state of quantity of rolling bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007274707A JP2009103549A (en) 2007-10-23 2007-10-23 Device for measuring state of quantity of rolling bearing unit

Publications (1)

Publication Number Publication Date
JP2009103549A true JP2009103549A (en) 2009-05-14

Family

ID=40705359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007274707A Pending JP2009103549A (en) 2007-10-23 2007-10-23 Device for measuring state of quantity of rolling bearing unit

Country Status (1)

Country Link
JP (1) JP2009103549A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203203A (en) * 2010-03-26 2011-10-13 Nsk Ltd Physical quantity measuring device of rolling bearing unit
JP2011252890A (en) * 2010-06-04 2011-12-15 Nsk Ltd Physical quantity measuring device for rolling bearing unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203203A (en) * 2010-03-26 2011-10-13 Nsk Ltd Physical quantity measuring device of rolling bearing unit
JP2011252890A (en) * 2010-06-04 2011-12-15 Nsk Ltd Physical quantity measuring device for rolling bearing unit

Similar Documents

Publication Publication Date Title
JP4940937B2 (en) Rotating machine state quantity measuring device
JP2007183247A (en) Rotation supporting device with load measuring device
JP2008026041A (en) Ball bearing unit with load measuring apparatus
JP2009103549A (en) Device for measuring state of quantity of rolling bearing unit
JP2007078678A (en) Rotation supporting device with displacement measuring unit, and rotation supporting device with load measuring unit
JP5007616B2 (en) State quantity measuring device for rolling bearing units
JP4957390B2 (en) Method for manufacturing rolling bearing unit with physical quantity measuring device
JP2007085742A (en) Rolling bearing unit with load measuring device
JP2008215977A (en) Wheel bearing with sensor
JP2007171104A (en) Roller bearing unit with load-measuring device
JP4957259B2 (en) State quantity measuring device for rolling bearing units
JP2008292275A (en) Load measuring instrument for rolling bearing unit
JP5228512B2 (en) State quantity measuring device for rolling bearing units
JP2008157790A (en) Method for assembling apparatus which measures state quantity of rolling bearing unit
JP5458498B2 (en) State quantity measuring device for rolling bearing units
JP2008224397A (en) Load measuring device for roller bearing unit
JP4941140B2 (en) State quantity measuring device for rolling bearing units
JP2006201157A (en) Ball bearing unit having displacement measuring device, and ball bearing unit having load measuring device
JP2005091073A (en) Rotation speed detector and load measuring instrument for roller bearing unit
JP2005114710A (en) Load-measuring instrument for rolling bearing unit
JP2008292276A (en) Load measuring instrument for rolling bearing unit
JP2005098771A (en) Load-measuring device of rolling bearing unit
JP2007010318A (en) Rolling bearing unit with load measuring device
JP2005181265A (en) Load measuring device for rolling bearing unit
JP2009186390A (en) Apparatus for measuring quantity of state of rolling bearing unit

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100312