JP2009087723A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2009087723A
JP2009087723A JP2007255919A JP2007255919A JP2009087723A JP 2009087723 A JP2009087723 A JP 2009087723A JP 2007255919 A JP2007255919 A JP 2007255919A JP 2007255919 A JP2007255919 A JP 2007255919A JP 2009087723 A JP2009087723 A JP 2009087723A
Authority
JP
Japan
Prior art keywords
impact
battery
current
assembled battery
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007255919A
Other languages
Japanese (ja)
Inventor
Teppei Koga
哲平 古賀
Katsuhiro Suzuki
克洋 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007255919A priority Critical patent/JP2009087723A/en
Publication of JP2009087723A publication Critical patent/JP2009087723A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make a battery in an unusable state by accurately detecting deterioration of electric characteristics due to impact. <P>SOLUTION: A battery pack is provided with a plurality of unit batteries 1, a voltage detecting circuit 2 detecting voltage of the unit batteries 1, an impact detecting part 3 detecting impact on the battery pack, a current interrupting element 4 interrupting current of the unit batteries 1, and a control circuit 5 controlling the current interrupting element 4 with voltage differences of the unit batteries 1 detected by the voltage detecting circuit 2 and impact signals detected by the impact detecting part 3. With the battery pack, the control circuit 5 controls the current interrupting element 4 in an off-state to interrupt the current, when the voltage differences of the unit batteries 1 detected by the voltage detecting circuit 2 are larger than a preset value and yet with the impact detecting part 3 in a state detecting the impact. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、衝撃を受けて使用できない状態に制御する組電池に関する。   The present invention relates to an assembled battery that is controlled so that it cannot be used under impact.

衝撃は電池を内部ショートさせる原因となる。とくに、電池の高エネルギー密度化は、衝撃に対して脆弱化する傾向となる。衝撃で内部ショートした電池は、自己放電が大きくなって電圧が低下し、また残容量も減少する。複数の電池を内蔵する組電池が落下して衝撃を受けると、特定の素電池が内部ショートしてアンバランスな状態となる。このため閾値よりも大きな衝撃を受けると電流遮断素子で電流を遮断して使用できない状態とする技術が開発されている。(特許文献1参照)
特開平4−188573号公報
The impact causes a short circuit inside the battery. In particular, increasing the energy density of a battery tends to make it vulnerable to impact. A battery that is internally short-circuited by an impact increases self-discharge and voltage, and the remaining capacity also decreases. When an assembled battery containing a plurality of batteries falls and receives an impact, a specific unit cell is short-circuited inside and becomes unbalanced. For this reason, a technology has been developed in which when a shock larger than the threshold is received, the current is interrupted by the current interrupting element so that it cannot be used. (See Patent Document 1)
JP-A-4-188573

特許文献1の公報は、衝撃を検出して電池の電流を遮断する。衝撃は電池を内部ショートさせる等して電気特性を悪化させるが、複数の素電池を内蔵する組電池にあっては、全ての素電池の電気特性が同じように悪化するとは限らない。このため、衝撃で電池の電流を遮断する技術は、電流を遮断する衝撃の閾値の設定が難しい。それは、閾値を小さくすると、電池の電気特性が悪化しない状態で電流を遮断することになり、反対に閾値を大きくすると、電池の電気特性が悪化しているにも関わらず、電流を遮断できないことがあるからである。さらに、同じ衝撃を受けても、ある電池は内部ショートする等で電気特性が悪化するが、別の電池は電気特性が悪化しないことがある。このため、閾値の設定は極めて難しく、また最適な閾値に設定しても、常に電池の状態を理想的な状態で判定して電流を遮断できない。   The gazette of patent document 1 detects an impact and interrupts | blocks the battery current. The impact deteriorates the electrical characteristics by, for example, short-circuiting the battery. However, in an assembled battery including a plurality of unit cells, the electrical characteristics of all the unit cells are not necessarily deteriorated in the same manner. For this reason, it is difficult to set the threshold value of the impact for interrupting the current in the technology for interrupting the battery current by impact. That is, if the threshold value is decreased, the current is cut off in a state where the electric characteristics of the battery are not deteriorated. Conversely, if the threshold value is increased, the electric current cannot be cut off even though the electric characteristics of the battery are deteriorated. Because there is. Furthermore, even if the same impact is applied, the electrical characteristics of one battery may deteriorate due to internal short-circuiting, but the electrical characteristics of another battery may not deteriorate. For this reason, it is extremely difficult to set the threshold value, and even when the optimum threshold value is set, the battery state cannot always be determined in an ideal state to interrupt the current.

本発明は、このような欠点を解決することを目的に開発されたものである。本発明の重要な目的は、衝撃による電気特性の悪化を正確に検出して電池を使用できない状態にできる組電池を提供することにある。   The present invention has been developed for the purpose of solving such drawbacks. An important object of the present invention is to provide an assembled battery that can accurately detect deterioration of electrical characteristics due to impact and render the battery unusable.

本発明の組電池は、前述の目的を達成するために以下の構成を備える。
組電池は、複数の素電池1と、素電池1の電圧を検出する電圧検出回路2と、組電池の衝撃を検出する衝撃検出部3と、素電池1の電流を遮断する電流遮断素子4と、電圧検出回路2が検出する素電池1の電圧差と衝撃検出部3が検出する衝撃信号で電流遮断素子4を制御する制御回路5とを備える。この組電池は、電圧検出回路2が検出する素電池1の電圧差が設定値よりも大きく、かつ衝撃検出部3が衝撃を検出した状態で、制御回路5が電流遮断素子4をオフに制御して電流を遮断する。
The assembled battery of the present invention has the following configuration in order to achieve the above-described object.
The assembled battery includes a plurality of unit cells 1, a voltage detection circuit 2 that detects the voltage of the unit cell 1, an impact detection unit 3 that detects an impact of the assembled cell, and a current blocking element 4 that blocks the current of the unit cell 1. And a control circuit 5 that controls the current interrupting element 4 with a voltage difference of the unit cell 1 detected by the voltage detection circuit 2 and an impact signal detected by the impact detection unit 3. In this assembled battery, the control circuit 5 controls the current interruption element 4 to be turned off in a state where the voltage difference of the unit cell 1 detected by the voltage detection circuit 2 is larger than the set value and the impact detection unit 3 detects the impact. And cut off the current.

本発明の請求項2の組電池は、衝撃検出部3が衝撃センサ8を備えている。また、本発明の請求項3の組電池は、衝撃検出部3が、組電池を装着している電子機器20から入力される衝撃信号で衝撃を検出する。   In the assembled battery according to claim 2 of the present invention, the impact detector 3 includes the impact sensor 8. In the assembled battery according to claim 3 of the present invention, the impact detection unit 3 detects an impact by an impact signal input from the electronic device 20 on which the assembled battery is mounted.

本発明の請求項4の組電池は、衝撃検出部3が、加速度から衝撃を検出する。さらに、本発明の請求項5の組電池は、衝撃検出部3が、加速度から落下高さを演算して衝撃を検出する。   In the assembled battery according to claim 4 of the present invention, the impact detector 3 detects the impact from the acceleration. Furthermore, in the battery pack of claim 5 of the present invention, the impact detector 3 detects the impact by calculating the drop height from the acceleration.

本発明の請求項6の組電池は、衝撃検出部3が衝撃を検出してからの経過時間をカウントするタイマ17を備え、素電池1の電圧差が設定値を超え、かつタイマ17のカウント値が設定範囲にあることを検出して、制御回路5が電流遮断素子4をオフに切り換える。   The assembled battery according to claim 6 of the present invention includes a timer 17 that counts an elapsed time after the impact detector 3 detects an impact, the voltage difference of the unit cell 1 exceeds a set value, and the timer 17 counts. Upon detecting that the value is within the set range, the control circuit 5 switches the current interruption element 4 off.

