JP2009085673A - Defect inspection method and defect inspection device of sealed honeycomb structure - Google Patents

Defect inspection method and defect inspection device of sealed honeycomb structure Download PDF

Info

Publication number
JP2009085673A
JP2009085673A JP2007253529A JP2007253529A JP2009085673A JP 2009085673 A JP2009085673 A JP 2009085673A JP 2007253529 A JP2007253529 A JP 2007253529A JP 2007253529 A JP2007253529 A JP 2007253529A JP 2009085673 A JP2009085673 A JP 2009085673A
Authority
JP
Japan
Prior art keywords
particles
quantification
honeycomb structure
defect
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007253529A
Other languages
Japanese (ja)
Inventor
Koichi Miyashita
晃一 宮下
Yukio Mizuno
幸夫 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2007253529A priority Critical patent/JP2009085673A/en
Publication of JP2009085673A publication Critical patent/JP2009085673A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95692Patterns showing hole parts, e.g. honeycomb filtering structures

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a defect inspection method and a defect inspection device of a sealed honeycomb structure, capable of specifying the position of a cell having a defect and of readily grasping the defect size. <P>SOLUTION: In this method for inspecting a penetration defect of a sealed honeycomb structure 1 equipped with a honeycomb structure 2, wherein a plurality of cells 9 communicated between two end faces are partitioned and formed by a porous bulkhead 7, and a sealing part 11 disposed so as to seal either of two opening ends of each cell 9, particles 51 for quantification having a prescribed particle size range are introduced into the cell 9 from either end face; the number and the particle size of the particles 51 for quantification passing a penetration defect 17 and discharged from the end face on the opposite side are measured relative to each cell having the defect through which the particles are discharged; and the defect size is quantified from the measured number and particle size of the particles 51 for quantification. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ディーゼルパティキュレートフィルター(DPF)等の粒子状物質を濾過するフィルター等に使用される目封止ハニカム構造体の欠陥を検出する方法及び装置に関する。   The present invention relates to a method and an apparatus for detecting a defect in a plugged honeycomb structure used for a filter for filtering particulate matter such as a diesel particulate filter (DPF).

ディーゼルエンジン等の内燃機関から排出される排ガスには、環境汚染の原因となるような炭素を主成分とするパティキュレート(粒子状物質)が多量に含まれているため、それらの排気系には、パティキュレートを捕集(濾過)するためのフィルターが搭載されることが一般的ある。   Since exhaust gas discharged from internal combustion engines such as diesel engines contains a large amount of particulates (particulate matter) mainly composed of carbon that cause environmental pollution, these exhaust systems In general, a filter for collecting (filtering) particulates is mounted.

通常、このような目的で使用されるフィルターには、図6及び図7に示すように、多孔質の隔壁7によって、二つの端面の間を連通する複数のセル9が区画形成されたハニカム構造体2と、前記各セル9の二つの開口端のうちの何れか一方を目封止するように、ハニカム構造体2の一端面側と他端面側とで相補的な市松模様状を呈するように配設された目封止部11とを備える目封止ハニカム構造体1が用いられる。   Normally, a filter used for such a purpose has a honeycomb structure in which a plurality of cells 9 communicating between two end faces are defined by porous partition walls 7 as shown in FIGS. 6 and 7. The one end surface side and the other end surface side of the honeycomb structure 2 have a complementary checkered pattern so as to plug the body 2 and one of the two open ends of each cell 9. A plugged honeycomb structure 1 including a plugged portion 11 disposed on the plug is used.

排ガスは、このような目封止ハニカム構造体1からなるフィルターの一方の端面3から内部に流入し、ガス中に含まれるパティキュレート等が除去された後、他方の端面5から流出する。具体的には、まず排ガスは、このフィルターの一方の端面3において端部が封止されておらず他方の端面5において端部が封止されたセル9bに流入し、多孔質の隔壁7を通って、一方の端面3において端部が封止され他方の端面5において端部が封止されていないセル9aに移動し、このセル9aから排出される。そして、この際に隔壁7が濾過層となり、ガス中のパティキュレートが隔壁7に捕捉され隔壁7上に堆積する。   The exhaust gas flows into the inside from one end face 3 of the filter made of such a plugged honeycomb structure 1 and flows out from the other end face 5 after the particulates contained in the gas are removed. Specifically, first, the exhaust gas flows into a cell 9b whose end is not sealed at one end face 3 of this filter and whose end is sealed at the other end face 5, and the porous partition wall 7 is passed through. Then, the cell moves to a cell 9a whose end is sealed at one end surface 3 and whose end is not sealed at the other end surface 5, and is discharged from this cell 9a. At this time, the partition walls 7 become filtration layers, and particulates in the gas are captured by the partition walls 7 and deposited on the partition walls 7.

ところで、このような目封止ハニカム構造体は、その製造過程において、隔壁を貫通するピンホールやクラック等の貫通欠陥が発生しやすく、パティキュレートより大きな貫通欠陥が有る場合、パティキュレートの一部は捕捉されることなく当該欠陥を通り抜け、外部に排出されてしまうことになる。したがって、目封止ハニカム構造体の貫通欠陥の有無やその大きさを把握することは極めて重要である。   By the way, in such a plugged honeycomb structure, in the manufacturing process, a penetrating defect such as a pinhole or a crack penetrating the partition wall is likely to occur, and when there is a penetrating defect larger than the particulate, a part of the particulate Will pass through the defect without being captured and will be discharged to the outside. Therefore, it is extremely important to grasp the presence or absence of through defects in the plugged honeycomb structure and the size thereof.

従来、こうした欠陥を検査する方法として、目封止ハニカム構造体の一方の端面から微粒子をセル内に導入し、貫通欠陥を通過して反対側の端面から排出される微粒子にレーザー光を照射して微粒子を可視化することにより欠陥を検出する検査方法が知られている(例えば、特許文献1参照)。   Conventionally, as a method for inspecting such defects, fine particles are introduced into the cell from one end face of the plugged honeycomb structure, and laser light is irradiated to the fine particles that pass through the through defects and are discharged from the opposite end face. An inspection method for detecting defects by visualizing fine particles is known (for example, see Patent Document 1).

しかしながら、この検査方法では、欠陥の有るセル(そのセルを区画している隔壁に貫通欠陥の有るセル)の位置を特定することはできるものの、欠陥の大きさを把握することは困難であった。
特開2002−357562号公報
However, with this inspection method, although it is possible to identify the position of a cell having a defect (a cell having a through defect in a partition wall that divides the cell), it is difficult to grasp the size of the defect. .
JP 2002-357562 A

本発明は、このような従来の事情に鑑みてなされたものであり、その目的とするところは、欠陥のあるセルの位置を特定するとともに、欠陥の大きさを容易に把握することが可能な目封止ハニカム構造体の欠陥検査方法及び欠陥検査装置を提供することにある。   The present invention has been made in view of such conventional circumstances, and the object of the present invention is to identify the position of a defective cell and to easily grasp the size of the defect. An object of the present invention is to provide a defect inspection method and a defect inspection apparatus for a plugged honeycomb structure.

上記目的を達成するため、本発明によれば、以下のような目封止ハニカム構造体の欠陥検査方法及び欠陥検査装置が提供される。   In order to achieve the above object, according to the present invention, the following defect inspection method and defect inspection apparatus for a plugged honeycomb structure are provided.

[1] 多孔質の隔壁によって、二つの端面の間を連通する複数のセルが区画形成されたハニカム構造体と、前記各セルの二つの開口端のうちの何れか一方を目封止するように配設された目封止部とを備える目封止ハニカム構造体の貫通欠陥を検査する方法であって、何れか一方の端面から所定の粒径範囲を持った定量化用粒子を前記セル内に導入し、貫通欠陥を通過して反対側の端面から排出される前記定量化用粒子の個数及び粒径を、当該粒子を排出している欠陥の有るセル毎に計測し、計測された前記定量化用粒子の個数及び粒径から欠陥の大きさを定量化する目封止ハニカム構造体の欠陥検査方法(第一の検査方法)。 [1] A honeycomb structure in which a plurality of cells communicating between two end faces are partitioned by a porous partition wall, and either one of two open ends of each cell is plugged. A method for inspecting a penetration defect of a plugged honeycomb structure provided with a plugging portion disposed in the cell, wherein the quantification particles having a predetermined particle size range from any one end face The number of particles for quantification and the particle size discharged from the opposite end surface after passing through the penetration defect were measured for each cell having a defect discharging the particle, and measured. A defect inspection method (first inspection method) for a plugged honeycomb structure in which the size of the defect is quantified based on the number and particle diameter of the quantification particles.

