JP2009072739A - Method for biodegradation treatment of material to be treated - Google Patents

Method for biodegradation treatment of material to be treated Download PDF

Info

Publication number
JP2009072739A
JP2009072739A JP2007246401A JP2007246401A JP2009072739A JP 2009072739 A JP2009072739 A JP 2009072739A JP 2007246401 A JP2007246401 A JP 2007246401A JP 2007246401 A JP2007246401 A JP 2007246401A JP 2009072739 A JP2009072739 A JP 2009072739A
Authority
JP
Japan
Prior art keywords
treated
substance
bacteria
waste liquid
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007246401A
Other languages
Japanese (ja)
Other versions
JP5224502B2 (en
Inventor
Michio Tabata
三千雄 田端
Atsushi Ito
淳 伊藤
Nobuhiro Kuroiwa
信宏 黒岩
Norio Kano
規夫 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2007246401A priority Critical patent/JP5224502B2/en
Publication of JP2009072739A publication Critical patent/JP2009072739A/en
Application granted granted Critical
Publication of JP5224502B2 publication Critical patent/JP5224502B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for biodegradation treatment of a material to be treated which enables the biodegradation treatment of a hardly decomposable material to be treated, and can reduce the generation of surplus sludge. <P>SOLUTION: An inorganic substance for aggregating aerobic bacteria and anaerobic bacteria is mixed into water containing sludge containing both bacteria to prepare granular aggregate. Keeping of the aggregate in the environment with a dissolved oxygen of 2 mg/L or more further forms a granular material where aerobic bacteria exist mainly on the front side of the aggregate and anaerobic bacteria exist mainly in the inside (core side) of the aggregate. As a result, the granular material in which the aerobic bacteria and the anaerobic bacteria coexist is brought into contact with the material to be treated to enable the execution of the biodegradation treatment of the material to be treated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は被処理物質の生分解処理方法に関する。   The present invention relates to a biodegradation treatment method for a substance to be treated.

従来、好気性細菌を含む活性汚泥を用いて被処理物質を生分解処理する方法が知られている。   Conventionally, a method for biodegrading a material to be treated using activated sludge containing aerobic bacteria is known.

例えば、特許文献1に開示される被処理物質の生分解処理方法では、処理槽内に好気性細菌を含む活性汚泥と被処理物質とを投入し、その後、処理槽内を曝気することにより処理槽内の溶存酸素量を制御している。かかる好気性細菌は、被処理物質中の汚濁物質(BOD、SSなど)を分解して、安定的に被処理物質を分解浄化している。
特開平4−268000号公報
For example, in the biodegradation treatment method for a substance to be treated disclosed in Patent Document 1, activated sludge containing aerobic bacteria and the substance to be treated are put into a treatment tank, and then the treatment is performed by aeration in the treatment tank. The amount of dissolved oxygen in the tank is controlled. Such an aerobic bacterium decomposes a pollutant (BOD, SS, etc.) in the material to be treated and stably decomposes and purifies the material to be treated.
JP-A-4-268000

しかし、特許文献1に開示される被処理物質の生分解処理方法では、例えば、メッキ工場排水、βデンプン、リグニンのように生分解処理できない物質があるという問題があった。また、細菌が汚濁物質(BOD、SSなど)を分解せずに吸着する場合があるため、処理槽内に余剰汚泥が大量に発生してしまう。これによると、連続的に生分解処理を行う際の管理指標である処理槽内の汚泥濃度を所定値とするために、処理槽内の汚泥の除去を頻繁に行わなくてはならないという問題があった。   However, the biodegradation treatment method for a substance to be treated disclosed in Patent Document 1 has a problem that there are substances that cannot be biodegradable, such as plating factory effluent, β starch, and lignin. Moreover, since bacteria may adsorb pollutants (BOD, SS, etc.) without decomposing, a large amount of excess sludge is generated in the treatment tank. According to this, in order to set the sludge concentration in the treatment tank, which is a management index when continuously performing biodegradation treatment, to a predetermined value, it is necessary to frequently remove sludge in the treatment tank. there were.

本発明は、上記問題に鑑みてなされたものであって、その目的は、従来、生分解処理では分解が困難とされていた難分解性である被処理物質の生分解処理を可能とし、かつ余剰汚泥の発生を低減できる被処理物質の生分解処理方法を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to enable biodegradation treatment of a material to be treated that has been difficult to decompose by conventional biodegradation treatment, and It is providing the biodegradation processing method of the to-be-processed substance which can reduce generation | occurrence | production of excess sludge.

すなわち、本発明は、
〔1〕好気性細菌および嫌気性細菌が無機物質に凝集した粒状体と、被処理物質とを溶存酸素量2mg/L以上の条件下に接触させる、被処理物質の生分解処理方法、ならびに
〔2〕好気性細菌および嫌気性細菌を溶存酸素量2mg/L以上の環境下で無機物質に凝集させてなる粒状体に関する。
That is, the present invention
[1] A biodegradation treatment method for a substance to be treated, in which an aerobic bacterium and an anaerobic bacterium are aggregated in an inorganic substance, and the substance to be treated are brought into contact with each other under a condition of dissolved oxygen amount of 2 mg / L or more 2] A granular material obtained by aggregating an aerobic bacterium and an anaerobic bacterium into an inorganic substance in an environment having a dissolved oxygen amount of 2 mg / L or more.

本発明によれば、難分解性である被処理物質の生分解処理を可能とし、かつ余剰汚泥の発生を低減できるという優れた効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, there exists the outstanding effect that the biodegradation process of the to-be-processed substance which is hardly decomposable is possible, and generation | occurrence | production of excess sludge can be reduced.

本発明の被処理物質の生分解処理方法は、好気性細菌および嫌気性細菌が無機物質に凝集した粒状体と、被処理物質とを溶存酸素量2mg/L以上の条件下に接触させるものである。   The biodegradation treatment method for a substance to be treated according to the present invention is a method in which a granular material in which aerobic bacteria and anaerobic bacteria are aggregated in an inorganic substance is brought into contact with the substance to be treated under a condition where the dissolved oxygen amount is 2 mg / L or more. is there.

また、本発明は、好気性細菌および嫌気性細菌を溶存酸素量2mg/L以上の環境下で無機物質に凝集させてなる粒状体である。   Further, the present invention is a granular material obtained by aggregating an aerobic bacterium and an anaerobic bacterium into an inorganic substance in an environment having a dissolved oxygen amount of 2 mg / L or more.

本発明において、粒状体を調製するには好気性細菌および嫌気性細菌を含む汚泥を含んだ水中に、両細菌を凝集させる無機物質を混合することにより行うことができる。これにより、好気性細菌および嫌気性細菌が無機物質に凝集して、まず凝集体を形成する。この凝集体を溶存酸素量2mg/L以上の環境下に置くことにより、凝集体の表面側には主として好気性細菌が存在し、凝集体の内部(中心)側には主として嫌気性細菌が存在する粒状体がさらに形成される。その結果、好気性細菌と嫌気性細菌が共存した状態の粒状体が、被処理物質と接触し、被処理物質の生分解処理を行うことができる。なお、ここで言う粒状体とは直径が1mm〜5mm程度のものをいう。   In the present invention, the granular material can be prepared by mixing an inorganic substance that aggregates both bacteria in water containing sludge containing aerobic bacteria and anaerobic bacteria. Thereby, an aerobic bacterium and an anaerobic bacterium aggregate to an inorganic substance, and form an aggregate first. By placing this aggregate in an environment where the dissolved oxygen amount is 2 mg / L or more, there are mainly aerobic bacteria on the surface side of the aggregate and mainly anaerobic bacteria on the inside (center) side of the aggregate. A granular material is further formed. As a result, the granular material in the state where aerobic bacteria and anaerobic bacteria coexist can be brought into contact with the material to be treated, and biodegradation treatment of the material to be treated can be performed. In addition, the granular material said here means a thing with a diameter of about 1 mm-5 mm.

