JP2009097863A - Instrument position detection system - Google Patents

Instrument position detection system Download PDF

Info

Publication number
JP2009097863A
JP2009097863A JP2007266505A JP2007266505A JP2009097863A JP 2009097863 A JP2009097863 A JP 2009097863A JP 2007266505 A JP2007266505 A JP 2007266505A JP 2007266505 A JP2007266505 A JP 2007266505A JP 2009097863 A JP2009097863 A JP 2009097863A
Authority
JP
Japan
Prior art keywords
frame data
time
reference frame
station
position detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007266505A
Other languages
Japanese (ja)
Inventor
Takashi Yamagishi
孝 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007266505A priority Critical patent/JP2009097863A/en
Publication of JP2009097863A publication Critical patent/JP2009097863A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately detect positional information of a wireless transmitting station, without providing high-precision clocks both in the wireless transmitting station and in a wireless receiving station. <P>SOLUTION: A temperature measuring instrument 14 includes a first transceiver means for transmitting response frame data to wireless base stations 11-13, and the base stations 11-13 are provided with second transceiver means for receiving response frame data transmitted from the measuring instrument 14, after receiving reference frame data transmitted from wireless stations 11-13 other than an own station, when no request for transmission of the reference frame data is made, and a time measuring means for measuring, as a response time, the time interval from the point of time of reception completion of the reference frame data by the second transceiver means up to the point of time of a reception start of the response frame data. A position detection device 20 includes a distance calculation means for calculating a difference distance based on the calculated response time and a delay time, and a position calculation means for calculating positional information representing the position of the measuring instrument 14 based on the calculated difference distance. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、無線送信局と、位置関係が既知である複数の無線受信局と、無線送信局と無線受信局との間において無線によりフレームデータを送受信した際の送受信結果に基づいて、無線送信局の位置を検出する位置検出装置とを備える機器位置検出システムに関する。   The present invention provides wireless transmission based on a wireless transmission station, a plurality of wireless reception stations whose positional relationships are known, and transmission / reception results when wirelessly transmitting / receiving frame data between the wireless transmission station and the wireless reception station. The present invention relates to a device position detection system including a position detection device that detects a position of a station.

例えば、室内に設置された空調機器を制御する空調システムにおいて、無線による温度データの送信が可能な温度測定器と、温度測定器から送信された温度測定値を受信する無線基地局と、無線基地局により受信された温度測定値に基づいて、室内の空調機器を制御する制御装置とからなるものがある。   For example, in an air conditioning system that controls air conditioning equipment installed in a room, a temperature measuring device capable of wirelessly transmitting temperature data, a wireless base station that receives temperature measurement values transmitted from the temperature measuring device, and a wireless base There are some which consist of a control device which controls indoor air-conditioning equipment based on the temperature measurement value received by the station.

このような従来の空調システムにおいて、室内空間を快適な温度となるように制御するためには、制御装置は、温度測定器から送信された温度測定値と温度測定器の位置情報とに基づいて、適切に温度制御を行う必要がある。そこで、空調システムの提供者又は利用者は、無線基地局と温度測定器との間の距離を正確に測定し、測定した距離に基づいて温度測定器の位置を算出し、算出した位置情報を制御装置に設定しなければならなかった。   In such a conventional air conditioning system, in order to control the indoor space to have a comfortable temperature, the control device is based on the temperature measurement value transmitted from the temperature measuring device and the position information of the temperature measuring device. It is necessary to control the temperature appropriately. Therefore, the provider or user of the air conditioning system accurately measures the distance between the radio base station and the temperature measuring device, calculates the position of the temperature measuring device based on the measured distance, and calculates the calculated position information. Had to be set in the control unit.

そのため、例えば、提供者又は利用者が、温度測定器を移設したり、追加したりした場合、その都度、提供者又は利用者は、無線基地局と温度測定器との間の距離を制御装置に設定しなければならず、非常に面倒であった。   Therefore, for example, when a provider or a user moves or adds a temperature measuring device, the provider or the user controls the distance between the radio base station and the temperature measuring device each time. Had to be set to be very cumbersome.

そこで、温度測定器にGPS(Global Positioning System)センサを搭載し、温度測定器の位置情報を無線基地局に送信する位置検出システムを空調システムに適用することが考えられる。しかしながら、このようなGPSを利用した空調システムは、室内に設置されるため、温度測定器からの電波が弱くなり、正確に位置を検出することができなかった。また、温度測定器にGPSセンサを搭載するので、空調システム全体の製造コストが高くなるという課題があった。   In view of this, it is conceivable to apply a position detection system in which a GPS (Global Positioning System) sensor is mounted on the temperature measuring device and the position information of the temperature measuring device is transmitted to the radio base station to the air conditioning system. However, since such an air conditioning system using GPS is installed indoors, the radio wave from the temperature measuring device becomes weak, and the position cannot be accurately detected. Moreover, since the GPS sensor is mounted on the temperature measuring device, there is a problem that the manufacturing cost of the entire air conditioning system increases.

そこで、特許文献1には、複数の基地局と端末によって構成され、かつ複数のチャネルを有し、各端末が基地局と非同期でパケット通信を行い、端末と基地局を同期させることなく基地局と端末間の信号伝搬時間を測定し、測定した伝搬時間を元に端末の位置を特定する無線局の位置推定システムが提案されている。   Therefore, Patent Document 1 includes a plurality of base stations and terminals, has a plurality of channels, each terminal performs packet communication asynchronously with the base station, and the base station without synchronizing the terminal and the base station. A position estimation system for a radio station that measures the signal propagation time between the terminals and identifies the position of the terminal based on the measured propagation time has been proposed.

図7は、特許文献1に記載の無線局の位置推定システムにおいて、データパケットの送信側である基地局とデータパケットの受信側である端末との間でのIEEE802.11規格に基づいたデータパケットの送受関係を示した図である。   FIG. 7 shows a data packet based on the IEEE802.11 standard between a base station that is a data packet transmission side and a terminal that is a data packet reception side in the wireless station position estimation system described in Patent Document 1. It is the figure which showed the transmission / reception relationship.

図7に示すように、基地局から送信されたデータパケットが端末に到達するのに必要な伝搬遅延の時間をT1とし、端末から送信されたACKが基地局まで到達するのに必要な伝搬遅延の時間をT2とし、端末がデータパケットの受信を終了してからACKを送信するまでに必要な時間をT3としている。ここで、T3は、IEEE802.11規格においては、受信側のACK応答までの時間としてSIFS(Short Inter Frame Space)と定義されている。また、データパケットの送信に必要とされる時間をT4としており、このT4は、データパケット長と伝送レートとに依存される。T5は、送信側の基地局でデータパケット送信開始からACK受信開始までの時間であり、T1,T2,T3,及びT4を加算した時間となる。   As shown in FIG. 7, the propagation delay time required for the data packet transmitted from the base station to reach the terminal is T1, and the propagation delay necessary for the ACK transmitted from the terminal to reach the base station. Is T2, and the time required from the end of reception of the data packet until the terminal transmits ACK is T3. Here, in the IEEE802.11 standard, T3 is defined as SIFS (Short Inter Frame Space) as a time until an ACK response on the receiving side. The time required for transmitting the data packet is T4, and this T4 depends on the data packet length and the transmission rate. T5 is the time from the start of data packet transmission to the start of ACK reception at the transmitting base station, and is the time obtained by adding T1, T2, T3, and T4.

ここで、T4はデータパケット長と伝送レートによって決まる時間であり、送信側の基地局で算出できる時間である。T3で示されるSIFSは、IEEE802.11規格では物理層に用いる規格で決まる値とされており、例えばIEEE802.11a規格ではSIFS時間として16μs(マイクロ秒)という値が規定されている。同様にIEEE802.11B規格ではSIFS時間として10μs(マイクロ秒)という値が規定されている。よって、IEEE802.11規格に従って通信する無線LANシステムにおいては、用いられる物理層の規格の違いによりSIFSの値が変わるものの、同一の物理層の規格に従って通信する無線局においてはSIFSの値は固定値となる。そこで、T5を構成する時間要素のうちT3,T4を、送信側の基地局において推定し、時間(T1+T2)を導出する。   Here, T4 is a time determined by the data packet length and the transmission rate, and can be calculated by the base station on the transmission side. SIFS indicated by T3 is a value determined by the standard used for the physical layer in the IEEE 802.11 standard. For example, in the IEEE 802.11a standard, a value of 16 μs (microseconds) is defined as the SIFS time. Similarly, the IEEE802.11B standard defines a value of 10 μs (microseconds) as the SIFS time. Therefore, in a wireless LAN system that communicates according to the IEEE 802.11 standard, the SIFS value varies depending on the standard of the physical layer used, but in a wireless station that communicates according to the same physical layer standard, the SIFS value is a fixed value. It becomes. Therefore, T3 and T4 of the time elements constituting T5 are estimated at the base station on the transmission side, and time (T1 + T2) is derived.

そして、無線LANを用いる場合、基地局から端末への伝搬遅延T1と、端末から基地局への伝搬遅延T2とは同一であることを前提に、基地局は、データパケット送信開始からACK受信開始までの時間T5を測定し、基地局と端末との間の伝搬遅延(T1=T2)を求めることで、基地局と端末との間の伝搬時間を推定し、伝搬距離を推定する。
特開2004−350088号公報
When using a wireless LAN, the base station starts from the start of data packet transmission to ACK reception on the assumption that the propagation delay T1 from the base station to the terminal and the propagation delay T2 from the terminal to the base station are the same. Time T5 is measured, and the propagation delay (T1 = T2) between the base station and the terminal is obtained, thereby estimating the propagation time between the base station and the terminal and estimating the propagation distance.
JP 2004-350088 A

しかしながら、特許文献1に記載の無線局の位置推定システムでは、基地局がT5を測定し、また、端末がT3となるように正確に送信することで、このT3と測定したT5に基づいて、基地局と端末との間の伝搬遅延(T1=T2)を求める。そのため、高い精度で伝搬遅延(T1=T2)を算出することが困難であった。   However, in the position estimation system of the wireless station described in Patent Document 1, the base station measures T5 and transmits accurately so that the terminal becomes T3. Based on the measured T3 and T5, A propagation delay (T1 = T2) between the base station and the terminal is obtained. Therefore, it is difficult to calculate the propagation delay (T1 = T2) with high accuracy.