本発明の組電池は、衝撃による電気特性の悪化を検出して、電池を使用できない状態にできる特徴がある。それは、本発明の組電池が、衝撃のみでなく、各々の素電池の電圧差と衝撃の両方で電流を遮断するかどうかを判断して、電流遮断素子を制御することによって実現するからである。複数の素電池を備える組電池は、電池の劣化が全く同一ではないことから、経時的に電圧差が発生する。したがって、電圧差のみで電池を使用できない状態に切り換えると、衝撃で電気特性が悪化していない組電池も使用できない状態となってしまう。本発明は、素電池の電圧差のみでなく、電圧差が発生する状態にあっては、その電圧差が衝撃によるものであるかどうかを判定して、電流遮断素子を、電流を遮断する状態に切り換える。したがって、衝撃を受けて素電池に電圧差が発生した組電池のみ、すなわち衝撃で電気特性が悪化した組電池が確実に使用できない状態に制御される。   The assembled battery of the present invention has a feature that it can detect the deterioration of electrical characteristics due to impact and make the battery unusable. This is because the assembled battery of the present invention is realized not only by impact but also by controlling whether or not the current is interrupted by both voltage difference and impact of each unit cell and controlling the current interrupting element. . A battery pack including a plurality of unit cells has a voltage difference with time because the deterioration of the batteries is not exactly the same. Therefore, when the battery is switched to a state where the battery cannot be used only by the voltage difference, the assembled battery whose electric characteristics are not deteriorated due to the impact is not usable. In the state where the voltage difference occurs in addition to the voltage difference of the unit cell, the present invention determines whether the voltage difference is due to an impact, and the current interrupting element interrupts the current. Switch to. Therefore, only the assembled battery in which the voltage difference is generated in the unit cell due to the impact, that is, the assembled battery whose electrical characteristics have deteriorated due to the impact is controlled so as not to be used reliably.

さらに、本発明の請求項2の組電池は、衝撃検出部に衝撃センサを設けているので、組電池自体で衝撃を検出し、衝撃で電気特性が悪化したことを検出して電流を遮断して使用できなくできる。また、本発明の請求項3の組電池は、衝撃検出部が、組電池を装着している電子機器から入力される衝撃信号で衝撃を検出する。この組電池は、内部に衝撃センサを内蔵する必要がなく、組電池を装着している電子機器に設けている衝撃センサを利用して衝撃を検出する。電子機器は、自身の制御する装置を保護するために、衝撃センサを装備するものがある。この電子機器に装着される組電池にあっては、電子機器の衝撃センサの信号を利用して衝撃を検出することから、組電池に衝撃センサを内蔵する必要がなく、低コストで衝撃を検出して、衝撃による電気特性が悪化から使用できない状態に制御できる。   Furthermore, since the assembled battery according to claim 2 of the present invention is provided with an impact sensor in the impact detection section, the impact is detected by the assembled battery itself, and the current is cut off by detecting that the electrical characteristics have deteriorated due to the impact. Can not be used. In the assembled battery according to claim 3 of the present invention, the impact detection unit detects an impact by an impact signal input from an electronic device in which the assembled battery is mounted. This assembled battery does not need to incorporate an impact sensor inside, and detects an impact using an impact sensor provided in an electronic device in which the assembled battery is mounted. Some electronic devices are equipped with an impact sensor in order to protect a device controlled by the electronic device. In the assembled battery installed in this electronic device, the impact is detected using the signal of the impact sensor of the electronic device, so it is not necessary to incorporate the impact sensor in the assembled battery, and the impact is detected at low cost. Thus, it can be controlled so that it cannot be used because the electrical characteristics due to impact deteriorate.

また、本発明の請求項4の組電池は、衝撃検出部でもって、加速度から衝撃を検出し、請求項5の組電池は、加速度から落下高さを演算して衝撃を検出する。直接に衝撃を検出する組電池は、回路構成を簡単にできる。また、加速度の変化から落下高さを演算する組電池にあっては、たとえば、1.6m落下したかどうか等を判定して、落下高さを閾値とした使用可否判定も行え、この衝撃で電気特性が悪化したかどうかを判定できる。   Further, the assembled battery of claim 4 of the present invention detects an impact from the acceleration by the impact detector, and the assembled battery of claim 5 detects the impact by calculating the drop height from the acceleration. An assembled battery that directly detects impact can simplify the circuit configuration. In addition, in the battery pack that calculates the drop height from the change in acceleration, for example, it is possible to determine whether or not the battery has dropped by 1.6 m and to determine whether the drop height can be used as a threshold. It can be determined whether the electrical characteristics have deteriorated.

さらに、本発明の請求項6の組電池は、衝撃検出部が衝撃を検出してからの経過時間をカウントするタイマを備えており、素電池の電圧差が設定値を超え、かつタイマのカウント値が設定範囲にあることを検出して、制御回路が電流遮断素子をオフに切り換える。この組電池にあっては、たとえば、素電池に電圧差が発生することを検出すると、電圧差が発生する以前の、たとえば、数日から一週間前に衝撃を受けたかどうかを判定して、電流を遮断できる。この組電池は、異常であるか許容される自然劣化であるかを区別して、電池の異常を判断して使用できない状態に制御できる。たとえば、衝撃を受けて一週間経過した後に内部ショートなどで電気特性が悪化したことを正確に検出して、使用できない状態に制御できる。   Furthermore, the assembled battery according to claim 6 of the present invention includes a timer that counts an elapsed time after the impact detection unit detects the impact, and the voltage difference between the unit cells exceeds a set value, and the timer counts. Upon detecting that the value is within the set range, the control circuit switches the current interrupt device off. In this assembled battery, for example, when it is detected that a voltage difference is generated in the unit cell, it is determined whether or not the battery is shocked, for example, several days to one week before the voltage difference occurs, The current can be cut off. This assembled battery can be controlled to be in a state where it cannot be used by discriminating whether the battery is abnormal or allowed natural degradation and judging battery abnormality. For example, it is possible to accurately detect that the electrical characteristics have deteriorated due to an internal short-circuit after one week has passed after receiving an impact, and to control it so that it cannot be used.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための組電池を例示するものであって、本発明は組電池を以下のものに特定しない。   Embodiments of the present invention will be described below with reference to the drawings. However, the example shown below illustrates the assembled battery for embodying the technical idea of the present invention, and the present invention does not specify the assembled battery as follows.

さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。   Further, in this specification, for easy understanding of the scope of claims, numbers corresponding to the members shown in the embodiments are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.

図1に示す実施例において、組電池10を電子機器20に装着している。電子機器20は、組電池10を充電する電源を備える携帯機器PCである。電子機器20である携帯機器PCは、例えばノート型のような携帯型パーソナルコンピュータである。組電池10は、通常、携帯機器PCに着脱自在に装着される構造である。電子機器20は、コンセントからの交流商用電力を直流電力に変換するアダプター(図示せず)から出力される直流電力を供給し、この電力を制御して、供給するマイコンを内蔵する制御・電源回路21を備えている。制御・電源回路21からの出力電力は、組電池10を充電するのに利用され、さらに電子機器20の負荷22に供給される。また、電子機器20は、商用電力より電力供給がない場合は、組電池10より電力が供給され、制御・電源回路21及び負荷22を駆動させる。   In the embodiment shown in FIG. 1, the assembled battery 10 is mounted on the electronic device 20. The electronic device 20 is a portable device PC including a power source that charges the assembled battery 10. The portable device PC which is the electronic device 20 is a portable personal computer such as a notebook computer. The assembled battery 10 is normally structured to be detachably attached to the mobile device PC. The electronic device 20 supplies DC power output from an adapter (not shown) that converts AC commercial power from an outlet into DC power, controls the power, and includes a control / power supply circuit incorporating a microcomputer to be supplied 21 is provided. The output power from the control / power circuit 21 is used to charge the assembled battery 10 and further supplied to the load 22 of the electronic device 20. In addition, when the electronic device 20 is not supplied with electric power from commercial power, the electric power is supplied from the assembled battery 10 to drive the control / power circuit 21 and the load 22.