本発明において、溶存酸素量は、粒状体を形成させる観点から、2mg/L以上であり、3mg/L以上であることが好ましい。また、粒状体が形成される以上の溶存酸素量は不必要であるため、8mg/L以下であることが好ましく、7mg/L以下であることがより好ましく、6mg/L以下であることがさらに好ましい。かかる溶存酸素量は、DOメーターOM12(株式会社堀場製作所製)等を用いて測定することができ、処理槽内へ空気を送るファンの回転数の調整等により容易に制御することができる。   In the present invention, the dissolved oxygen amount is 2 mg / L or more, and preferably 3 mg / L or more, from the viewpoint of forming a granular material. Moreover, since the dissolved oxygen amount beyond the formation of the granule is unnecessary, it is preferably 8 mg / L or less, more preferably 7 mg / L or less, and further 6 mg / L or less. preferable. The amount of dissolved oxygen can be measured using a DO meter OM12 (manufactured by Horiba, Ltd.) or the like, and can be easily controlled by adjusting the rotational speed of a fan that sends air into the treatment tank.

本発明に用いられる好気性細菌および嫌気性細菌は、特に限定はされないが、特定の酸素条件下で無機物質と凝集体を形成し、粒状体となるものであればよく、さらに、かかる粒状体によって被処理物質を生分解処理するものであればよい。   The aerobic bacterium and the anaerobic bacterium used in the present invention are not particularly limited as long as they form an aggregate with an inorganic substance under a specific oxygen condition to form a granular body. As long as the substance to be treated is biodegradable by the above method.

また、粒状体に好気性細菌と嫌気性細菌とが共存しているため、好気性細菌の分解に適した被処理物質も、嫌気性細菌の分解に適した被処理物質も処理することができ、処理可能な被処理物質の種類が増加させることができる。特に嫌気性細菌による処理が適した窒素、リンなどの分解にも効果的である。   In addition, since the aerobic bacteria and anaerobic bacteria coexist in the granular material, it is possible to treat the treated material suitable for the degradation of the aerobic bacteria and the treated material suitable for the degradation of the anaerobic bacteria. Therefore, the types of substances that can be processed can be increased. In particular, it is also effective for decomposing nitrogen, phosphorus, etc. suitable for treatment with anaerobic bacteria.

さらにまた、処理槽における被処理物質の分解時の臭気を防止することができる。臭気を防止できる理由として、通常、嫌気性細菌による生分解処理時にはメタン等の臭気物質が発生するが、本発明では、粒状体の中心部で嫌気性細菌が発生させた臭気物質を嫌気性細菌の周囲に位置する好気性細菌が酸化するため、臭気物質の放出が防止できること、また、処理槽内が好気性であることが臭気の防止に大きく寄与していることが挙げられる。   Furthermore, the odor at the time of decomposition | disassembly of the to-be-processed substance in a processing tank can be prevented. The reason why odor can be prevented is that odorous substances such as methane are usually generated during biodegradation treatment with anaerobic bacteria, but in the present invention, odorous substances generated by anaerobic bacteria at the center of the granular material are treated with anaerobic bacteria. Since the aerobic bacteria located around the oxidizer are oxidized, it is possible to prevent the release of odorous substances, and the fact that the inside of the treatment tank is aerobic greatly contributes to the prevention of odors.

本発明は、被処理物質が処理対象物質を含む廃液であり、該粒状体および該廃液が含まれる処理槽内の溶存酸素量を制御する方法であってもよい。   The present invention may be a method in which the substance to be treated is a waste liquid containing a substance to be treated, and the amount of dissolved oxygen in the treatment tank containing the granular material and the waste liquid may be controlled.

本発明において、処理槽は、該粒状体および該廃液が含まれる処理槽であって、被処理物質を分解する槽のことをいう。具体的には、曝気槽などが処理槽として使用されるが、曝気槽は、1つまたは複数を使用してもよく、廃液を溜めておく原水槽と組み合わせてもよい。   In the present invention, the treatment tank is a treatment tank containing the granular material and the waste liquid, and refers to a tank that decomposes a material to be treated. Specifically, an aeration tank or the like is used as a treatment tank, but one or a plurality of aeration tanks may be used, or a raw water tank in which waste liquid is stored may be combined.

また、処理槽に用いられる液中膜は、特に限定は無いが、中空糸膜あるいは平膜が好ましい。   The submerged membrane used in the treatment tank is not particularly limited, but a hollow fiber membrane or a flat membrane is preferable.

本発明において、好気性細菌および嫌気性細菌が無機物質に凝集した粒状体と、被処理物質とを溶存酸素量2mg/L以上の条件下に接触させた後に、さらに処理槽の液中膜でろ過してもよい。   In the present invention, after the aerobic bacteria and anaerobic bacteria are aggregated in an inorganic substance and the substance to be treated are brought into contact with each other under the condition that the dissolved oxygen amount is 2 mg / L or more, the submerged film in the treatment tank It may be filtered.

また、本発明では、一つの処理槽内で好気性細菌による処理と、嫌気性細菌による処理とを同時に行うことができるため、処理槽の増加を防止することができ、処理設備、処理工程を低減することができる。   In the present invention, since the treatment with aerobic bacteria and the treatment with anaerobic bacteria can be performed simultaneously in one treatment tank, the increase of the treatment tanks can be prevented, and the treatment equipment and treatment steps can be performed. Can be reduced.

本発明において、処理槽内における汚泥浮遊物質量(MLSS)は、ろ過用の膜に与える負荷の観点から、好ましくは5000〜100000mg/L、より好ましくは30000〜60000mg/Lであり、これらの値は処理槽内を数回測定した平均値であってもよい。ここで、汚泥浮遊物質量(MLSS)は、JIS K0102に規定する懸濁物質として規定した値である。   In the present invention, the amount of sludge suspended solids (MLSS) in the treatment tank is preferably 5000 to 100000 mg / L, more preferably 30000 to 60000 mg / L, from the viewpoint of the load applied to the membrane for filtration. May be an average value measured several times in the treatment tank. Here, the amount of sludge suspended solids (MLSS) is a value defined as a suspended substance defined in JIS K0102.

さらに、本発明において、処理槽内における汚泥有機性浮遊物質量(MLVSS)は、ろ過用の膜に与える負荷の観点から、好ましくは1000〜30000mg/L、より好ましくは5000〜10000mg/Lであり、これらの値は処理槽内を数回測定した平均値であってもよい。ここで、汚泥有機性浮遊物質量(MLVSS)は、MLSSのうちJIS K0102に規定する強熱減量として規定した値である。   Further, in the present invention, the amount of sludge organic suspended solids (MLVSS) in the treatment tank is preferably 1000 to 30000 mg / L, more preferably 5000 to 10000 mg / L from the viewpoint of the load applied to the membrane for filtration. These values may be average values obtained by measuring the inside of the treatment tank several times. Here, the amount of sludge organic suspended solids (MLVSS) is a value defined as an ignition loss defined in JIS K0102 among MLSS.

本発明において、好気性細菌および嫌気性細菌が無機物質に凝集し、粒状体となるため、汚泥浮遊物質量および汚泥有機性浮遊物質量は、一般の汚泥に比べて極めて大きくすることができる。従って、被処理物質と粒状体(好気性細菌および嫌気性細菌)との接触機会を増大させることができ、難分解性である被処理物質も生分解処理することができる。   In the present invention, the aerobic bacteria and the anaerobic bacteria are aggregated into an inorganic substance to form a granular material. Therefore, the amount of sludge suspended solids and the amount of sludge organic suspended solids can be made extremely large compared to general sludge. Therefore, it is possible to increase the contact opportunity between the substance to be treated and the granular material (aerobic bacteria and anaerobic bacteria), and it is also possible to biodegrade the substance to be treated which is hardly degradable.

また、本発明の粒状体を用いた生分解処理において、高いMLSS値であったとしても液体の粘度を低くすることができるため、処理槽内の攪拌効果が高くなり、酸素が隅々まで行き渡ることにより、特に好気性細菌の働きを活性化させることができる。   Further, in the biodegradation treatment using the granular material of the present invention, even if the MLSS value is high, the viscosity of the liquid can be lowered, so that the stirring effect in the treatment tank is enhanced and oxygen is spread all over. In particular, the action of aerobic bacteria can be activated.

本発明は、好気性細菌と嫌気性細菌とを含む細菌群と、好気性細菌と嫌気性細菌とを凝集させる無機物質とを混合する工程を含むことが好ましい。   The present invention preferably includes a step of mixing a bacterial group including aerobic bacteria and anaerobic bacteria and an inorganic substance that aggregates the aerobic bacteria and the anaerobic bacteria.