即ち、高い精度で伝搬遅延(T1=T2)を算出するためには、基地局と端末の両方に高い精度で時間を測定する時計を備える必要があった。一般的に流通している比較的低価格である測定精度10ppm程度の水晶振動子を用いた時計を用いて、例えば、T5を測定するとすると、T5が数百μs(マイクロ秒)であれば、測定誤差が数mになる場合がある。このような精度では、特許文献1に記載の無線局の位置推定システムを、例えば、誤差が大きく、空調システムに適用した場合、適切に温度制御できない場合があった。   That is, in order to calculate the propagation delay (T1 = T2) with high accuracy, it is necessary to provide a clock that measures time with high accuracy in both the base station and the terminal. For example, when T5 is measured using a quartz crystal resonator having a measurement accuracy of about 10 ppm, which is a relatively low price that is generally distributed, if T5 is several hundred μs (microseconds), The measurement error may be several meters. With such an accuracy, for example, when the position estimation system of the wireless station described in Patent Document 1 has a large error and is applied to an air conditioning system, temperature control may not be performed appropriately.

また、基地局や端末を、測定精度の高い時計を備えた構成とすると、製造費用がふくらみ、装置全体として高コストとなるという問題があった。   Further, if the base station and the terminal are provided with a timepiece having high measurement accuracy, there is a problem that the manufacturing cost is increased and the entire apparatus is expensive.

本発明は、上記課題に鑑みてなされたものであり、高い精度の時計を、データの送信側である無線送信局と、データの受信側である無線受信局との両方に備えることなく、無線送信局の位置情報を正確に検出することができる機器位置検出システムを提供することを目的とする。   The present invention has been made in view of the above problems, and is provided with a high-accuracy timepiece without providing both a wireless transmission station on the data transmission side and a wireless reception station on the data reception side. An object of the present invention is to provide a device position detection system capable of accurately detecting position information of a transmitting station.

上記目的を達成するため、本発明に係る機器位置検出システムの第1の特徴は、無線送信局が、複数の無線受信局のいずれか1つから送信された参照フレームデータを受信し、該受信した参照フレームデータに対する応答として応答フレームデータを複数の無線受信局に送信する第1の送受信手段を有し、複数の無線受信局が、位置検出装置から参照フレームデータの送信要求があった場合は、参照フレームデータを無線送信局及び自局以外の他の無線受信局へ送信し、送信要求がない場合は、自局以外の他の無線受信局から送信された参照フレームデータを受信した後に、参照フレームデータに対する応答として無線送信局から送信された応答フレームデータを受信する第2の送受信手段と、第2の送受信手段により参照フレームデータを受信完了した時点から応答フレームデータを受信開始した時点までの時間を応答時間として測定する時間測定手段とを有し、位置検出装置が、複数の無線受信局のいずれか1つが、無線送信局及び自局以外の他の無線受信局へ参照フレームデータを送信完了した時点から、該参照フレームデータを他の無線受信局が受信完了した時点までの時間を遅延時間として算出し、この算出した遅延時間と、時間測定手段により測定された応答時間とに基づいて、無線送信局から参照フレームデータを受信した複数の無線受信局のうちのいづれか1つまでの距離と、該無線受信局以外であって、参照フレームデータを受信した複数の無線基地局のうちのいづれか1つから無線送信局までの距離との差を差分距離として算出する距離算出手段と、距離算出手段により算出された差分距離に基づいて、無線送信局の位置を示す位置情報を算出する位置算出手段とを有することを特徴とする。   In order to achieve the above object, a first feature of the device position detection system according to the present invention is that a wireless transmitting station receives reference frame data transmitted from any one of a plurality of wireless receiving stations, and receives the received reference frame data. A first transmission / reception means for transmitting response frame data to a plurality of radio reception stations as a response to the reference frame data, and when the plurality of radio reception stations have requested transmission of reference frame data from the position detection device. The reference frame data is transmitted to the radio transmitting station and other radio receiving stations other than the own station, and when there is no transmission request, after receiving the reference frame data transmitted from other radio receiving stations other than the own station, Second transmission / reception means for receiving response frame data transmitted from the wireless transmission station as a response to the reference frame data; and reference frame data by the second transmission / reception means. Time measuring means for measuring the time from when the transmission is completed to when the reception of the response frame data is started as a response time, and the position detection device includes any one of a plurality of wireless reception stations, a wireless transmission station, The time from when the reference frame data has been transmitted to other radio receiving stations other than the own station until the time when the other radio receiving station has completed receiving the reference frame data is calculated as a delay time, and the calculated delay time Based on the response time measured by the time measuring means, the distance to any one of the plurality of radio receiving stations that received the reference frame data from the radio transmitting station, and other than the radio receiving station A distance calculating means for calculating a difference from a distance from any one of a plurality of radio base stations receiving the reference frame data to a radio transmitting station as a difference distance; Based on the difference distance calculated by the step, and having a position calculation means for calculating position information indicating the position of the radio transmission station.

本発明に係る機器位置検出システムによれば、高い精度の時計を無線送信局と、無線受信局との両方に備えることなく、無線送信局の位置を正確に検出することができる。   According to the device position detection system of the present invention, it is possible to accurately detect the position of the wireless transmission station without providing a high-accuracy timepiece for both the wireless transmission station and the wireless reception station.

以下、本発明を実施するための最良の形態について図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

本発明の実施例1では、室内に設置された空調機器を制御する空調システムに適用され、室内の温度を測定する温度測定器と、所定の位置を基準点とした平面上のそれぞれの位置関係が既知である3つの無線基地局との間において無線によりフレームデータを送受信した送受信結果に基づいて、温度測定器の位置を検出する機器位置検出システムを例に挙げて説明する。ここで、フレームデータとは、データを送受信する際に分割される1つの単位であり、このフレームデータには、応答を要求する参照フレームデータと、参照フレームデータに対する応答を示す応答フレームデータがある。   The first embodiment of the present invention is applied to an air conditioning system that controls an air conditioner installed indoors, and a positional relationship between a temperature measuring device that measures the temperature of the room and a plane with a predetermined position as a reference point A device position detection system that detects the position of the temperature measuring device based on the transmission / reception results of wirelessly transmitting / receiving frame data to / from three wireless base stations of which is known will be described as an example. Here, the frame data is one unit that is divided when data is transmitted / received. The frame data includes reference frame data that requests a response and response frame data that indicates a response to the reference frame data. .

図1は、本発明の実施例1である機器位置検出システムが適用された空調システムの構成を示した構成図である。   FIG. 1 is a configuration diagram illustrating a configuration of an air conditioning system to which a device position detection system that is Embodiment 1 of the present invention is applied.

図1に示すように、空調システム2は、本発明の実施例1である機器位置検出システム1と、制御装置3と、空調機器4とを備えている。機器位置検出システム1は、制御装置3と接続されており、制御装置3には、空調機器4が接続されている。   As shown in FIG. 1, the air conditioning system 2 includes a device position detection system 1 that is Embodiment 1 of the present invention, a control device 3, and an air conditioning device 4. The device position detection system 1 is connected to a control device 3, and an air conditioning device 4 is connected to the control device 3.

制御装置3は、機器位置検出システム1から供給された後述する温度測定器14の位置情報と、温度測定器14により測定された温度データに基づいて、空調機器4を制御する。   The control device 3 controls the air conditioner 4 based on position information of a temperature measuring device 14 (described later) supplied from the device position detection system 1 and temperature data measured by the temperature measuring device 14.

空調機器4は、制御装置3からの制御信号に従って、冷暖房の風量等を調整する。   The air conditioner 4 adjusts the air volume and the like for air conditioning according to the control signal from the control device 3.

本発明の実施例1である機器位置検出システム1は、無線受信局である無線基地局11〜13と、無線送信局である温度測定器14と、位置検出装置20とを備えており、無線基地局11〜13と、位置検出装置20とはネットワーク30を介して接続されている。   A device position detection system 1 that is Embodiment 1 of the present invention includes wireless base stations 11 to 13 that are wireless reception stations, a temperature measuring device 14 that is a wireless transmission station, and a position detection device 20. The base stations 11 to 13 and the position detection device 20 are connected via a network 30.

温度測定器14は、温度センサと、第1の送受信手段とを備える。   The temperature measuring device 14 includes a temperature sensor and first transmission / reception means.

温度測定器14の温度センサは、周辺温度を測定し、測定した温度データを第1の送受信手段に供給する。   The temperature sensor of the temperature measuring instrument 14 measures the ambient temperature and supplies the measured temperature data to the first transmitting / receiving means.

温度測定器14の第1の送受信手段は、無線基地局11〜13のいずれか1つから送信された参照フレームデータを受信し、受信した参照フレームデータに対する応答として応答フレームデータを無線基地局11〜13に送信する。また、参照フレームデータが、測定温度の送信を要求するデータである場合には、温度センサにより測定された温度データを、応答フレームデータに含めて無線基地局11〜13へ送信する。   The first transmission / reception means of the temperature measuring device 14 receives the reference frame data transmitted from any one of the radio base stations 11 to 13, and sends the response frame data as a response to the received reference frame data. To ~ 13. When the reference frame data is data requesting transmission of the measured temperature, the temperature data measured by the temperature sensor is included in the response frame data and transmitted to the radio base stations 11 to 13.

無線基地局11〜13は、その機能上、第2の送受信手段と、時間測定手段とを備える。   The radio base stations 11 to 13 are provided with second transmission / reception means and time measurement means in terms of their functions.

