JP2009071936A - Voltage equalization system for battery pack - Google Patents

Voltage equalization system for battery pack Download PDF

Info

Publication number
JP2009071936A
JP2009071936A JP2007235776A JP2007235776A JP2009071936A JP 2009071936 A JP2009071936 A JP 2009071936A JP 2007235776 A JP2007235776 A JP 2007235776A JP 2007235776 A JP2007235776 A JP 2007235776A JP 2009071936 A JP2009071936 A JP 2009071936A
Authority
JP
Japan
Prior art keywords
voltage
voltage equalization
capacity
cells
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007235776A
Other languages
Japanese (ja)
Inventor
Kazunari Tezuka
一成 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2007235776A priority Critical patent/JP2009071936A/en
Publication of JP2009071936A publication Critical patent/JP2009071936A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve optimum voltage equalization even if a plurality of cells constituting a battery pack have variations in capacity. <P>SOLUTION: Based on the capacity SOC of the battery pack calculated in an SOC operation unit 21, a voltage equalization implementation threshold value operation unit 25 operates a voltage equalization implementation threshold value VDd, a threshold value in implementing the voltage equalization. An equalization implementation determination unit 26 compares the voltage equalization implementation threshold value VDd with a voltage difference VDr between the maximum voltage and the minimum voltage among cells to determine whether the voltage equalization is implemented or not. When an expression of VDd<VDr is satisfied, a voltage equalization circuit 10 is operated. When an expression of VDd≥VDr is satisfied, the voltage equalization circuit 10 is halted. This ensures the balance of the cells fully charged so as to maximize the capacity usable as the battery pack even if there are variations in capacity among cells. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、組電池を構成する複数のセルの電圧を均等化する組電池の電圧均等化システムに関する。   The present invention relates to an assembled battery voltage equalization system for equalizing voltages of a plurality of cells constituting an assembled battery.

一般に、複数のセルを直列接続する等して構成される組電池では、電池最大容量の活用、劣化による電池バラツキの発生防止等を目的として、各セルの電圧を均等化する電圧均等化回路を併用している。この電圧均等化装置としては、例えば、特許文献1や特許文献2に開示されるように、各種の回路方式のものが知られている。   Generally, in an assembled battery configured by connecting a plurality of cells in series, a voltage equalization circuit that equalizes the voltage of each cell is used for the purpose of utilizing the maximum capacity of the battery and preventing the occurrence of battery variation due to deterioration. Used together. As this voltage equalization apparatus, as disclosed in, for example, Patent Document 1 and Patent Document 2, devices of various circuit systems are known.

特許文献1に開示の均等化回路は、セル毎にバイパススイッチを備えるバイパス回路を設定し、満充電状態となったセルにおいては、バイパススイッチをオンして充電電流をバイパス回路に流すことにより、セルの過充電を回避するものである。   The equalization circuit disclosed in Patent Document 1 sets a bypass circuit including a bypass switch for each cell, and in a cell that is in a fully charged state, by turning on the bypass switch and flowing a charging current to the bypass circuit, This avoids overcharging of the cell.

また、特許文献2に開示の均等化回路は、セル毎に巻線比の同じコイルを備えたトランスを用いて、各セルとコイルとの間に設けたスイッチを所定の周波数でスイッチングすることによりコイルを介したエネルギーの授受を繰り返し、各セルの電圧を均等化するものである。
特開2003−289629号公報 特開2006−16615号公報
In addition, the equalization circuit disclosed in Patent Document 2 uses a transformer having a coil with the same winding ratio for each cell, and switches a switch provided between each cell and the coil at a predetermined frequency. Energy transfer through the coil is repeated to equalize the voltage of each cell.
JP 2003-289629 A JP 2006-16615 A

特許文献1,2に開示されているような従来の技術では、個々の電池セルの初期特性(容量・内部抵抗)が均一であることを前提としており、実際のセルの容量バラツキは考慮されていないため、常に各セル間に電圧差が発生しないように電圧均等化回路を常時作動させるか、或いは、各セル間に所定の電圧差が発生したとき、電圧均等化回路を動作させるようにしている。   In the conventional techniques as disclosed in Patent Documents 1 and 2, it is assumed that the initial characteristics (capacity and internal resistance) of each battery cell are uniform, and the actual cell capacity variation is taken into consideration. Therefore, always operate the voltage equalization circuit so that no voltage difference occurs between the cells, or operate the voltage equalization circuit when a predetermined voltage difference occurs between the cells. Yes.

しかしながら、電池の使用可能な容量が最大になるのは、満充電のときにセルのバランスがとられているときであり、リチウムイオン電池、ニッケル水素電池、鉛蓄電池等のように、電池容量が低下すると電圧が比較的急激に低下する特性を有するものでは、電池容量が少ない領域では、初期特性のバラツキによってセル間に電圧差が発生するため、一義的に均等化すると、却って満充電付近でセル電圧差を発生させ、電池としての使用可能容量が減少してしまうという問題が生じる。   However, the maximum usable capacity of the battery is when the cell is balanced when fully charged, such as a lithium ion battery, nickel metal hydride battery, lead acid battery, etc. If the voltage drops, the voltage will drop relatively rapidly.In areas where the battery capacity is low, there will be a voltage difference between cells due to variations in the initial characteristics. There arises a problem that a cell voltage difference is generated and the usable capacity as a battery is reduced.