本発明において、粒状体における無機物質の割合は、好気性細菌と嫌気性細菌とを充分に凝集させる観点から、好ましくは20重量%以上であることが好ましく、より好ましくは30〜60重量%、さらに好ましくは40〜50重量%であることが好ましい。かかる無機物質の割合は、組成分析、具体的には乾燥により有機分を除去した後の物質を、蛍光X線分析などを用いることで算出することができる。   In the present invention, the proportion of the inorganic substance in the granular material is preferably 20% by weight or more, more preferably 30 to 60% by weight, from the viewpoint of sufficiently aggregating aerobic bacteria and anaerobic bacteria. More preferably, it is 40 to 50% by weight. The ratio of the inorganic substance can be calculated by using a composition analysis, specifically, a substance after removing organic components by drying, using fluorescent X-ray analysis or the like.

本発明に用いられる無機物質は、細菌の凝集、保持が可能な空間を形成できる物質であればよく、カルシウム、アルミニウム、マグネシウムであることが好ましい。さらに、カルシウムは、細菌を凝集、保持するための空間を形成する観点から、方解石型炭酸カルシウムであることがより好ましい。   The inorganic substance used in the present invention may be any substance that can form a space in which bacteria can be aggregated and retained, and is preferably calcium, aluminum, or magnesium. Further, calcium is more preferably calcite-type calcium carbonate from the viewpoint of forming a space for aggregating and holding bacteria.

加えて、無機物質が好気性細菌と嫌気性細菌とを凝集させるため、自己凝集性能を持たない細菌をも凝集させ、粒状化させることができ、自己凝集能によらず被処理物質に適した細菌を用いて生分解処理を行うことができる。   In addition, since inorganic substances agglutinate aerobic and anaerobic bacteria, it is possible to agglutinate and granulate bacteria that do not have self-aggregation performance, making them suitable for treated substances regardless of self-aggregation ability. Biodegradation can be performed using bacteria.

本発明において、被処理物質は、界面活性剤含有廃液、リグニン含有廃液、豆清含有廃液およびβデンプン含有廃液からなる群より選ばれる少なくとも1つであることが好ましい。   In the present invention, the substance to be treated is preferably at least one selected from the group consisting of a surfactant-containing waste liquid, a lignin-containing waste liquid, a tofu-containing waste liquid, and a β-starch-containing waste liquid.

本発明において、被処理物質の生分解処理用添加剤として、マグネシウム化合物、ケイ素化合物、および細菌培養の栄養剤を使用して、粒状体における細菌を活性化させてもよい。   In the present invention, as an additive for biodegradation treatment of a substance to be treated, a magnesium compound, a silicon compound, and a nutrient for bacterial culture may be used to activate bacteria in the granular material.

以下、本発明の実施形態を図面に基づいて説明する。処理対象物質を含む廃液を、図1に示される処理プラントで処理した。以下、各部材の符号は、図1に基づく。具体的には、処理対象物質を含む廃液を、水中ポンプ2(エバラ社製、商品名:水中ポンプDWV6.15S)で、500L容量タンクからなる原水槽1に逐次的に移送した。なお、原水槽1には、リグニン含有廃液 350Lが貯留されるようにした。また、原水槽1において、処理対象物質を含む廃液に、堀場製作所製pH計(B−21)で測定しながら、25重量% 水酸化ナトリウム又は18重量% 硫酸を添加することにより、pHを所定値に調整した。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The waste liquid containing the processing target substance was processed in the processing plant shown in FIG. Hereinafter, the reference numerals of the respective members are based on FIG. Specifically, the waste liquid containing the substance to be treated was sequentially transferred to the raw water tank 1 composed of a 500 L capacity tank with the submersible pump 2 (trade name: submersible pump DWV6.15S, manufactured by Ebara Corporation). In the raw water tank 1, 350 L of lignin-containing waste liquid was stored. In the raw water tank 1, the pH is predetermined by adding 25% by weight sodium hydroxide or 18% by weight sulfuric acid to the waste liquid containing the treatment target substance while measuring with a pH meter (B-21) manufactured by HORIBA, Ltd. Adjusted to value.

処理対象物質を含む廃液を、エアレーション下で攪拌しながら、水中ポンプ2で、原水槽1から、340Lの曝気槽3(500×450×1600mm、有効体積340L)に移送した。曝気槽3には、好気性細菌、嫌気性細菌およびこれらを凝集させる無機物質が導入されている。なお、原水槽1から曝気槽3への廃水の移送は、曝気槽3に設けた水位センサー5(電極棒)を用い、曝気槽3における処理対象物質を含む廃液の滞留時間が所定時間となるように行なわれた。   The waste liquid containing the substance to be treated was transferred from the raw water tank 1 to the 340 L aeration tank 3 (500 × 450 × 1600 mm, effective volume 340 L) with the submersible pump 2 while stirring under aeration. In the aeration tank 3, aerobic bacteria, anaerobic bacteria, and inorganic substances that aggregate these are introduced. The waste water is transferred from the raw water tank 1 to the aeration tank 3 by using a water level sensor 5 (electrode bar) provided in the aeration tank 3, and the residence time of the waste liquid containing the treatment target substance in the aeration tank 3 is a predetermined time. Was done.

曝気槽3は、処理液をろ過するための中空糸膜(1m2、東レ株式会社製、商品名:SUR134)10枚からなる中空糸膜ユニット4と、エアー曝気するための散気管6とから構成される。散気管6からのエアーによって曝気槽3内が溶存酸素量2mg/L以上に保たれる。これによって、無機物質に好気性細菌および嫌気性細菌が凝集した凝集体の表面側には主として好気性細菌が存在し、凝集体の内部(中心)側には主として嫌気性細菌が存在する粒状体となる。この粒状体は直径が1mm〜5mm程度である。 The aeration tank 3 includes a hollow fiber membrane unit 4 composed of 10 hollow fiber membranes (1 m 2 , manufactured by Toray Industries, Inc., trade name: SUR134) for filtering the treatment liquid, and an air diffuser 6 for aeration of air. Composed. The inside of the aeration tank 3 is kept at a dissolved oxygen amount of 2 mg / L or more by the air from the air diffuser 6. As a result, there are mainly aerobic bacteria on the surface side of the aggregate in which aerobic bacteria and anaerobic bacteria are aggregated on the inorganic substance, and particulates in which there are mainly anaerobic bacteria on the inside (center) side of the aggregate. It becomes. This granular material has a diameter of about 1 mm to 5 mm.

本実施形態では、粒状体と処理対象物質とを含む廃液とを接触させることにより生分解処理を行っている。この粒状体は、次のように生成されると考えられる。粒状体の生成過程について図2を用いて説明する。まず、好気性細菌101、嫌気性細菌102を含む廃液中に無機物質103としてのカルシウム、より詳しくは方解石型炭酸カルシウムを投入する。これにより、無機物質103に好気性細菌101および嫌気性細菌102が凝集して、凝集体110を形成する。   In the present embodiment, the biodegradation process is performed by bringing the granular material and the waste liquid containing the processing target substance into contact with each other. This granular material is considered to be generated as follows. The production process of the granular material will be described with reference to FIG. First, calcium as an inorganic substance 103, more specifically calcite-type calcium carbonate, is put into a waste liquid containing aerobic bacteria 101 and anaerobic bacteria 102. Thereby, the aerobic bacteria 101 and the anaerobic bacteria 102 aggregate on the inorganic substance 103 to form an aggregate 110.

次に、この凝集体110を溶存酸素量2mg/L以上として処理する。これによって、凝集体の表面側には主として好気性細菌101が存在し、凝集体110の内部(中心)側には主として嫌気性細菌102が存在する粒状体100が形成される。つまり、好気性細菌101と嫌気性細菌102が共存した状態の粒状体100が形成される。   Next, the aggregate 110 is treated with a dissolved oxygen amount of 2 mg / L or more. Thereby, the aerobic bacteria 101 mainly exists on the surface side of the aggregate, and the granular body 100 in which the anaerobic bacteria 102 mainly exists on the inside (center) side of the aggregate 110 is formed. That is, the granular body 100 in a state where the aerobic bacteria 101 and the anaerobic bacteria 102 coexist is formed.