組電池10は、複数の素電池1と、素電池1の電圧を検出する電圧検出回路2と、組電池10に対する外部からの衝撃を検出する衝撃検出部3と、素電池1の電流を遮断する電流遮断素子4と、電圧検出回路2が検出する素電池1の電圧差と衝撃検出部3が検出する衝撃信号で電流遮断素子4を制御する制御回路5とを備える。制御回路5は、電圧検出回路2が検出する素電池1の電圧差が設定値よりも大きく、かつ衝撃検出部3が衝撃を検出した状態で電流遮断素子4をオフに制御して電流を遮断する。   The battery pack 10 includes a plurality of unit cells 1, a voltage detection circuit 2 that detects a voltage of the unit cell 1, an impact detection unit 3 that detects an external impact on the battery pack 10, and a current of the unit cell 1. And a control circuit 5 that controls the current interrupting element 4 with a voltage difference of the unit cell 1 detected by the voltage detecting circuit 2 and an impact signal detected by the impact detecting unit 3. The control circuit 5 cuts off the current by controlling the current interruption element 4 to be turned off in a state where the voltage difference of the unit cell 1 detected by the voltage detection circuit 2 is larger than the set value and the impact detection unit 3 detects the impact. To do.

図の組電池10は、3組の電池ブロック11を直列に接続している。各々の電池ブロック11は、3つの素電池1を並列に接続している。この組電池10は、3組の電池ブロック11を直列に接続しているが、本発明の組電池は、2組の電池ブロックを直列に接続し、あるいは4組以上の電池ブロックを直列に接続することもできる。さらに、図の組電池は、複数の素電池1を並列に接続して電池ブロック11としているが、素電池を並列に接続することなく、全ての素電池を直列に接続することもできる。素電池1は、リチウムイオン二次電池であるが、ニッケル水素電池やニッケルカドミウム電池とすることもできる。   The battery pack 10 shown in the figure has three battery blocks 11 connected in series. Each battery block 11 connects three unit cells 1 in parallel. In this assembled battery 10, three battery blocks 11 are connected in series, but in the assembled battery of the present invention, two battery blocks are connected in series, or four or more battery blocks are connected in series. You can also Furthermore, although the assembled battery of the figure has connected the several unit cell 1 in parallel and is used as the battery block 11, it can also connect all the unit cells in series, without connecting a unit cell in parallel. The unit cell 1 is a lithium ion secondary battery, but can also be a nickel metal hydride battery or a nickel cadmium battery.

電圧検出回路2は、各々の素電池1の電圧、図の組電池10は電池ブロック11の電圧を検出し、検出した電圧をデジタル信号に変換して制御回路5に入力する。したがって、電圧検出回路2は、電圧を検出する素電池1を切り換えるマルチプレクサ(図示せず)を入力側に設けており、このマルチプレクサの出力をA/Dコンバータ(図示せず)でデジタル信号に変換して出力する。電圧検出回路2は、所定のサンプリング周期、たとえば10msecないし500msecのサンプリング周期で各々の素電池1の電圧を検出して制御回路5に出力する   The voltage detection circuit 2 detects the voltage of each unit cell 1, the assembled battery 10 in the figure detects the voltage of the battery block 11, converts the detected voltage into a digital signal, and inputs the digital signal to the control circuit 5. Therefore, the voltage detection circuit 2 is provided with a multiplexer (not shown) for switching the unit cell 1 for detecting the voltage on the input side, and the output of this multiplexer is converted into a digital signal by an A / D converter (not shown). And output. The voltage detection circuit 2 detects the voltage of each unit cell 1 at a predetermined sampling period, for example, a sampling period of 10 msec to 500 msec, and outputs it to the control circuit 5.

さらに、図の組電池10は、素電池1の充放電の電流を検出する電流検出回路6と電池の温度を検出する温度検出回路7も備える。電流検出回路6も、一定のサンプリング周期で充放電の電流を検出して、検出した電流値をデジタル信号に変換して制御回路5に出力する。また、温度検出回路7も検出した電池温度をデジタル信号に変換して制御回路5に出力する。   Furthermore, the assembled battery 10 shown in the figure also includes a current detection circuit 6 that detects a charge / discharge current of the unit cell 1 and a temperature detection circuit 7 that detects the temperature of the battery. The current detection circuit 6 also detects a charge / discharge current at a constant sampling period, converts the detected current value into a digital signal, and outputs the digital signal to the control circuit 5. The temperature detection circuit 7 also converts the detected battery temperature into a digital signal and outputs it to the control circuit 5.

衝撃検出部3は、組電池10に内蔵する衝撃センサ8で加速度を検出して衝撃を検出し、あるいは、組電池10を装着する電子機器20に内蔵される衝撃センサ28から入力される衝撃信号で衝撃を検出する。電子機器20から入力される衝撃信号で衝撃を検出する衝撃検出部3は、通信回路9を介して電子機器20の制御・電源回路21に接続される。この電子機器20は、鎖線で示すように衝撃センサ28を制御・電源回路21に接続している。また、制御・電源回路21は、SMBus等の通信回線12を介して組電池10の通信回路9に接続されて、衝撃センサ28から入力される衝撃信号を、通信回線12を介して組電池10の衝撃検出部3に入力する。   The impact detection unit 3 detects acceleration by detecting acceleration with an impact sensor 8 built in the assembled battery 10, or an impact signal input from an impact sensor 28 built in the electronic device 20 to which the assembled battery 10 is mounted. The impact is detected with. The impact detection unit 3 that detects an impact using an impact signal input from the electronic device 20 is connected to the control / power supply circuit 21 of the electronic device 20 via the communication circuit 9. In the electronic device 20, an impact sensor 28 is connected to a control / power supply circuit 21 as indicated by a chain line. Further, the control / power circuit 21 is connected to the communication circuit 9 of the assembled battery 10 via the communication line 12 such as SMBus, and the shock signal input from the impact sensor 28 is transmitted to the assembled battery 10 via the communication line 12. Are input to the impact detection unit 3.