本発明は上記事情に鑑みてなされたもので、組電池を構成する複数のセルに容量バラツキがある場合においても、最適な電圧均等化を行うことのできる組電池の電圧均等化システムを提供することを目的としている。   The present invention has been made in view of the above circumstances, and provides an assembled battery voltage equalization system capable of performing optimum voltage equalization even when there are capacity variations in a plurality of cells constituting the assembled battery. The purpose is that.

上記目的を達成するため、本発明による組電池の電圧均等化システムは、組電池を構成する複数のセルの電圧を均等化する電圧均等化回路を有する電圧均等化システムであって、上記組電池の容量に基づいて上記電圧均等化回路を動作させるか否かを判断するための閾値を演算し、該閾値に基づいて上記電圧均等化回路の作動を制御する制御部を備えたことを特徴とする。   In order to achieve the above object, a voltage equalization system for an assembled battery according to the present invention is a voltage equalization system having a voltage equalization circuit for equalizing the voltages of a plurality of cells constituting the assembled battery, And a control unit that calculates a threshold value for determining whether to operate the voltage equalization circuit based on the capacity of the voltage, and controls the operation of the voltage equalization circuit based on the threshold value. To do.

本発明によれば、組電池を構成する複数のセルに容量バラツキがある場合においても、最適な電圧均等化を行うことができる。   According to the present invention, optimal voltage equalization can be performed even when there are capacity variations in a plurality of cells constituting an assembled battery.

以下、図面を参照して本発明の実施の形態を説明する。図1〜図6は本発明の実施の一形態に係り、図1は電圧均等化システムの全体構成図、図2はコントローラの機能ブロック図、図3は電池容量と開放電圧との関係を示す説明図、図4は電池容量と電圧均等化実施閾値との関係を示す説明図、図5はセルの充放電電圧バラツキを示す説明図、図6は電圧均等化結果を示す説明図である。   Embodiments of the present invention will be described below with reference to the drawings. 1 to 6 relate to an embodiment of the present invention, FIG. 1 is an overall configuration diagram of a voltage equalization system, FIG. 2 is a functional block diagram of a controller, and FIG. 3 shows a relationship between battery capacity and open voltage. FIG. 4 is an explanatory diagram showing the relationship between the battery capacity and the voltage equalization threshold, FIG. 5 is an explanatory diagram showing the charge / discharge voltage variation of the cell, and FIG. 6 is an explanatory diagram showing the voltage equalization result.

図1に示すように、電圧均等化システム1は、組電池を構成する複数のセルの電圧を均等化する電圧均等化回路10と、この電圧均等化回路10を制御する制御部としてのコントローラ20とを備えて構成されている。ここで、電圧均等化の対象とする組電池は、例えば、リチウムイオン電池やニッケル水素電池等であり、複数個のセルを直列接続したもの、並列接続したもの、直列と並列とを組合わせて接続したものを電圧均等化の対象とする。   As shown in FIG. 1, the voltage equalization system 1 includes a voltage equalization circuit 10 that equalizes voltages of a plurality of cells that form an assembled battery, and a controller 20 that serves as a control unit that controls the voltage equalization circuit 10. And is configured. Here, the assembled battery to be subjected to voltage equalization is, for example, a lithium ion battery or a nickel metal hydride battery, and a plurality of cells connected in series, connected in parallel, and combined in series and parallel. Connected ones are subject to voltage equalization.

本実施の形態においては、電圧均等化回路10は、n個の複数のセルD1,D2,…,Dnを直列接続してなる組電池Dを対象として、各セルの電圧をトランスを用いて平衡させる回路であり、コイルの誘起電圧を利用した充放電によって各セル間のエネルギー授受を行い、各セルの電圧を均等化する。尚、電圧均等化回路10は、コイルを利用するものに限定されるものではなく、その他、抵抗やコンデンサを利用した回路でも良い。   In the present embodiment, the voltage equalization circuit 10 balances the voltage of each cell using a transformer for an assembled battery D formed by connecting a plurality of n cells D1, D2,..., Dn in series. This is a circuit that performs energy transfer between cells by charging and discharging using the induced voltage of the coil, and equalizes the voltage of each cell. The voltage equalization circuit 10 is not limited to the one using a coil, and may be a circuit using a resistor or a capacitor.

具体的には、電圧均等化回路10は、一次側のコイルL0と、各セルD1,D2,…,Dnに対応する複数の二次側のコイルL1,L2,…,Lnとを有するトランス11を用いて構成されている。一次側のコイルL0には、スイッチS0を介してバッテリ12が接続され、二次側のコイルL1,L2,…,Lnには、それぞれ、スイッチS1,S2,…,Snを介してセルD1,D2,…,Dnが接続される。尚、コイルL1,L2,…,Lnは、同一巻数となるように設定されている。   Specifically, the voltage equalization circuit 10 includes a transformer 11 having a primary coil L0 and a plurality of secondary coils L1, L2,..., Ln corresponding to the cells D1, D2,. It is comprised using. The battery 12 is connected to the primary coil L0 via the switch S0, and the cells D1, L2, L2,..., Ln are respectively connected to the secondary side coils L1, L2,. D2,..., Dn are connected. The coils L1, L2,..., Ln are set to have the same number of turns.