無線基地局11〜13の第2の送受信手段は、位置検出装置20から参照フレームデータの送信要求があった場合は、参照フレームデータを温度測定器14及び自局以外の他の無線受信局11〜13へ送信する。また、第2の送受信手段は、位置検出装置20から参照フレームデータの送信要求がない場合は、自局以外の他の無線受信局11〜13から送信された参照フレームデータを受信した後に、参照フレームデータに対する応答として温度測定器14から送信された応答フレームデータを受信する。さらに、第2の送受信手段は、温度測定器14から受信した応答フレームデータに、温度センサにより測定された温度データが含まれている場合には、温度データを制御装置3へ供給する。   When there is a reference frame data transmission request from the position detection device 20, the second transmitting / receiving means of the wireless base stations 11 to 13 transmits the reference frame data to the wireless measuring station 11 other than the temperature measuring device 14 and the own station. To ~ 13. In addition, when there is no reference frame data transmission request from the position detection device 20, the second transmission / reception means receives the reference frame data transmitted from other radio receiving stations 11 to 13 other than the own station, and then references Response frame data transmitted from the temperature measuring device 14 is received as a response to the frame data. Further, the second transmission / reception means supplies the temperature data to the control device 3 when the response frame data received from the temperature measuring device 14 includes temperature data measured by the temperature sensor.

無線基地局11〜13の時間測定手段は、自局以外の他の無線受信局11〜13から送信された参照フレームデータを第2の送受信手段により受信完了した時点から、この参照フレームデータに対する応答として温度測定器14から送信された応答フレームデータを第2の送受信手段により受信開始した時点までの時間を応答時間として測定する。   The time measurement means of the radio base stations 11 to 13 responds to the reference frame data from the time when the second transmission / reception means completes the reception of the reference frame data transmitted from other radio reception stations 11 to 13 other than its own station. As a response time, the time until the reception of response frame data transmitted from the temperature measuring device 14 by the second transmitting / receiving means is measured.

位置検出装置20は、その機能上、距離算出手段と、位置算出手段とを備える。   The position detection device 20 includes a distance calculation unit and a position calculation unit in terms of its function.

位置検出装置20の距離算出手段は、無線基地局11〜13が参照フレームデータを受信する際の遅延時間を算出する。ここで、遅延時間とは、無線受信局11〜13のうちいずれか1つが、温度測定器14及び自局以外の他の無線受信局11〜13へ参照フレームデータを送信完了した時点から、この参照フレームデータを他の無線受信局11〜13が受信完了した時点までの時間をいう。そして、距離算出手段は、この算出した遅延時間と、時間測定手段により測定された応答時間とに基づいて、温度測定器14から参照フレームデータを受信した無線基地局11〜13のうちのいづれか1つまでの距離と、この無線受信局以外であって、参照フレームデータを受信した無線基地局11〜13のうちのいづれか1つから温度測定器14までの距離との差を差分距離として算出する。   The distance calculation means of the position detection device 20 calculates a delay time when the radio base stations 11 to 13 receive the reference frame data. Here, the delay time means that any one of the radio receiving stations 11 to 13 has transmitted this reference frame data from the temperature measuring instrument 14 and the other radio receiving stations 11 to 13 other than the own station. The time until the time when the other radio receiving stations 11 to 13 complete receiving the reference frame data. Then, the distance calculating means is one of the radio base stations 11 to 13 that have received the reference frame data from the temperature measuring device 14 based on the calculated delay time and the response time measured by the time measuring means. And the difference between the distance from any one of the wireless base stations 11 to 13 that received the reference frame data to the temperature measuring device 14 other than the wireless receiving station and the temperature measuring device 14 is calculated as a difference distance. .

位置検出装置20の位置算出手段は、距離算出手段により算出された差分距離に基づいて、温度測定器14の位置を示す位置情報を算出する。ここで、位置情報とは、無線基地局11〜13を含む平面上における所定の位置を基準点とした座標情報をいう。   The position calculation means of the position detection device 20 calculates position information indicating the position of the temperature measuring device 14 based on the difference distance calculated by the distance calculation means. Here, the position information refers to coordinate information with a predetermined position on a plane including the radio base stations 11 to 13 as a reference point.

図2は、本発明の実施例1である機器位置検出システム1の無線基地局11〜13の構成を示した構成図である。   FIG. 2 is a configuration diagram illustrating configurations of the radio base stations 11 to 13 of the device position detection system 1 according to the first embodiment of the present invention.

無線基地局11〜13は、同じ構成を有するので、以下無線基地局12について説明し、無線基地局11,13についての説明は省略する。   Since the radio base stations 11 to 13 have the same configuration, the radio base station 12 will be described below, and the description of the radio base stations 11 and 13 will be omitted.

図2に示すように、無線基地局12は、BPF(BAND PASS FILTER)101と、切替器102と、アンプ103と、BPF104と、受信回路105と、検波部106と、レベル判定部107、立下がり検出部108と、タイマ109と、立上がり検出部110と、ラッチ111と、CPU112と、送信回路113と、BPF114と、パワーアンプ115と、ネットワークI/F116とを備える。   As shown in FIG. 2, the radio base station 12 includes a BPF (BAND PASS FILTER) 101, a switch 102, an amplifier 103, a BPF 104, a receiving circuit 105, a detection unit 106, a level determination unit 107, A falling detection unit 108, a timer 109, a rising detection unit 110, a latch 111, a CPU 112, a transmission circuit 113, a BPF 114, a power amplifier 115, and a network I / F 116 are provided.

BPF101,104,114は、特定の周波数帯域の電波のみを通過させ、それ以外の不要電波をカットする。   The BPFs 101, 104, and 114 allow only radio waves in a specific frequency band to pass and cut other unnecessary radio waves.

切替器102は、BPF101より電波が供給されると、供給された電波をアンプ103へ供給し、パワーアンプ115より電波が供給されると、供給された電波をBPF101へ供給する。   The switch 102 supplies the supplied radio wave to the amplifier 103 when the radio wave is supplied from the BPF 101, and supplies the supplied radio wave to the BPF 101 when the radio wave is supplied from the power amplifier 115.

アンプ103は、切替器102より供給された電波を増幅する。   The amplifier 103 amplifies the radio wave supplied from the switch 102.

受信回路105は、BPF104より供給された電波をCPU112へ供給する。   The receiving circuit 105 supplies the radio wave supplied from the BPF 104 to the CPU 112.

検波部106は、BPF104により不要電波がカットされた電波から所定の間隔で電波強度を測定し、測定した電波強度をレベル判定部107へ供給する。   The detection unit 106 measures the radio wave intensity at a predetermined interval from the radio wave from which the unnecessary radio wave is cut by the BPF 104, and supplies the measured radio wave intensity to the level determination unit 107.

レベル判定部107は、供給された電波強度が所定の値以上であると判定した場合には、その判定結果を立下がり検出部108と、立上がり検出部110とに供給する。   When the level determination unit 107 determines that the supplied radio wave intensity is greater than or equal to a predetermined value, the level determination unit 107 supplies the determination result to the fall detection unit 108 and the rise detection unit 110.

立ち下がり検出部108は、レベル判定部107より供給された判定結果に基づいて、電波に含まれるフレームデータの末尾を検出しその時点からタイマ109をリセットした後、タイマ109を起動させる。   The falling detection unit 108 detects the end of the frame data included in the radio wave based on the determination result supplied from the level determination unit 107, resets the timer 109 from that point, and then starts the timer 109.

タイマ109は、起動すると、カウント値をラッチ111に供給する。   When the timer 109 is started, the count value is supplied to the latch 111.

立ち上がり検出部110は、フレームデータの先頭を検出すると、ラッチ111に検出信号を供給する。   The rising edge detection unit 110 supplies a detection signal to the latch 111 when detecting the head of the frame data.

ラッチ111は、タイマ109から供給されたカウント値を保持し、その後、立ち上がり検出部110から検出信号が供給されると、その時点のカウント値をCPU112へ供給する。   The latch 111 holds the count value supplied from the timer 109, and then supplies the count value at that time to the CPU 112 when a detection signal is supplied from the rise detection unit 110.

これにより、立ち下がり検出部108によりフレームデータの末尾が検出されてから、立ち上がり検出部109によりフレームデータの先頭が検出されるまでの時間がカウント値としてCPU112へ供給される。   Thus, the time from when the trailing edge of the frame data is detected by the falling edge detection unit 108 to when the leading edge of the frame data is detected by the rising edge detection unit 109 is supplied to the CPU 112 as a count value.

CPU112は、中枢的な制御を行い、参照フレームデータの送受信や、応答フレームデータの受信を制御する。また、応答時間の算出等の各種演算処理を行う。   The CPU 112 performs central control, and controls transmission / reception of reference frame data and reception of response frame data. In addition, various calculation processes such as calculation of response time are performed.

送信手段113は、CPU112により生成されたフレームデータをBPF114へ供給する。   The transmission unit 113 supplies the frame data generated by the CPU 112 to the BPF 114.

パワーアンプ115は、BPF114により供給された不要な周波数がカットされた信号を増幅し、切替器102、BPFを介してフレームデータを送信する。   The power amplifier 115 amplifies the signal with unnecessary frequency cut supplied by the BPF 114 and transmits frame data via the switch 102 and the BPF.

ネットワークI/F116は、ネットワークカード等の通信装置であり、このネットワークI/F116を介して無線基地局12をネットワーク30に接続することで、無線基地局12は、時間測定手段により測定した応答時間を位置検出装置20に送信し、また、温度測定器14により測定された温度データを、制御装置3へ送信することができる。   The network I / F 116 is a communication device such as a network card. By connecting the radio base station 12 to the network 30 via the network I / F 116, the radio base station 12 can measure the response time measured by the time measuring unit. Can be transmitted to the position detection device 20, and the temperature data measured by the temperature measuring device 14 can be transmitted to the control device 3.

このように、無線基地局12は、BPF(BAND PASS FILTER)101と、切替器102と、アンプ103と、BPF104と、受信回路105と、検波部106と、レベル判定部107、立下がり検出部108と、タイマ109と、立上がり検出部110と、ラッチ111と、CPU112と、送信回路113と、BPF114と、パワーアンプ115とを備えることにより、上述した第2の送受信手段を実現する。また、CPU112内に、その機能上、上述した時間測定手段を備える。   As described above, the radio base station 12 includes a BPF (BAND PASS FILTER) 101, a switch 102, an amplifier 103, a BPF 104, a reception circuit 105, a detection unit 106, a level determination unit 107, and a fall detection unit. 108, a timer 109, a rising edge detection unit 110, a latch 111, a CPU 112, a transmission circuit 113, a BPF 114, and a power amplifier 115, thereby realizing the second transmission / reception means described above. Further, the CPU 112 is provided with the above-described time measuring means in terms of its function.