衝撃検出部3は、衝撃センサ8、28が検出する加速度から直接に衝撃を検出し、あるいは加速度の変化から落下高さを演算して衝撃を検出する。衝撃センサ8、28が検出する加速度から衝撃を直接に検出する衝撃検出部3は、衝撃センサ8、28から出力される信号が設定値以上となると、組電池10が衝撃を受けたことを検出する。この衝撃検出部3は、回路構成を簡単にしながら衝撃を検出できる。また、加速度の変化から落下高さを演算して衝撃を検出する衝撃検出部3は、落下前の加速度ゼロの状態から加速度を検出し、落下等により床等に衝突して、加速度がゼロとなる時間から落下高さを演算する。落下する物体の加速度がゼロとなるからである。落下高さ(h)は、以下の式から演算できる。この式において、時間(t)は加速度がゼロになる時間、gは重力加速度であって約9.8m/secである。
h=gt/2
この式から、たとえば加速度がゼロになる時間が、0.57secとなると、落下高さは約1.6mとなる。
The impact detection unit 3 detects an impact directly from the acceleration detected by the impact sensors 8 and 28, or calculates a drop height from a change in acceleration to detect the impact. The impact detection unit 3 that directly detects an impact from the acceleration detected by the impact sensors 8 and 28 detects that the assembled battery 10 has received an impact when a signal output from the impact sensors 8 and 28 exceeds a set value. To do. The impact detector 3 can detect an impact while simplifying the circuit configuration. Further, the impact detection unit 3 that detects the impact by calculating the fall height from the change in acceleration detects the acceleration from the state of zero acceleration before the fall, and collides against the floor or the like due to the fall, and the acceleration is zero. The fall height is calculated from the time. This is because the acceleration of the falling object becomes zero. The drop height (h) can be calculated from the following equation. In this equation, time (t) is the time when acceleration becomes zero, and g is the gravitational acceleration, which is about 9.8 m / sec 2 .
h = gt 2/2
From this equation, for example, if the time for which the acceleration is zero is 0.57 sec, the drop height is about 1.6 m.

現在、落下試験では1.6mの高さを基準としていることから、衝撃検出部3は、落下高さが1.6m以上で衝撃を受けたと判定することができる。この場合、加速度がゼロとなる時間が0.57secを閾値として、これより長いと衝撃を受けたと判定する。ただ、衝撃検出部3の閾値は、必ずしもこの落下高さには特定せず、これよりも低い閾値とし、あるいは高い閾値とすることもできる。とくに、本発明は、衝撃と素電池1の電圧差の両方で電流遮断素子4を遮断するので、閾値を小さくして、より確実に衝撃による電気特性の悪化から電流を遮断することができる。   Currently, since the drop test is based on a height of 1.6 m, the impact detection unit 3 can determine that the impact has been received when the drop height is 1.6 m or more. In this case, it is determined that an impact has been received if the time during which the acceleration is zero is 0.57 sec. However, the threshold value of the impact detection unit 3 is not necessarily specified as the drop height, and may be a lower threshold value or a higher threshold value. In particular, according to the present invention, since the current interrupting element 4 is interrupted by both the impact and the voltage difference between the unit cells 1, the threshold value can be reduced, and the current can be interrupted more reliably from the deterioration of the electrical characteristics due to the impact.

制御回路5は、電圧検出回路2から入力される各電池1の電圧を比較して電池1の電圧差を検出する。制御回路5は、たとえば、最高電圧の電池の電圧から最低電圧の電池の電圧を減算して電池の電圧差を検出し、あるいは、全体の平均電圧と各電池の電圧との差の絶対値を電圧差として検出する。通常、正常な電池の電圧のばらつきは、10mV以内となる。ただ、電池が内部ショート等の異常によって電圧のバランスが崩れると、3〜4日で100mV程度のばらつきが生じる。したがって、電池の電圧差が、設定値以上となると、電池が内部ショートした可能性が高いと判定できる。ただ、衝撃後、数日間は電池の自己放電によるばらつきか、落下の衝撃による内部ショートでのばらつきかが判別できない。このため、電圧のばらつきが設定値以上発生したとき、いいかえると電池の電圧差が設定値以上になると、過去の所定の期間内、たとえば、1週間以内に落下の衝撃を受けた履歴が残っているかどうかで判定する。すなわち、制御回路5は、電池1の電圧差が設定値よりも大きく、かつ衝撃検出部3が所定の期間内に衝撃を検出した状態において、電流遮断素子4をオフに制御して電流を遮断する。   The control circuit 5 compares the voltage of each battery 1 input from the voltage detection circuit 2 to detect a voltage difference between the batteries 1. For example, the control circuit 5 subtracts the voltage of the lowest battery from the voltage of the highest voltage to detect the voltage difference of the battery, or calculates the absolute value of the difference between the overall average voltage and the voltage of each battery. Detect as voltage difference. Usually, the variation in voltage of a normal battery is within 10 mV. However, when the voltage balance is lost due to an abnormality such as an internal short circuit, a variation of about 100 mV occurs in 3 to 4 days. Therefore, when the voltage difference between the batteries is equal to or greater than the set value, it can be determined that there is a high possibility that the battery is short-circuited internally. However, after the impact, it is not possible to distinguish between variations due to battery self-discharge or variations due to an internal short circuit due to a drop impact. For this reason, when the voltage variation exceeds the set value, in other words, if the voltage difference between the batteries exceeds the set value, there will be a history of impacts of dropping within a predetermined period in the past, for example, within one week. Judge whether or not. That is, the control circuit 5 cuts off the current by controlling the current interruption element 4 to be off in a state where the voltage difference of the battery 1 is larger than the set value and the impact detection unit 3 detects the impact within a predetermined period. To do.

このことを実現するために、図の組電池は、衝撃検出部3が衝撃を検出してからの経過時間をカウントするタイマ17を備えている。この組電池1は、電池1が落下等の衝撃を受けたことを衝撃検出部3が検出すると、タイマ17が経過時間のカウントを開始する。さらに、その後、制御回路5が、素電池1に電圧差が発生することを検出すると、タイマ17のカウント値が設定範囲にあることを検出して電流を遮断する。いいかえると、電圧差が発生する以前の所定の期間内、たとえば、数日から1週間以内に衝撃を受けたかどうかを判定して、この期間内に落下の衝撃を受けた履歴があると電池の内部ショートが原因で電池のばらつきが発生したと判定して電流を遮断する。すなわち、この組電池は、素電池1の電圧差が設定値を超え、かつタイマ17のカウント値が設定範囲にあることを検出して、制御回路5が電流遮断素子4をオフに切り換えて電流を遮断する。   In order to realize this, the assembled battery shown in the figure includes a timer 17 that counts an elapsed time after the impact detection unit 3 detects the impact. In the assembled battery 1, when the impact detection unit 3 detects that the battery 1 has received an impact such as a drop, the timer 17 starts counting elapsed time. Further, after that, when the control circuit 5 detects that a voltage difference is generated in the unit cell 1, it detects that the count value of the timer 17 is within the set range and cuts off the current. In other words, it is determined whether or not there has been a shock within a predetermined period before the voltage difference occurs, for example, within a few days to a week. It is determined that battery variation has occurred due to an internal short circuit, and the current is cut off. That is, the battery pack detects that the voltage difference of the unit cell 1 exceeds the set value and that the count value of the timer 17 is within the set range, and the control circuit 5 switches the current interrupting element 4 off to supply current. Shut off.

図の組電池10は、電流遮断素子4を電流で溶断するヒューズ13としている。ヒューズ13は溶断されると復帰しない。このため、ヒューズ13からなる電流遮断素子4は、制御回路5でオフ状態に制御されると復帰することがない。このため、衝撃を受けて内部ショートなどで電流を遮断すると、その後に組電池10を使用できない状態に保持して安全性を高くできる。ただ、本発明の組電池は、電流遮断素子をヒューズには特定しない。電流遮断素子は、接点をオフ状態に保持するブレーカや、FET、トランジスターなどからなるスイッチング素子をオフ状態に保持する回路で実現することもできる。   In the illustrated assembled battery 10, the current interrupting element 4 is a fuse 13 that is blown by current. The fuse 13 does not return when blown. For this reason, the current interrupting element 4 composed of the fuse 13 does not return when the control circuit 5 controls the off state. For this reason, when the current is cut off due to an internal short circuit in response to an impact, the assembled battery 10 can be kept in a state where it cannot be used thereafter, and safety can be increased. However, the battery pack of the present invention does not specify the current interrupting element as a fuse. The current interrupting element can also be realized by a circuit that holds a switching element made up of a circuit breaker, an FET, a transistor, or the like in an off state that keeps the contact point in an off state.