各スイッチS0,S1,S2,…は、FET等の半導体スイッチ素子で構成され、マイクロコンピュータ等からなるコントローラ20によって駆動制御される。コントローラ20は、スイッチS0,S1,S2,…を所定の周波数で駆動し、スイッチS0がOFFのときスイッチS1,S2,…がON、スイッチS0がONのときスイッチS1,S2,…がOFFするように、スイッチS1,S2,…をスイッチS0に反転同期させてON,OFFさせ、各セルの電圧を均等化させる。   Each switch S0, S1, S2,... Is composed of a semiconductor switch element such as an FET, and is driven and controlled by a controller 20 comprising a microcomputer or the like. The controller 20 drives the switches S0, S1, S2,... At a predetermined frequency. When the switch S0 is OFF, the switches S1, S2,... Are ON, and when the switch S0 is ON, the switches S1, S2,. As described above, the switches S1, S2,... Are inverted and synchronized with the switch S0 to be turned on and off to equalize the voltages of the respective cells.

この電圧均等化回路10によるセル電圧の均等化制御において、コントローラ20は、セル電圧が所定の閾値以下のときには、セル間に所定以上の電圧差が発生していても電圧均等化回路10は動作させず、セル電圧差が所定の閾値以上のとき、電圧均等化回路10を動作させることで、容量バラツキがあるセルに対しても最適な電圧均等化制御を実現する。均等化を実施する閾値は、本実施の形態においてはセル間の電圧差に応じて変化させ、最大限にセル容量を活用できるようにする。   In the cell voltage equalization control by the voltage equalization circuit 10, the controller 20 operates when the cell voltage is equal to or lower than a predetermined threshold value, even if a voltage difference greater than a predetermined value is generated between the cells. If the cell voltage difference is greater than or equal to a predetermined threshold value, the voltage equalization circuit 10 is operated to realize optimum voltage equalization control even for cells having capacity variations. In this embodiment, the threshold value for performing equalization is changed according to the voltage difference between cells so that the cell capacity can be utilized to the maximum.

このため、コントローラ20は、図2に示すように、SOC演算部21、最高セル電圧演算部22、最低セル電圧演算部23、電圧差演算部24、電圧均等化実施閾値演算部25、均等化実施判断部26、スイッチング駆動部27を備えて構成されており、図示しないセンサによって検出された組電池D(n個のセル)の総電圧VP、電流I、温度T、各セル毎の電圧VC1,VC2,…VCnが入力される。   Therefore, as shown in FIG. 2, the controller 20 includes an SOC calculation unit 21, a maximum cell voltage calculation unit 22, a minimum cell voltage calculation unit 23, a voltage difference calculation unit 24, a voltage equalization execution threshold value calculation unit 25, an equalization. An implementation determination unit 26 and a switching drive unit 27 are provided, and the total voltage VP, current I, temperature T, and voltage VC1 for each cell of the assembled battery D (n cells) detected by a sensor (not shown). , VC2,..., VCn are input.

SOC演算部21は、組電池Dの総電圧VP、電流I、温度Tを入力として、組電池Dの容量を充電状態(SOC;State of Charge)として演算する。容量SOCは、温度Tによって補正した内部インピーダンスに基づく開放電圧VOCと、電流Iの積算に基づく容量SOCとの関係から演算される。   The SOC calculation unit 21 receives the total voltage VP, current I, and temperature T of the assembled battery D as inputs, and calculates the capacity of the assembled battery D as a state of charge (SOC). The capacity SOC is calculated from the relationship between the open circuit voltage VOC based on the internal impedance corrected by the temperature T and the capacity SOC based on the integration of the current I.

図3は、電池の容量SOCと無負荷時の電圧(開放電圧)OCVとの関係を示すものであり、同図においては、リチウムイオン電池の特性例を示している。一般的に、リチウムイオン電池では、満充電状態(SOC=100%)で4.2V、フル放電(SOC=0%)で2.5Vを示し、その電圧特性は、容量SOCが小さいほど傾きが急峻になっており、また、電池の総容量には依存性が無いことが知られている。   FIG. 3 shows the relationship between the battery capacity SOC and the no-load voltage (open circuit voltage) OCV. FIG. 3 shows a characteristic example of the lithium ion battery. In general, a lithium ion battery shows 4.2 V in a fully charged state (SOC = 100%) and 2.5 V in a full discharge (SOC = 0%), and the voltage characteristic has a slope that decreases as the capacity SOC decreases. It is known that it is steep and has no dependence on the total capacity of the battery.

最高セル電圧演算部22、最低セル電圧演算部23は、各セルのセル電圧VC1,VC2,…,VCnを入力として、これらの電圧の中で最高電圧となる最高セル電圧VCmax、最低電圧となる最低セル電圧VCminを演算する。この最高セル電圧VCmaxと最低セル電圧VCminは電圧差演算部24に入力され、電圧差演算部24で最高セル電圧VCmaxと最低セル電圧VCminとの電圧差VDrが演算される。   The highest cell voltage calculation unit 22 and the lowest cell voltage calculation unit 23 receive the cell voltages VC1, VC2,..., VCn of each cell as input, and become the highest cell voltage VCmax and lowest voltage among these voltages. The minimum cell voltage VCmin is calculated. The highest cell voltage VCmax and the lowest cell voltage VCmin are input to the voltage difference calculation unit 24, and the voltage difference calculation unit 24 calculates the voltage difference VDr between the highest cell voltage VCmax and the lowest cell voltage VCmin.