図3は、本発明の実施例1である機器位置検出システム1の位置検出装置20の構成を示した構成図である。   FIG. 3 is a configuration diagram illustrating the configuration of the position detection device 20 of the device position detection system 1 according to the first embodiment of the present invention.

図3に示すように、位置検出装置20内のCPU201、及びメインメモリ203は、バス205を介して相互に接続されており、このバス205にはまた、I/Oバス207も接続されている。   As shown in FIG. 3, the CPU 201 and the main memory 203 in the position detection device 20 are connected to each other via a bus 205, and an I / O bus 207 is also connected to the bus 205. .

I/Oバス207には、入出力コントローラを介して、記憶部215、入力部217、表示部219、ネットワークI/F221,223が接続されている。   A storage unit 215, an input unit 217, a display unit 219, and network I / Fs 221 and 223 are connected to the I / O bus 207 via an input / output controller.

記憶部215は、磁気ディスクドライブ等であって、オペレーティングシステムなどのプログラムの他に、位置検出プログラムが記憶されている。   The storage unit 215 is a magnetic disk drive or the like, and stores a position detection program in addition to a program such as an operating system.

入力部217は、操作者が各種の操作を入力するキーボード、マウスなどの入力デバイスにより構成されており、例えば操作者の押しボタン操作によりネットワーク30を介して温度測定器14の位置情報を制御装置3へ反映させるための要求コマンドを生成し、この要求コマンドを入出力コントローラ211、I/Oバス207及びメモリバス205を介してCPU201に送信する。   The input unit 217 is configured by an input device such as a keyboard and a mouse through which an operator inputs various operations. For example, the position information of the temperature measuring device 14 is controlled via the network 30 by the operator's push button operation. 3 is generated, and the request command is transmitted to the CPU 201 via the input / output controller 211, the I / O bus 207, and the memory bus 205.

表示部219は、CRT(Cathode Ray Tube)ディスプレイや液晶ディスプレイなどであり、CPU201からメモリバス205、I/Oバス207、入出力コントローラ211を介して、受信した出力信号に基づいて、温度測定器14の位置情報等を表示する装置である。   The display unit 219 is a CRT (Cathode Ray Tube) display, a liquid crystal display, or the like, and based on the output signal received from the CPU 201 via the memory bus 205, the I / O bus 207, and the input / output controller 211, a temperature measuring device. 14 is a device that displays position information and the like.

ネットワークI/F221は、ネットワークカード等の通信装置であり、このネットワークI/F121を介して位置検出装置20をネットワーク30に接続することで、温度測定器14と無線基地局11〜13との間において無線によりフレームデータを送受信した送受信結果を受信し、これに基づいて、温度測定器14の位置を算出することができる。   The network I / F 221 is a communication device such as a network card. By connecting the position detection device 20 to the network 30 via the network I / F 121, the network I / F 221 is connected between the temperature measuring device 14 and the radio base stations 11 to 13. The transmission / reception result of transmission / reception of frame data by radio can be received and the position of the temperature measuring device 14 can be calculated based on the reception / transmission result.

ネットワークI/F223は、ネットワークカード等の通信装置であり、このネットワークI/F121を介して位置検出装置20を制御装置3に接続することで、位置検出装置20は、算出した温度測定器14の位置情報を制御装置3にアップデートすることができる。   The network I / F 223 is a communication device such as a network card. By connecting the position detection device 20 to the control device 3 via the network I / F 121, the position detection device 20 is connected to the calculated temperature measuring device 14. The position information can be updated to the control device 3.

また、CPU201は、メインメモリ203にロードされた位置検出プログラム等のプログラムに従って各種の処理を実行する。そして、CPU201は、位置検出プログラムを実行することによって、その機能上、距離算出手段201aと、位置算出手段201bと実装する。   Further, the CPU 201 executes various processes according to a program such as a position detection program loaded in the main memory 203. And CPU201 is mounted with distance calculation means 201a and position calculation means 201b on the function by running a position detection program.

距離算出手段201aは、無線基地局11〜13が参照フレームデータを受信する際の遅延時間を算出し、この算出した遅延時間と、無線基地局11〜13により測定された応答時間とに基づいて、温度測定器14から参照フレームデータを受信した無線基地局11〜13のうちのいづれか1つまでの距離と、この無線基地局以外であって、参照フレームデータを受信した無線基地局11〜13のうちのいづれか1つから温度測定器14までの距離との差を差分距離として算出する。   The distance calculation unit 201a calculates a delay time when the radio base stations 11 to 13 receive the reference frame data, and based on the calculated delay time and the response time measured by the radio base stations 11 to 13. The distance to any one of the radio base stations 11 to 13 that received the reference frame data from the temperature measuring device 14 and the radio base stations 11 to 13 that received the reference frame data other than the radio base station The difference from the distance from any one of these to the temperature measuring device 14 is calculated as a difference distance.

位置算出手段201bは、距離算出手段201aにより算出された差分距離に基づいて、温度測定器14の位置を示す位置情報を算出する。   The position calculation unit 201b calculates position information indicating the position of the temperature measuring device 14 based on the difference distance calculated by the distance calculation unit 201a.

<作用>
次に、本発明の実施例1である機器位置検出システム1の作用について説明する。
<Action>
Next, the operation of the device position detection system 1 that is Embodiment 1 of the present invention will be described.

図4は、本発明の実施例1である機器位置検出システム1において、無線基地局11が参照フレームデータを送信した場合の無線基地局11〜13と温度測定器14との間でのフレームデータの送受関係を示したタイムチャートである。   FIG. 4 shows frame data between the radio base stations 11 to 13 and the temperature measuring device 14 when the radio base station 11 transmits reference frame data in the device position detection system 1 according to the first embodiment of the present invention. It is the time chart which showed the transmission / reception relationship.

まず、無線基地局11は、t1時点において、位置検出装置20からネットワーク30を介して、参照フレームデータの送信要求を受信すると、参照フレームデータRを送信する。そして、無線基地局11は、参照フレームデータRを送信し終えると、参照フレームデータRの末尾の時点、即ちt5の時刻情報をネットワーク30を介して位置検出装置20へ送信する。   First, when the wireless base station 11 receives a reference frame data transmission request from the position detection device 20 via the network 30 at time t1, the wireless base station 11 transmits reference frame data R. After completing the transmission of the reference frame data R, the radio base station 11 transmits the time at the end of the reference frame data R, that is, the time information at t5 to the position detection device 20 via the network 30.

次に、t2時点において、温度測定器14は、無線基地局11により送信された参照フレームデータRを受信すると、受信した参照フレームデータRの先頭を検出し、t6時点において、受信した参照フレームデータRの末尾を検出し、その後、応答フレームデータMを送信する。   Next, when the temperature measuring device 14 receives the reference frame data R transmitted from the radio base station 11 at time t2, it detects the head of the received reference frame data R, and receives the received reference frame data at time t6. The end of R is detected, and then response frame data M is transmitted.

また、t3時点において、無線基地局12は、無線基地局11により送信された参照フレームデータRを受信し、受信した参照フレームデータRの先頭を検出し、t7時点において、受信した参照フレームデータRの末尾を検出する。その後、t12時点において、無線基地局12は、温度測定器14から送信された応答フレームデータMを受信し、受信した応答フレームデータMの先頭を検出する。このとき、無線基地局12は、t7時点からt12時点までの時間である応答時間TBを測定し、測定した応答時間TBをネットワーク30を介して位置検出装置20へ送信する。さらに、無線基地局12は、参照フレームデータRを受信し終えた時点、即ち参照フレームデータRの末尾の時点であるt7の時刻情報をネットワーク30を介して位置検出装置20へ送信する。   At time t3, the radio base station 12 receives the reference frame data R transmitted from the radio base station 11, detects the head of the received reference frame data R, and receives the received reference frame data R at time t7. Detect the end of. Thereafter, at time t12, the radio base station 12 receives the response frame data M transmitted from the temperature measuring device 14, and detects the head of the received response frame data M. At this time, the radio base station 12 measures the response time TB, which is the time from time t7 to time t12, and transmits the measured response time TB to the position detection device 20 via the network 30. Further, the radio base station 12 transmits the time information of t7, which is the time when reception of the reference frame data R is completed, that is, the end time of the reference frame data R, to the position detection device 20 via the network 30.

また、t4時点において、無線基地局13は、無線基地局11により送信された参照フレームデータRを受信し、受信した参照フレームデータRの先頭を検出し、t8時点において、受信した参照フレームデータRの末尾を検出する。その後、t11時点において、無線基地局13は、温度測定器14から送信された応答フレームデータMを受信し、受信した応答フレームデータの先頭を検出する。このとき、無線基地局12は、t8時点からt11時点までの時間である応答時間TCを測定し、測定した応答時間TCをネットワーク30を介して位置検出装置20へ送信する。さらに、無線基地局13は、参照フレームデータRを受信し終えた時点、即ち参照フレームデータRの末尾の時点であるt8の時刻情報をネットワーク30を介して位置検出装置20へ送信する。   At time t4, the radio base station 13 receives the reference frame data R transmitted from the radio base station 11, detects the head of the received reference frame data R, and receives the received reference frame data R at time t8. Detect the end of. Thereafter, at time t11, the radio base station 13 receives the response frame data M transmitted from the temperature measuring device 14, and detects the head of the received response frame data. At this time, the radio base station 12 measures the response time TC that is the time from the time point t8 to the time point t11, and transmits the measured response time TC to the position detection device 20 via the network 30. Further, the radio base station 13 transmits the time information of t8, which is the time when reception of the reference frame data R is completed, that is, the last time of the reference frame data R, to the position detection device 20 via the network 30.