図1のヒューズ13からなる電流遮断素子4は、ヒューズ13に接近して熱結合される状態に配置される加熱抵抗14と、この加熱抵抗14に強制的に電流を流して、加熱抵抗14の熱でヒューズ13を溶断するスイッチング素子15とを備える。制御回路5は、スイッチング素子15をオフからオンに切り換えて、電流遮断素子4のヒューズ13を溶断する。オン状態に切り換えられたスイッチング素子15は、電池1又は電子機器20の制御・電源回路21からの供給される電流で加熱抵抗14を発熱させる。発熱する加熱抵抗14がヒューズ13を溶断する。したがって、制御回路5は、電流遮断素子4をオフに制御するときに、スイッチング素子15をオンに切り換える。 4   The current interrupting element 4 comprising the fuse 13 of FIG. 1 has a heating resistor 14 disposed in a state of being thermally coupled close to the fuse 13, and a current is forced to flow through the heating resistor 14, And a switching element 15 for fusing the fuse 13 with heat. The control circuit 5 switches the switching element 15 from off to on and blows the fuse 13 of the current interrupting element 4. The switching element 15 switched to the on state causes the heating resistor 14 to generate heat with a current supplied from the control / power circuit 21 of the battery 1 or the electronic device 20. The heating resistor 14 that generates heat blows the fuse 13. Therefore, the control circuit 5 switches the switching element 15 on when controlling the current interrupting element 4 off. 4

さらに、図の組電池10は、電池1の過充電と過放電を防止するために、一対の制御素子16を電池1の出力側に直列に接続している。この制御素子16は、寄生ダイオードを有するFETである。この制御素子16は、充電電流を遮断するFET16Aと、放電電流を遮断するFET16Bを直列に接続している。制御回路5は、素電池1の残容量や電圧を検出し、素電池1が過充電される状態になると充電電流を遮断するFET16Aをオフに切り換える。この状態で組電池10が放電されると、放電電流はオフ状態にある充電電流を遮断するFET16Aの寄生ダイオードを介して流れて放電される。放電されて電池1が過充電されない状態になると、充電電流を遮断するFET16Aはオフからオンに切り換えられて、小さい内部抵抗で放電電流を流す。素電池1が過放電される状態になると放電電流を遮断するFET16Bをオフに切り換える。この状態で組電池10が充電されると、充電電流はオフ状態にある放電電流を遮断するFET16Bの寄生ダイオードを介して流れて充電される。充電されて電池1が過放電されない状態になると、放電電流を遮断するFET16Bはオフからオンに切り換えられて、小さい内部抵抗で充電電流を流す。制御回路5は、電流検出回路6が検出する電池1の充放電の電流を積算して電池1の残容量を演算する。   Furthermore, the assembled battery 10 in the figure has a pair of control elements 16 connected in series to the output side of the battery 1 in order to prevent overcharging and overdischarging of the battery 1. The control element 16 is an FET having a parasitic diode. This control element 16 is connected in series with an FET 16A that cuts off the charging current and an FET 16B that cuts off the discharging current. The control circuit 5 detects the remaining capacity and voltage of the unit cell 1 and switches off the FET 16A that cuts off the charging current when the unit cell 1 is overcharged. When the battery pack 10 is discharged in this state, the discharge current flows through the parasitic diode of the FET 16A that cuts off the charging current in the off state, and is discharged. When discharged and the battery 1 is not overcharged, the FET 16A that cuts off the charging current is switched from OFF to ON, and the discharging current flows with a small internal resistance. When the unit cell 1 is overdischarged, the FET 16B that cuts off the discharge current is switched off. When the assembled battery 10 is charged in this state, the charging current flows through the parasitic diode of the FET 16B that cuts off the discharging current in the off state, and is charged. When the battery 1 is charged and is not overdischarged, the FET 16B that cuts off the discharge current is switched from OFF to ON, and the charging current flows with a small internal resistance. The control circuit 5 calculates the remaining capacity of the battery 1 by integrating the charge / discharge current of the battery 1 detected by the current detection circuit 6.

以上の組電池10は、衝撃を受けて内部ショート等で電気特性が悪化すると、以下のフローチャートで電流遮断素子4をオフ状態に制御する。
[n=1、2のステップ]
衝撃検出部3が衝撃を検出したかどうかを判定する。衝撃検出部3は、組電池10に内蔵する衝撃センサ8で加速度を検出して衝撃を検出し、あるいは、組電池10を装置する電子機器20に内蔵される衝撃センサ28から入力される衝撃信号で衝撃を検出する。
衝撃検出部3は、衝撃センサ8、28から検出される加速度が設定値以上の時に、組電池10が落下等の衝撃を受けたと判定し、あるいは、加速度の変化(落下前の加速度ゼロの状態から加速度を検出し、落下等により床等に衝突して、加速度が再びゼロになった時間)から、落下高さを演算して、この落下高さが設定値(例えば、1.6m)以上の時に組電池10が落下の衝撃を受けたと判定する。
衝撃検出部3は、組電池10の衝撃を検出すると、n=2のステップに進んで、タイマ17をリセットした後、タイマ17のカウントを開始する。衝撃検出部3が衝撃を検出しないとき、n=3のステップにジャンプする。
[n=3、4のステップ]
電圧検出回路2が、各電池1の電圧を検出する。制御回路5は、電圧検出回路2から入力される電池1の電圧差を設定値(例えば100mV)と比較する。電池1の電圧差が設定値よりも大きいと次のステップに進み、設定値よりも小さいとn=1のステップに戻る。
[n=5、6のステップ]
電池1の電圧差が設定値よりも大きいと、このステップで、タイマ17のカウント値が設定範囲内(例えば、1週間以内)かどうかを判定する。タイマ17のカウント値が設定範囲内にないとき、タイマ17がカウントを開始していないか、あるいは、タイマ17がカウントアップしたと判定し、すなわち、所定の時間以内に落下の衝撃を受けていないと判定して、n=1のステップに戻る。
タイマ17のカウント値が設定範囲内であるとき、所定の時間以内に落下等の衝撃を受けたと判定し、n=6のステップに進んで、電流遮断素子4をオフ状態に制御する。
When the assembled battery 10 receives an impact and the electrical characteristics deteriorate due to an internal short circuit or the like, the current interrupting element 4 is controlled to be turned off by the following flowchart.
[Steps of n = 1, 2]
It is determined whether or not the impact detection unit 3 has detected an impact. The impact detection unit 3 detects acceleration by detecting the acceleration by the impact sensor 8 built in the assembled battery 10, or an impact signal input from the impact sensor 28 built in the electronic device 20 that includes the assembled battery 10. The impact is detected with.
The impact detection unit 3 determines that the assembled battery 10 has received an impact such as a drop when the acceleration detected from the impact sensors 8 and 28 is equal to or greater than a set value, or changes in acceleration (a state in which the acceleration is zero before dropping) Acceleration is detected from this, and the fall height is calculated from the time when the acceleration collided with the floor or the like due to falling, and the acceleration again became zero), and this fall height is a set value (for example, 1.6 m) or more At this time, it is determined that the assembled battery 10 has received a drop impact.
When the impact detector 3 detects the impact of the battery pack 10, the process proceeds to step n = 2, and after resetting the timer 17, the timer 17 starts counting. When the impact detector 3 does not detect an impact, the process jumps to the step of n = 3.
[Steps n = 3, 4]
The voltage detection circuit 2 detects the voltage of each battery 1. The control circuit 5 compares the voltage difference of the battery 1 input from the voltage detection circuit 2 with a set value (for example, 100 mV). When the voltage difference of the battery 1 is larger than the set value, the process proceeds to the next step, and when smaller than the set value, the process returns to the step of n = 1.
[Steps n = 5, 6]
If the voltage difference of the battery 1 is larger than the set value, it is determined in this step whether the count value of the timer 17 is within the set range (for example, within one week). When the count value of the timer 17 is not within the set range, it is determined that the timer 17 has not started counting, or the timer 17 has counted up, that is, no impact has been received within a predetermined time. And return to the step of n = 1.
When the count value of the timer 17 is within the set range, it is determined that an impact such as a drop has been received within a predetermined time, the process proceeds to step n = 6, and the current interrupting element 4 is controlled to be turned off.