[2] 多孔質の隔壁によって、二つの端面の間を連通する複数のセルが区画形成されたハニカム構造体と、前記各セルの二つの開口端のうちの何れか一方を目封止するように配設された目封止部とを備える目封止ハニカム構造体の貫通欠陥を検査する方法であって、何れか一方の端面からレーザー可視化用粒子をセル内に導入し、貫通欠陥を通過して反対側の端面から排出される前記レーザー可視化用粒子をレーザー光の照射により可視化して欠陥の有るセルの位置を特定した後、何れか一方の端面から所定の粒径範囲を持った定量化用粒子をセル内に導入し、貫通欠陥を通過して反対側の端面から排出される前記定量化用粒子の個数及び粒径を、当該粒子を排出している欠陥の有るセル毎に計測し、計測された前記定量化用粒子の個数及び粒径から欠陥の大きさを定量化する目封止ハニカム構造体の欠陥検査方法(第二の検査方法)。 [2] A honeycomb structure in which a plurality of cells communicating between two end faces are partitioned by a porous partition wall, and either one of two open ends of each cell is plugged. A method for inspecting a through-hole defect of a plugged honeycomb structure provided with a plugged portion disposed in the laser, introduces laser visualization particles into a cell from one of the end faces, and passes through the through-hole defect Then, the laser visualization particles discharged from the opposite end face are visualized by irradiating with laser light, and the position of the cell having the defect is specified, and then the quantification having a predetermined particle size range from either one end face The quantification particles are introduced into the cell, and the number and the particle size of the quantification particles discharged from the opposite end face through the penetrating defect are measured for each cell having the defect discharging the particle. The number of quantification particles measured and Defect inspection method of the plugged honeycomb structure to quantify the size of the defect from the particle size (second inspection method).

[3] 多孔質の隔壁によって、二つの端面の間を連通する複数のセルが区画形成されたハニカム構造体と、前記各セルの二つの開口端のうちの何れか一方を目封止するように配設された目封止部とを備える目封止ハニカム構造体の貫通欠陥を検査する装置であって、所定の粒径範囲を持った定量化用粒子を発生させる定量化用粒子発生手段と、前記定量化用粒子発生手段で発生させた前記定量化用粒子を、前記ハニカム構造体の何れかの端面からセル内に導入するための定量化用粒子導入手段と、貫通欠陥を通過して前記定量化用粒子を導入した側の端面と反対側の端面から排出される前記定量化用粒子の個数及び粒径を計測するための計測手段とを備えた目封止ハニカム構造体の欠陥検査装置(第一の検査装置)。 [3] A honeycomb structure in which a plurality of cells communicating between two end faces are partitioned by a porous partition wall, and either one of two open ends of each cell is plugged. Quantifying particle generating means for inspecting a penetration defect of a plugged honeycomb structure provided with a plugging portion disposed on the generating unit and generating quantifying particles having a predetermined particle size range Quantifying particle introducing means for introducing the quantifying particles generated by the quantifying particle generating means into a cell from any end face of the honeycomb structure, and passing through a penetration defect A defect of a plugged honeycomb structure provided with a measuring means for measuring the number and particle size of the quantifying particles discharged from the end surface on the opposite side to the end surface on which the quantifying particles are introduced Inspection device (first inspection device).

[4] 多孔質の隔壁によって、二つの端面の間を連通する複数のセルが区画形成されたハニカム構造体と、前記各セルの二つの開口端のうちの何れか一方を目封止するように配設された目封止部とを備える目封止ハニカム構造体の貫通欠陥を検査する装置であって、レーザー可視化用粒子を発生させるレーザー可視化用粒子発生手段と、前記レーザー可視化用粒子発生手段で発生させた前記レーザー可視化用粒子を、前記ハニカム構造体の何れかの端面からセル内に導入するためのレーザー可視化用粒子導入手段と、貫通欠陥を通過して前記レーザー可視化用粒子を導入した側の端面と反対側の端面から排出される前記レーザー可視化用粒子を可視化するためのレーザー光を発生するレーザー光発生手段と、所定の粒径範囲を持った定量化用粒子を発生させる定量化用粒子発生手段と、前記定量化用粒子発生手段で発生させた前記定量化用粒子を、前記ハニカム構造体の何れかの端面からセル内に導入するための定量化用粒子導入手段と、貫通欠陥を通過して前記前記定量化用粒子を導入した側の端面と反対側の端面から排出される前記定量化用粒子の個数及び粒径を計測するための計測手段とを備えた目封止ハニカム構造体の欠陥検査装置(第二の検査装置)。 [4] A honeycomb structure in which a plurality of cells communicating between two end faces are partitioned by a porous partition wall, and either one of two open ends of each cell is plugged. A device for inspecting a penetration defect of a plugged honeycomb structure provided with a plugging portion disposed in a laser visualization particle generating means for generating laser visualization particles, and generation of the laser visualization particles Laser visualization particle introduction means for introducing the laser visualization particles generated by the means into the cell from any end face of the honeycomb structure, and introducing the laser visualization particles through a penetration defect Laser light generating means for generating laser light for visualizing the laser visualization particles discharged from the end face opposite to the end face on the opposite side, and quantification having a predetermined particle size range Quantifying particle generating means for generating particles, and for quantification for introducing the quantifying particles generated by the quantifying particle generating means into a cell from any end face of the honeycomb structure Particle introduction means, and measurement means for measuring the number and particle size of the quantification particles discharged from the end face opposite to the end face on which the quantification particles are introduced after passing through a penetration defect; A defect inspection apparatus for a plugged honeycomb structure (second inspection apparatus).

[5] 前記定量化用粒子発生手段に、超音波アトマイザーが用いられる[3]又は[4]に記載の目封止ハニカム構造体の欠陥検査装置。 [5] The defect inspection apparatus for a plugged honeycomb structure according to [3] or [4], wherein an ultrasonic atomizer is used as the quantification particle generating unit.

[6] 前記計測手段に、前記定量化用粒子を可視化するための照明と、可視化された前記定量化用粒子を撮影するためのカメラとが用いられる[3]又は[4]に記載の目封止ハニカム構造体の欠陥検査装置。 [6] The eye according to [3] or [4], wherein the measurement unit includes an illumination for visualizing the quantification particles and a camera for photographing the visualized quantification particles. Defect inspection device for sealed honeycomb structure.

[7] 前記計測手段に、パーティクルカウンターが用いられる[3]又は[4]に記載の目封止ハニカム構造体の欠陥検査装置。 [7] The defect inspection apparatus for a plugged honeycomb structure according to [3] or [4], wherein a particle counter is used as the measurement unit.

本発明によれば、目封止ハニカム構造体の欠陥の有るセルの位置を特定するとともに、欠陥の大きさを定量化し、容易に把握することができる。   ADVANTAGE OF THE INVENTION According to this invention, while specifying the position of the cell with a defect of a plugged honeycomb structure, the magnitude | size of a defect can be quantified and can be grasped | ascertained easily.

以下、本発明の代表的な実施形態を図面を参照しながら具体的に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。   Hereinafter, typical embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, and those skilled in the art can depart from the scope of the present invention. It should be understood that design changes, improvements, and the like can be made as appropriate based on general knowledge of the above.

図1は、本発明の第一の検査方法の実施形態の一例を示す概略説明図である。本発明の第一の検査方法は、本発明の第一の検査装置を使用することで容易に実施することができる。本発明の第一の検査装置は、所定の粒径範囲を持った定量化用粒子を発生させる定量化用粒子発生手段と、前記定量化用粒子発生手段で発生させた前記定量化用粒子を、前記ハニカム構造体の何れかの端面からセル内に導入するための定量化用粒子導入手段と、貫通欠陥を通過して前記定量化用粒子を導入した側の端面と反対側の端面から排出される前記定量化用粒子の個数及び粒径を計測するための計測手段とを備える。   FIG. 1 is a schematic explanatory view showing an example of an embodiment of the first inspection method of the present invention. The first inspection method of the present invention can be easily implemented by using the first inspection apparatus of the present invention. The first inspection apparatus of the present invention comprises a quantifying particle generating means for generating quantifying particles having a predetermined particle size range, and the quantifying particles generated by the quantifying particle generating means. Quantifying particle introduction means for introducing into the cell from any end face of the honeycomb structure, and discharging from an end face opposite to the end face on the side through which the quantifying particles have been introduced after passing through a penetration defect Measuring means for measuring the number and particle size of the quantifying particles.