電圧均等化実施閾値演算部25は、組電池の容量SOCに基づいて電圧均等化を実施する閾値(電圧均等化実施閾値)VDdを演算する。電圧均等化実施閾値VDdは、図4に示すように、セル間の電圧差に対応する電圧値として設定され、容量SOCが小さい程、電圧均等化実施閾値VDdの値を大きくするように設定されている。これは、以下に説明するように、容量SOCが小さい領域で電圧均等化回路10を停止させることで、満充電時にセルバランスが崩れることを防止し、組電池としての使用可能な容量が最大になるようにするためである。   The voltage equalization execution threshold value calculation unit 25 calculates a threshold value (voltage equalization execution threshold value) VDd for performing voltage equalization based on the capacity SOC of the assembled battery. As shown in FIG. 4, the voltage equalization execution threshold VDd is set as a voltage value corresponding to the voltage difference between cells, and is set so that the value of the voltage equalization execution threshold VDd increases as the capacity SOC decreases. ing. As will be described below, by stopping the voltage equalization circuit 10 in a region where the capacity SOC is small, the cell balance is prevented from being lost at the time of full charge, and the usable capacity as an assembled battery is maximized. This is to ensure that

尚、電圧均等化実施閾値VDdは、特定の容量SOCの値として設定しても良く、この特定値よりも容量SOCが小さい領域で電圧均等化回路10の作動を禁止(停止)することにより、同様に、満充電時のセルバランスの崩れを防止し、組電池としての使用可能な容量を最大にすることが可能となる。   The voltage equalization execution threshold VDd may be set as a value of a specific capacity SOC, and by prohibiting (stopping) the operation of the voltage equalization circuit 10 in a region where the capacity SOC is smaller than the specific value, Similarly, it is possible to prevent the cell balance from being lost when fully charged, and to maximize the usable capacity of the assembled battery.

均等化実施判断部26は、セル間の最高・最低の電圧差VDrを電圧均等化実施閾値VDdと比較し、電圧均等化を実施するか否かを判断する。そして、VDd<VDrのときには、電圧均等化回路10を作動させる制御指令をスイッチング駆動部27に出力し、VDd≧VDrのときには、電圧均等化回路10を停止させる制御指令をスイッチング駆動部27に出力する。   The equalization execution determination unit 26 compares the highest and lowest voltage difference VDr between cells with the voltage equalization execution threshold value VDd, and determines whether or not to perform voltage equalization. When VDd <VDr, a control command for operating the voltage equalization circuit 10 is output to the switching drive unit 27. When VDd ≧ VDr, a control command for stopping the voltage equalization circuit 10 is output to the switching drive unit 27. To do.

図5は、容量が概ねそろったセルを直列に接続し、満充電からフル放電を行い、さらに満充電を行った場合のデータ例を示している。当初、全てのセルは、4.2Vであるが、全てのセルから均等に電流を引き出すため、放電末期になるとセル容量の若干のバラツキから各セル間に電圧のバラツキが生じることがわかる。その後、満充電すると、全てのセルは、4.2Vに収束する。   FIG. 5 shows an example of data when cells having substantially the same capacity are connected in series, full discharge is performed from full charge, and full charge is further performed. Initially, all the cells are 4.2 V. However, since current is drawn uniformly from all the cells, it can be seen that there is a voltage variation between the cells due to a slight variation in cell capacity at the end of discharge. After that, when fully charged, all cells converge to 4.2V.

従来の均等化制御では、各セルの電圧を均等化回路は、常に各セル間に電圧差が発生させないように常時作動させるか、或いは、各セル間に所定の電圧差が発生したときに動作させるようにしている。従って、最適なセルバランスがとられている図5の状態で電圧均等化回路を動作させると、容量SOCの小さい領域で初期特性のバラツキの影響によるセル間電圧差が生じるため、容量SOCの小さいところでセル電圧を均等化してしまい、逆に、満充電付近でセル間に電圧差を生じさせてしまう。   In the conventional equalization control, the voltage equalization circuit always operates so as not to generate a voltage difference between the cells, or operates when a predetermined voltage difference occurs between the cells. I try to let them. Therefore, when the voltage equalization circuit is operated in the state of FIG. 5 in which the optimum cell balance is achieved, the voltage difference between cells due to the influence of the variation in the initial characteristics occurs in the region where the capacitance SOC is small, and therefore the capacitance SOC is small. By the way, the cell voltages are equalized, and conversely, a voltage difference is generated between the cells near full charge.

すなわち、均一容量のセルで組電池を構成した場合(容量SOCのどの領域でもセル電圧差が生じない理想的状態)を基準として考えると、図3に示す容量SOCと開放電圧OCVとの特性から、例えば容量SOCが0%近傍で50mVのセル間電圧差がある場合には、1%程度の使用可能容量の減少があるが、容量SOCが100%近傍で同じ50mVの間電圧差が生じた場合、使用可能容量が10%程度も減少してしまう。   That is, from the characteristics of the capacity SOC and the open-circuit voltage OCV shown in FIG. 3, considering the case where an assembled battery is configured with cells of uniform capacity (ideal state in which no cell voltage difference occurs in any area of the capacity SOC) as a reference. For example, when there is a 50 mV cell-to-cell voltage difference when the capacity SOC is near 0%, there is a decrease in usable capacity of about 1%, but when the capacity SOC is near 100%, the same voltage difference occurs between 50 mV. In this case, the usable capacity is reduced by about 10%.