以上の実施例の組電池は、衝撃検出部3が、衝撃センサ8、28で検出される加速度やその変化から組電池10が落下等の衝撃を受けたことを検出しており、衝撃検出部3が衝撃を検出した状態で、電圧検出回路2が検出する素電池1の電圧差が設定値よりも大きいと、制御回路5が電流遮断素子4をオフに制御して電流を遮断している。この組電池は、衝撃のみでなく、各々の素電池の電圧差と衝撃の両方で電流を遮断するかどうかを判断して、電流遮断素子を制御するので、衝撃で電気特性が悪化した組電池を確実に使用できない状態に制御できる。さらに、本発明の参考例の組電池として、衝撃検出部が、組電池内に設けた歪みセンサで変形検知対象物の変形量を検出し、この歪みセンサで検出される変形量から組電池が衝撃を受けたかどうかを検出して、電流遮断素子を制御する構造を以下に示す。   In the assembled battery of the above embodiment, the impact detection unit 3 detects that the assembled battery 10 has received an impact such as a drop from the acceleration detected by the impact sensors 8 and 28 and changes thereof, and the impact detection unit 3 When the voltage difference of the unit cell 1 detected by the voltage detection circuit 2 is larger than the set value in a state in which the impact is detected by the control circuit 3, the control circuit 5 controls the current interrupting element 4 to be turned off to interrupt the current. . In this assembled battery, not only the impact but also whether the current is interrupted by both the voltage difference and the impact of each unit cell, and the current interrupting element is controlled, so the assembled battery whose electrical characteristics deteriorated due to the impact Can be controlled so that it cannot be used reliably. Furthermore, as an assembled battery according to a reference example of the present invention, the impact detection unit detects the deformation amount of the deformation detection target with a strain sensor provided in the assembled battery, and the assembled battery is detected from the deformation amount detected by the strain sensor. A structure for detecting whether an impact has been applied and controlling the current interrupting element is shown below.

この組電池は、変形検知対象物に固定した歪みセンサを備えると共に、この歪みセンサが検出する変形検知対象物の変形量から組電池が外部から受けた衝撃を検出する衝撃検出部と、この衝撃検出部が検出する衝撃信号で、素電池の電流を遮断する電流遮断素子を制御する制御回路とを備える。衝撃検出部は、内蔵される電池またはその周辺部品を変形検知対象物として、これらの表面に歪みセンサを固定している。この歪みセンサとして、一般に市販されている歪みゲージが使用できる。この歪みゲージは、たとえば、局部的な長さ変化(変形量)を検出するものである。衝撃検出部は、変形検知対象物の変形量を歪みセンサで検出し、検出される変形量から組電池が受けた衝撃を検出する。この衝撃検出部は、衝撃を受けた後、弾性変形によって元の形状に復元しにくい部材、いいかえると変形した状態に保持されやすい部材に歪みセンサを取り付けることにより、落下等の短時間における衝撃を受けた場合であっても、衝撃後の変形量を検出して、衝撃の程度や危険レベルを正確に判定できる。したがって、変形検知対象物には、衝撃を受けた後、弾性変形して元の形状に復元されにくい部材、たとえば、弾性変形領域が小さい金属板等が最適である。このように、金属板の変形量を歪みセンサで検出して衝撃を検出する衝撃検出部は、短時間における瞬間的な変位量ではなく、衝撃後における金属板の変形量から衝撃を検出するので、誤検出を低減しながら確実に衝撃の程度を検出できる。さらに、この衝撃検出部は、大きな加重が負荷されてケースや電池が変形し、あるいは破壊される等の衝撃を受けた場合においても、このことを確実に検出できる。したがって、歪みセンサは、金属以外の部材に取り付けることもできる。   The assembled battery includes a strain sensor fixed to the deformation detection target, an impact detection unit that detects an impact received by the assembled battery from the outside based on the deformation amount of the deformation detection target detected by the strain sensor, and the shock And a control circuit that controls a current interrupting element that interrupts the current of the unit cell with an impact signal detected by the detection unit. The impact detection unit uses a built-in battery or its peripheral parts as a deformation detection target, and fixes a strain sensor on these surfaces. As the strain sensor, a commercially available strain gauge can be used. This strain gauge detects, for example, a local length change (deformation amount). The impact detection unit detects a deformation amount of the deformation detection target object with a strain sensor, and detects an impact received by the assembled battery from the detected deformation amount. This shock detection unit attaches a strain sensor to a member that is difficult to restore to its original shape by elastic deformation after receiving an impact, in other words, a member that is likely to be held in a deformed state. Even if it is received, the amount of deformation after impact can be detected, and the degree of impact and the danger level can be accurately determined. Therefore, a member that is difficult to be restored to its original shape by being elastically deformed after receiving an impact, such as a metal plate having a small elastic deformation region, is optimal for the deformation detection target. In this way, the impact detection unit that detects the impact by detecting the deformation amount of the metal plate with the strain sensor detects the impact not from the instantaneous displacement amount in a short time but from the deformation amount of the metal plate after the impact. The degree of impact can be reliably detected while reducing false detection. Furthermore, the impact detection unit can reliably detect this even when a large load is applied and the case or battery is subjected to an impact such as deformation or destruction. Therefore, the strain sensor can be attached to a member other than metal.

この組電池は、落下等により衝撃を受けやすい場所、たとえば、電池ケースの隅部やその周辺部に歪みセンサを配置することにより、組電池が外部から衝撃を受けたことを確実に検出できる。具体的には、電池ケースのコーナー部に配置される電池の表面や、電池ケースのコーナー部の近傍に配線されるリード板、電池ケースのコーナー部の内面、電池ケースのコーナー部の近傍に別途配置される金属板等に歪みセンサを固定することができる。図3に示す組電池は、歪みセンサ30の取り付け例を示している。この図に示すように、歪みセンサ30は、内蔵される電池31の外装缶の表面(鎖線A)に取り付け、あるいは、複数の電池31を接続する金属板であるリード板32(鎖線B)に取り付け、あるいは、電池31を収納する電池ケース33の内面(鎖線C)に取り付け、あるいはまた、電池ケース33内に配設した金属板34の表面(鎖線D)に取り付けることができる。衝撃検出部は、例えば、組電池の落下等により、内蔵される電池やその周辺部品が変形するような衝撃があれば、これらの表面に取り付けた歪みセンサ30が検出する変形量から衝撃を検出できる。   This assembled battery can reliably detect that the assembled battery has received an impact from the outside by disposing a strain sensor in a place where it is susceptible to an impact by dropping or the like, for example, a corner of the battery case or its peripheral part. Specifically, the surface of the battery placed at the corner of the battery case, the lead plate wired near the corner of the battery case, the inner surface of the corner of the battery case, and separately near the corner of the battery case The strain sensor can be fixed to a metal plate or the like to be arranged. The assembled battery shown in FIG. 3 shows an example of attachment of the strain sensor 30. As shown in this figure, the strain sensor 30 is attached to the surface (chain line A) of the exterior can of the battery 31 incorporated therein, or to a lead plate 32 (chain line B) that is a metal plate connecting a plurality of batteries 31. It can be attached or attached to the inner surface (chain line C) of the battery case 33 that houses the battery 31, or it can be attached to the surface (dashed line D) of the metal plate 34 disposed in the battery case 33. The impact detection unit detects the impact from the amount of deformation detected by the strain sensor 30 attached to the surface if there is an impact that causes deformation of the built-in battery or its peripheral parts due to, for example, dropping of the assembled battery. it can.