図1の実施形態では、定量化用粒子発生手段に超音波アトマイザー20が使用され、定量化用粒子導入手段に超音波アトマイザー20と目封止ハニカム構造体1の一端面との間を連通するフード21が使用されている。また、計測手段には、定量化用粒子を可視化するためのレーザー光源22と、可視化された定量化用粒子を撮影するためのカメラ23とが使用されている。フード21と目封止ハニカム構造体1との間は、気密を保つためシール材19にてシールすることが好ましい。   In the embodiment of FIG. 1, an ultrasonic atomizer 20 is used as the quantification particle generating means, and the ultrasonic atomizer 20 and one end face of the plugged honeycomb structure 1 are communicated with the quantification particle introducing means. A hood 21 is used. Further, a laser light source 22 for visualizing the quantification particles and a camera 23 for photographing the visualized quantification particles are used as the measurement means. It is preferable to seal between the hood 21 and the plugged honeycomb structure 1 with a sealing material 19 in order to maintain airtightness.

本実施形態では、まず、本発明の被検体、すなわち、多孔質の隔壁7によって、二つの端面の間を連通する複数のセル9が区画形成されたハニカム構造体2と、各セル9の二つの開口端のうちの何れか一方を目封止するように配設された目封止部11とを備える目封止ハニカム構造体1を、二つの端面が上下方向となるように配置する。そして、超音波アトマイザー20によって発生させた所定の粒径範囲(例えば10〜30μm)を持った液体粒子を定量化用粒子51として、フード21を通じて目封止ハニカム構造体1の上側の端面に導き、当該端面において開口しているセル9内に定量化用粒子51を導入する。   In the present embodiment, first, a honeycomb structure 2 in which a plurality of cells 9 communicating between two end surfaces are partitioned by a subject of the present invention, that is, a porous partition wall 7, and two cells 9 are provided. A plugged honeycomb structure 1 including a plugged portion 11 disposed so as to plug any one of the two open ends is disposed such that two end surfaces are in the vertical direction. Then, liquid particles having a predetermined particle size range (for example, 10 to 30 μm) generated by the ultrasonic atomizer 20 are guided to the upper end face of the plugged honeycomb structure 1 through the hood 21 as quantification particles 51. Then, the quantification particles 51 are introduced into the cell 9 opened at the end face.

目封止ハニカム構造体1に貫通欠陥17が有る場合、定量化用粒子51の一部は、この貫通欠陥17を通過して下側の端面から排出される。こうして排出される定量化用粒子51の個数及び粒径を、当該粒子を排出している欠陥の有るセル毎に計測する。セル毎の計測は、例えば、図のように計測しようとするセル9の開口部に対応する部分にのみ孔部を形成したマスキング材25を下側の端面に付着させるなどして、当該セル9の開口部からのみ定量化用粒子51が排出される状態とし、下側の端面近傍に配したレーザー光源22からレーザー光を当該端面に沿って照射することにより、排出された定量化用粒子51を可視化して、その映像をレーザー光源22と対向する位置に配したカメラ23で撮影する。こうして撮影された画像から排出された定量化用粒子51の個数及び粒径を計測する。   When the plugged honeycomb structure 1 has the penetration defect 17, a part of the quantification particles 51 passes through the penetration defect 17 and is discharged from the lower end face. The number and particle size of the quantification particles 51 thus discharged are measured for each defective cell that has discharged the particles. The measurement for each cell is performed by, for example, attaching a masking material 25 having a hole only in a portion corresponding to the opening of the cell 9 to be measured to the lower end face as shown in the figure. The quantification particle 51 is discharged only from the opening of the laser beam, and the quantification particle 51 is discharged by irradiating the laser light along the end surface from the laser light source 22 disposed in the vicinity of the lower end surface. Is visualized and the image is taken by a camera 23 arranged at a position facing the laser light source 22. The number and particle size of the quantification particles 51 discharged from the image thus taken are measured.

一般に、貫通欠陥が大きいほど、排出される定量化用粒子の個数が多くなるとともに、より粒径の大きな定量化用粒子が多く排出される。したがって、目封止ハニカム構造体の貫通欠陥を通過して排出される所定範囲の粒径を持った定量化用粒子の個数と、通過した貫通欠陥の大きさとの間には、後述する実験例にも示すように相関がある。このような相関を予め調べて、それをグラフ化するなどしておけば、前記のように計測された定量化用粒子の個数及び粒径から、当該相関に基づいて貫通欠陥の大きさを定量化することができる。こうして貫通欠陥の大きさを定量化することにより、単に欠陥の有るセルの位置を特定するだけでなく、欠陥の大きさを容易に把握することができる。   In general, the larger the penetrating defect, the larger the number of quantification particles discharged, and the more quantification particles having a larger particle size are discharged. Therefore, between the number of quantification particles having a particle size in a predetermined range discharged through the through defects of the plugged honeycomb structure and the size of the through defects that passed through, an experimental example to be described later There is a correlation as shown in If such a correlation is examined in advance and graphed, the size of the penetrating defect is quantified from the number and particle diameter of the quantification particles measured as described above based on the correlation. Can be By quantifying the size of the through defect in this way, it is possible not only to specify the position of the cell having the defect but also to easily grasp the size of the defect.

なお、図1の実施形態においては、定量化用粒子の流れがスムーズになるように、目封止ハニカム構造体を、その二つの端面が上下方向となるように配置し、上から下に定量化用粒子が流れるようにしている。これは定量化用粒子の流れる方向を重力方向とすることで、比較的粒径の大きな定量化用粒子でも自然落下によりスムーズに流れるよう配慮したものであるが、目封止ハニカム構造体の配置方向や定量化用粒子の流れる方向は、これに限定されるものではない。   In the embodiment of FIG. 1, the plugged honeycomb structure is arranged so that the two end faces thereof are in the vertical direction so that the flow of the quantification particles is smooth, and the quantification is performed from the top to the bottom. Chemical particles are allowed to flow. This is because the direction of the flow of the quantification particles is the direction of gravity, so that even quantification particles with a relatively large particle size flow smoothly due to natural fall, but the arrangement of the plugged honeycomb structure The direction and the direction in which the quantification particles flow are not limited to this.

図2は、本発明の第二の検査方法の実施形態の一例を示す概略説明図である。本発明の第二の検査方法は、本発明の第二の検査装置を使用することで容易に実施することができる。本発明の第二の検査装置は、レーザー可視化用粒子を発生させるレーザー可視化用粒子発生手段と、前記レーザー可視化用粒子発生手段で発生させた前記レーザー可視化用粒子を、前記ハニカム構造体の何れかの端面からセル内に導入するためのレーザー可視化用粒子導入手段と、貫通欠陥を通過して前記レーザー可視化用粒子を導入した側の端面と反対側の端面から排出される前記レーザー可視化用粒子を可視化するためのレーザー光を発生するレーザー光発生手段と、所定の粒径範囲を持った定量化用粒子を発生させる定量化用粒子発生手段と、前記定量化用粒子発生手段で発生させた前記定量化用粒子を、前記ハニカム構造体の何れかの端面からセル内に導入するための定量化用粒子導入手段と、貫通欠陥を通過して前記前記定量化用粒子を導入した側の端面と反対側の端面から排出される前記定量化用粒子の個数及び粒径を計測するための計測手段とを備える。   FIG. 2 is a schematic explanatory view showing an example of an embodiment of the second inspection method of the present invention. The second inspection method of the present invention can be easily implemented by using the second inspection apparatus of the present invention. The second inspection apparatus according to the present invention includes a laser visualization particle generating means for generating laser visualization particles, and the laser visualization particles generated by the laser visualization particle generation means in any of the honeycomb structures. A laser visualization particle introducing means for introducing the laser visualization particle into the cell from the end surface of the laser, and the laser visualization particle discharged from the end surface opposite to the end surface on the side through which the laser visualization particle is introduced after passing through the penetration defect. Laser light generation means for generating laser light for visualization, quantification particle generation means for generating quantification particles having a predetermined particle size range, and the quantification particle generation means generated by the quantification particle generation means Quantification particle introduction means for introducing quantification particles into the cell from any end face of the honeycomb structure, and through the through defects, the quantification particles And a measuring means for measuring the number and particle size of the quantification for particles discharged from the end face opposite the end face on the side where the introduction of the child.

図2の実施形態では、レーザー可視化用粒子発生手段に超音波加湿器30が使用され、レーザー可視化用粒子導入手段に超音波加湿器30と目封止ハニカム構造体1の一端面との間を連通するフード31が使用され、レーザー光発生手段にレーザー光源32が使用されている。また、定量化用粒子発生手段に超音波アトマイザー20が使用され、定量化用粒子導入手段に超音波アトマイザー20と目封止ハニカム構造体1の一端面との間を連通するフード21が使用され、計測手段にはパーティクルカウンター24が使用されている。フード21、31と目封止ハニカム構造体1との間は、気密を保つためシール材19にてシールすることが好ましい。   In the embodiment of FIG. 2, the ultrasonic humidifier 30 is used as the laser visualization particle generating means, and the ultrasonic humidifier 30 and the one end face of the plugged honeycomb structure 1 are used as the laser visualization particle introducing means. A communicating hood 31 is used, and a laser light source 32 is used as laser light generating means. Further, an ultrasonic atomizer 20 is used as the quantification particle generating means, and a hood 21 communicating between the ultrasonic atomizer 20 and one end face of the plugged honeycomb structure 1 is used as the quantification particle introducing means. A particle counter 24 is used as the measuring means. The space between the hoods 21 and 31 and the plugged honeycomb structure 1 is preferably sealed with a sealing material 19 in order to maintain airtightness.