そして、位置検出装置20は、無線基地局11〜13より送信された時刻情報に基づいて、無線基地局11が参照フレームデータRを送信し終えたt5時点から、無線基地局12が参照フレームデータRを受信し終えたt7時点までの遅延時間TABを算出し、無線基地局11が参照フレームデータRを送信し終えたt5時点から、無線基地局13が参照フレームデータRを受信し終えたt8時点までの遅延時間TACを算出する。   Then, the position detection device 20 is configured so that the radio base station 12 receives the reference frame data from time t5 when the radio base station 11 finishes transmitting the reference frame data R based on the time information transmitted from the radio base stations 11 to 13. The delay time TAB is calculated from the time t5 when the radio base station 11 finishes transmitting the reference frame data R to the time t8 when the radio base station 13 finishes receiving the reference frame data R. The delay time TAC up to the time is calculated.

次に、応答時間TBと応答時間TCとを受信した位置検出装置20は、受信したTBと、TCと、算出したTABと、TACとを用いて、無線基地局12と温度測定器14との距離を電波が伝搬するのに必要な伝搬時間と、無線基地局13と温度測定器14との距離を電波が伝搬するのに必要な伝搬時間との差である差分時間TBCXを算出する。そして、位置検出装置20は、算出した差分時間TBCXに光速を乗じることにより、無線基地局12と温度測定器14との距離と、無線基地局13と温度測定器14との距離との差である差分距離LBCXを算出する。   Next, the position detection device 20 that has received the response time TB and the response time TC uses the received TB, TC, calculated TAB, and TAC to determine whether the radio base station 12 and the temperature measuring device 14 A difference time TBCX, which is a difference between a propagation time required for the radio wave to propagate through the distance and a propagation time required for the radio wave to propagate through the distance between the radio base station 13 and the temperature measuring device 14, is calculated. Then, the position detection device 20 multiplies the calculated difference time TBCX by the speed of light to obtain the difference between the distance between the radio base station 12 and the temperature measurement device 14 and the distance between the radio base station 13 and the temperature measurement device 14. A certain difference distance LBCX is calculated.

具体的には、位置検出装置20は、
TBCX=TB−TC+TAB−TAC (数式1)
を用いて、受信したTBと及びTCと、算出したTAB及びTACとを代入することにより差分時間TBCXを算出し、この算出した差分時間TBCXに光速を乗じることにより、差分距離LBCXを算出する。ここで、TABは、図4に示すように、無線基地局11が参照フレームデータRを送信し終えたt5時点から、無線基地局12が参照フレームデータRを受信し終えたt7時点までの遅延時間を示し、TACは、図4に示すように、無線基地局11が参照フレームデータRを送信し終えたt5時点から、無線基地局13が参照フレームデータRを受信し終えたt8時点までの遅延時間を示している。
Specifically, the position detection device 20 includes:
TBCX = TB-TC + TAB-TAC (Formula 1)
The difference time TBCX is calculated by substituting the received TB and TC, and the calculated TAB and TAC, and the difference distance LBCX is calculated by multiplying the calculated difference time TBCX by the speed of light. Here, as shown in FIG. 4, TAB is a delay from time t5 when the radio base station 11 finishes transmitting the reference frame data R to time t7 when the radio base station 12 finishes receiving the reference frame data R. As shown in FIG. 4, the TAC is from time t5 when the radio base station 11 has finished transmitting the reference frame data R to time t8 when the radio base station 13 has finished receiving the reference frame data R. The delay time is shown.

ここで、上記数式1の導出について以下に説明する。   Here, the derivation of Equation 1 will be described below.

図4に示す温度測定器14と無線基地局12における、t5時点からt12時点までの経過時間に着目すると、
TAX+TD+TBX=TAB+TB (数式2)
が導き出せる。ここで、TAXは、無線基地局11が参照フレームデータRを送信し終えたt5時点から、温度測定器14が参照フレームデータRの末尾を検出したt6時点までの遅延時間を示し、TBXは、図4に示すように、温度測定器14が応答フレームデータMの先頭を検出したt9時点から、無線基地局12が応答フレームデータMの先頭を検出したt12時点までの遅延時間を示している。
Focusing on the elapsed time from the time point t5 to the time point t12 in the temperature measuring device 14 and the wireless base station 12 shown in FIG.
TAX + TD + TBX = TAB + TB (Formula 2)
Can be derived. Here, TAX indicates a delay time from time t5 when the radio base station 11 has finished transmitting the reference frame data R to time t6 when the temperature measuring device 14 detects the end of the reference frame data R, and TBX is As shown in FIG. 4, the delay time from the time t9 when the temperature measuring device 14 detects the head of the response frame data M to the time t12 when the radio base station 12 detects the head of the response frame data M is shown.

また、図4に示す温度測定器14と無線基地局13における、t5時点からt11時点までの経過時間に着目すると、
TAX+TD+TCX=TAC+TC (数式3)
が導き出せる。ここで、同様に、TAXは、無線基地局11が参照フレームデータRの末尾を検出したt5時点から、温度測定器14が参照フレームデータRの末尾を検出したt6時点までの遅延時間を示し、TCXは、図4に示すように、温度測定器14が応答フレームデータMの先頭を検出したt9時点から、無線基地局13が応答フレームデータMの先頭を検出したt11時点までの遅延時間を示している。
In addition, paying attention to the elapsed time from the time t5 to the time t11 in the temperature measuring device 14 and the wireless base station 13 shown in FIG.
TAX + TD + TCX = TAC + TC (Formula 3)
Can be derived. Here, similarly, TAX indicates a delay time from time t5 when the radio base station 11 detects the end of the reference frame data R to time t6 when the temperature measuring device 14 detects the end of the reference frame data R, As shown in FIG. 4, TCX indicates a delay time from time t9 when the temperature measuring device 14 detects the head of the response frame data M to time t11 when the radio base station 13 detects the head of the response frame data M. ing.

そして、上記数式2から数式3の両辺を減算し、整理すると、
TBX−TCX=TB−TC+TAB−TAC (数式4)
を導き出せる。
And when subtracting both sides of Equation 3 from Equation 2 above and rearranging,
TBX-TCX = TB-TC + TAB-TAC (Formula 4)
Can be derived.

ここで、左辺の(TBX−TCX)は、無線基地局12と温度測定器14との距離を電波が伝搬するのに必要な伝搬時間と、無線基地局13と温度測定器14との距離を電波が伝搬するのに必要な伝搬時間との差であるので、即ち、TBCXとなり、数式1を導き出すことができる。   Here, (TBX-TCX) on the left side represents the propagation time required for radio waves to propagate through the distance between the radio base station 12 and the temperature measuring device 14 and the distance between the radio base station 13 and the temperature measuring device 14. Since this is the difference from the propagation time required for the radio wave to propagate, that is, TBCX, and Equation 1 can be derived.

また、上記と同様に、無線基地局13が参照フレームデータを送信することによって、位置検出装置20は、無線基地局11と温度測定器14との距離と、無線基地局12と温度測定器14との距離の差を算出する。   Similarly to the above, when the radio base station 13 transmits the reference frame data, the position detection device 20 causes the distance between the radio base station 11 and the temperature measuring device 14, and the radio base station 12 and the temperature measuring device 14. The difference in distance from is calculated.

図5は、本発明の実施例1である機器位置検出システム1において、無線基地局13がフレームデータを送信した場合の無線基地局11〜13と温度測定器14との間でのフレームデータの送受関係を示したタイムチャートである。   FIG. 5 shows frame data between the radio base stations 11 to 13 and the temperature measuring device 14 when the radio base station 13 transmits frame data in the device position detection system 1 according to the first embodiment of the present invention. It is the time chart which showed the transmission / reception relationship.

まず、無線基地局13は、t21時点において、位置検出装置20からネットワーク30を介して、参照フレームデータの送信要求を受信すると、参照フレームデータRを送信する。そして、無線基地局13は、参照フレームデータRを送信し終えると、参照フレームデータRの末尾の時点、即ちt25の時刻情報をネットワーク30を介して位置検出装置20へ送信する。   First, when the wireless base station 13 receives a reference frame data transmission request from the position detection device 20 via the network 30 at time t21, the wireless base station 13 transmits reference frame data R. After completing the transmission of the reference frame data R, the radio base station 13 transmits the time point at the end of the reference frame data R, that is, time information at t25 to the position detection device 20 via the network 30.

そして、t22時点において、温度測定器14は、無線基地局13により送信された参照フレームデータRを受信し、受信した参照フレームデータRの先頭を検出し、t26時点において、受信した参照フレームデータRの末尾を検出し、その後t29時点において、応答フレームデータMを送信する。   At time t22, the temperature measuring device 14 receives the reference frame data R transmitted by the radio base station 13, detects the head of the received reference frame data R, and receives the received reference frame data R at time t26. After that, the response frame data M is transmitted at time t29.

また、t23時点において、無線基地局12は、無線基地局13により送信された参照フレームデータRを受信し、受信した参照フレームデータRの先頭を検出し、t27時点において、受信した参照フレームデータRの末尾を検出する。その後、t31時点において、無線基地局12は、温度測定器14から送信された応答フレームデータMを受信し、受信した応答フレームデータMの先頭を検出する。このとき、無線基地局12は、t27時点からt31時点までの時間である応答時間TBを測定し、測定した応答時間TBをネットワーク30を介して位置検出装置20へ送信する。さらに、無線基地局12は、参照フレームデータRを受信し終えた時点、即ち参照フレームデータRの末尾の時点であるt27の時刻情報をネットワーク30を介して位置検出装置20へ送信する。   At time t23, the radio base station 12 receives the reference frame data R transmitted by the radio base station 13, detects the head of the received reference frame data R, and receives the received reference frame data R at time t27. Detect the end of. Thereafter, at time t31, the radio base station 12 receives the response frame data M transmitted from the temperature measuring device 14, and detects the head of the received response frame data M. At this time, the radio base station 12 measures the response time TB, which is the time from the time t27 to the time t31, and transmits the measured response time TB to the position detection device 20 via the network 30. Further, the radio base station 12 transmits the time information of t27, which is the time when reception of the reference frame data R, that is, the end time of the reference frame data R, is transmitted to the position detection device 20 via the network 30.