従って、本システムでは、容量SOCが小さい程、電圧均等化を実施する閾値を大きくすることにより、満充電時のセルバランスを揃えて、組電池としての使用可能な容量が最大になるようにする。特に、電気自動車等においては、CC充電による一定電流での充電時等の一定条件の充電領域を電圧均等化の実施領域として限定することで、電池の正確な容量を把握して容量の小さい領域で電圧均等化回路10を確実に停止させることができ、有効である。   Therefore, in this system, the smaller the capacity SOC is, the larger the threshold for carrying out voltage equalization is, so that the cell balance at the time of full charge is aligned and the usable capacity as an assembled battery is maximized. . In particular, in an electric vehicle or the like, by limiting a charging area under a certain condition such as when charging with a constant current by CC charging as an implementation area of voltage equalization, an area with a small capacity by grasping an accurate capacity of the battery Thus, the voltage equalizing circuit 10 can be stopped reliably, which is effective.

尚、電圧均等化実施閾値VDdを、容量SOCの特定値として設定する場合には、均等化実施判断部26では、セル間の最高・最低の電圧差VDrに代えて現在の組電池の容量SOCと電圧均等化実施閾値VDdとの比較を行い、VDd<SOCのとき、電圧均等化回路10を作動させ、VDd≧SOCのときには、電圧均等化回路10の作動を禁止(停止)する。   When the voltage equalization execution threshold value VDd is set as a specific value of the capacity SOC, the equalization execution determination unit 26 replaces the highest and lowest voltage difference VDr between cells with the current capacity SOC of the assembled battery. Is compared with the voltage equalization execution threshold VDd. When VDd <SOC, the voltage equalization circuit 10 is operated, and when VDd ≧ SOC, the operation of the voltage equalization circuit 10 is prohibited (stopped).

次に、以上のコントローラ20によって制御される電圧均等化システム1の動作について説明する。   Next, the operation of the voltage equalization system 1 controlled by the above controller 20 will be described.

先ず、コントローラ20は、組電池Dを構成する各セルの現在の電圧のうち、最高セル電圧VCmaxと最低セル電圧VCminとを求め、その電圧差Drを演算する。また、コントローラ20は、組電池Dの総電圧VP、電流I、温度Tを入力として、現在の組電池Dの容量SOCを求め、マップ参照により電圧均等化実施閾値VDdを設定する。   First, the controller 20 obtains the highest cell voltage VCmax and the lowest cell voltage VCmin among the current voltages of the cells constituting the assembled battery D, and calculates the voltage difference Dr. Further, the controller 20 receives the total voltage VP, current I, and temperature T of the assembled battery D as input, obtains the current capacity SOC of the assembled battery D, and sets the voltage equalization execution threshold VDd by referring to the map.

そして、電圧均等化実施閾値VDdとセル間電圧差の最大値である電圧差VDrとを比較し、その比較結果に応じて電圧均等化回路10を作動/停止させる。すなわち、VDd<VDrのときには、電圧均等化回路10のスイッチS1,S2,…を所定の周波数で駆動し、VDd≧のときには、スイッチS0,S1,S2,…をOFFとして電圧均等化回路10を停止させる。   Then, the voltage equalization execution threshold VDd is compared with the voltage difference VDr which is the maximum value of the voltage difference between cells, and the voltage equalization circuit 10 is activated / stopped according to the comparison result. That is, when VDd <VDr, the switches S1, S2,... Of the voltage equalization circuit 10 are driven at a predetermined frequency, and when VDd ≧, the switches S0, S1, S2,. Stop.

電圧均等化回路10の作動時は、スイッチS1,S2,…,SnがONされると、セルD1,D2,…の電圧V1,V2,…,VnがコイルL1,L2,…,Lnにそれぞれ印加される。次に、スイッチS1,S2,…,SnがOFFされると、コイルL1,L2,…,Lnに蓄えられたエネルギーがコイルL1,L2,…,Lnの磁気回路を通じて巻き線比(1:1)に比例して分配され、各コイルの電圧が(V1+V2+…)/nに均等化される。   When the voltage equalization circuit 10 is operated, when the switches S1, S2,..., Sn are turned ON, the voltages V1, V2,..., Vn of the cells D1, D2,. Applied. Next, when the switches S1, S2,..., Sn are turned off, the energy stored in the coils L1, L2,..., Ln passes through the magnetic circuit of the coils L1, L2,. ) And the voltage of each coil is equalized to (V1 + V2 +...) / N.

さらに、スイッチS1,S2,…,SnがONされると、コイル巻線の電圧(V1+V2+…)/nと各セル電圧V1,V2,…,Vnとの電圧差により、コイルと各セル間でエネルギーの授受が行われる。尚、一次側のスイッチS1は、二次側のスイッチS1,S2,…,Snと反転同期してON,OFFされ、二次側のコイルL1,L2,…Lnでの均等化の際に発生するスイッチ素子のエネルギーロスが一次側のコイルL1を介してバッテリ12から補填される。   Further, when the switches S1, S2,..., Sn are turned on, the voltage difference between the coil winding voltage (V1 + V2 +...) / N and each cell voltage V1, V2,. Energy is exchanged. The primary side switch S1 is turned on and off in synchronization with the secondary side switches S1, S2,..., Sn, and is generated at the time of equalization in the secondary side coils L1, L2,. The energy loss of the switching element is compensated from the battery 12 via the primary side coil L1.