本実施形態では、まず、本発明の被検体である目封止ハニカム構造体1を、その二つの端面が上下方向となるように配置する。そして、超音波加湿器30によって発生させた所定の粒径範囲(例えば5〜10μm)を持った液体粒子をレーザー可視化用粒子52として、フード31を通じて目封止ハニカム構造体1の下側の端面に導き、当該端面において開口しているセル9内にレーザー可視化用粒子を導入する。なお、この場合、レーザー可視化用粒子52は、重力に逆らって下から上に流れる必要があるため、レーザー可視化用粒子を含む流体に一定の圧力を加えたり、上側の端面から吸引ノズル等で吸引したりすることが好ましい。   In the present embodiment, first, the plugged honeycomb structure 1 which is the subject of the present invention is arranged so that the two end faces thereof are in the vertical direction. Then, liquid particles having a predetermined particle size range (for example, 5 to 10 μm) generated by the ultrasonic humidifier 30 are used as laser visualization particles 52, and the lower end surface of the plugged honeycomb structure 1 through the hood 31. Then, the laser visualization particles are introduced into the cell 9 that is open at the end face. In this case, since the laser visualization particles 52 need to flow from the bottom to the top against gravity, a certain pressure is applied to the fluid containing the laser visualization particles, or suction is performed from the upper end surface with a suction nozzle or the like. It is preferable to do.

目封止ハニカム構造体1に貫通欠陥17が有る場合、レーザー可視化用粒子52は、この貫通欠陥17を通過して上側の端面から排出される。こうして排出されるレーザー可視化用粒子52を、上側の端面近傍に配したレーザー光源32からレーザー光を当該端面に沿って照射することにより可視化する。このレーザー可視化用粒子52の排出は欠陥の有るセル(そのセルを区画している隔壁に貫通欠陥の有るセル)から行われるので、当該粒子が可視化されることにより欠陥の有るセルの位置を特定できる。欠陥の有るセルの位置の特定は、肉眼で行うことも可能であるが、図2のように、目封止ハニカム構造体1の上方に配したカメラ40によりレーザー可視化用粒子52の排出される様子を撮影し、得られた画像から欠陥の有るセルの位置の特定を行うようにすることが好ましい。   When the through-hole defect 17 is present in the plugged honeycomb structure 1, the laser visualization particles 52 pass through the through-hole 17 and are discharged from the upper end surface. The laser visualization particles 52 thus discharged are visualized by irradiating laser light along the end surface from a laser light source 32 disposed in the vicinity of the upper end surface. The laser visualizing particle 52 is discharged from a cell having a defect (a cell having a penetrating defect in a partition partitioning the cell), so that the position of the cell having the defect is specified by visualizing the particle. it can. Although it is possible to identify the position of a cell having a defect with the naked eye, the laser visualization particles 52 are discharged by the camera 40 disposed above the plugged honeycomb structure 1 as shown in FIG. It is preferable to take a picture of the situation and specify the position of a cell having a defect from the obtained image.

次いで、超音波アトマイザー20によって発生させた所定の粒径範囲(例えば10〜30μm)を持った液体粒子を定量化用粒子51とし、フード21を通じて目封止ハニカム構造体1の上側の端面に導き、当該端面において開口しているセル9内に定量化用粒子51を導入する。   Next, liquid particles having a predetermined particle size range (for example, 10 to 30 μm) generated by the ultrasonic atomizer 20 are used as the quantification particles 51 and led to the upper end face of the plugged honeycomb structure 1 through the hood 21. Then, the quantification particles 51 are introduced into the cell 9 opened at the end face.

目封止ハニカム構造体1に貫通欠陥17が有る場合、定量化用粒子51の一部は、この貫通欠陥を通過して下側の端面から排出される。こうして排出される定量化用粒子51の個数及び粒径を、当該粒子を排出している欠陥の有るセル毎に計測する。セル毎の計測は、例えば、図のように計測しようとするセル9の開口部とパーティクルカウンター24とを筒状の連通部材26で連通するなどして、当該セル9の開口部から排出される定量化用粒子のみがパーティクルカウンター24に送られる状態とし、当該パーティクルカウンター24にて排出された定量化用粒子51の個数及び粒径を計測する。   When the plugged honeycomb structure 1 has the penetrating defect 17, a part of the quantification particles 51 passes through the penetrating defect and is discharged from the lower end face. The number and particle size of the quantification particles 51 thus discharged are measured for each defective cell that has discharged the particles. In the measurement for each cell, for example, as shown in the figure, the opening of the cell 9 to be measured and the particle counter 24 are communicated with each other by a cylindrical communication member 26, and then discharged from the opening of the cell 9. Only the quantification particles are sent to the particle counter 24, and the number and particle size of the quantification particles 51 discharged by the particle counter 24 are measured.

前記のとおり、目封止ハニカム構造体の貫通欠陥を通過して排出される所定範囲の粒径を持った定量化用粒子の個数と、通過した貫通欠陥の大きさとの間には相関があるので、このような相関を予め調べて、それをグラフ化するなどしておけば、計測された定量化用粒子の個数及び粒径から、当該相関に基づいて貫通欠陥の大きさを定量化することができる。こうして貫通欠陥の大きさを定量化することにより、単に欠陥の有るセルの位置を特定するだけでなく、欠陥の大きさを容易に把握することができる。   As described above, there is a correlation between the number of quantification particles having a particle size in a predetermined range discharged through the through defects of the plugged honeycomb structure and the size of the through defects that have passed. Therefore, if such correlation is examined in advance and graphed, the size of the penetrating defect is quantified from the measured number and particle size of the quantification particles based on the correlation. be able to. By quantifying the size of the through defect in this way, it is possible not only to specify the position of the cell having the defect but also to easily grasp the size of the defect.

なお、図2の実施形態においては、目封止ハニカム構造体を、その二つの端面が上下方向となるように配置し、レーザー可視化用粒子は下から上に流れ、定量化用粒子は上から下に流れるようにしている。これは、レーザー可視化用粒子は単に欠陥のあるセルの位置を特定するためだけに用いられるため、広範な粒径範囲をもった粒子を使用する必要が無く、僅かな加圧や吸引等により容易に上昇させることができる比較的粒径の小さい粒子を使用できるのに対し、定量化用粒子は欠陥の大きさの定量化を精度良く行うためには、ある程度広い粒径範囲を持った粒子を使用する必要が有るため、定量化用粒子の流れる方向を重力方向とすることで、比較的粒径の大きな定量化用粒子でも自然落下によりスムーズに流れるよう配慮したものである。ただし、本発明においては、目封止ハニカム構造体の配置方向やレーザー可視化用粒子及び定量化用粒子の流れる方向は、これに限定されるものではない。   In the embodiment of FIG. 2, the plugged honeycomb structure is arranged so that the two end faces thereof are in the vertical direction, the laser visualization particles flow from the bottom to the top, and the quantification particles from the top. It is made to flow down. This is because laser visualization particles are used only to locate defective cells, so there is no need to use particles with a wide particle size range, and they can be easily applied by slight pressure or suction. In contrast, particles with a relatively small particle size that can be increased can be used, while particles for quantification use particles with a certain wide particle size range in order to accurately quantify the size of defects. Since it is necessary to use, the direction in which the quantification particles flow is the gravity direction, so that the quantification particles having a relatively large particle diameter flow smoothly due to natural fall. However, in the present invention, the arrangement direction of the plugged honeycomb structure and the flowing direction of the laser visualization particles and the quantification particles are not limited thereto.