また、t24時点において、無線基地局11は、無線基地局13により送信された参照フレームデータRを受信し、受信した参照フレームデータRの先頭を検出し、t28時点において、受信した参照フレームデータRの末尾を検出する。その後、t32時点において、温度測定器14から送信された応答フレームデータMを受信し、受信した応答フレームデータMの先頭を検出する。このとき、無線基地局12は、t28時点からt32時点までの時間である応答時間TAを測定し、測定した応答時間TAをネットワーク30を介して位置検出装置20へ送信する。さらに、無線基地局11は、参照フレームデータRを受信し終えた時点、即ち参照フレームデータRの末尾の時点あるt28の時刻情報をネットワーク30を介して位置検出装置20へ送信する。   At time t24, the radio base station 11 receives the reference frame data R transmitted from the radio base station 13, detects the head of the received reference frame data R, and receives the received reference frame data R at time t28. Detect the end of. Thereafter, at time t32, the response frame data M transmitted from the temperature measuring device 14 is received, and the head of the received response frame data M is detected. At this time, the radio base station 12 measures the response time TA, which is the time from the time t28 to the time t32, and transmits the measured response time TA to the position detection device 20 via the network 30. Further, the radio base station 11 transmits the time information at time t28 when the reference frame data R is received, that is, at the end of the reference frame data R, to the position detection device 20 via the network 30.

そして、位置検出装置20は、無線基地局11〜13より送信された時刻情報に基づいて、無線基地局13が参照フレームデータRを送信し終えたt25時点から、無線基地局12が参照フレームデータRを受信し終えたt27時点までの遅延時間TCBを算出し、無線基地局11が参照フレームデータRを送信し終えたt25時点から、無線基地局11が参照フレームデータRを受信し終えたt28時点までの遅延時間TCAを算出する。   Then, the position detection device 20 is configured so that the radio base station 12 receives the reference frame data from time t25 when the radio base station 13 finishes transmitting the reference frame data R based on the time information transmitted from the radio base stations 11 to 13. The delay time TCB until the time t27 when R has been received is calculated, and t28 when the radio base station 11 has finished receiving the reference frame data R from the time t25 when the radio base station 11 has finished transmitting the reference frame data R. The delay time TCA until the time is calculated.

次に、応答時間TBと応答時間TAとを受信した位置検出装置20は、受信したTBと、TAと、算出したTCAと、TCBとを用いて、無線基地局11と温度測定器14との距離を電波が伝搬するのに必要な伝搬時間と、無線基地局12と温度測定器14との距離を電波が伝搬するのに必要な伝搬時間との差である差分時間TABXを算出する。そして、位置検出装置20は、算出した時間TABXに光速を乗じることにより、無線基地局11と温度測定器14との距離と、無線基地局12と温度測定器14との距離との差である差分距離LABXを算出する。   Next, the position detection device 20 that has received the response time TB and the response time TA uses the received TB, TA, calculated TCA, and TCB to determine whether the radio base station 11 and the temperature measuring device 14 A difference time TABX, which is a difference between a propagation time necessary for the radio wave to propagate through the distance and a propagation time necessary for the radio wave to propagate through the distance between the radio base station 12 and the temperature measuring device 14, is calculated. And the position detection apparatus 20 is the difference between the distance between the radio base station 11 and the temperature measurement device 14 and the distance between the radio base station 12 and the temperature measurement device 14 by multiplying the calculated time TABX by the speed of light. The difference distance LABX is calculated.

具体的には、位置検出装置20は、
TABX=TB−TA+TCA−TCB (数式5)
を用いて、受信したTB及びTAと、算出したTCA及びTCBとを代入することによって、差分時間TABXを算出し、この算出した差分時間TABXに光速を乗じることにより、差分距離LABXを算出する。ここで、TCAは、図5に示すように、無線基地局13が参照フレームデータRを送信し終えたt25時点から、無線基地局11が参照フレームデータRを受信し終えたt28時点までの遅延時間を示し、TCBは、図5に示すように、無線基地局13が参照フレームデータRを送信し終えたt25時点から、無線基地局12が参照フレームデータRを受信し終えたt27時点までの遅延時間を示している。
Specifically, the position detection device 20 includes:
TABX = TB-TA + TCA-TCB (Formula 5)
Is used to calculate the difference time TABX by substituting the received TB and TA with the calculated TCA and TCB, and the difference time LABX is calculated by multiplying the calculated difference time TABX by the speed of light. Here, as shown in FIG. 5, the TCA is a delay from time t25 when the radio base station 13 finishes transmitting the reference frame data R to time t28 when the radio base station 11 finishes receiving the reference frame data R. As shown in FIG. 5, the TCB indicates time from a time t25 when the radio base station 13 finishes transmitting the reference frame data R to a time t27 when the radio base station 12 finishes receiving the reference frame data R. The delay time is shown.

ここで、上記数式5の導出について以下に説明する。   Here, the derivation of Equation 5 will be described below.

図5に示す温度測定器14と無線基地局12における、t25時点からt31時点までの経過時間に着目すると、
TCX+TD+TBX=TCB+TB (数式6)
が導き出せる。ここで、TCXは、無線基地局13が参照フレームデータRの末尾を検出したt25時点から、温度測定器14が参照フレームデータRの末尾を検出したt26時点までの遅延時間を示し、TBXは、図4に示すように、温度測定器14が応答フレームデータMの先頭を検出したt29時点から、無線基地局12が応答フレームデータMの先頭を検出したt31時点までの遅延時間を示している。
Focusing on the elapsed time from the time t25 to the time t31 in the temperature measuring device 14 and the wireless base station 12 shown in FIG.
TCX + TD + TBX = TCB + TB (Formula 6)
Can be derived. Here, TCX indicates a delay time from time t25 when the radio base station 13 detects the end of the reference frame data R to time t26 when the temperature measuring device 14 detects the end of the reference frame data R, and TBX is As shown in FIG. 4, the delay time from time t29 when the temperature measuring device 14 detects the head of the response frame data M to time t31 when the radio base station 12 detects the head of the response frame data M is shown.

また、図5に示す温度測定器14と無線基地局11における、t25時点からt32時点までの経過時間に着目すると、
TCX+TD+TAX=TCA+TA (数式7)
が導き出せる。ここで、同様に、TCXは、無線基地局11が参照フレームデータRを送信し終えたt25時点から、温度測定器14が参照フレームデータRの末尾を検出したt26時点までの遅延時間を示し、TAXは、図5に示すように、温度測定器14が応答フレームデータMの先頭を検出したt29時点から、無線基地局11が応答フレームデータMの先頭を検出したt32時点までの遅延時間を示している。
In addition, paying attention to the elapsed time from the time t25 to the time t32 in the temperature measuring device 14 and the wireless base station 11 shown in FIG.
TCX + TD + TAX = TCA + TA (Formula 7)
Can be derived. Here, similarly, TCX indicates a delay time from time t25 when the radio base station 11 finishes transmitting the reference frame data R to time t26 when the temperature measuring device 14 detects the end of the reference frame data R, As shown in FIG. 5, TAX indicates a delay time from time t29 when the temperature measuring device 14 detects the head of the response frame data M to time t32 when the radio base station 11 detects the head of the response frame data M. ing.

そして、上記数式7から数式6の両辺を減算し、整理すると、
TAX−TBX=TB−TA+TCA−TCB (数式8)
を導き出せる。
Then, by subtracting both sides of Equation 6 from Equation 7 and rearranging,
TAX-TBX = TB-TA + TCA-TCB (Formula 8)
Can be derived.

ここで、左辺の(TAX−TBX)は、無線基地局11と温度測定器14との距離を電波が伝搬するのに必要な伝搬時間と、無線基地局12と温度測定器14との距離を電波が伝搬するのに必要な伝搬時間の差であるので、即ち、TABXとなり、数式5を導き出すことができる。   Here, (TAX-TBX) on the left side indicates the propagation time required for radio waves to propagate through the distance between the radio base station 11 and the temperature measuring device 14 and the distance between the radio base station 12 and the temperature measuring device 14. Since this is the difference in propagation time necessary for radio waves to propagate, that is, TABX, and Equation 5 can be derived.

次に、位置検出装置20の位置算出手段は、距離算出手段により算出された差分距離LBCX及び差分距離LABXに基づいて、温度測定器14の位置を示す位置情報を算出する。   Next, the position calculation unit of the position detection device 20 calculates position information indicating the position of the temperature measuring device 14 based on the difference distance LBCX and the difference distance LABX calculated by the distance calculation unit.

例えば、ロランCシステム等に採用される双曲線航法の原理によれば「2つの点(A,B)からの距離の差が一定の値となる軌跡は、この2点(A,B)を焦点とする双曲線になる」ことから、位置検出装置20の位置算出手段は、この原理を用いて、温度測定器14の位置を算出する。   For example, according to the principle of hyperbolic navigation adopted in the Loran C system, etc., “The trajectory in which the difference in distance from two points (A, B) has a constant value focuses on these two points (A, B). Therefore, the position calculating means of the position detecting device 20 calculates the position of the temperature measuring device 14 using this principle.

図6は、位置検出装置20の位置算出手段による温度測定器14の位置を示す位置情報を算出するための双曲線を描いた図である。   FIG. 6 is a diagram depicting a hyperbola for calculating position information indicating the position of the temperature measuring device 14 by the position calculating means of the position detecting device 20.

図6に示すように、位置検出装置20の位置算出手段は、LCBXと無線基地局12,13の位置情報とに基づいて、無線基地局12と温度測定器14との距離と、無線基地局13と温度測定器14との距離との差が一定となる双曲線61を描く。次に、同様に、LABXと無線基地局11,12の位置情報とに基づいて、無線基地局11と温度測定器14との距離と、無線基地局12と温度測定器14との距離の差が一定となるように双曲線62を描く。   As shown in FIG. 6, the position calculation means of the position detection device 20 determines the distance between the radio base station 12 and the temperature measuring device 14 based on the LCBX and the position information of the radio base stations 12 and 13, and the radio base station. A hyperbola 61 is drawn in which the difference between the distance 13 and the temperature measuring device 14 is constant. Next, similarly, based on LABX and the position information of the radio base stations 11 and 12, the difference between the distance between the radio base station 11 and the temperature measuring device 14 and the distance between the radio base station 12 and the temperature measuring device 14 are the same. A hyperbola 62 is drawn so that becomes constant.