さらに、この組電池は、歪みセンサが検出する変形量を閾値と比較することによって衝撃の程度を正確に判別して、衝撃検出後における組電池を安全に制御することができる。変形検知対象物の変形量は、受ける衝撃の程度によって変化する。このため、変形検知対象物の変形量が小さいと、組電池が受けた衝撃は小さく、反対に、変形検知対象物の変形量が大きいと、組電池が受けた衝撃は大きいと推測できる。衝撃検出部は、たとえば、歪みセンサが検出する変形量を、複数の閾値に比較して衝撃の程度を段階別に判別できる。衝撃検出部は、判別した衝撃の程度を制御回路に出力する。制御回路は、衝撃検出部から入力される衝撃の程度に応じて組電池を安全に制御する。   Further, the assembled battery can accurately determine the degree of impact by comparing the deformation amount detected by the strain sensor with a threshold value, and can safely control the assembled battery after the impact is detected. The amount of deformation of the deformation detection object varies depending on the degree of impact received. For this reason, when the deformation amount of the deformation detection object is small, the impact received by the assembled battery is small. On the contrary, when the deformation amount of the deformation detection object is large, it can be estimated that the impact received by the assembled battery is large. For example, the impact detection unit can determine the degree of impact for each stage by comparing the deformation amount detected by the strain sensor with a plurality of threshold values. The impact detection unit outputs the determined degree of impact to the control circuit. The control circuit safely controls the assembled battery in accordance with the degree of impact input from the impact detection unit.

以下、衝撃検出部が、歪みセンサで検出される変形量を第1の閾値と第2の閾値(第1の閾値<第2の閾値)に比較して衝撃の程度を3段階に判別し、制御回路が衝撃の程度に応じて制御する一例を示す。
(1)検出される変形量が第1の閾値以下であるとき
組電池が衝撃を受けていないか、あるいは衝撃を受けていても、使用上、問題となる衝撃(危険であると予測される衝撃)を受けていないと判定して、通常に使用できる状態とする。
(2)検出される変形量が第1の閾値よりも大きく第2の閾値よりも小さいとき
制御回路は、軽度の衝撃を受けたと判定して、以下のような制御を行う。
(a)通信回路から電子機器側にアラーム信号(軽度の衝撃)を出力する。
(b)LED等の外部表示部を点灯あるいは点滅させて、視覚的なアラームを出力する。
(c)制御素子のFETを一定時間オフに保持する。
(d)交換資格情報としてデータを記録する。
(e)充電電圧を下げる。(電子機器側への通信・保護閾値変更)
(f)充電電流を下げる。(電子機器側への通信・保護閾値変更)
(3)検出される変形量が第2の閾値以上であるとき
制御回路は、重度の衝撃を受けたと判定して、以下のような制御を行う。
(a)通信回路から電子機器側にアラーム信号(重度の衝撃)を出力する。
(b)交換資格情報としてデータを記録する。
(c)電流遮断素子をオフ状態に制御して、充放電の電流をストップさせる。
(d)専用の放電抵抗、LED、電子機器側の負荷等を使用して、組電池を安全領域まで強制的に放電させる。
Hereinafter, the impact detection unit compares the amount of deformation detected by the strain sensor with the first threshold value and the second threshold value (first threshold value <second threshold value) to determine the degree of impact in three stages, An example in which the control circuit performs control according to the degree of impact will be described.
(1) When the amount of deformation detected is equal to or less than the first threshold value Even if the assembled battery is not subjected to an impact or is subjected to an impact, it is predicted that it will cause a problem in use (dangerous) It is determined that it is not subjected to (impact) and is in a state where it can be used normally.
(2) When the detected deformation amount is larger than the first threshold value and smaller than the second threshold value The control circuit determines that it has received a slight impact and performs the following control.
(A) An alarm signal (light impact) is output from the communication circuit to the electronic device side.
(B) An external display unit such as an LED is turned on or blinked to output a visual alarm.
(C) Hold the control element FET off for a certain period of time.
(D) Record data as exchange qualification information.
(E) Lower the charging voltage. (Communication / protection threshold change to electronic equipment side)
(F) Lower the charging current. (Communication / protection threshold change to electronic equipment side)
(3) When the detected deformation amount is greater than or equal to the second threshold value The control circuit determines that a severe impact has been received and performs the following control.
(A) An alarm signal (severe impact) is output from the communication circuit to the electronic device side.
(B) Record data as exchange qualification information.
(C) The current interrupting element is controlled to be in an OFF state, and the charging / discharging current is stopped.
(D) The assembled battery is forcibly discharged to a safe area using a dedicated discharge resistor, LED, load on the electronic device side, and the like.

以上のように、この組電池は、歪みセンサで検出される変形検知対象物の変形量の大きさによって、組電池が受けた衝撃の程度を判別し、衝撃の程度に応じた最適な制御を行うことによって、組電池の安全性を保証できる。   As described above, this assembled battery determines the degree of impact received by the assembled battery based on the amount of deformation of the deformation detection object detected by the strain sensor, and performs optimal control according to the degree of impact. By doing so, the safety of the assembled battery can be guaranteed.

本発明の一実施例にかかる組電池の概略構成図である。It is a schematic block diagram of the assembled battery concerning one Example of this invention. 図1に示す組電池が衝撃を検出して電流を遮断するフローチャートである。It is a flowchart in which the assembled battery shown in FIG. 1 detects an impact and interrupts the current. 本発明の参考例にかかる組電池の一部拡大概略断面図である。It is a partially expanded schematic sectional drawing of the assembled battery concerning the reference example of this invention.