図3は、本発明の第二の検査方法の実施形態の他の一例を示す概略説明図である。本実施形態と前記図2の実施形態とでは、貫通欠陥を通過して下側の端面から排出される定量化用粒子の個数及び粒径をセル毎に計測する方法が異なる。すなわち、本実施形態では、計測しようとするセル9の開口部に対応する部分にのみ孔部を形成したマスキング材25を下側の端面に付着させるなどして、当該セル9の開口部からのみ定量化用粒子51が排出される状態とし、下側の端面近傍に配したレーザー光源22からレーザー光を当該端面に沿って照射することにより、排出された定量化用粒子51を可視化して、その映像をレーザー光源22と対向する位置に配したカメラ23で撮影する。こうして撮影された画像から排出された定量化用粒子51の個数及び粒径を計測する。本実施形態は、この計測方法以外は、前記図2の実施形態と同様である。   FIG. 3 is a schematic explanatory view showing another example of the embodiment of the second inspection method of the present invention. The present embodiment and the embodiment of FIG. 2 differ in the method for measuring the number and particle diameter of the quantification particles passing through the penetration defect and discharged from the lower end face for each cell. That is, in the present embodiment, the masking material 25 in which the hole is formed only in the portion corresponding to the opening of the cell 9 to be measured is attached to the lower end surface, for example, only from the opening of the cell 9. By irradiating the laser light along the end surface from the laser light source 22 disposed in the vicinity of the lower end surface, the discharged quantifying particle 51 is visualized in a state where the quantifying particle 51 is discharged. The image is taken by a camera 23 arranged at a position facing the laser light source 22. The number and particle size of the quantification particles 51 discharged from the image thus taken are measured. The present embodiment is the same as the embodiment of FIG. 2 except for this measurement method.

図4は、本発明の第二の検査方法の実施形態の更に他の一例を示す概略説明図である。本実施形態では、本発明の第二の検査装置のレーザー可視化用粒子導入手段と定量化用粒子導入手段に、同一の粒子室33を使用している。この粒子室33は、超音波加湿器30で発生させたレーザー可視化用粒子52と超音波アトマイザー20にて発生させた定量化用粒子51とが、その内部に流入するとともに、目封止ハニカム構造体1の一端面に通じる開口部34を有し、当該開口部34を通じてセル9内に前記粒子を導入できるように構成されている。   FIG. 4 is a schematic explanatory view showing still another example of the embodiment of the second inspection method of the present invention. In this embodiment, the same particle chamber 33 is used for the laser visualization particle introduction means and the quantification particle introduction means of the second inspection apparatus of the present invention. In the particle chamber 33, the laser visualization particles 52 generated by the ultrasonic humidifier 30 and the quantification particles 51 generated by the ultrasonic atomizer 20 flow into the inside, and the plugged honeycomb structure. An opening 34 that communicates with one end surface of the body 1 is provided, and the particles can be introduced into the cell 9 through the opening 34.

本実施形態では、まず、本発明の被検体である目封止ハニカム構造体1を、二つの端面が上下方向となるようし、下側の端部が粒子室33の開口部34に嵌合するよう配置する。粒子室33と目封止ハニカム構造体1との間は、気密を保つためシール材19にてシールすることが好ましい。そして、超音波加湿器30によって発生させた所定の粒径範囲(例えば5〜10μm)を持った液体粒子をレーザー可視化用粒子52として粒子室33の内部に流入させた後、粒子室33内部を加圧したり、上側の端面から吸引ノズル等で吸引したりするなどして、目封止ハニカム構造体1の下側の端面において開口しているセル9内にレーザー可視化用粒子52を導入する。   In the present embodiment, first, the plugged honeycomb structure 1 which is the subject of the present invention is fitted so that the two end faces are in the vertical direction and the lower end is fitted into the opening 34 of the particle chamber 33. Arrange to do. It is preferable to seal between the particle chamber 33 and the plugged honeycomb structure 1 with a sealing material 19 in order to maintain airtightness. Then, liquid particles having a predetermined particle size range (for example, 5 to 10 μm) generated by the ultrasonic humidifier 30 are flown into the particle chamber 33 as laser visualization particles 52, and then the inside of the particle chamber 33 is filled. The laser visualization particles 52 are introduced into the cells 9 opened on the lower end surface of the plugged honeycomb structure 1 by pressurization or suction from the upper end surface with a suction nozzle or the like.

目封止ハニカム構造体1に貫通欠陥17が有る場合、レーザー可視化用粒子52は、この貫通欠陥17を通過して上側の端面から排出される。こうして排出されるレーザー可視化用粒子52を、上側の端面近傍に配したレーザー光源32からレーザー光を当該端面に沿って照射することにより可視化する。このレーザー可視化用粒子52の排出は欠陥の有るセル(そのセルを区画している隔壁に貫通欠陥の有るセル)から行われるので、当該粒子が可視化されることにより欠陥の有るセルの位置を特定できる。欠陥の有るセルの位置の特定は、肉眼で行うことも可能であるが、図のように、目封止ハニカム構造体の上方に配したカメラ40によりレーザー可視化用粒子52の排出される様子を撮影し、得られた画像から欠陥の有るセルの位置の特定を行うようにすることが好ましい。   When the through-hole defect 17 is present in the plugged honeycomb structure 1, the laser visualization particles 52 pass through the through-hole 17 and are discharged from the upper end surface. The laser visualization particles 52 thus discharged are visualized by irradiating laser light along the end surface from a laser light source 32 disposed in the vicinity of the upper end surface. The laser visualizing particle 52 is discharged from a cell having a defect (a cell having a penetrating defect in a partition partitioning the cell), so that the position of the cell having the defect is specified by visualizing the particle. it can. Although it is possible to identify the position of the cell having a defect with the naked eye, as shown in the figure, the state in which the laser visualization particles 52 are discharged by the camera 40 disposed above the plugged honeycomb structure is shown. It is preferable that the position of a cell having a defect is specified from the obtained image.

次いで、超音波アトマイザー20によって発生させた所定の粒径範囲(例えば10〜30μm)を持った液体粒子を定量化用粒子51として粒子室33の内部に流入させた後、粒子室33内部を加圧したり、上側の端面から吸引ノズル等で吸引したりするなどして、目封止ハニカム構造体1の下側の端面において開口しているセル9内に定量化用粒子51を導入する。   Next, liquid particles having a predetermined particle size range (for example, 10 to 30 μm) generated by the ultrasonic atomizer 20 are allowed to flow into the particle chamber 33 as quantification particles 51, and then the inside of the particle chamber 33 is added. The quantification particles 51 are introduced into the cells 9 that are open on the lower end surface of the plugged honeycomb structure 1 by, for example, pressing or suctioning from the upper end surface with a suction nozzle or the like.

目封止ハニカム構造体1に貫通欠陥17が有る場合、定量化用粒子51の一部は、この貫通欠陥17を通過して上側の端面から排出される。こうして排出される定量化用粒子51の個数及び粒径を、当該粒子を排出している欠陥の有るセル毎に計測する。セル毎の計測は、例えば、図4のように計測しようとするセル9の開口部とパーティクルカウンター24とを筒状の連通部材26で連通するなどして、当該セル9の開口部から排出される定量化用粒子51のみがパーティクルカウンター24に送られる状態とし、当該パーティクルカウンター24にて排出された定量化用粒子51の個数及び粒径を計測する。   When the plugged honeycomb structure 1 has the penetration defect 17, a part of the quantification particles 51 passes through the penetration defect 17 and is discharged from the upper end face. The number and particle size of the quantification particles 51 thus discharged are measured for each defective cell that has discharged the particles. The measurement for each cell is, for example, discharged from the opening of the cell 9 by communicating the opening of the cell 9 to be measured and the particle counter 24 with a cylindrical communication member 26 as shown in FIG. Only the quantification particles 51 to be sent are sent to the particle counter 24, and the number and particle diameter of the quantification particles 51 discharged by the particle counter 24 are measured.

前記のとおり、目封止ハニカム構造体の貫通欠陥を通過して排出される所定範囲の粒径を持った定量化用粒子の個数と、通過した貫通欠陥の大きさとの間には相関があるので、このような相関を予め調べて、それをグラフ化するなどしておけば、計測された定量化用粒子の個数及び粒径から、当該相関に基づいて貫通欠陥の大きさを定量化することができる。こうして貫通欠陥の大きさを定量化することにより、単に欠陥の有るセルの位置を特定するだけでなく、欠陥の大きさを容易に把握することができる。   As described above, there is a correlation between the number of quantification particles having a particle size in a predetermined range discharged through the through defects of the plugged honeycomb structure and the size of the through defects that have passed. Therefore, if such correlation is examined in advance and graphed, the size of the penetrating defect is quantified from the measured number and particle size of the quantification particles based on the correlation. be able to. By quantifying the size of the through defect in this way, it is possible not only to specify the position of the cell having the defect but also to easily grasp the size of the defect.