そして、この描いた双曲線61と双曲線61との交点の座標を温度測定器14の位置情報として生成する。   Then, the coordinates of the intersection of the drawn hyperbola 61 and the hyperbola 61 are generated as position information of the temperature measuring device 14.

このように、本発明の実施例1である機器位置検出システム1によれば、無線基地局11〜13より測定した時刻情報により算出されたLABXやLBCX等の差分距離情報、及び無線基地局11〜13の位置情報に基づいて、温度測定器14の位置情報、即ち、無線基地局11〜13を含む平面上における所定の位置を基準点とした座標情報を算出することができる。   Thus, according to the apparatus position detection system 1 which is Example 1 of this invention, difference distance information, such as LABX and LBCX calculated by the time information measured from the radio base stations 11-13, and the radio base station 11 Based on the position information of ˜13, the position information of the temperature measuring device 14, that is, the coordinate information with a predetermined position on the plane including the radio base stations 11 to 13 as a reference point can be calculated.

また、本発明の実施例1である機器位置検出システム1によれば、数式1及び数式5から分かるように、温度測定器14において測定される時間(TD)を用いることなく、LABXやLBCX等の差分距離情報を算出することができ、これにより、温度測定器14の位置情報を算出することができる。そのため、温度測定器14は高精度な時計を備える必要がなく、装置全体として製造コストを低減することができる。   Further, according to the device position detection system 1 that is Embodiment 1 of the present invention, as can be seen from Equations 1 and 5, LABX, LBCX, etc., without using the time (TD) measured by the temperature measuring device 14. Difference distance information can be calculated, and thereby position information of the temperature measuring instrument 14 can be calculated. Therefore, the temperature measuring device 14 does not need to be provided with a highly accurate timepiece, and the manufacturing cost can be reduced as a whole device.

以上のように、本発明の実施例1である機器位置検出システム1によれば、無線送信局である温度測定器14と、無線受信局である無線基地局11〜13との両方に高い精度の時計を備えることなく、温度測定器14の位置情報を正確に検出することができる。   As described above, according to the device position detection system 1 that is Embodiment 1 of the present invention, both the temperature measuring device 14 that is a wireless transmission station and the wireless base stations 11 to 13 that are wireless reception stations have high accuracy. The position information of the temperature measuring device 14 can be accurately detected without providing the timepiece.

なお、本発明の実施例1である機器位置検出システム1では、複数の無線基地局11〜13間のクロック同期は全く必要としない。   In addition, in the apparatus position detection system 1 which is Example 1 of this invention, the clock synchronization between the several radio base stations 11-13 is not required at all.

また、本発明の実施例1である機器位置検出システム1では、ロランCシステム等に採用される双曲線航法の原理を用いて、温度測定器14の位置情報を算出したが、オメガシステムでの計算原理を用いてもよい。   In the device position detection system 1 according to the first embodiment of the present invention, the position information of the temperature measuring device 14 is calculated using the principle of hyperbolic navigation adopted in the Loran C system or the like. The principle may be used.

本発明の実施例1では、室内に設置された空調機器を制御する空調システムに適用され、室内の温度を測定する温度測定器14と、所定の位置を基準点とした平面上のそれぞれの位置関係が既知である3つの無線基地局11〜13との間において無線によりフレームデータを送受信した送受信結果に基づいて、温度測定器14の平面上の位置を検出する機器位置検出システム1を例に挙げて説明したが、本発明の機器位置検出システムは温度測定器14の空間上の位置を検出することも可能である。   In Embodiment 1 of the present invention, it is applied to an air conditioning system that controls an air conditioner installed indoors, and a temperature measuring device 14 that measures the temperature of the room, and each position on a plane with a predetermined position as a reference point The device position detection system 1 that detects the position of the temperature measuring device 14 on the plane based on the transmission / reception results of wirelessly transmitting / receiving frame data to / from the three wireless base stations 11 to 13 whose relations are known is taken as an example. As described above, the device position detection system of the present invention can also detect the position of the temperature measuring device 14 in space.

本発明の実施例2では、本発明の実施例1の機器位置検出システム1の構成に、3つの無線基地局11〜13と同一平面上にない無線基地局15をさらに追加して、室内の温度を測定する温度測定器14と、所定の位置を基準点とした空間上のそれぞれの位置関係が既知である4つの無線基地局11〜13,15との間において無線によりフレームデータを送受信した送受信結果に基づいて、温度測定器14の空間上の位置を検出する機器位置検出システム1について説明する。   In the second embodiment of the present invention, a wireless base station 15 that is not on the same plane as the three wireless base stations 11 to 13 is further added to the configuration of the device position detection system 1 of the first embodiment of the present invention. Frame data was transmitted and received wirelessly between the temperature measuring device 14 for measuring the temperature and the four wireless base stations 11 to 13 and 15 whose positional relationships in the space with a predetermined position as a reference point are known. The device position detection system 1 that detects the position of the temperature measuring device 14 in the space based on the transmission / reception result will be described.

本発明の実施例2の機器位置検出システム1は、本発明の実施例1の機器位置検出システム1と同様に、無線基地局11から参照フレームデータが送信された場合、無線基地局12と温度測定器14との距離と、無線基地局13と温度測定器14との距離との差である差分距離LBCXを算出する。また、無線基地局13から参照フレームデータが送信された場合、無線基地局11と温度測定器14との距離と、無線基地局12と温度測定器14との距離との差である差分距離LABXを算出する。   Similarly to the device position detection system 1 according to the first embodiment of the present invention, the device position detection system 1 according to the second embodiment of the present invention, when the reference frame data is transmitted from the wireless base station 11, A difference distance LBCX, which is the difference between the distance to the measuring instrument 14 and the distance between the radio base station 13 and the temperature measuring instrument 14, is calculated. When reference frame data is transmitted from the radio base station 13, a difference distance LABX that is a difference between the distance between the radio base station 11 and the temperature measuring device 14 and the distance between the radio base station 12 and the temperature measuring device 14. Is calculated.

さらに、本発明の実施例2の機器位置検出システム1は、無線基地局12から参照フレームデータが送信された場合、本発明の実施例1の機器位置検出システム1と同様に、無線基地局11と温度測定器14との距離と、無線基地局15と温度測定器14との距離との差である差分距離LADXを算出する。   Furthermore, when the reference frame data is transmitted from the radio base station 12, the device position detection system 1 according to the second embodiment of the present invention is similar to the device position detection system 1 according to the first embodiment of the present invention. The difference distance LADX, which is the difference between the distance between the temperature measuring device 14 and the distance between the wireless base station 15 and the temperature measuring device 14, is calculated.

そして、本発明の実施例2の機器位置検出システム1は、これらの算出された差分距離LBCX、差分距離LABX、差分距離LADXに基づいて、温度測定器14の位置、即ち、温度測定器14の空間座標を示す位置情報を算出する。   And the apparatus position detection system 1 of Example 2 of this invention is based on these calculated difference distance LBCX, difference distance LABX, and difference distance LADX, ie, the position of the temperature measuring instrument 14, ie, the temperature measuring instrument 14 Position information indicating spatial coordinates is calculated.

これにより、無線送信局である温度測定器14と、無線受信局である無線基地局11〜13,15との両方に高い精度の時計を備えることなく、温度測定器14の空間的な位置情報を正確に検出することできる。   As a result, the spatial position information of the temperature measuring device 14 can be obtained without providing a high-accuracy clock in both the temperature measuring device 14 that is a wireless transmitting station and the wireless base stations 11 to 13 and 15 that are wireless receiving stations. Can be detected accurately.

本発明の実施例1では、空調システムに適用され、室内の温度を測定する温度測定器と、位置関係が既知である複数の無線基地局との間において無線によりフレームデータを送受信した送受信結果に基づいて、無線送信局の位置を検出する機器位置検出システム1を例に挙げて説明したが、機器位置検出システム1は、空調システム以外にも適用可能である。   In the first embodiment of the present invention, a transmission / reception result obtained by wirelessly transmitting / receiving frame data between a temperature measuring device that measures an indoor temperature and a plurality of wireless base stations whose positional relationships are known is applied to an air conditioning system. Based on the above description, the device position detection system 1 that detects the position of the wireless transmission station has been described as an example.

例えば、本発明の実施例3では、機器位置検出システム1を、音声を出力するスピーカと、音声出力を制御する音響コントローラとを備える音響システムに適用する。本発明の実施例3である機器位置検出システム1は、無線受信局である位置関係が既知の複数の無線基地局と、無線送信局を備えたスピーカと、音声を測定する音声測定器と、位置検出装置とを備える構成とし、スピーカと、複数の無線基地局との間において無線によりフレームデータを送受信した送受信結果に基づいて、スピーカの位置を検出する。そして、音響コントローラが、音声測定器からの測定された音声データと、スピーカの位置情報に基づいて、利用者にとって快適な音響を実現できるように、音声出力を制御する。   For example, in the third embodiment of the present invention, the device position detection system 1 is applied to an acoustic system including a speaker that outputs sound and an acoustic controller that controls sound output. A device position detection system 1 that is Embodiment 3 of the present invention includes a plurality of wireless base stations that are wireless reception stations whose positional relationship is known, a speaker that includes a wireless transmission station, a sound measuring device that measures sound, The position of the speaker is detected based on a transmission / reception result of wirelessly transmitting / receiving frame data between the speaker and a plurality of wireless base stations. Then, the sound controller controls the sound output so that sound comfortable for the user can be realized based on the sound data measured from the sound measuring device and the position information of the speaker.