このような各セルとコイルとの間のエネルギーの蓄積・放出が繰り返されることにより、図6に示すように、最終的に、各セルの電圧が均等化されて均一になる。尚、図6は、意図的に電圧をばらつかせた複数のセルを対象として電圧均等化を実施したデータを示している。   By repeatedly storing and releasing energy between each cell and the coil as described above, as shown in FIG. 6, finally, the voltage of each cell is equalized and becomes uniform. FIG. 6 shows data obtained by performing voltage equalization on a plurality of cells whose voltages are intentionally varied.

以上のように、本実施の形態における電圧均等化システムは、組電池の各セルの電圧値を最適に制御することによって、組電池の持つエネルギーを最大限に引き出すことが可能になる。これにより、例えば電気自動車に適用する場合、同じ電池セル容量で走行距離を伸ばすことが可能となり、また、規定距離を走行可能な車両には、最低限の電池容量を搭載することにより、車両コストを低減することができるばかりでなく、充電回数を減らすことが可能となり、省エネルギーに貢献することができる。   As described above, the voltage equalization system in the present embodiment can maximize the energy of the assembled battery by optimally controlling the voltage value of each cell of the assembled battery. As a result, for example, when applied to an electric vehicle, it is possible to extend the travel distance with the same battery cell capacity, and the vehicle cost can be reduced by installing a minimum battery capacity in a vehicle that can travel a specified distance. Can be reduced, and the number of times of charging can be reduced, thereby contributing to energy saving.

電圧均等化システムの全体構成図Overall configuration diagram of voltage equalization system コントローラの機能ブロック図Functional block diagram of controller 電池容量と開放電圧との関係を示す説明図Explanatory diagram showing the relationship between battery capacity and open circuit voltage 電池容量と電圧均等化実施閾値との関係を示す説明図Explanatory drawing which shows the relationship between a battery capacity and a voltage equalization implementation threshold value セルの充放電電圧バラツキを示す説明図Explanatory drawing showing variation in charge / discharge voltage of cells 電圧均等化結果を示す説明図Explanatory diagram showing voltage equalization results

符号の説明Explanation of symbols

1 電圧均等化システム
10 電圧均等化回路
20 コントローラ
D 組電池
D1,D2,…,Dn セル
SOC 容量
VDd 電圧均等化実施閾値
VDr 電圧差
DESCRIPTION OF SYMBOLS 1 Voltage equalization system 10 Voltage equalization circuit 20 Controller D Battery assembly D1, D2, ..., Dn Cell SOC capacity VDd Voltage equalization execution threshold VDr Voltage difference

Claims (4)

組電池を構成する複数のセルの電圧を均等化する電圧均等化回路を有する電圧均等化システムであって、
上記組電池の容量に基づいて上記電圧均等化回路を動作させるか否かを判断するための閾値を演算し、該閾値に基づいて上記電圧均等化回路の作動を制御する制御部を備えたことを特徴とする組電池の電圧均等化システム。
A voltage equalization system having a voltage equalization circuit for equalizing the voltages of a plurality of cells constituting an assembled battery,
A controller for calculating a threshold for determining whether or not to operate the voltage equalization circuit based on the capacity of the assembled battery, and for controlling the operation of the voltage equalization circuit based on the threshold; An assembled battery voltage equalizing system.
上記閾値を上記複数のセル間の電圧差と比較する電圧値として設定し、上記組電池の容量が小さい程、上記電圧均等化回路を作動させる上記電圧差を大きくすることを特徴とする請求項1記載の組電池の電圧均等化システム。   The threshold value is set as a voltage value to be compared with a voltage difference between the plurality of cells, and the voltage difference for operating the voltage equalization circuit is increased as the capacity of the assembled battery is smaller. The voltage equalization system of the assembled battery according to 1. 上記閾値を上記組電池の容量の特定値として設定し、上記組電池の容量が該特定値以下のとき、上記電圧均等化回路の作動を禁止することを特徴とした請求項1記載の組電池の電圧均等化システム。   2. The assembled battery according to claim 1, wherein the threshold is set as a specific value of the capacity of the assembled battery, and when the capacity of the assembled battery is equal to or less than the specific value, the operation of the voltage equalization circuit is prohibited. Voltage equalization system. 上記電圧均等化回路を、上記組電池を一定条件での充電時のみ作動させることを特徴とする請求項1記載の組電池の電圧均等化システム。   2. The assembled battery voltage equalizing system according to claim 1, wherein the voltage equalizing circuit is operated only when the assembled battery is charged under a certain condition.
JP2007235776A 2007-09-11 2007-09-11 Voltage equalization system for battery pack Pending JP2009071936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007235776A JP2009071936A (en) 2007-09-11 2007-09-11 Voltage equalization system for battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007235776A JP2009071936A (en) 2007-09-11 2007-09-11 Voltage equalization system for battery pack

Publications (1)

Publication Number Publication Date
JP2009071936A true JP2009071936A (en) 2009-04-02

Family

ID=40607627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007235776A Pending JP2009071936A (en) 2007-09-11 2007-09-11 Voltage equalization system for battery pack

Country Status (1)