なお、図4の実施形態においては、粒子室が目封止ハニカム構造体の下側に配され、レーザー可視化用粒子及び定量化用粒子が、何れも下から上に流れるようにしているが、粒子室を目封止ハニカム構造体の上側に配し、レーザー可視化用粒子及び定量化用粒子が上から下に流れるようにしてもよい。この場合、定量化用粒子の流れる方向が重力方向と一致することで、比較的粒径の大きな定量化用粒子でも自然落下によりスムーズに流れるようになる。   In the embodiment of FIG. 4, the particle chamber is arranged on the lower side of the plugged honeycomb structure, and the laser visualization particles and the quantification particles both flow from the bottom to the top. The particle chamber may be arranged on the upper side of the plugged honeycomb structure so that the laser visualization particles and the quantification particles flow from top to bottom. In this case, since the direction in which the quantification particles flow matches the direction of gravity, even quantification particles having a relatively large particle diameter can flow smoothly due to natural fall.

図5は、本発明の第二の検査方法の実施形態の更に他の一例を示す概略説明図である。本実施形態と前記図4の実施形態とでは、貫通欠陥を通過して上側の端面から排出される定量化用粒子の個数及び粒径をセル毎に計測する方法が異なる。すなわち、本実施形態では、計測しようとするセル9の開口部に対応する部分にのみ孔部を形成したマスキング材25を上側の端面に付着させるなどして、当該セル9の開口部からのみ定量化用粒子51が排出される状態とし、上側の端面近傍に配したレーザー光源22からレーザー光を当該端面に沿って照射することにより、排出された定量化用粒子51を可視化して、その映像をレーザー光源と対向する位置に配したカメラ23で撮影する。こうして撮影された画像から排出された定量化用粒子51の個数及び粒径を計測する。本実施形態は、この計測方法以外は、前記図4の実施形態と同様である。   FIG. 5 is a schematic explanatory view showing still another example of the embodiment of the second inspection method of the present invention. The present embodiment and the embodiment of FIG. 4 differ in the method of measuring the number and particle size of the quantification particles that pass through the penetration defect and are discharged from the upper end surface for each cell. That is, in this embodiment, the masking material 25 in which a hole is formed only in a portion corresponding to the opening of the cell 9 to be measured is attached to the upper end surface, and the quantity is determined only from the opening of the cell 9. The quantification particles 51 are discharged, and the quantification particles 51 discharged are visualized by irradiating laser light from the laser light source 22 disposed in the vicinity of the upper end surface along the end surfaces. Is photographed with a camera 23 arranged at a position facing the laser light source. The number and particle size of the quantification particles 51 discharged from the image thus taken are measured. The present embodiment is the same as the embodiment of FIG. 4 except for this measurement method.

本発明において、レーザー可視化用粒子は、貫通欠陥の通過しやすさを考慮し、その粒径範囲を5〜10μm程度とすることが好ましい。レーザー可視化用粒子を発生させるためのレーザー可視化用粒子発生手段には、前記実施形態で使用した超音波加湿器の他、例えば、線香など燃焼により微粒子(煙)を発生させるようなものを使用することもできる。   In the present invention, it is preferable that the particle size range of the laser visualization particles is about 5 to 10 μm in consideration of the ease of passing through defects. As the laser visualization particle generating means for generating laser visualization particles, in addition to the ultrasonic humidifier used in the above embodiment, for example, a device that generates fine particles (smoke) by burning such as an incense stick is used. You can also.

一方、定量化用粒子は、欠陥の大きさの定量化を精度良く行うために、ある程度広い粒径範囲を持った粒子を使用する必要が有り、その粒径範囲を10〜30μm程度とすることが好ましい。定量化用粒子発生手段には、前記実施形態で使用した超音波アトマイザーが好適であるが、前記のような広範な粒径範囲を持った粒子を発生させられるものであれば、特に限定されるものではない。   On the other hand, in order to accurately quantify the size of defects, it is necessary to use particles having a certain wide particle size range, and the particle size range should be about 10 to 30 μm. Is preferred. The ultrasonic atomizer used in the above-described embodiment is suitable for the particle generation means for quantification, but is particularly limited as long as particles having a wide particle size range as described above can be generated. It is not a thing.

レーザー可視化用粒子導入手段や定量化用粒子導入手段には、前記実施形態のように、レーザー可視化用粒子発生手段や定量化用粒子発生手段と目封止ハニカム構造体の一端面との間を連通するフードや粒子室が好適に使用できる。なお、レーザー可視化用粒子や定量化用粒子の導入の方向が上から下になる場合のように、自然落下によってセル内に粒子を導入することができない場合は、レーザー可視化用粒子導入手段や定量化用粒子導入手段に、加圧装置や吸引装置が備えられていても良い。   The laser visualization particle introduction means and the quantification particle introduction means include a gap between the laser visualization particle generation means and the quantification particle generation means and one end face of the plugged honeycomb structure as in the above embodiment. A communicating hood or particle chamber can be suitably used. If particles cannot be introduced into the cell by natural fall, such as when the direction of introduction of laser visualization particles or quantification particles is from top to bottom, laser visualization particle introduction means or quantification The chemicalizing particle introducing means may be provided with a pressurizing device or a suction device.

計測手段には、前記実施形態で使用したパーティクルカウンターや、定量化用粒子を可視化するための照明(例えばレーザー光源)と、可視化された前記定量化用粒子を撮影するためのカメラとを組み合わせたものが好適であるが、粒子の個数と大きさをある程度精度良く計測できるものであれば、特に限定されるものではない。レーザー光源とカメラとを組み合わせた計測手段としては、例えば、(株)日本レーザーの画像解析式粒径計測システム(商品名:VisiSizer)を好適に使用することができる。   The measurement means is a combination of the particle counter used in the embodiment, illumination for visualizing the quantification particles (for example, a laser light source), and a camera for photographing the visualized quantification particles. However, there is no particular limitation as long as the number and size of particles can be measured with a certain degree of accuracy. As a measuring means combining a laser light source and a camera, for example, an image analysis type particle size measuring system (trade name: VisiSizer) manufactured by Nippon Laser Co., Ltd. can be preferably used.

なお、計測手段にレーザー光源等の照明とカメラとを用いる場合、排出される定量化用粒子を欠陥の有るセル毎に計測することが可能であれば、図1、図3、図5に示す実施形態のように、必ずしも照明とカメラとを目封止ハニカム構造体の端面に平行な直線上に配置することは要せず、例えば、カメラを目封止ハニカム構造体の端面と対向する位置に配置しても良い。   In addition, when using illumination and lasers, such as a laser light source, as a measurement means, if it is possible to measure discharged | emitted quantification particle | grains for every cell with a defect, it shows in FIG.1, FIG.3, FIG.5. As in the embodiment, it is not always necessary to arrange the illumination and the camera on a straight line parallel to the end face of the plugged honeycomb structure. For example, the position where the camera faces the end face of the plugged honeycomb structure You may arrange in.

以下、目封止ハニカム構造体の貫通欠陥を通過して排出される所定範囲の粒径を持った定量化用粒子の個数と、通過した貫通欠陥の大きさとが、相関関係を有することを実験例により説明する。   In the following, an experiment is conducted on the correlation between the number of particles for quantification having a particle size in a predetermined range discharged through the through defects of the plugged honeycomb structure and the size of the through defects that have passed. This will be explained with an example.

(実験例)
材質がコージェライトからなる目封止ハニカム構造体(直径:9インチ(229mm)、長さ:11インチ(279mm)、隔壁厚さ:12mil(304μm)、気孔率:52%、セル密度:300セル/平方インチ(46.5セル/cm)、セル形状:四角形、目封止パターン:両端面が相補的な市松模様を呈するように各セルの一方の端部に目封止部を形成)を6体(サンプルNo.1〜6)用意した。それら各々の目封止ハニカム構造体の一方の端面から、超音波加湿器によって発生させた5〜10μmの粒径範囲を持った液体粒子をレーザー可視化用粒子として、当該端面において開口しているセル内に導入し、反対側の端面から排出されるレーザー可視化用粒子を、当該端面近傍に配したレーザー光源からレーザー光を照射することにより可視化することによって、欠陥の有るセルの位置を特定した。
(Experimental example)
Plugged honeycomb structure made of cordierite (diameter: 9 inches (229 mm), length: 11 inches (279 mm), partition wall thickness: 12 mil (304 μm), porosity: 52%, cell density: 300 cells / Square inch (46.5 cells / cm 2 ), cell shape: square, plugging pattern: plugged portions are formed at one end of each cell so that both end faces have a complementary checkerboard pattern) 6 (sample Nos. 1 to 6) were prepared. A cell opened at one end face of each of the plugged honeycomb structures as a laser visualization particle having a particle size range of 5 to 10 μm generated by an ultrasonic humidifier. The position of the cell with the defect was specified by visualizing the laser visualization particles introduced into the interior and discharged from the opposite end face by irradiating laser light from a laser light source disposed in the vicinity of the end face.