中空糸膜ユニット4は、曝気槽3において、散気管6の直上に、曝気槽3内の中心に配置され、散気管6からのエアー曝気を十分うけるように配置される。散気管6は、曝気槽3の下部に配置され、エアー曝気により、曝気槽3全体を攪拌しうる。曝気槽3において、曝気は、散気管から供給されるエアーが中空糸膜ユニット4を通り、曝気槽3壁面を降下し、粒状体も同様に対流する。   In the aeration tank 3, the hollow fiber membrane unit 4 is arranged in the center of the aeration tank 3 immediately above the aeration pipe 6, and is arranged so as to receive air aeration from the aeration pipe 6 sufficiently. The air diffusion pipe 6 is disposed at the lower part of the aeration tank 3 and can agitate the entire aeration tank 3 by air aeration. In the aeration tank 3, the air supplied from the diffuser pipe passes through the hollow fiber membrane unit 4, descends the wall surface of the aeration tank 3, and the granular material also convects in the same manner.

曝気槽3内の処理対象物質を含む廃液の処理物におけるMLSSは、曝気槽内を数回測定した平均値で10000mg/L以上が好ましく、20000mg/L以上がより好ましい。また、MLVSSの平均値は8000mg/L以上が好ましく、10000mg/L以上がより好ましい。   The MLSS in the waste liquid treatment containing the substance to be treated in the aeration tank 3 is preferably 10,000 mg / L or more, more preferably 20000 mg / L or more as an average value measured several times in the aeration tank. Further, the average value of MLVSS is preferably 8000 mg / L or more, and more preferably 10,000 mg / L or more.

さらに、曝気槽3では、粒状体と処理対象物質を含む廃液との混合物に、マグネシウム化合物、ケイ素化合物、Et−OHおよび燐酸二アンモニウムの少なくとも一つを含む処理剤として、珪藻土、硫酸マグネシウム及びニュートリエントブロス〔極東製薬製;ゼラチン部分加水分解物5:肉抽出物3で含有〕、Et−OHおよび燐酸二アンモニウムを逐次的に添加した。曝気槽3への供給空気量は、80L/分とし、それにより、混合物中における溶存酸素量(DO)を、2mg/L以上に維持した。   Further, in the aeration tank 3, diatomaceous earth, magnesium sulfate, and neutron as a treating agent containing at least one of a magnesium compound, a silicon compound, Et-OH, and diammonium phosphate in a mixture of the granular material and the waste liquid containing the treatment target substance. Trient broth (manufactured by Kyokuto Pharmaceutical Co., Ltd .; gelatin partial hydrolyzate 5: contained in meat extract 3), Et-OH and diammonium phosphate were sequentially added. The amount of air supplied to the aeration tank 3 was 80 L / min, whereby the amount of dissolved oxygen (DO) in the mixture was maintained at 2 mg / L or more.

その後、曝気槽3を通した処理水のBOD、COD等を測定した。生物化学的酸素要求量(BOD)、化学的酸素要求量(COD)、全窒素量及び全リン量のそれぞれを測定した。BODは、慣用の手法により、5日間培養後の試料中における溶存酸素量と、培養前の試料中における溶存酸素量とを、商品名:DOメーターOM12(株式会社堀場製作所製)を用いて測定し、得られた培養前後の溶存酸素量の数値に基づき算出した。CODは、過マンガン酸カリウムを用いて化学的に消費される酸素量を測定することにより、評価した。TOC(全有機炭素)は、島津製作所製全有機体炭素計TOC−4110を使用して測定した。   Then, BOD, COD, etc. of the treated water that passed through the aeration tank 3 were measured. Each of biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen and total phosphorus was measured. BOD measures the amount of dissolved oxygen in a sample after 5 days of culture and the amount of dissolved oxygen in the sample before culture using a trade name: DO meter OM12 (manufactured by Horiba, Ltd.) by a conventional method. And it calculated based on the numerical value of the amount of dissolved oxygen before and after the obtained culture | cultivation. COD was evaluated by measuring the amount of oxygen consumed chemically using potassium permanganate. TOC (total organic carbon) was measured using a total organic carbon meter TOC-4110 manufactured by Shimadzu Corporation.

全窒素量(T−N)は、紫外吸光光度法に従い、水酸化ナトリウムとペルオキソニ硫酸カリウムとを処理対象物質を含む廃液に添加し、得られた混合物を、120℃、30分間加熱した。それにより得られた産物に塩酸を添加し、得られた産物の220nmにおける吸光度を測定することにより評価した。全リン量(T−P)は、硝酸一硫酸分解法に従い、処理対象物質を含む廃液に、硝酸を添加して、加熱し、濃縮後、得られた産物に、硝酸と硫酸とを添加し、加熱してリン化合物をリン酸イオンに変え、かつ有機物を分解し、得られた産物中におけるリン酸イオンを、モリブデン青(アスコノレピン酸還元)吸光光度法で測定することにより評価した。   The total amount of nitrogen (TN) was determined by adding sodium hydroxide and potassium peroxodisulfate to the waste liquid containing the substance to be treated according to the ultraviolet absorption photometry, and heating the resulting mixture at 120 ° C. for 30 minutes. Hydrochloric acid was added to the product thus obtained, and the obtained product was evaluated by measuring the absorbance at 220 nm. The total phosphorus amount (TP) is determined by adding nitric acid to the waste liquid containing the substance to be treated, heating and concentrating according to the nitric acid monosulfate decomposition method, and adding nitric acid and sulfuric acid to the resulting product. Then, the phosphorus compound was changed to phosphate ion by heating, the organic substance was decomposed, and the phosphate ion in the obtained product was evaluated by measuring with molybdenum blue (asconolepinic acid reduction) spectrophotometry.

次に具体的に処理対象物質としての難分解性物質を生分解処理した例を複数示し、その結果を表1〜3に示す。   Next, a plurality of examples of biodegradation treatment of a hardly decomposable substance as a treatment target substance are shown, and the results are shown in Tables 1 to 3.

(実施例1)
本実施例では、処理対象物質は界面活性剤を含むメッキ工場廃液である。このメッキ工場廃液は、ジプロピレングリコールエーテル、アルキルベンズイミダゾール、ベンズイミダゾール誘導体、ジエチレングリコールモノブチルエーテル、モノエタノールアミン、ポリオクチルフェニルエーテル、イソプロピルアルコール、エチレングリコール、N,N'−ジメチルホルムアミド等を少なくとも含有していた。
Example 1
In this embodiment, the material to be treated is a plating factory effluent containing a surfactant. This plating factory waste liquid contains at least dipropylene glycol ether, alkylbenzimidazole, benzimidazole derivative, diethylene glycol monobutyl ether, monoethanolamine, polyoctylphenyl ether, isopropyl alcohol, ethylene glycol, N, N′-dimethylformamide and the like. It was.

メッキ工場廃液の原水中のpHは7.0、BOD5000mg/L、COD3300mg/L、TOC3400mg/L、T−N790mg/L、T−P140mg/Lであった。   The pH in the raw water of the plating factory effluent was 7.0, BOD 5000 mg / L, COD 3300 mg / L, TOC 3400 mg / L, TN 790 mg / L, and TP 140 mg / L.

メッキ工場廃液中と、好気性細菌および嫌気性細菌を含む汚泥との混合液体に好気性細菌、嫌気性細菌を凝集させる無機物質(カルシウム)を投入し、さらにこのメッキ工場廃液のpHが7.0〜9.0、溶存酸素量が2.0〜6.0mg/L、滞留時間が24時間となるように曝気槽3内の処理条件を制御した。これにより、粒状体が形成された。また、処理中におけるMLSSは、平均42500mg/L(振れ幅11000〜130000mg/L)であり、MLVSSは平均10000mg/L(振れ幅2500〜26000mg/L)であった。   An inorganic substance (calcium) that aggregates aerobic bacteria and anaerobic bacteria is introduced into a mixed liquid of the plating factory waste liquid and sludge containing aerobic bacteria and anaerobic bacteria, and the pH of the plating factory waste liquid is 7. The treatment conditions in the aeration tank 3 were controlled so that the amount of dissolved oxygen was 0 to 9.0, the amount of dissolved oxygen was 2.0 to 6.0 mg / L, and the residence time was 24 hours. Thereby, the granular material was formed. In addition, MLSS during the treatment averaged 42500 mg / L (amplitude 11000 to 130000 mg / L), and MLVSS averaged 10,000 mg / L (amplitude 2500 to 26000 mg / L).