Country Link
JP (1) JP2009071936A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078276A (en) * 2009-10-01 2011-04-14 Shindengen Electric Mfg Co Ltd Charging controller and charging control method in charging controller
JP2012523214A (en) * 2009-04-03 2012-09-27 マーベル ワールド トレード リミテッド Rechargeable battery stack power management circuit
WO2012127764A1 (en) * 2011-03-23 2012-09-27 三洋電機株式会社 Battery system, equalizing device, equalizing system, electric vehicle, moving body, power storage device, and power supply device
JP2012253999A (en) * 2011-05-11 2012-12-20 Shindengen Electric Mfg Co Ltd Power conversion circuit
CN102856948A (en) * 2011-06-30 2013-01-02 株式会社丰田自动织机 Cell balancing device
JP2013009485A (en) * 2011-06-23 2013-01-10 Toshiba Schneider Inverter Corp Voltage balancing circuit of inverter device
JP2013013268A (en) * 2011-06-30 2013-01-17 Toyota Industries Corp Cell balancing apparatus
EP2549579A1 (en) 2011-07-19 2013-01-23 Hitachi, Ltd. Battery system
CN103066641A (en) * 2011-10-21 2013-04-24 凌力尔特有限公司 Optimized bi-directional balancing method and system
JP2013123344A (en) * 2011-12-12 2013-06-20 Toyota Industries Corp Device for equalizing battery cell voltages
US8692516B2 (en) 2011-09-23 2014-04-08 Linear Technology Corporation Stackable bi-directional multicell battery balancer
US8937457B2 (en) 2010-01-06 2015-01-20 Marvell World Trade Ltd. Power management circuit of rechargeable battery stack
CN104659434A (en) * 2013-11-22 2015-05-27 北汽福田汽车股份有限公司 Equilibrium control method for power battery pack
CN105226736A (en) * 2014-06-20 2016-01-06 深圳中德世纪新能源有限公司 Electrokinetic cell bidirectional equalization system
JPWO2014030472A1 (en) * 2012-08-22 2016-07-28 日本電気株式会社 Battery control device, power storage device, operation method of power storage device, and program
CN111327088A (en) * 2018-12-14 2020-06-23 郑州宇通客车股份有限公司 Battery system, equalization method and device
JP2020150760A (en) * 2019-03-15 2020-09-17 ビークルエナジージャパン株式会社 Battery control unit
CN111976538A (en) * 2019-12-27 2020-11-24 中北大学 Equalizing structure and equalizing method of vehicle-mounted composite power supply system
WO2020241439A1 (en) * 2019-05-31 2020-12-03 パナソニックIpマネジメント株式会社 Energy storage system
CN112737015A (en) * 2020-12-22 2021-04-30 西安科技大学 Lithium battery equalization control system and control method based on SOC
US11018512B2 (en) 2018-12-06 2021-05-25 Hitachi Automotive Systems Americas, Inc. Energy storage device charge balancing
CN112909354A (en) * 2019-11-19 2021-06-04 东莞新能源科技有限公司 Battery module balancing method in battery circulation, electronic device and storage medium
CN113054706A (en) * 2021-03-18 2021-06-29 中国第一汽车股份有限公司 Balance monitoring control system and method for power battery
CN113328499A (en) * 2021-06-22 2021-08-31 上海理工大学 Battery pack capacity balancing method
CN113829957A (en) * 2021-09-29 2021-12-24 力高(山东)新能源技术有限公司 Battery equalization evaluation method for charging new energy battery
DE102013217767B4 (en) 2012-09-18 2022-02-03 Suzuki Motor Corporation Battery Pack Balancer
CN114300764A (en) * 2021-12-22 2022-04-08 东莞新能安科技有限公司 Battery module and energy storage system
CN114982089A (en) * 2020-10-28 2022-08-30 广州汽车集团股份有限公司 Method and system for estimating battery pack equilibrium state of new energy automobile
DE112022003102T5 (en) 2021-06-16 2024-04-11 Gs Yuasa International Ltd. Energy storage device and method for controlling an energy storage device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333762A (en) * 2002-05-14 2003-11-21 Japan Storage Battery Co Ltd Voltage level equalization device for battery pack
JP2009038876A (en) * 2007-08-01 2009-02-19 Toyota Motor Corp Voltage equalizer for battery pack

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333762A (en) * 2002-05-14 2003-11-21 Japan Storage Battery Co Ltd Voltage level equalization device for battery pack
JP2009038876A (en) * 2007-08-01 2009-02-19 Toyota Motor Corp Voltage equalizer for battery pack