次いで、各々の目封止ハニカム構造体の一方の端面から、超音波アトマイザーによって発生させた10〜30μmの粒径範囲を持った液体粒子を定量化用粒子として、当該端面において開口しているセル内に導入するとともに、反対側の端面において前記のように特定された欠陥の有るセルの開口部とパーティクルカウンターとを筒状の連通部材で連通し、当該セルの開口部から排出される定量化用粒子のみがパーティクルカウンターに送られる状態とし(パーティクルカウンター流量:30L/min)、当該パーティクルカウンターにて、当該セルから排出された定量化用粒子の個数(パーティクルカウンター流量10L当たりの個数)及び粒径を計測し、その計測結果を粒径が10μm以上20μm未満の粒子の個数と、粒径が20μm以上30μm以下の粒子の個数とに分けて表1した。   Next, from one end face of each plugged honeycomb structure, a liquid particle having a particle size range of 10 to 30 μm generated by an ultrasonic atomizer is used as a quantifying particle, and a cell is opened at the end face. Quantification that is introduced into the opposite end surface of the defective cell identified as described above on the opposite end surface and the particle counter with a cylindrical communication member and discharged from the opening of the cell. Only the particles for use are sent to the particle counter (particle counter flow rate: 30 L / min), and the number of particles for quantification (number per particle counter flow rate of 10 L) and particles discharged from the cell by the particle counter The diameter is measured, and the result of measurement is the number of particles having a particle size of 10 μm or more and less than 20 μm, and the particle size is 20 μm And Table 1 is divided into a number of upper 30μm or smaller particles.

また、各目封止ハニカム構造体について、前記のようにして位置が特定された欠陥の有るセルの内部にファイバースコープを導入することにより、実際の貫通欠陥の位置(定量化用粒子が排出される側の端面からの距離)、欠陥の種類、欠陥の大きさを調べ、同表に示すとともに、前記のように計測された定量化用粒子の個数と実際の欠陥の大きさとの関係をグラフ化して図8に示した。   In addition, for each plugged honeycomb structure, by introducing a fiberscope into the defective cell whose position is specified as described above, the actual position of the penetrating defect (quantification particles are discharged). The distance from the end face on the surface side), the type of defect, and the size of the defect are shown in the table, and the graph shows the relationship between the number of particles for quantification measured as described above and the actual size of the defect. This is shown in FIG.

Figure 2009085673
Figure 2009085673

この実験例では、貫通欠陥を通過してパーティクルカウンターにより計測された、粒径が10μm以上20μm未満の定量化用粒子の個数と欠陥の大きさとの間に相関関係が認められ、計測された定量化用粒子の個数と欠陥の大きさとがほぼ比例している。このように、目封止ハニカム構造体の貫通欠陥を通過して排出される所定範囲の粒径を持った定量化用粒子の個数と、通過した貫通欠陥の大きさとには相関が存在し、両者の関係を予めグラフ化するなどして把握しておけば、本発明の検査方法のように欠陥のあるセルから排出された定量化用粒子の個数及び粒径を計測することにより欠陥の大きさを定量化することが可能となる。   In this experimental example, a correlation was recognized between the number of quantification particles having a particle diameter of 10 μm or more and less than 20 μm, which was measured by a particle counter after passing through a penetration defect, and the measured quantification. The number of crystallization particles and the size of defects are approximately proportional. Thus, there is a correlation between the number of quantification particles having a particle size in a predetermined range discharged through the through defects of the plugged honeycomb structure and the size of the through defects that passed through, If the relationship between the two is grasped by graphing in advance, the size of the defect is measured by measuring the number and particle size of the quantification particles discharged from the defective cell as in the inspection method of the present invention. It becomes possible to quantify the thickness.

本発明は、DPF等の粒子状物質を濾過するフィルター等に使用される目封止ハニカム構造体の欠陥を検出する方法及び装置として好適に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used as a method and apparatus for detecting defects in a plugged honeycomb structure used for a filter or the like for filtering particulate matter such as DPF.

本発明の第一の検査方法の実施形態の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of embodiment of the 1st test | inspection method of this invention. 本発明の第二の検査方法の実施形態の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of embodiment of the 2nd test | inspection method of this invention. 本発明の第二の検査方法の実施形態の他の一例を示す概略説明図である。It is a schematic explanatory drawing which shows another example of embodiment of the 2nd test | inspection method of this invention. 本発明の第二の検査方法の実施形態の更に他の一例を示す概略説明図である。It is a schematic explanatory drawing which shows another example of embodiment of the 2nd test | inspection method of this invention. 本発明の第二の検査方法の実施形態の更に他の一例を示す概略説明図である。It is a schematic explanatory drawing which shows another example of embodiment of the 2nd test | inspection method of this invention. 目封止ハニカム構造体の基本的な構造を示す一端面側から見た概略平面図である。It is the schematic plan view seen from the end surface side which shows the basic structure of a plugged honeycomb structure. 目封止ハニカム構造体の基本的な構造を示す概略断面図である。It is a schematic sectional drawing which shows the basic structure of a plugged honeycomb structure. 実験例にて計測された定量化用粒子の個数と実際の欠陥の大きさとの関係を示すグラフである。It is a graph which shows the relationship between the number of the particle | grains for quantification measured in the experiment example, and the magnitude | size of an actual defect.

符号の説明Explanation of symbols

1:目封止ハニカム構造体、2:ハニカム構造体、3:端面、5:端面、7:隔壁、9:セル、11:目封止部、17:貫通欠陥、19:シール材、20:超音波アトマイザー、21:フード、22:レーザー光源、23:カメラ、24:パーティクルカウンター、25:マスキング材、26:連通部材、30:超音波加湿器、31:フード、32:レーザー光源、33:粒子室、34:開口部、40:カメラ、51:定量化用粒子、52:レーザー可視化用粒子。 1: plugged honeycomb structure, 2: honeycomb structure, 3: end face, 5: end face, 7: partition wall, 9: cell, 11: plugged portion, 17: penetration defect, 19: sealing material, 20: Ultrasonic atomizer, 21: Hood, 22: Laser light source, 23: Camera, 24: Particle counter, 25: Masking material, 26: Communication member, 30: Ultrasonic humidifier, 31: Hood, 32: Laser light source, 33: Particle chamber, 34: opening, 40: camera, 51: particles for quantification, 52: particles for laser visualization.

Claims (7)