さらに、曝気槽3では、粒状体とメッキ工場廃液との混合物に、珪藻土、硫酸マグネシウム及びニュートリエントブロス〔極東製薬製;ゼラチン部分加水分解物5:肉抽出物3で含有〕、Et−OHおよび燐酸二アンモニウムを逐次的に添加した。曝気槽3への供給空気量は、80L/分とし、それにより、混合物中における溶存酸素量(DO)を、2mg/L以上に維持した。   Further, in the aeration tank 3, diatomaceous earth, magnesium sulfate and nutritive broth (manufactured by Kyokuto Pharmaceutical; gelatin partial hydrolyzate 5: contained in meat extract 3), Et-OH and Diammonium phosphate was added sequentially. The amount of air supplied to the aeration tank 3 was 80 L / min, whereby the amount of dissolved oxygen (DO) in the mixture was maintained at 2 mg / L or more.

本実施例の曝気槽3には、直径約2mm程度の粒状体が観察された。この粒状体をマイクロアレイで分析し、遺伝子情報を分析すると、好気性細菌と嫌気性細菌とが存在していることが確認された。粒状体の表面には主として好気性細菌が存在し、内部には主として嫌気性細菌が存在することが推定できた。また、粒状体の組成を確認すると、C(有機物)が24.4重量%、Caが43.6重量%、その他、Na、Mg、Al、Si、P、S、Cl、K、Feが数重量%〜0.1重量%ずつ確認された。ここでカルシウムは、形状から推定して方解石型炭酸カルシウムであると推定できた。   Granules having a diameter of about 2 mm were observed in the aeration tank 3 of this example. When this granule was analyzed by microarray and gene information was analyzed, it was confirmed that aerobic bacteria and anaerobic bacteria existed. It was estimated that mainly aerobic bacteria existed on the surface of the granule and mainly anaerobic bacteria existed inside. Further, when the composition of the granular material is confirmed, C (organic substance) is 24.4% by weight, Ca is 43.6% by weight, and, in addition, Na, Mg, Al, Si, P, S, Cl, K, and Fe are several. % By weight to 0.1% by weight were confirmed. Here, it was possible to estimate that calcium was calcite-type calcium carbonate from the shape.

実施例1の曝気槽3を通した処理水のBOD、COD等を測定した。その結果、BOD15mg/L、COD200mg/L、TOC140mg/L、全窒素量(T−N)130mg/L、全リン量(T−P)30mg/Lであった。BOD等が顕著に減少しており、また下水、公共水域等に放流するに適した水質を得ることができた。
ここで、「下水、公共水域に放流するに適した水質」は、地域等により基準が異なる場合もあるが、例えば、2005年時点における日本国岐阜県大垣市の下水放流基準〔pH:5.0〜9.0、BOD:(河川放流BOD+2×懸濁浮遊物質量) 600mg/L以下、全窒素量 240mg/L以下、全リン量 32mg/L以下〕の条件を満たす水質等が挙げられる。
BOD, COD, etc. of the treated water that passed through the aeration tank 3 of Example 1 were measured. As a result, the BOD was 15 mg / L, the COD was 200 mg / L, the TOC was 140 mg / L, the total nitrogen amount (TN) was 130 mg / L, and the total phosphorus amount (TP) was 30 mg / L. BOD and the like were significantly reduced, and water quality suitable for discharge into sewage and public water areas could be obtained.
Here, the standard of “water quality suitable for being discharged into sewage and public water areas” may vary depending on the region and the like. For example, the sewage discharge standard [pH: 5. 0 to 9.0, BOD: (river discharge BOD + 2 × suspended suspended matter amount) 600 mg / L or less, total nitrogen amount 240 mg / L or less, total phosphorus amount 32 mg / L or less].

(比較例1〜3)
2ヶ所の下水処理場から採取した汚泥、および化学工場の廃液処理場から採取した汚泥を曝気槽3中に導入して、メッキ工場廃液を処理した。この時、曝気槽3中に粒状体は観察できなかった。また、曝気槽3中の溶存酸素量をおおむね2.0mg/L以上とするとスカムが発生し、排水処理ができなくなった。
(Comparative Examples 1-3)
Sludge collected from two sewage treatment plants and sludge collected from a wastewater treatment plant of a chemical plant were introduced into the aeration tank 3 to treat the plating plant wastewater. At this time, the granular material could not be observed in the aeration tank 3. Moreover, when the amount of dissolved oxygen in the aeration tank 3 was approximately 2.0 mg / L or more, scum was generated and wastewater treatment could not be performed.

次に、曝気槽3中の汚泥の組成を観察した。比較例1〜3のいずれの汚泥においても、Ca(有機物を凝集させる無機物質)の割合が実施例1と比べて極めて低い値であった。   Next, the composition of the sludge in the aeration tank 3 was observed. In any of the sludges of Comparative Examples 1 to 3, the ratio of Ca (an inorganic substance that agglomerates organic substances) was extremely low as compared with Example 1.

(比較例4)
実施例1と同様の処理方法であるが、曝気槽3中の溶存酸素量を0.2〜1.9mg/Lとした。実施例1と比較して処理水のBOD、COD、TOC、T−N、T−Pの値が悪化していた。
(Comparative Example 4)
Although it is the same processing method as Example 1, the amount of dissolved oxygen in the aeration tank 3 was 0.2 to 1.9 mg / L. Compared with Example 1, the values of BOD, COD, TOC, TN, and TP of the treated water were deteriorated.

(実施例2)
本実施例では、処理対象物質は製紙工場廃液である。この製紙工場廃液は、リグニンを少なくとも含有していた。この製紙工場廃液を20〜25倍に希釈して原水とした。
(Example 2)
In this embodiment, the material to be treated is paper mill waste liquid. This paper mill effluent contained at least lignin. This paper mill effluent was diluted 20 to 25 times to obtain raw water.

製紙工場廃液と、好気性細菌および嫌気性細菌を含む汚泥との混合液体に好気性細菌、嫌気性細菌を凝集させる無機物質(カルシウム)を投入した。製紙工場廃液の原水中のpH7.0、BOD6429mg/L、COD7338mg/L、TOC4170mg/L、リグニン量2100mg/L、T−N237mg/L、T−P305mg/Lであった。   An inorganic substance (calcium) that aggregates aerobic bacteria and anaerobic bacteria was added to a mixed liquid of paper mill waste liquid and sludge containing aerobic bacteria and anaerobic bacteria. It was pH 7.0, BOD6429mg / L, COD7338mg / L, TOC4170mg / L, lignin amount 2100mg / L, TN237mg / L, TP305mg / L in raw water of paper mill waste liquid.

この製紙工場廃液のpHが8.0前後、溶存酸素量が5.0mg/L、滞留時間が144時間となるように曝気槽3内の処理条件を制御した。これにより、粒状体が形成された。この粒状体をマイクロアレイで分析し、遺伝子情報を分析すると、好気性細菌と嫌気性細菌とが存在していることが確認された。また、処理中におけるMLSSは、平均42500mg/Lであり、MLVSSは平均14250mg/Lであった。   The processing conditions in the aeration tank 3 were controlled so that the pH of this paper mill waste liquid was around 8.0, the dissolved oxygen amount was 5.0 mg / L, and the residence time was 144 hours. Thereby, the granular material was formed. When this granule was analyzed by microarray and gene information was analyzed, it was confirmed that aerobic bacteria and anaerobic bacteria existed. Moreover, the MLSS during processing averaged 42500 mg / L, and the MLVSS averaged 14250 mg / L.

さらに、曝気槽3では、粒状体とリグニンを含む製紙工場廃液とに、珪藻土、硫酸マグネシウム及びニュートリエントブロス〔極東製薬製;ゼラチン部分加水分解物5:肉抽出物3で含有〕、Et−OHおよび燐酸二アンモニウムを逐次的に添加した。曝気槽3への供給空気量は、80L/分とし、それにより、混合物中における溶存酸素量(DO)を、2mg/L以上に維持した。   Further, in the aeration tank 3, diatomaceous earth, magnesium sulfate and nutritive broth (manufactured by Kyokuto Pharmaceutical; gelatin partial hydrolyzate 5: contained in the meat extract 3), Et-OH are added to the paper mill effluent containing the granulate and lignin. And diammonium phosphate were added sequentially. The amount of air supplied to the aeration tank 3 was 80 L / min, whereby the amount of dissolved oxygen (DO) in the mixture was maintained at 2 mg / L or more.