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523214A (en) * 2009-04-03 2012-09-27 マーベル ワールド トレード リミテッド Rechargeable battery stack power management circuit
US8736231B2 (en) 2009-04-03 2014-05-27 Marvell World Trade Ltd. Power management circuit for rechargeable battery stack
JP2011078276A (en) * 2009-10-01 2011-04-14 Shindengen Electric Mfg Co Ltd Charging controller and charging control method in charging controller
US8937457B2 (en) 2010-01-06 2015-01-20 Marvell World Trade Ltd. Power management circuit of rechargeable battery stack
WO2012127764A1 (en) * 2011-03-23 2012-09-27 三洋電機株式会社 Battery system, equalizing device, equalizing system, electric vehicle, moving body, power storage device, and power supply device
JP2012253999A (en) * 2011-05-11 2012-12-20 Shindengen Electric Mfg Co Ltd Power conversion circuit
JP2013009485A (en) * 2011-06-23 2013-01-10 Toshiba Schneider Inverter Corp Voltage balancing circuit of inverter device
CN102856948A (en) * 2011-06-30 2013-01-02 株式会社丰田自动织机 Cell balancing device
JP2013013268A (en) * 2011-06-30 2013-01-17 Toyota Industries Corp Cell balancing apparatus
EP2549579A1 (en) 2011-07-19 2013-01-23 Hitachi, Ltd. Battery system
US8692516B2 (en) 2011-09-23 2014-04-08 Linear Technology Corporation Stackable bi-directional multicell battery balancer
TWI558062B (en) * 2011-10-21 2016-11-11 線性科技股份有限公司 Battery balancing system and methods of balancing battery stack
US8766597B2 (en) 2011-10-21 2014-07-01 Linear Technology Corporation Optimized bi-directional balancing method and system
EP2583858A1 (en) * 2011-10-21 2013-04-24 Linear Technology Corporation Optimized bi-directional balancing method and system
CN103066641A (en) * 2011-10-21 2013-04-24 凌力尔特有限公司 Optimized bi-directional balancing method and system
JP2013123344A (en) * 2011-12-12 2013-06-20 Toyota Industries Corp Device for equalizing battery cell voltages
JPWO2014030472A1 (en) * 2012-08-22 2016-07-28 日本電気株式会社 Battery control device, power storage device, operation method of power storage device, and program
DE102013217767B4 (en) 2012-09-18 2022-02-03 Suzuki Motor Corporation Battery Pack Balancer
CN104659434A (en) * 2013-11-22 2015-05-27 北汽福田汽车股份有限公司 Equilibrium control method for power battery pack
CN105226736A (en) * 2014-06-20 2016-01-06 深圳中德世纪新能源有限公司 Electrokinetic cell bidirectional equalization system
US11018512B2 (en) 2018-12-06 2021-05-25 Hitachi Automotive Systems Americas, Inc. Energy storage device charge balancing
CN111327088A (en) * 2018-12-14 2020-06-23 郑州宇通客车股份有限公司 Battery system, equalization method and device
CN111327088B (en) * 2018-12-14 2022-08-12 宇通客车股份有限公司 Battery system, equalization method and device
JP2020150760A (en) * 2019-03-15 2020-09-17 ビークルエナジージャパン株式会社 Battery control unit
JP7111642B2 (en) 2019-03-15 2022-08-02 ビークルエナジージャパン株式会社 battery controller
CN113812031A (en) * 2019-05-31 2021-12-17 松下知识产权经营株式会社 Electricity storage system
WO2020241439A1 (en) * 2019-05-31 2020-12-03 パナソニックIpマネジメント株式会社 Energy storage system
CN112909354A (en) * 2019-11-19 2021-06-04 东莞新能源科技有限公司 Battery module balancing method in battery circulation, electronic device and storage medium
CN111976538A (en) * 2019-12-27 2020-11-24 中北大学 Equalizing structure and equalizing method of vehicle-mounted composite power supply system
CN114982089A (en) * 2020-10-28 2022-08-30 广州汽车集团股份有限公司 Method and system for estimating battery pack equilibrium state of new energy automobile
CN112737015B (en) * 2020-12-22 2023-05-16 西安科技大学 Lithium battery balance control system and control method based on SOC
CN112737015A (en) * 2020-12-22 2021-04-30 西安科技大学 Lithium battery equalization control system and control method based on SOC
CN113054706A (en) * 2021-03-18 2021-06-29 中国第一汽车股份有限公司 Balance monitoring control system and method for power battery
DE112022003102T5 (en) 2021-06-16 2024-04-11 Gs Yuasa International Ltd. Energy storage device and method for controlling an energy storage device
CN113328499B (en) * 2021-06-22 2022-09-06 上海理工大学 Battery pack capacity balancing method
CN113328499A (en) * 2021-06-22 2021-08-31 上海理工大学 Battery pack capacity balancing method
CN113829957A (en) * 2021-09-29 2021-12-24 力高(山东)新能源技术有限公司 Battery equalization evaluation method for charging new energy battery
CN114300764A (en) * 2021-12-22 2022-04-08 东莞新能安科技有限公司 Battery module and energy storage system
CN114300764B (en) * 2021-12-22 2024-02-20 东莞新能安科技有限公司 Battery module and energy storage system

Similar Documents

Publication Publication Date Title
JP2009071936A (en) Voltage equalization system for battery pack
EP2036184B1 (en) Charge equalization apparatus and method
US10141551B2 (en) Battery system
JP3795499B2 (en) Voltage equalization device for storage element
US9270132B2 (en) Balancing method and battery system
US8493028B2 (en) Power management circuit for rechargeable battery stack
EP2418751B1 (en) Battery charger and battery charging method
JP6814437B2 (en) Control device, balance correction device, power storage system, and device
US9343918B2 (en) Balancing apparatus, balancing method, and battery module
JP2010032412A (en) Power supply for vehicle
US20100231166A1 (en) Battery Management System with Integration of Voltage Sensor and Charge Equalizer
WO2010018644A1 (en) Electricity storage system
JP2003333762A (en) Voltage level equalization device for battery pack
JP2007318950A (en) Cell voltage balancing device for secondary battery
JP2005151720A (en) Cell balance correcting device, secondary battery, method of correcting cell balance and cell balance correcting program
US6388424B1 (en) Cell shunt circuit for battery cells
US11437828B2 (en) Equalization circuit and power storage system
JP5664310B2 (en) DC power supply
JP2008236991A (en) Voltage balance circuit, battery unit, and battery unit control method
JP5670261B2 (en) Battery pack capacity adjustment device
JP5314626B2 (en) Power supply system, discharge control method, and discharge control program
CN111492557A (en) Management device and power supply system
JP5573075B2 (en) Voltage equalization device for battery pack
KR101969301B1 (en) Apparatus for controlling charging and discharging of batterry for dc grid
JP2016040999A (en) Charged state equalization method of storage battery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110927