多孔質の隔壁によって、二つの端面の間を連通する複数のセルが区画形成されたハニカム構造体と、前記各セルの二つの開口端のうちの何れか一方を目封止するように配設された目封止部とを備える目封止ハニカム構造体の貫通欠陥を検査する方法であって、
何れか一方の端面から所定の粒径範囲を持った定量化用粒子を前記セル内に導入し、貫通欠陥を通過して反対側の端面から排出される前記定量化用粒子の個数及び粒径を、当該粒子を排出している欠陥の有るセル毎に計測し、計測された前記定量化用粒子の個数及び粒径から欠陥の大きさを定量化する目封止ハニカム構造体の欠陥検査方法。
A honeycomb structure in which a plurality of cells communicating between two end faces are partitioned by a porous partition wall, and either one of two open ends of each cell is plugged. A method for inspecting a penetration defect of a plugged honeycomb structure provided with a plugged portion,
Quantification particles having a predetermined particle size range from any one end face are introduced into the cell, and the number and the particle diameter of the quantification particles discharged from the opposite end face after passing through a through defect. For each cell having a defect discharging the particles, and quantifying the size of the defect from the measured number and particle size of the quantification particles, a defect inspection method for a plugged honeycomb structure .
多孔質の隔壁によって、二つの端面の間を連通する複数のセルが区画形成されたハニカム構造体と、前記各セルの二つの開口端のうちの何れか一方を目封止するように配設された目封止部とを備える目封止ハニカム構造体の貫通欠陥を検査する方法であって、
何れか一方の端面からレーザー可視化用粒子をセル内に導入し、貫通欠陥を通過して反対側の端面から排出される前記レーザー可視化用粒子をレーザー光の照射により可視化して欠陥の有るセルの位置を特定した後、何れか一方の端面から所定の粒径範囲を持った定量化用粒子をセル内に導入し、貫通欠陥を通過して反対側の端面から排出される前記定量化用粒子の個数及び粒径を、当該粒子を排出している欠陥の有るセル毎に計測し、計測された前記定量化用粒子の個数及び粒径から欠陥の大きさを定量化する目封止ハニカム構造体の欠陥検査方法。
A honeycomb structure in which a plurality of cells communicating between two end faces are partitioned by a porous partition wall, and either one of two open ends of each cell is plugged. A method for inspecting a penetration defect of a plugged honeycomb structure provided with a plugged portion,
Particles for laser visualization are introduced into the cell from one of the end faces, and the particles for laser visualization that pass through the penetrating defect and are discharged from the end face on the opposite side are visualized by laser light irradiation. After the position is specified, the quantification particles having a predetermined particle size range are introduced from one of the end faces into the cell, pass through the penetration defect, and discharged from the opposite end face. Plugged honeycomb structure for measuring the number and particle size of each of the cells having defects discharging the particles, and quantifying the size of the defect from the measured number and particle size of the quantification particles Body defect inspection method.
多孔質の隔壁によって、二つの端面の間を連通する複数のセルが区画形成されたハニカム構造体と、前記各セルの二つの開口端のうちの何れか一方を目封止するように配設された目封止部とを備える目封止ハニカム構造体の貫通欠陥を検査する装置であって、
所定の粒径範囲を持った定量化用粒子を発生させる定量化用粒子発生手段と、
前記定量化用粒子発生手段で発生させた前記定量化用粒子を、前記ハニカム構造体の何れかの端面からセル内に導入するための定量化用粒子導入手段と、
貫通欠陥を通過して前記定量化用粒子を導入した側の端面と反対側の端面から排出される前記定量化用粒子の個数及び粒径を計測するための計測手段と
を備えた目封止ハニカム構造体の欠陥検査装置。
A honeycomb structure in which a plurality of cells communicating between two end faces are partitioned by a porous partition wall, and either one of two open ends of each cell is plugged. A device for inspecting a penetration defect of a plugged honeycomb structure provided with a plugged portion,
Quantification particle generating means for generating quantification particles having a predetermined particle size range;
Quantification particle introduction means for introducing the quantification particles generated by the quantification particle generation means into a cell from any end face of the honeycomb structure;
Plugging device provided with a measuring means for measuring the number and particle size of the quantification particles discharged from the end surface on the opposite side to the end surface on which the quantification particles are introduced through a penetration defect Defect inspection device for honeycomb structure.
多孔質の隔壁によって、二つの端面の間を連通する複数のセルが区画形成されたハニカム構造体と、前記各セルの二つの開口端のうちの何れか一方を目封止するように配設された目封止部とを備える目封止ハニカム構造体の貫通欠陥を検査する装置であって、
レーザー可視化用粒子を発生させるレーザー可視化用粒子発生手段と、
前記レーザー可視化用粒子発生手段で発生させた前記レーザー可視化用粒子を、前記ハニカム構造体の何れかの端面からセル内に導入するためのレーザー可視化用粒子導入手段と、
貫通欠陥を通過して前記レーザー可視化用粒子を導入した側の端面と反対側の端面から排出される前記レーザー可視化用粒子を可視化するためのレーザー光を発生するレーザー光発生手段と、
所定の粒径範囲を持った定量化用粒子を発生させる定量化用粒子発生手段と、
前記定量化用粒子発生手段で発生させた前記定量化用粒子を、前記ハニカム構造体の何れかの端面からセル内に導入するための定量化用粒子導入手段と、
貫通欠陥を通過して前記前記定量化用粒子を導入した側の端面と反対側の端面から排出される前記定量化用粒子の個数及び粒径を計測するための計測手段と
を備えた目封止ハニカム構造体の欠陥検査装置。
A honeycomb structure in which a plurality of cells communicating between two end faces are partitioned by a porous partition wall, and either one of two open ends of each cell is plugged. A device for inspecting a penetration defect of a plugged honeycomb structure provided with a plugged portion,
Laser visualization particle generating means for generating laser visualization particles;
Laser visualization particle introduction means for introducing the laser visualization particles generated by the laser visualization particle generation means into a cell from any end face of the honeycomb structure;
Laser light generating means for generating laser light for visualizing the laser visualization particles discharged from the end surface on the opposite side to the end surface on the side through which the laser visualization particles are introduced through a penetration defect;
Quantification particle generating means for generating quantification particles having a predetermined particle size range;
Quantification particle introduction means for introducing the quantification particles generated by the quantification particle generation means into a cell from any end face of the honeycomb structure;
A plug provided with a measuring means for measuring the number and particle diameter of the quantification particles discharged from the end surface on the opposite side to the end surface on which the quantification particles are introduced through a penetration defect Defect inspection system for fixed honeycomb structure.
前記定量化用粒子発生手段に、超音波アトマイザーが用いられる請求項3又は4に記載の目封止ハニカム構造体の欠陥検査装置。   The defect inspection apparatus for a plugged honeycomb structure according to claim 3 or 4, wherein an ultrasonic atomizer is used as the quantification particle generating means. 前記計測手段に、前記定量化用粒子を可視化するための照明と、可視化された前記定量化用粒子を撮影するためのカメラとが用いられる請求項3又は4に記載の目封止ハニカム構造体の欠陥検査装置。   The plugged honeycomb structure according to claim 3 or 4, wherein illumination for visualizing the quantification particles and a camera for photographing the visualized quantification particles are used for the measurement means. Defect inspection equipment. 前記計測手段に、パーティクルカウンターが用いられる請求項3又は4に記載の目封止ハニカム構造体の欠陥検査装置。   The defect inspection apparatus for a plugged honeycomb structure according to claim 3 or 4, wherein a particle counter is used as the measuring means.
JP2007253529A 2007-09-28 2007-09-28 Defect inspection method and defect inspection device of sealed honeycomb structure Pending JP2009085673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007253529A JP2009085673A (en) 2007-09-28 2007-09-28 Defect inspection method and defect inspection device of sealed honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007253529A JP2009085673A (en) 2007-09-28 2007-09-28 Defect inspection method and defect inspection device of sealed honeycomb structure

Publications (1)

Publication Number Publication Date
JP2009085673A true JP2009085673A (en) 2009-04-23

Family

ID=40659302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007253529A Pending JP2009085673A (en) 2007-09-28 2007-09-28 Defect inspection method and defect inspection device of sealed honeycomb structure

Country Status (1)

Country Link
JP (1) JP2009085673A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230460A (en) * 2009-03-26 2010-10-14 Ngk Insulators Ltd Apparatus and method for inspection of honeycomb structure defect
US9709457B2 (en) 2013-07-11 2017-07-18 Denso Corporation Method of detecting defects in honeycomb structural body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357562A (en) * 2001-03-30 2002-12-13 Ngk Insulators Ltd Method and apparatus for inspecting defect
JP2004286703A (en) * 2003-03-25 2004-10-14 Ngk Insulators Ltd Inspection method and inspection device of honeycomb structure
WO2007015810A2 (en) * 2005-07-29 2007-02-08 Corning Incorporated Method, system and apparatus for detecting defects in a honeycomb body using a particulate fluid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357562A (en) * 2001-03-30 2002-12-13 Ngk Insulators Ltd Method and apparatus for inspecting defect
JP2004286703A (en) * 2003-03-25 2004-10-14 Ngk Insulators Ltd Inspection method and inspection device of honeycomb structure
WO2007015810A2 (en) * 2005-07-29 2007-02-08 Corning Incorporated Method, system and apparatus for detecting defects in a honeycomb body using a particulate fluid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230460A (en) * 2009-03-26 2010-10-14 Ngk Insulators Ltd Apparatus and method for inspection of honeycomb structure defect
JP4665039B2 (en) * 2009-03-26 2011-04-06 日本碍子株式会社 Honeycomb structure defect inspection apparatus and honeycomb structure defect inspection method
US9709457B2 (en) 2013-07-11 2017-07-18 Denso Corporation Method of detecting defects in honeycomb structural body

Similar Documents

Publication Publication Date Title
US8422014B2 (en) Method for inspecting defect of article to be inspected
JP3904933B2 (en) Inspection method and inspection apparatus for detecting defects
JP4913707B2 (en) Filter inspection method and filter inspection apparatus
JP5430148B2 (en) Method for detecting defects in porous material
JP2004286703A (en) Inspection method and inspection device of honeycomb structure
US7410528B2 (en) Method and system for testing the integrity of green plugged honeycomb structure
JPH03255934A (en) Method and device for inspecting honeycomb structural body for exhaust gas purification
KR101737663B1 (en) Filter and membrane defect detection system
JP2009085673A (en) Defect inspection method and defect inspection device of sealed honeycomb structure
CN113464254B (en) Method for inspecting columnar honeycomb filter
KR101798268B1 (en) System and method for analyzing pore sizes of substrates
JP2000193582A (en) Method and device for inspecting pinhole in porous ceramic member
JP5526973B2 (en) Filter evaluation method and evaluation apparatus
JP5667415B2 (en) Honeycomb structure inspection method and honeycomb structure inspection apparatus
JP2020020745A (en) Inspection method of honeycomb structure and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321