本実施例の曝気槽3にも、直径約2mm程度の粒状体が観察された。この粒状体を実施例1と同様に観察すると、粒状体の表面に主として好気性細菌が存在すること、および内部に主として嫌気性細菌が存在することが推定できた。また、粒状体の組成を確認すると、C(有機物)が36.6重量%、Caが38.3重量%、その他、Na、Mg、Al、Si、P、S、Cl、K、Feが数重量%〜0.1重量%ずつ確認された。ここでカルシウムは、形状から推定して方解石型炭酸カルシウムであると推定できた。   Granules having a diameter of about 2 mm were also observed in the aeration tank 3 of this example. When this granule was observed in the same manner as in Example 1, it was estimated that mainly aerobic bacteria were present on the surface of the granule and that anaerobic bacteria were mainly present inside. Further, when the composition of the granular material is confirmed, 36.6% by weight of C (organic matter), 38.3% by weight of Ca, and other numbers of Na, Mg, Al, Si, P, S, Cl, K, and Fe % By weight to 0.1% by weight were confirmed. Here, it was possible to estimate that calcium was calcite-type calcium carbonate from the shape.

実施例2の曝気槽3を通した処理水のBOD、COD等を測定した。その結果、BOD13mg/L、COD260mg/L、TOC118mg/L、リグニン量1mg/L以下、全窒素量(T−N)23mg/L、全リン量(T−P)104mg/Lであった。処理水では、BOD、リグニン量が顕著に減少している。   The BOD, COD, etc. of the treated water that passed through the aeration tank 3 of Example 2 were measured. As a result, the BOD was 13 mg / L, the COD was 260 mg / L, the TOC was 118 mg / L, the lignin amount was 1 mg / L or less, the total nitrogen amount (TN) was 23 mg / L, and the total phosphorus amount (TP) was 104 mg / L. In treated water, the amount of BOD and lignin is remarkably reduced.

(比較例5)
実施例2において、溶存酸素量を0.2mg/Lとした。その結果、処理水中のリグニン量が300mg/Lとなり、リグニンの処理能力が低下した。また、比較例5では、粒状体におけるカルシウムの割合が17.1重量%であった。
(Comparative Example 5)
In Example 2, the amount of dissolved oxygen was 0.2 mg / L. As a result, the amount of lignin in the treated water became 300 mg / L, and the treatment capacity of lignin decreased. Moreover, in the comparative example 5, the ratio of the calcium in a granular material was 17.1 weight%.

(実施例3)
本実施例では、処理対象物質はβデンプン含有廃液である。この廃液の原水中のpHは6.4、BOD96mg/L、COD4240mg/L、TOC4000mg/L、T−N42mg/L、T−P1mg/L以下であった。
(Example 3)
In this embodiment, the substance to be treated is a β starch-containing waste liquid. The pH of this waste liquid in raw water was 6.4, BOD 96 mg / L, COD 4240 mg / L, TOC 4000 mg / L, TN 42 mg / L, and T-P 1 mg / L or less.

このβデンプン含有廃液のpHが7.2〜9.1、溶存酸素量が2.0〜6.6mg/L、滞留時間が48時間となるように曝気槽3内の処理条件を制御した。また、処理中におけるMLSSは、平均30000mg/L(振れ幅25000〜54000mg/L)であり、MLVSSは平均14667mg/L(振れ幅11000〜34000mg/L)であった。   The processing conditions in the aeration tank 3 were controlled such that the pH of this β-starch-containing waste liquid was 7.2 to 9.1, the dissolved oxygen amount was 2.0 to 6.6 mg / L, and the residence time was 48 hours. In addition, MLSS during the treatment averaged 30000 mg / L (amplitude 25,000 to 54000 mg / L), and MLVSS averaged 14667 mg / L (amplitude 11000 to 34000 mg / L).

さらに、曝気槽3では、粒状体とリグニンを含む製紙工場廃液との混合物に、珪藻土、硫酸マグネシウム及びニュートリエントブロス〔極東製薬製;ゼラチン部分加水分解物5:肉抽出物3で含有〕、Et−OHおよび燐酸二アンモニウムを逐次的に添加した。曝気槽3への供給空気量は、80L/分とし、それにより、混合物中における溶存酸素量(DO)を、2mg/L以上に維持した。   Furthermore, in the aeration tank 3, diatomaceous earth, magnesium sulfate and nutritive broth (manufactured by Kyokuto Pharmaceutical Co., Ltd .; gelatin partial hydrolyzate 5: contained in meat extract 3), Et are added to the mixture of granulate and paper mill effluent containing lignin. -OH and diammonium phosphate were added sequentially. The amount of air supplied to the aeration tank 3 was 80 L / min, whereby the amount of dissolved oxygen (DO) in the mixture was maintained at 2 mg / L or more.

なお、本実施例の曝気槽3にも、直径約2mm程度の粒状体が観察された。この粒状体をマイクロアレイで分析し、遺伝子情報を分析すると、粒状体に好気性細菌と嫌気性細菌とが共存することが確認でき、粒状体の表面に主として好気性細菌が存在し、内部に主として嫌気性細菌が存在することが推定できた。また、粒状体の組成を確認すると、C(有機物)が37.1重量%、Caが32.6重量%、その他、Na、Mg、Al、Si、P、S、Cl、K、Feが数重量%〜0.1重量%ずつ確認された。ここでカルシウムは、形状から推定して方解石型炭酸カルシウムであると推定できた。   In addition, the granular material about 2 mm in diameter was observed also in the aeration tank 3 of a present Example. When this granule is analyzed with a microarray and gene information is analyzed, it can be confirmed that aerobic bacteria and anaerobic bacteria coexist in the granule, mainly aerobic bacteria are present on the surface of the granule, and mainly inside. It was estimated that anaerobic bacteria existed. Further, when the composition of the granular material is confirmed, C (organic matter) is 37.1% by weight, Ca is 32.6% by weight, and other numbers of Na, Mg, Al, Si, P, S, Cl, K, and Fe are several. % By weight to 0.1% by weight were confirmed. Here, it was possible to estimate that calcium was calcite-type calcium carbonate from the shape.

(実施例4)
本実施例では、処理対象物質は豆清(豆乳ホエー)含有廃液である。豆清含有廃液の原水中のpHは4.1、BOD12250mg/L、COD9700mg/L、TOC7928mg/L、T−N870mg/L、T−P175mg/Lであった。
Example 4
In this embodiment, the substance to be treated is a tofu (soy milk whey) -containing waste liquid. The pH of the tofu-containing waste liquid in the raw water was 4.1, BOD 12250 mg / L, COD 9700 mg / L, TOC 7928 mg / L, TN 870 mg / L, TP 175 mg / L.

この豆清含有廃液と、好気性細菌および嫌気性細菌を含む汚泥との混合液体に好気性細菌、嫌気性細菌を凝集させる無機物質(カルシウム)を投入し、pHが7.9〜8.5、溶存酸素量が2.7〜6.2mg/L、滞留時間が72時間となるように曝気槽3内の処理条件を制御した。これにより、粒状体が形成された。また、処理中におけるMLSSは、平均21000mg/L(振れ幅17000〜25000mg/L)であり、MLVSSは平均8450mg/L(振れ幅8000〜9000mg/L)であった。   An inorganic substance (calcium) that aggregates aerobic bacteria and anaerobic bacteria is added to a mixed liquid of the tofu-containing waste liquid and sludge containing aerobic bacteria and anaerobic bacteria, and has a pH of 7.9 to 8.5. The treatment conditions in the aeration tank 3 were controlled so that the dissolved oxygen amount was 2.7 to 6.2 mg / L and the residence time was 72 hours. Thereby, the granular material was formed. In addition, MLSS during the treatment averaged 21000 mg / L (amplitude 17000 to 25000 mg / L), and MLVSS averaged 8450 mg / L (amplitude 8000 to 9000 mg / L).