符号の説明Explanation of symbols

1…電池
2…電圧検出回路
3…衝撃検出部
4…電流遮断素子
5…制御回路
6…電流検出回路
7…温度検出回路
8…衝撃センサ
9…通信回路
10…組電池
11…電池ブロック
12…通信回線
13…ヒューズ
14…加熱抵抗
15…スイッチング素子
16…制御素子 16A…FET
16B…FET
17…タイマ
20…電子機器
21…制御・電源回路
22…負荷
28…衝撃センサ
30…歪みセンサ
31…電池
32…リード板
33…電池ケース
34…金属板
DESCRIPTION OF SYMBOLS 1 ... Battery 2 ... Voltage detection circuit 3 ... Impact detection part 4 ... Current interruption | blocking element 5 ... Control circuit 6 ... Current detection circuit 7 ... Temperature detection circuit 8 ... Impact sensor 9 ... Communication circuit 10 ... Assembly battery 11 ... Battery block 12 ... Communication line 13 ... Fuse 14 ... Heating resistor 15 ... Switching element 16 ... Control element 16A ... FET
16B ... FET
DESCRIPTION OF SYMBOLS 17 ... Timer 20 ... Electronic device 21 ... Control and power supply circuit 22 ... Load 28 ... Impact sensor 30 ... Strain sensor 31 ... Battery 32 ... Lead plate 33 ... Battery case 34 ... Metal plate

Claims (6)

複数の素電池(1)と、素電池(1)の電圧を検出する電圧検出回路(2)と、組電池の衝撃を検出する衝撃検出部(3)と、素電池(1)の電流を遮断する電流遮断素子(4)と、前記電圧検出回路(2)が検出する素電池(1)の電圧差と衝撃検出部(3)が検出する衝撃信号で電流遮断素子(4)を制御する制御回路(5)とを備え、
電圧検出回路(2)が検出する素電池(1)の電圧差が設定値よりも大きく、かつ衝撃検出部(3)が衝撃を検出した状態で制御回路(5)が電流遮断素子(4)をオフに制御して電流を遮断するようにしてなる組電池。
A plurality of unit cells (1), a voltage detection circuit (2) for detecting the voltage of the unit cell (1), an impact detection unit (3) for detecting the impact of the assembled cell, and the current of the unit cell (1) The current interrupt device (4) is controlled by the voltage difference between the current interrupt device (4) to be interrupted and the unit cell (1) detected by the voltage detection circuit (2) and the impact signal detected by the impact detector (3). A control circuit (5),
The control circuit (5) has a current interrupting element (4) when the voltage difference of the unit cell (1) detected by the voltage detection circuit (2) is larger than the set value and the impact detector (3) has detected an impact. A battery pack that is controlled to turn off the current.
衝撃検出部(3)が衝撃センサ(8)を備える請求項1に記載される組電池。   The assembled battery according to claim 1, wherein the impact detector (3) includes an impact sensor (8). 衝撃検出部(3)が、組電池を装着している電子機器(20)から入力される衝撃信号で衝撃を検出する請求項1に記載される組電池。   The assembled battery according to claim 1, wherein the impact detection unit (3) detects an impact by an impact signal input from the electronic device (20) on which the assembled battery is mounted. 前記衝撃検出部(3)が、加速度から衝撃を検出する請求項2又は3に記載される組電池。   The assembled battery according to claim 2 or 3, wherein the impact detector (3) detects an impact from acceleration. 前記衝撃検出部(3)が、加速度から落下高さを演算して衝撃を検出する請求項2又は3に記載される組電池。   The assembled battery according to claim 2 or 3, wherein the impact detector (3) detects the impact by calculating a drop height from the acceleration. 前記衝撃検出部(3)が衝撃を検出してからの経過時間をカウントするタイマ(17)を備え、素電池(1)の電圧差が設定値を超え、かつタイマ(17)のカウント値が設定範囲にあることを検出して、制御回路(5)が電流遮断素子(4)をオフに切り換える請求項1に記載される組電池。   The impact detector (3) includes a timer (17) that counts an elapsed time since the impact was detected, the voltage difference of the unit cell (1) exceeds a set value, and the count value of the timer (17) is The assembled battery according to claim 1, wherein the control circuit (5) switches off the current interrupting element (4) upon detection of being within the set range.
JP2007255919A 2007-09-28 2007-09-28 Battery pack Pending JP2009087723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007255919A JP2009087723A (en) 2007-09-28 2007-09-28 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007255919A JP2009087723A (en) 2007-09-28 2007-09-28 Battery pack

Publications (1)

Publication Number Publication Date
JP2009087723A true JP2009087723A (en) 2009-04-23

Family

ID=40660884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007255919A Pending JP2009087723A (en) 2007-09-28 2007-09-28 Battery pack

Country Status (1)

Country Link
JP (1) JP2009087723A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072011A (en) * 2014-09-29 2016-05-09 株式会社東芝 Battery pack
JP2016177941A (en) * 2015-03-19 2016-10-06 カシオ計算機株式会社 Battery state detection device, electronic apparatus, and method for detecting battery state
US9673642B2 (en) 2013-07-12 2017-06-06 Gs Yuasa International Ltd. Discharge control device, discharge control method and computer readable medium
KR101776326B1 (en) * 2011-11-09 2017-09-08 현대자동차주식회사 Apparatus for shutting off power supply in case of rear-ender of vehicle
JP2019114415A (en) * 2017-12-22 2019-07-11 Tdk株式会社 Battery pack
JPWO2019172061A1 (en) * 2018-03-07 2020-12-03 株式会社ナイルワークス Unmanned aerial vehicle, mobile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120969A (en) * 1984-11-19 1986-06-09 Hitachi Ltd Impact recorder
JPH1140205A (en) * 1997-07-18 1999-02-12 Hitachi Ltd Lithium battery system
JP2001102092A (en) * 1999-09-30 2001-04-13 Nec Mobile Energy Kk Cell back

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120969A (en) * 1984-11-19 1986-06-09 Hitachi Ltd Impact recorder
JPH1140205A (en) * 1997-07-18 1999-02-12 Hitachi Ltd Lithium battery system
JP2001102092A (en) * 1999-09-30 2001-04-13 Nec Mobile Energy Kk Cell back

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101776326B1 (en) * 2011-11-09 2017-09-08 현대자동차주식회사 Apparatus for shutting off power supply in case of rear-ender of vehicle
US9673642B2 (en) 2013-07-12 2017-06-06 Gs Yuasa International Ltd. Discharge control device, discharge control method and computer readable medium
JP2016072011A (en) * 2014-09-29 2016-05-09 株式会社東芝 Battery pack
JP2016177941A (en) * 2015-03-19 2016-10-06 カシオ計算機株式会社 Battery state detection device, electronic apparatus, and method for detecting battery state
JP2019114415A (en) * 2017-12-22 2019-07-11 Tdk株式会社 Battery pack
JP7000843B2 (en) 2017-12-22 2022-01-19 Tdk株式会社 Battery pack
JPWO2019172061A1 (en) * 2018-03-07 2020-12-03 株式会社ナイルワークス Unmanned aerial vehicle, mobile

Similar Documents

Publication Publication Date Title
KR100696780B1 (en) Battery monitoring device and its method
KR101003444B1 (en) Lithium-ion battery alarm protection apparatus and method
KR100751844B1 (en) A method and apparatus of providing device protection for a battery operated device
JP3546856B2 (en) Battery pack and battery pack failure diagnosis method
US7898216B2 (en) Rechargeable battery device having a protection circuit for protecting from overcharge and overdischarge
CN100492753C (en) Batteries and cordless electric tool with the same batteries as power supply
KR101440888B1 (en) Battery protection circuit
JP5219463B2 (en) Pack battery
JP2010038839A (en) Electronic device
JP2009087723A (en) Battery pack
JP2003142162A (en) Battery pack
US7605565B2 (en) Battery pack with protection circuit
KR102320116B1 (en) Battery pack protection apparatus
JP4867734B2 (en) Lithium battery pack and combination of battery pack and power tool
KR100887053B1 (en) Protecting method for lithium battery and device thereof
JP2003174720A (en) Secondary battery protective circuit and protective circuit ic
JP4171274B2 (en) battery pack
JP3382002B2 (en) Battery pack and equipment using battery pack for operation
KR100601557B1 (en) Battery management unit and its method
KR20140116599A (en) Battery module control system and method thereof
JP2003173825A (en) Secondary battery protector
KR102265844B1 (en) Method and apparatus for impact protection of battery pack
JP2009044923A (en) Power supply system
KR100624945B1 (en) Battery pack capable of preventing over heat and method the same
KR20070009252A (en) Pcm for battery pack using voltage detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108