本発明の実施例3である機器位置検出システム1によれば、高い精度の時計を無線送信局と、無線受信局との両方に備えることなく、無線送信局の位置を正確に検出することができるので、利用者は、無線送信局の位置に基づいて、スピーカの配置を決定することができる。これにより、安価な装置構成で、利用者にとって快適な音響を実現することができる。   According to the device position detection system 1 according to the third embodiment of the present invention, it is possible to accurately detect the position of the wireless transmission station without providing a highly accurate clock at both the wireless transmission station and the wireless reception station. Therefore, the user can determine the arrangement of the speakers based on the position of the wireless transmission station. Accordingly, it is possible to realize sound that is comfortable for the user with an inexpensive apparatus configuration.

本発明の実施例1である機器位置検出システムが適用された空調システムの構成を示した構成図である。It is the block diagram which showed the structure of the air-conditioning system to which the apparatus position detection system which is Example 1 of this invention was applied. 本発明の実施例1である機器位置検出システム1の無線基地局11〜13の構成を示した構成図である。It is the block diagram which showed the structure of the wireless base stations 11-13 of the apparatus position detection system 1 which is Example 1 of this invention. 本発明の実施例1である機器位置検出システム1の位置検出装置20の構成を示した構成図である。It is the block diagram which showed the structure of the position detection apparatus 20 of the apparatus position detection system 1 which is Example 1 of this invention. 本発明の実施例1である機器位置検出システム1において、無線基地局11が参照フレームデータを送信した場合の無線基地局11〜13と温度測定器14との間でのフレームデータの送受関係を示したタイムチャートである。In the device position detection system 1 according to the first embodiment of the present invention, the frame data transmission / reception relationship between the radio base stations 11 to 13 and the temperature measuring device 14 when the radio base station 11 transmits reference frame data. It is the time chart shown. 本発明の実施例1である機器位置検出システム1において、無線基地局13がフレームデータを送信した場合の無線基地局11〜13と温度測定器14との間でのフレームデータの送受関係を示したタイムチャートである。In the apparatus position detection system 1 which is Example 1 of this invention, the transmission / reception relationship of the frame data between the wireless base stations 11-13 when the wireless base station 13 transmits frame data and the temperature measuring device 14 is shown. It is a time chart. 位置検出装置20の位置算出手段による温度測定器14の位置を示す位置情報を算出するための双曲線を描いた図である。It is the figure which drew the hyperbola for calculating the positional information which shows the position of the temperature measuring device 14 by the position calculation means of the position detection apparatus 20. FIG. 従来の無線局の位置推定システムにおいて、データパケットの送信側である基地局とデータパケットの受信側である端末との間でのIEEE802.11規格に基づいたデータパケットの送受関係を示した図である。In the conventional position estimation system of a radio station, it is the figure which showed the transmission / reception relationship of the data packet based on the IEEE802.11 specification between the base station which is a data packet transmission side, and the terminal which is a data packet reception side. is there.

符号の説明Explanation of symbols

1…機器位置検出システム
2…空調システム
3…制御装置
4…空調機器
11〜13,15…無線基地局
14…温度測定器
20…位置検出装置
30…ネットワーク
201…CPU
201a…距離算出手段
201b…位置算出手段
203…メインメモリ
215…記憶部
217…入力部
219…表示部
DESCRIPTION OF SYMBOLS 1 ... Equipment position detection system 2 ... Air conditioning system 3 ... Control apparatus 4 ... Air conditioning equipment 11-13, 15 ... Wireless base station 14 ... Temperature measuring device 20 ... Position detection apparatus 30 ... Network 201 ... CPU
201a ... Distance calculation means 201b ... Position calculation means 203 ... Main memory 215 ... Storage part 217 ... Input part 219 ... Display part

Claims (1)

無線送信局と、それぞれの位置関係が既知である少なくとも3つ以上である複数の無線受信局と、前記無線送信局と前記複数の無線受信局との間におけるフレームデータの無線による送受信結果に基づいて、前記無線送信局の位置を検出する位置検出装置とを備える機器位置検出システムであって、
前記無線送信局は、
前記複数の無線受信局のいずれか1つから送信された参照フレームデータを受信し、該受信した参照フレームデータに対する応答として応答フレームデータを前記複数の無線受信局に送信する第1の送受信手段を有し、
前記複数の無線受信局は、
前記位置検出装置から前記参照フレームデータの送信要求があった場合は、前記参照フレームデータを前記無線送信局及び自局以外の他の無線受信局へ送信し、前記送信要求がない場合は、自局以外の他の無線受信局から送信された前記参照フレームデータを受信した後に、前記参照フレームデータに対する応答として前記無線送信局から送信された応答フレームデータを受信する第2の送受信手段と、
前記第2の送受信手段により前記参照フレームデータを受信完了した時点から前記応答フレームデータを受信開始した時点までの時間を応答時間として測定する時間測定手段と、を有し、
前記位置検出装置は、
前記複数の無線受信局のいずれか1つが、前記無線送信局及び自局以外の他の無線受信局へ前記参照フレームデータを送信完了した時点から、該参照フレームデータを他の無線受信局が受信完了した時点までの時間を遅延時間として算出し、この算出した前記遅延時間と、前記時間測定手段により測定された前記応答時間とに基づいて、前記無線送信局から前記参照フレームデータを受信した複数の無線受信局のうちのいづれか1つまでの距離と、該無線受信局以外であって、前記参照フレームデータを受信した複数の無線基地局のうちのいづれか1つから前記無線送信局までの距離との差を差分距離として算出する距離算出手段と、
前記距離算出手段により算出された差分距離に基づいて、前記無線送信局の位置を示す位置情報を算出する位置算出手段と、を有する
ことを特徴とした機器位置検出システム。
Based on a wireless transmission station, a plurality of wireless reception stations having at least three known positional relationships, and a wireless transmission / reception result of frame data between the wireless transmission station and the plurality of wireless reception stations And a device position detection system comprising a position detection device for detecting the position of the wireless transmission station,
The radio transmitting station is
First transmission / reception means for receiving reference frame data transmitted from any one of the plurality of wireless reception stations and transmitting response frame data to the plurality of wireless reception stations as a response to the received reference frame data; Have
The plurality of radio receiving stations are:
When there is a request for transmission of the reference frame data from the position detection device, the reference frame data is transmitted to the wireless transmission station other than the wireless transmission station and the own station, and when there is no transmission request, A second transmission / reception means for receiving response frame data transmitted from the radio transmission station as a response to the reference frame data after receiving the reference frame data transmitted from a radio reception station other than the station;
Time measuring means for measuring, as a response time, a time from a time when reception of the reference frame data is completed by the second transmitting / receiving means to a time when reception of the response frame data is started,
The position detection device includes:
When any one of the plurality of radio receiving stations completes transmitting the reference frame data to other radio receiving stations other than the radio transmitting station and the own station, the other radio receiving stations receive the reference frame data. A plurality of times when the reference frame data is received from the radio transmitting station based on the calculated delay time and the response time measured by the time measurement unit And a distance from any one of the plurality of radio base stations other than the radio receiving station that has received the reference frame data to the radio transmitting station. A distance calculation means for calculating a difference as a difference distance;
A device position detection system comprising: position calculation means for calculating position information indicating the position of the wireless transmission station based on the difference distance calculated by the distance calculation means.
JP2007266505A 2007-10-12 2007-10-12 Instrument position detection system Pending JP2009097863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007266505A JP2009097863A (en) 2007-10-12 2007-10-12 Instrument position detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007266505A JP2009097863A (en) 2007-10-12 2007-10-12 Instrument position detection system

Publications (1)

Publication Number Publication Date
JP2009097863A true JP2009097863A (en) 2009-05-07

Family

ID=40701023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007266505A Pending JP2009097863A (en) 2007-10-12 2007-10-12 Instrument position detection system

Country Status (1)

Country Link
JP (1) JP2009097863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103848A1 (en) 2009-03-13 2010-09-16 日本電気株式会社 Image identifier matching device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103848A1 (en) 2009-03-13 2010-09-16 日本電気株式会社 Image identifier matching device

Similar Documents

Publication Publication Date Title
EP3356841B1 (en) Cloud-coordinated location system using ultrasonic pulses and radio signals
US10732275B2 (en) Error compensation apparatus and method for measuring distance in wireless communication system
RU2510039C2 (en) Time difference of arrival based positioning with calculation of correction factors for compensating clock offsets of unsynchronised network stations
EP3391074A1 (en) Self-organizing hybrid indoor location system
EP2653886A1 (en) Reference signal sending method and system for measuring location, location measuring method, device, and system using same, and time synchronization method and device using same
EP2778706B1 (en) Position correction device using visible light communication and method thereof
JP2009198454A (en) Position detection system, position detection server, and terminal
EP3328100B1 (en) Instruction transmission method and apparatus based on indication direction, smart device, and storage medium
KR20150135394A (en) Mobile device power management while providing location services
US20140198618A1 (en) Determining room dimensions and a relative layout using audio signals and motion detection
US10191135B2 (en) Wireless network-based positioning method and positioning apparatus
KR20180083095A (en) Indoor positioning method and system using RSSI in beacon
TW201625041A (en) Signal strength distribution establishing method and wireless positioning system
US10955538B2 (en) Positioning transmitter, receiver, and system, and method therefor
JP2009097863A (en) Instrument position detection system
JP2008017027A (en) Position estimator and position estimating method
KR101162727B1 (en) Reference signal sending method and system for mearsuring location, location mearsuring method, apparatus and system using it, time synchronization method and apparatus using it
JP5915170B2 (en) Sound field control apparatus and sound field control method
US20230039932A1 (en) Likelihood-based acoustic positioning
WO2015012767A1 (en) Method and positioning device for localization of a mobile communication device
WO2017206037A1 (en) Positioning method and apparatus
CN114339599A (en) Positioning calibration method, positioning device, storage medium and electronic equipment
JP4064336B2 (en) Radio wave transmission position calculation device, radio wave transmission position calculation method, and program thereof
JP2019007863A (en) Position measurement method, position measuring program, and position measuring device
WO2024101123A1 (en) Information processing device, information processing method, and program