さらに、曝気槽3では、粒状体と処理対象物質を含む廃液との混合物に、珪藻土、硫酸マグネシウム及びニュートリエントブロス〔極東製薬製;ゼラチン部分加水分解物5:肉抽出物3で含有〕を、ケイ酸、硫酸マグネシウム、ニュートリエントブロスEt−OHおよび燐酸二アンモニウムを逐次的に添加した。曝気槽3への供給空気量は、80L/分とし、それにより、混合物中における溶存酸素量(DO)を、2mg/L以上に維持した。   Furthermore, in the aeration tank 3, diatomaceous earth, magnesium sulfate and nutrient broth [manufactured by Kyokuto Pharmaceutical; gelatin partial hydrolyzate 5: contained in the meat extract 3] are added to the mixture of the granular material and the waste liquid containing the treatment target substance. Silicic acid, magnesium sulfate, nutritive broth Et-OH and diammonium phosphate were added sequentially. The amount of air supplied to the aeration tank 3 was 80 L / min, whereby the amount of dissolved oxygen (DO) in the mixture was maintained at 2 mg / L or more.

本実施例の曝気槽3には、直径約2mm程度の粒状体が観察された。この粒状体をマイクロアレイで分析し、遺伝子情報を分析すると、粒状体に好気性細菌と嫌気性細菌とが共存することが確認でき、粒状体の表面に主として好気性細菌が存在し、内部に主として嫌気性細菌が存在することが推定できた。その後、実施例4の曝気槽3を通した処理水のBOD、COD等を測定した。その結果、BOD19mg/L、COD20mg/L、TOC8.7mg/L、全窒素量(T−N)110mg/L、全リン量(T−P)28mg/Lであった。BOD等が顕著に減少しており、また下水、公共水域等に放流するに適した水質を得ることができた。なお、実施例4では余剰汚泥が発生しなかった。   Granules having a diameter of about 2 mm were observed in the aeration tank 3 of this example. When this granule is analyzed with a microarray and gene information is analyzed, it can be confirmed that aerobic bacteria and anaerobic bacteria coexist in the granule, mainly aerobic bacteria are present on the surface of the granule, and mainly inside. It was estimated that anaerobic bacteria existed. Then, BOD, COD, etc. of the treated water that passed through the aeration tank 3 of Example 4 were measured. As a result, the BOD was 19 mg / L, the COD was 20 mg / L, the TOC was 8.7 mg / L, the total nitrogen amount (TN) was 110 mg / L, and the total phosphorus amount (TP) was 28 mg / L. BOD and the like were significantly reduced, and water quality suitable for discharge into sewage and public water bodies could be obtained. In Example 4, excess sludge was not generated.

(比較例6)
実施例4と同様の原水を粒状体に代えて活性汚泥を用い、さらに無機物質(カルシウム)の投入無しで処理した。処理中におけるMLSSは、4000〜8000mg/Lであり、MLVSSは2000〜6000mg/Lであった。ただし、滞留時間が185時間となるように曝気槽3内の処理条件を制御しなければ、下記処理水を得られなかった。
(Comparative Example 6)
The raw water similar to that in Example 4 was used instead of granular material, and activated sludge was used. Further, the raw water was treated without addition of an inorganic substance (calcium). The MLSS during the treatment was 4000 to 8000 mg / L, and the MLVSS was 2000 to 6000 mg / L. However, the following treated water could not be obtained unless the treatment conditions in the aeration tank 3 were controlled so that the residence time was 185 hours.

比較例6の曝気槽3を通した処理水のBOD、COD等を測定した。その結果、BOD50mg/L、COD300mg/Lであった。なお、本比較例では余剰汚泥が5.3L/m発生した。 BOD, COD, etc. of the treated water that passed through the aeration tank 3 of Comparative Example 6 were measured. As a result, the BOD was 50 mg / L and the COD was 300 mg / L. In this comparative example, surplus sludge was generated at 5.3 L / m 3 .

Figure 2009072739
Figure 2009072739

Figure 2009072739
Figure 2009072739

Figure 2009072739
Figure 2009072739

以上、本発明の複数の実施形態について説明したが、本発明はそれらの実施形態に限定して解釈されるものではなく、本発明を逸脱しない範囲内において種々の実施形態に適用可能である。   Although a plurality of embodiments of the present invention have been described above, the present invention is not construed as being limited to these embodiments, and can be applied to various embodiments without departing from the present invention.

(他の実施形態)
上述した実施形態では、廃液が導入される処理槽3内で粒状体と被処理物質とを接触させる例を示した。しかし、例えば処理槽内に好気性細菌と嫌気性細菌とを含むウッドチップを入れ、さらに無機物質を投入して、攪拌によって処理槽内の溶存酸素量2mg/L以上に調整することによっても、上述した作用効果を発揮することができる。本実施形態は、いわゆるバイオトイレなどに用いることができる。
(Other embodiments)
In embodiment mentioned above, the example which makes a granular material and a to-be-processed substance contact is shown in the processing tank 3 in which waste liquid is introduce | transduced. However, for example, by placing wood chips containing aerobic bacteria and anaerobic bacteria in the treatment tank, and further adding an inorganic substance, and adjusting the dissolved oxygen amount in the treatment tank to 2 mg / L or more by stirring, The effects described above can be exhibited. This embodiment can be used for a so-called biotoilet.

図1は、実施形態の廃液処理プラントを示す概略図である。FIG. 1 is a schematic diagram illustrating a waste liquid treatment plant according to an embodiment. 図2は、実施形態の粒状体の生成過程を模式的に示す図である。FIG. 2 is a diagram schematically showing a granule generation process of the embodiment.

符号の説明Explanation of symbols

1 原水槽
2 水中ポンプ
3 曝気槽
4 中空糸膜ユニット
5 水位センサー
6 散気管
100 粒状体
101 好気性細菌
102 嫌気性細菌
103 無機物質(カルシウム、方解石型の炭酸カルシウム)
110 凝集体
DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Submersible pump 3 Aeration tank 4 Hollow fiber membrane unit 5 Water level sensor 6 Aeration pipe 100 Granule 101 Aerobic bacteria 102 Anaerobic bacteria 103 Inorganic substance (calcium, calcite type calcium carbonate)
110 Aggregates

Claims (10)

好気性細菌および嫌気性細菌が無機物質に凝集した粒状体と、被処理物質とを溶存酸素量2mg/L以上の条件下に接触させる、被処理物質の生分解処理方法。   A biodegradation treatment method for a substance to be treated, which comprises contacting a granular material in which aerobic bacteria and anaerobic bacteria are aggregated into an inorganic substance and a substance to be treated under a condition where the dissolved oxygen amount is 2 mg / L or more. 被処理物質が処理対象物質を含む廃液であり、該粒状体および該廃液が含まれる処理槽内の溶存酸素量を制御する、請求項1記載の処理方法。   The treatment method according to claim 1, wherein the substance to be treated is a waste liquid containing a substance to be treated, and the amount of dissolved oxygen in the treatment tank containing the granular material and the waste liquid is controlled. 処理槽内における汚泥浮遊物質量(MLSS)が5000〜100000mg/Lである、請求項2記載の処理方法。   The processing method of Claim 2 whose amount of sludge suspended solids (MLSS) in a processing tank is 5000-100000 mg / L. 処理槽内における汚泥有機性浮遊物質量(MLVSS)が1000〜30000mg/Lである、請求項2記載の処理方法。   The processing method of Claim 2 whose amount of sludge organic suspended solids (MLVSS) in a processing tank is 1000-30000 mg / L. 好気性細菌と嫌気性細菌とを含む細菌群と、好気性細菌と嫌気性細菌とを凝集させる無機物質とを混合する工程を含む、請求項1〜4いずれかに記載の処理方法。   The processing method in any one of Claims 1-4 including the process of mixing the bacteria group containing aerobic bacteria and anaerobic bacteria, and the inorganic substance which aggregates aerobic bacteria and anaerobic bacteria. 粒状体における無機物質の割合が20重量%以上である、請求項1〜5いずれかに記載の処理方法。   The processing method in any one of Claims 1-5 whose ratio of the inorganic substance in a granular material is 20 weight% or more. 無機物質がカルシウムである、請求項1〜6いずれかに記載の処理方法。   The processing method according to claim 1, wherein the inorganic substance is calcium. カルシウムが方解石型炭酸カルシウムである、請求項7記載の処理方法。   The processing method according to claim 7, wherein the calcium is calcite-type calcium carbonate. 被処理物質が、界面活性剤含有廃液、リグニン含有廃液、豆清含有廃液およびβデンプン含有廃液からなる群より選ばれる少なくとも1つである、請求項1〜8いずれかに記載の処理方法。   The processing method according to any one of claims 1 to 8, wherein the substance to be treated is at least one selected from the group consisting of a surfactant-containing waste liquid, a lignin-containing waste liquid, a tofu-containing waste liquid, and a β starch-containing waste liquid. 好気性細菌および嫌気性細菌を溶存酸素量2mg/L以上の環境下で無機物質に凝集させてなる粒状体。   A granular material obtained by aggregating an aerobic bacterium and an anaerobic bacterium into an inorganic substance in an environment having a dissolved oxygen amount of 2 mg / L or more.
JP2007246401A 2007-09-25 2007-09-25 Biodegradation treatment method Expired - Fee Related JP5224502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246401A JP5224502B2 (en) 2007-09-25 2007-09-25 Biodegradation treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246401A JP5224502B2 (en) 2007-09-25 2007-09-25 Biodegradation treatment method

Publications (2)

Publication Number Publication Date
JP2009072739A true JP2009072739A (en) 2009-04-09
JP5224502B2 JP5224502B2 (en) 2013-07-03

Family

ID=40608285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246401A Expired - Fee Related JP5224502B2 (en) 2007-09-25 2007-09-25 Biodegradation treatment method

Country Status (1)

Country Link
JP (1) JP5224502B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179213A (en) * 2009-02-04 2010-08-19 Eco Earth Engineering Kk Method and facility for purifying pollutant
JP2010264444A (en) * 2009-05-15 2010-11-25 Jiangxi Jdl Environmental Protection Research Ltd Phosphorus removing method utilizing membrane bioreactor
JP2013111533A (en) * 2011-11-29 2013-06-10 Japan Organo Co Ltd Water treatment method and water treatment device
CN110482781A (en) * 2019-08-01 2019-11-22 广西大学 A method of high calcium paper-making industrial waste water is handled using whey pre-sour to promote anaerobic reaction and inhibit calcification

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236993A (en) * 1988-03-16 1989-09-21 Susumu Hashimoto Method for producing immobilized microorganisms or groups of thereof
JPH03238092A (en) * 1990-02-13 1991-10-23 Pub Works Res Inst Ministry Of Constr Waste liquor treating device
JP3083164U (en) * 2001-07-04 2002-01-18 鎌田バイオ・エンジニアリング株式会社 Purification equipment for moat water, lake water, etc.
JP2002336885A (en) * 2001-05-21 2002-11-26 Kurita Water Ind Ltd Method for aerobic treatment of waste water
JP2003275765A (en) * 2002-03-25 2003-09-30 Hitachi Ltd Method for treating hardly decomposable waste water
JP2005046736A (en) * 2003-07-29 2005-02-24 Wakayama Prefecture Wastewater treating system and wastewater treating method
JP2006115199A (en) * 2004-10-14 2006-04-27 Sony Corp Multiplexed packet generator and multiplexed packet generating method
JP2006281145A (en) * 2005-04-04 2006-10-19 Hiroshi Yokozawa Water quality improving material consisting of porous material stacked layer, and water quality improving method using it
JP2006346572A (en) * 2005-06-16 2006-12-28 Toyo Kankyo Gijutsu Kenkyusho:Kk Organic substance treatment method
JP2007050312A (en) * 2005-08-15 2007-03-01 Kurita Water Ind Ltd Method and apparatus for biologically treating waste water

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236993A (en) * 1988-03-16 1989-09-21 Susumu Hashimoto Method for producing immobilized microorganisms or groups of thereof
JPH03238092A (en) * 1990-02-13 1991-10-23 Pub Works Res Inst Ministry Of Constr Waste liquor treating device
JP2002336885A (en) * 2001-05-21 2002-11-26 Kurita Water Ind Ltd Method for aerobic treatment of waste water
JP3083164U (en) * 2001-07-04 2002-01-18 鎌田バイオ・エンジニアリング株式会社 Purification equipment for moat water, lake water, etc.
JP2003275765A (en) * 2002-03-25 2003-09-30 Hitachi Ltd Method for treating hardly decomposable waste water
JP2005046736A (en) * 2003-07-29 2005-02-24 Wakayama Prefecture Wastewater treating system and wastewater treating method
JP2006115199A (en) * 2004-10-14 2006-04-27 Sony Corp Multiplexed packet generator and multiplexed packet generating method
JP2006281145A (en) * 2005-04-04 2006-10-19 Hiroshi Yokozawa Water quality improving material consisting of porous material stacked layer, and water quality improving method using it
JP2006346572A (en) * 2005-06-16 2006-12-28 Toyo Kankyo Gijutsu Kenkyusho:Kk Organic substance treatment method
JP2007050312A (en) * 2005-08-15 2007-03-01 Kurita Water Ind Ltd Method and apparatus for biologically treating waste water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179213A (en) * 2009-02-04 2010-08-19 Eco Earth Engineering Kk Method and facility for purifying pollutant
JP2010264444A (en) * 2009-05-15 2010-11-25 Jiangxi Jdl Environmental Protection Research Ltd Phosphorus removing method utilizing membrane bioreactor
JP2013111533A (en) * 2011-11-29 2013-06-10 Japan Organo Co Ltd Water treatment method and water treatment device
CN110482781A (en) * 2019-08-01 2019-11-22 广西大学 A method of high calcium paper-making industrial waste water is handled using whey pre-sour to promote anaerobic reaction and inhibit calcification
CN110482781B (en) * 2019-08-01 2021-12-10 广西大学 Method for promoting anaerobic reaction and inhibiting calcification by treating high-calcium paper-making industrial wastewater with whey pre-acid

Also Published As

Publication number Publication date
JP5224502B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
Skouteris et al. The use of pure oxygen for aeration in aerobic wastewater treatment: A review of its potential and limitations
Iorhemen et al. Aerobic granular sludge membrane bioreactor (AGMBR): Extracellular polymeric substances (EPS) analysis
US8192626B2 (en) Wastewater chemical/biological treatment method for open water discharge
KR101665636B1 (en) Wastewater pretreatment method and sewage treatment method using the pretreatment method
Lee et al. Biocarriers facilitated gravity-driven membrane (GDM) reactor for wastewater reclamation: Effect of intermittent aeration cycle
WO2013118530A1 (en) Plant waste water treatment method and treatment system
Li et al. Hazardous substances and their removal in recirculating aquaculture systems: A review
Huynh et al. Application of CANON process for nitrogen removal from anaerobically pretreated husbandry wastewater
Heidari et al. Evaluation and start-up of an electro-Fenton-sequencing batch reactor for dairy wastewater treatment
Visvanathan et al. Hydrogenotrophic denitrification of synthetic aquaculture wastewater using membrane bioreactor
JP2007268468A (en) High temperature treatment method for hydrocarbon or manufacture plant waste water of oxygenated compound
Bernat et al. Biological treatment of leachate from stabilization of biodegradable municipal solid waste in a sequencing batch biofilm reactor
Tran et al. Activated sludge processes and recent advances
JP6031241B2 (en) Plant wastewater treatment method and treatment system
JP5224502B2 (en) Biodegradation treatment method
JPH0751686A (en) Treatment of sewage
JP5444684B2 (en) Organic wastewater treatment method and treatment equipment
JP5981096B2 (en) Wastewater treatment method and apparatus
CN112707379A (en) Method for treating high ammonia nitrogen wastewater and recovering ammonia and magnesium ammonium phosphate reactor suitable for method
CN112723651A (en) Porphyra processing wastewater treatment facility and method capable of realizing ultra-clean discharge
JP5846944B2 (en) Granular gel carrier for activating activated sludge and the like, its production method and waste water treatment method
JP6852214B2 (en) Sewage treatment system
CN110759607B (en) Process for removing total nitrogen from printing and dyeing wastewater
JP2003305493A (en) Method for starting activated sludge treating apparatus
KR101306805B1 (en) The method and Treatment process of Wastewater containing organic matter and nitrogen compounds-livestock wastewater, digestive wastewater, food wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130308

R150 Certificate of patent or registration of utility model

Ref document number: 5224502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees