JP2009068970A - Simulating apparatus of dust diffusion into atmosphere, diffusion simulating method and program - Google Patents

Simulating apparatus of dust diffusion into atmosphere, diffusion simulating method and program Download PDF

Info

Publication number
JP2009068970A
JP2009068970A JP2007237178A JP2007237178A JP2009068970A JP 2009068970 A JP2009068970 A JP 2009068970A JP 2007237178 A JP2007237178 A JP 2007237178A JP 2007237178 A JP2007237178 A JP 2007237178A JP 2009068970 A JP2009068970 A JP 2009068970A
Authority
JP
Japan
Prior art keywords
diffusion
power spectrum
dust
chimney
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007237178A
Other languages
Japanese (ja)
Other versions
JP4837640B2 (en
Inventor
Yoshihiro Yamada
義博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007237178A priority Critical patent/JP4837640B2/en
Publication of JP2009068970A publication Critical patent/JP2009068970A/en
Application granted granted Critical
Publication of JP4837640B2 publication Critical patent/JP4837640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the simulating precision of dust diffusion into the atmosphere. <P>SOLUTION: At least one fixedly installed camera 200 is used to continuously record the time series image of the smoke from the chimney present in a measuring target region at a definite time interval, the brightness in the time direction of the same pixel coordinates of the continuous image is subjected to Fourier transform to calculate the time series of the power spectrum of a screen, the power spectrum of an isotropic turbulent flow is calculated from the power spectrum of the screen, the vibration frequency caused by a Karman vortex is calculated from the difference between the power spectrum of the screen and the power spectrum of the isotropic turbulent flow. A Storrow-Hull number is calculated from the vibration frequency caused by the Karman vortex, wind velocity and the diameter of the chimney, a vortex diffusion coefficient and diffusion width are calculated using the relation between the Storrow-Hull number and a Reynolds number, the diffusion width is decomposed into a horizontal component and a vertical component using the image in the ejection direction of the smoke from the chimney and the diffusion of dust is simulated by the analysis of a numerical value using the horizontal component of the diffusion width, the vertical component of the diffusion width, a weather condition and a dust condition. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、粉塵の大気中への拡散を求めるための粉塵の大気中拡散シミュレーション装置、方法及びプログラムに関し、特に煙突を有する工場や石炭貯蔵場から大気中への粉塵の拡散を精度良く、安価に求めるものに関する。   The present invention relates to a dust atmospheric diffusion simulation apparatus, method, and program for determining the diffusion of dust into the atmosphere, and in particular, accurately and inexpensively diffuses dust from a factory having a chimney or a coal storage to the atmosphere. Related to what you want.

工場や石炭貯蔵場から拡散する粉塵は、その周辺地域の洗濯物や自動車等を汚す等のトラブルを生じさせるため、粉塵の拡散を監視し、その量を最小限度に抑えることは必要不可欠である。そこで、従来は、周辺地域への粉塵の拡散状況を監視する場合、粉塵拡散量測定装置を多数設置し、その計測値によって監視を行っていた。   Dust diffused from factories and coal storage sites causes troubles such as soiling laundry and automobiles in the surrounding area, so it is indispensable to monitor the diffusion of dust and minimize the amount of dust. . Therefore, conventionally, when monitoring the diffusion state of dust to the surrounding area, a large number of dust diffusion amount measuring devices are installed and monitoring is performed based on the measured values.

また、特許文献1には、数値シミュレーションを利用することにより、粉塵拡散量測定点の数を減らし、粉塵の拡散を監視する装置が開示されている。図14に示すように、Pasquill安定度段階分類表(表1を参照)を用いて、風速、日射量等から、安定度段階分類A〜Gを求める。そして、安定度段階分類A〜Gと粉塵の発生源からの距離を用いて、Pasquill-Gifford線図(図15、図16を参照)から、拡散幅の垂直成分σz及び拡散幅の水平成分σyを求める。その後、求めた拡散幅と測定した粉塵拡散量、風向き等の測定から数値解析により粉塵の拡散分布を求めている。   Patent Document 1 discloses a device that monitors the diffusion of dust by reducing the number of dust diffusion amount measurement points by using numerical simulation. As shown in FIG. 14, stability stage classifications A to G are obtained from the wind speed, the amount of solar radiation, and the like using a Pasquill stability stage classification table (see Table 1). Then, using the stability stage classifications A to G and the distance from the dust source, from the Pasquill-Gifford diagram (see FIGS. 15 and 16), the vertical component σz of the diffusion width and the horizontal component σy of the diffusion width. Ask for. Thereafter, the dust diffusion distribution is obtained by numerical analysis from the obtained diffusion width, the measured dust diffusion amount, the wind direction, and the like.

Figure 2009068970
Figure 2009068970

特開平2−64437号公報Japanese Patent Laid-Open No. 2-64437

しかしながら、多数の粉塵拡散量測定装置により拡散状況を監視する従来の方法は、監視精度を向上させるためには比較的高価な測定装置の数を増加させなければならず、経済性が悪いという問題点がある。また、計測点以外の拡散状況は、計測点のデータから補間するしかなかった。   However, the conventional method of monitoring the diffusion state with a large number of dust diffusion amount measuring devices has to increase the number of relatively expensive measuring devices in order to improve the monitoring accuracy, and is not economical. There is a point. In addition, the diffusion state other than the measurement points can only be interpolated from the data of the measurement points.

また、特許文献1に開示されているシミュレーションによる方法は、気象条件の観測値から求めるPasquill安定度段階分類として7段階しかなく、また、実態に合わないこともあり、数値シミュレーションの解析精度が悪いという問題があった。例えば、晴天の正午過ぎの凪の時間帯では、日射量が多く、Pasquill安定度分類のカテゴリーはA,Bとなり、Pasquill-Gifford線図を見ると、拡散幅の水平成分σyは大きな値を示す。ところが、実現象を観察すると、煙は上昇するだけで、拡散幅の水平成分σyは小さいという不一致が生じている。   Further, the simulation method disclosed in Patent Document 1 has only seven stages as Pasquill stability stage classifications obtained from observed values of weather conditions, and may not match the actual situation, and the numerical simulation analysis accuracy is poor. There was a problem. For example, in the clear sky after noon, the amount of solar radiation is large, the Pasquill stability classification categories are A and B, and the Pasquill-Gifford diagram shows a large value for the horizontal component σy of the diffusion width. . However, when the actual phenomenon is observed, there is a discrepancy that only the smoke rises and the horizontal component σy of the diffusion width is small.

本発明は、上記の点に鑑みてなされたものであり、粉塵の大気中への拡散のシミュレーション精度を向上させることを目的とするものである。   The present invention has been made in view of the above points, and an object thereof is to improve the simulation accuracy of the diffusion of dust into the atmosphere.

本願発明者等は、拡散する粉塵の大気中の拡散幅を精度良く求める手法として、煙突から発生する煙に注目して拡散幅を直接求めるようにした。以下に、本発明の要旨を述べる。
本発明の粉塵の大気中拡散シミュレーション装置は、粉塵の大気中への拡散を求めるための粉塵の大気中拡散シミュレーション装置であって、定置した1台以上のカメラを用いて、計測対象地域に存在する煙突からの煙の時系列画像を一定時間間隔で連続的に記録する手段と、連続画像の同一画素座標での時間方向の輝度をフーリエ変換して、画面のパワースペクトルの時系列を求める手段と、画面のパワースペクトルから等方性乱流のパワースペクトルを求め、画面のパワースペクトルと等方性乱流のパワースペクトルの差からカルマン渦起因の振動周波数を求める手段と、カルマン渦起因の振動周波数と風速と煙突の直径からストローハル数を求め、ストローハル数とレイノルズ数の関係を用いて渦拡散係数と拡散幅を求める手段と、煙突からの煙の噴出方向の画像を用いて、拡散幅を水平成分と垂直成分に分解する手段と、拡散幅の水平成分と拡散幅の垂直成分、気象条件、粉塵条件を用いて数値解析により粉塵の拡散をシミュレーションする手段とを備えたことを特徴とする。
本発明の粉塵の大気中拡散シミュレーション方法は、粉塵の大気中への拡散を求めるための粉塵の大気中拡散シミュレーション方法であって、定置した1台以上のカメラを用いて、計測対象地域に存在する煙突からの煙の時系列画像を一定時間間隔で連続的に記録するステップと、連続画像の同一画素座標での時間方向の輝度をフーリエ変換して、画面のパワースペクトルの時系列を求めるステップと、画面のパワースペクトルから等方性乱流のパワースペクトルを求め、画面のパワースペクトルと等方性乱流のパワースペクトルの差からカルマン渦起因の振動周波数を求めるステップと、カルマン渦起因の振動周波数と風速と煙突の直径からストローハル数を求め、ストローハル数とレイノルズ数の関係を用いて渦拡散係数と拡散幅を求めるステップと、煙突からの煙の噴出方向の画像を用いて、拡散幅を水平成分と垂直成分に分解するステップと、拡散幅の水平成分と拡散幅の垂直成分、気象条件、粉塵条件を用いて数値解析により粉塵の拡散をシミュレーションするステップとを有することを特徴とする。
本発明のプログラムは、粉塵の大気中への拡散を求めるための粉塵の大気中拡散シミュレーションを行うプログラムであって、コンピュータを、定置した1台以上のカメラを用いて、計測対象地域に存在する煙突からの煙の時系列画像を一定時間間隔で連続的に記録する手段と、連続画像の同一画素座標での時間方向の輝度をフーリエ変換して、画面のパワースペクトルの時系列を求める手段と、画面のパワースペクトルから等方性乱流のパワースペクトルを求め、画面のパワースペクトルと等方性乱流のパワースペクトルの差からカルマン渦起因の振動周波数を求める手段と、カルマン渦起因の振動周波数と風速と煙突の直径からストローハル数を求め、ストローハル数とレイノルズ数の関係を用いて渦拡散係数と拡散幅を求める手段と、煙突からの煙の噴出方向の画像を用いて、拡散幅を水平成分と垂直成分に分解する手段と、拡散幅の水平成分と拡散幅の垂直成分、気象条件、粉塵条件を用いて数値解析により粉塵の拡散をシミュレーションする手段として機能させることを特徴とする。
The inventors of the present application have determined the diffusion width directly by paying attention to the smoke generated from the chimney as a method for accurately obtaining the diffusion width of the dust in the atmosphere. The gist of the present invention will be described below.
The dust diffusion simulation apparatus of the present invention is a dust diffusion simulation apparatus for determining the diffusion of dust into the atmosphere, and is present in the measurement target area using one or more stationary cameras. Means for continuously recording time-series images of smoke from the chimney at regular time intervals, and means for obtaining a time series of the power spectrum of the screen by Fourier transforming the luminance in the time direction at the same pixel coordinates of the continuous images. And a means for obtaining an isotropic turbulent power spectrum from the screen power spectrum, a vibration frequency caused by the Karman vortex from the difference between the screen power spectrum and the isotropic turbulent power spectrum, and a vibration caused by the Karman vortex. A means for obtaining the Strouhal number from the frequency, wind speed and chimney diameter, and obtaining the eddy diffusion coefficient and diffusion width using the relationship between the Strouhal number and the Reynolds number; Using the image of the direction in which smoke is emitted from the air and separating the diffusion width into a horizontal component and a vertical component, and the numerical analysis using the horizontal component of the diffusion width and the vertical component of the diffusion width, the meteorological condition, and the dust condition. And means for simulating the diffusion of.
The method for simulating the diffusion of dust in the atmosphere of the present invention is a method for simulating the diffusion of dust in the atmosphere to determine the diffusion of the dust into the atmosphere, and is present in the measurement target area using one or more stationary cameras. A step of continuously recording a time series image of smoke from a chimney at a certain time interval, and a step of obtaining a time series of a power spectrum of the screen by Fourier transforming the luminance in the time direction at the same pixel coordinates of the continuous image. Calculating the power spectrum of isotropic turbulence from the power spectrum of the screen, determining the vibration frequency due to Karman vortex from the difference between the power spectrum of the screen and the power spectrum of isotropic turbulence, and vibration due to Karman vortex Obtain the Strouhal number from the frequency, wind speed, and chimney diameter, and obtain the eddy diffusion coefficient and diffusion width using the relationship between the Strouhal number and the Reynolds number. Using the image of the step and the direction of smoke emission from the chimney, decomposing the diffusion width into a horizontal component and a vertical component, using the horizontal component of the diffusion width and the vertical component of the diffusion width, weather conditions, and dust conditions And a step of simulating the diffusion of dust by numerical analysis.
The program of the present invention is a program for simulating the diffusion of dust into the atmosphere to determine the diffusion of dust into the atmosphere, and is present in the measurement target area using one or more cameras with a stationary computer. Means for continuously recording time-series images of smoke from the chimney at regular time intervals, means for obtaining a time series of the power spectrum of the screen by Fourier transforming the luminance in the time direction at the same pixel coordinates of the continuous images; A means of obtaining a power spectrum of isotropic turbulence from the power spectrum of the screen, a vibration frequency caused by Karman vortex from a difference between the power spectrum of the screen and the power spectrum of isotropic turbulence, and a vibration frequency caused by Karman vortex The Strouhal number from the wind speed and chimney diameter, the vortex diffusion coefficient and the diffusion width using the relationship between the Strouhal number and the Reynolds number, By means of numerical analysis using the image of the direction of smoke emission from the bump, the means for decomposing the diffusion width into a horizontal component and a vertical component, the horizontal component of the diffusion width and the vertical component of the diffusion width, weather conditions, and dust conditions It functions as a means for simulating the diffusion of dust.

本発明によれば、粉塵の大気中への拡散のシミュレーション精度を向上させることができるので、粉塵拡散の抑制対策のアクションを早く実行でき、周辺地域に拡散する粉塵の量を抑制する等の環境改善を促進させることができる。   According to the present invention, since the simulation accuracy of the diffusion of dust into the atmosphere can be improved, the action of measures for suppressing the diffusion of dust can be executed quickly, and the environment for suppressing the amount of dust that diffuses in the surrounding area, etc. Improvement can be promoted.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。
図1に、本実施形態における粉塵の大気中への拡散を求めるための粉塵の大気中拡散シミュレーション装置の機能構成を示す。大気中拡散シミュレーション装置100には、計測対象地域に存在する煙突からの煙の時系列画像を一定時間間隔で連続的に記録するためのカメラ200が接続する。なお、図1ではカメラ200は1台しか図示していないが、複数台あってもよい。また、図2に、本実施形態における粉塵の大気中への拡散を求めるための粉塵の大気中拡散シミュレーション方法のフローチャートを示す。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows a functional configuration of a dust diffusion simulation apparatus for determining the diffusion of dust into the atmosphere in the present embodiment. Connected to the atmospheric diffusion simulation apparatus 100 is a camera 200 for continuously recording time-series images of smoke from a chimney existing in the measurement target area at regular time intervals. Although only one camera 200 is shown in FIG. 1, a plurality of cameras may be provided. FIG. 2 shows a flowchart of a dust diffusion simulation method for dust in the present embodiment for obtaining diffusion of dust into the atmosphere.

記録部101は、定置した1台以上のカメラ200を用いて、計測対象地域に存在する煙突からの煙の時系列画像を一定時間間隔で連続的に記録する(図2のステップS101)。   The recording unit 101 continuously records time-series images of smoke from a chimney existing in the measurement target area at regular time intervals using one or more stationary cameras 200 (step S101 in FIG. 2).

パワースペクトル演算部102は、連続画像の同一画素座標での時間方向の輝度をフーリエ変換して、画面のパワースペクトルの時系列を求める(図2のステップS102)。   The power spectrum calculation unit 102 Fourier-transforms the luminance in the time direction at the same pixel coordinates of the continuous image to obtain a time series of the power spectrum of the screen (step S102 in FIG. 2).

振動周波数演算部103は、画面のパワースペクトルから等方性乱流のパワースペクトルを求め、画面のパワースペクトルと等方性乱流のパワースペクトルの差からカルマン渦起因の振動周波数を求める(図2のステップS103)。   The vibration frequency calculation unit 103 obtains the power spectrum of the isotropic turbulent flow from the power spectrum of the screen, and obtains the vibration frequency caused by the Karman vortex from the difference between the power spectrum of the screen and the power spectrum of the isotropic turbulent flow (FIG. 2). Step S103).

渦拡散計数・拡散幅演算部104は、カルマン渦起因の振動周波数と風速と煙突の直径からストローハル数を求め、ストローハル数とレイノルズ数の関係を用いて渦拡散係数と拡散幅を求める(図2のステップS104)。   The eddy diffusion counting / diffusion width calculation unit 104 obtains the Strouhal number from the vibration frequency due to Karman vortex, the wind speed, and the chimney diameter, and obtains the eddy diffusion coefficient and the diffusion width using the relationship between the Strouhal number and the Reynolds number ( Step S104 in FIG.

拡散幅分解部105、煙突からの煙の噴出方向の画像を用いて、拡散幅を水平成分と垂直成分に分解する(図2のステップS105)。   The diffusion width decomposition unit 105 decomposes the diffusion width into a horizontal component and a vertical component using an image in the direction of smoke emission from the chimney (step S105 in FIG. 2).

シミュレーション部106は、拡散幅の水平成分と拡散幅の垂直成分、気象条件、粉塵条件を用いて数値解析により粉塵の拡散をシミュレーションする(図2のステップS106)。   The simulation unit 106 simulates the diffusion of dust by numerical analysis using the horizontal component of the diffusion width, the vertical component of the diffusion width, the weather condition, and the dust condition (step S106 in FIG. 2).

図3に示すように、煙突からの煙の画像は時間と共に変化するので、定置した1台以上のカメラ200を用いて、計測対象地域に存在する煙突からの煙の時系列画像を一定時間間隔で連続的に記録する。なお、図3は、カメラ200で撮影された写真を図にしたものである。   As shown in FIG. 3, since the smoke image from the chimney changes with time, the time series image of the smoke from the chimney existing in the measurement target area is displayed at fixed time intervals using one or more stationary cameras 200. To record continuously. FIG. 3 shows a photograph taken by the camera 200.

図4(a)、(b)に示すように、連続画像(時系列画像)2の同一画素座標(x,y)での時間方向の輝度p(x,y,i)(i=0,2,・・・,2N−1)を、(1)式を用いてフーリエ変換して画面のパワースペクトルEPを求める。2Nは積分画像数、Δtは時間刻みである。なお、図4(a)において、3は連続画像の同一画素座標の時間方向の輝度の時系列を表わす。 As shown in FIGS. 4A and 4B, luminance p (x, y, i) in the time direction at the same pixel coordinates (x, y) of the continuous image (time-series image) 2 (i = 0, 2,..., 2N-1) is Fourier-transformed using equation (1) to obtain the power spectrum E P of the screen. 2N is the number of integrated images, and Δt is a time step. In FIG. 4A, 3 represents a time series of luminances in the time direction of the same pixel coordinates of a continuous image.

Figure 2009068970
Figure 2009068970

画面のパワースペクトルEPと周波数fとの関係を両対数グラフにすると図5に示すようになり、画面のパワースペクトルEPは右肩下がりとなる。等方性乱流のパワースペクトルETは、周波数fのT(定数)乗及びa(定数)に比例し、(2)式で示される。図5に示すように、画面のパワースペクトルEPの曲線の下方に接する直線を求め、その直線の傾きと直線上の任意の点から、定数T及びaを求める。画面のパワースペクトルEPから等方性乱流のパワースペクトルETを引くことにより、卓越周波数(分布のうちピークとなる周波数)を求めている。(3)式で示されように、画面のパワースペクトルEPと等方性乱流のパワースペクトルETとの差をE1とし、E1の分布のピークとなる周波数のうち、E1が最大の値を示す周波数を流体振動のパワースペクトルの卓越周波数fOとし、流体振動のパワースペクトルの卓越周波数fOをカルマン渦起因の振動周波数fとする。 When the relationship between the power spectrum E P of the screen and the frequency f is a logarithmic graph, it is as shown in FIG. 5, and the power spectrum E P of the screen decreases downward. The power spectrum E T of isotropic turbulence is proportional to the frequency f raised to the power of T (constant) and a (constant), and is expressed by the equation (2). As shown in FIG. 5, a straight line in contact with the lower side of the curve of the power spectrum E P of the screen is obtained, and constants T and a are obtained from the slope of the straight line and arbitrary points on the straight line. By subtracting the power spectrum E T of isotropic turbulent flow from the power spectrum E P of the screen, the dominant frequency (the peak frequency in the distribution) is obtained. As shown in equation (3), let E 1 be the difference between the power spectrum E P of the screen and the power spectrum E T of isotropic turbulent flow, and E 1 is the peak frequency of the E 1 distribution. the frequency showing the maximum value and the dominant frequency f O of the power spectrum of the fluidic oscillator, the dominant frequency f O of the power spectrum of the fluid vibration and the vibration frequency f of the Karman vortex caused.

Figure 2009068970
Figure 2009068970

ストローハル数Stは(4)式で定義され、カルマン渦起因の振動周波数fと、煙突に向かって吹く風の風速uと、煙突の直径Dとから求められる。ストローハル数Stとレイノルズ数Reを(5)式に示す近似式(bは定数)で近似し、本式からレイノルズ数Reを求める。渦拡散係数Κとレイノルズ数Reとの間には(6)式に示す関係があり、渦拡散係数Κを求める。拡散係数Kと拡散幅σとの間には(7)式の関係があり、拡散幅σを求める。   The Strouhal number St is defined by the equation (4), and is obtained from the vibration frequency f caused by the Karman vortex, the wind speed u of the wind blowing toward the chimney, and the chimney diameter D. The Strouhal number St and the Reynolds number Re are approximated by an approximate expression (b is a constant) shown in the equation (5), and the Reynolds number Re is obtained from this equation. The vortex diffusion coefficient Κ and the Reynolds number Re have a relationship shown in the equation (6), and the vortex diffusion coefficient Κ is obtained. Between the diffusion coefficient K and the diffusion width σ, there is a relationship of the expression (7), and the diffusion width σ is obtained.

Figure 2009068970
Figure 2009068970

粉塵の拡散のシミュレーションを行うには、拡散幅σをその水平成分σyと垂直成分σzとに分解する必要がある。図12(a)、(b)に示すように、粉体の水平拡散と垂直拡散の合成された結果が、煙画像の噴出方向となっていると考えられ、煙の進行方向の単位ベクトルをV、鉛直単位ベクトルをev、水平単位ベクトルをeh、拡散幅σ、拡散幅σの水平成分をσy、拡散幅σの垂直成分をσzとすると、(8)式、(9)式で拡散幅σを求めることができる。なお、図12において、1は煙突を表わす。図12(b)は、カメラ200で撮影された写真を図にしたものである。
σy=σ(V・eh)・・・(8)
σz=σ(V・ev)・・・(9)
In order to simulate the diffusion of dust, it is necessary to decompose the diffusion width σ into its horizontal component σy and vertical component σz. As shown in FIGS. 12 (a) and 12 (b), the combined result of the horizontal diffusion and vertical diffusion of the powder is considered to be the ejection direction of the smoke image. When V is ev, the vertical unit vector is ev, the horizontal unit vector is eh, the diffusion width σ, the horizontal component of the diffusion width σ is σy, and the vertical component of the diffusion width σ is σz, the diffusion width is expressed by Equations (8) and (9). σ can be obtained. In FIG. 12, 1 represents a chimney. FIG. 12B shows a photograph taken by the camera 200.
σy = σ (V · eh) (8)
σz = σ (V · ev) (9)

求めた拡散幅σ、及び測定した粉塵拡散量と気象条件から数値解析により粉塵の拡散分布を求める。このように、気象条件の観測値と煙突からの煙の時系列画像から直接拡散係数の関係を出す装置を提供することができた。これにより、気象条件の観測値と拡散幅の関係が7段階の大気安定度カテゴリー以上に細かくかつ定量的に求められ、粉塵の大気中への拡散のシミュレーション精度を向上させることが可能となった。   Dust diffusion distribution is obtained by numerical analysis from the obtained diffusion width σ and the measured dust diffusion amount and weather conditions. In this way, it was possible to provide an apparatus for directly calculating the relationship between the diffusion coefficient from the observation value of the weather condition and the time-series image of the smoke from the chimney. As a result, the relationship between the observed values of the weather conditions and the diffusion width is determined more finely and quantitatively than the seven-level atmospheric stability category, and it has become possible to improve the simulation accuracy of the diffusion of dust into the atmosphere. .

(実施例)
本発明の実施例を、図3、図5〜図11を用いて説明する。まず計算対象地域に存在する煙突からの煙の時系列画像を定置した1台以上のカメラを用いて、図3に示すように一定時間間隔で連続的に記録する。
(Example)
An embodiment of the present invention will be described with reference to FIGS. 3 and 5 to 11. First, using one or more cameras in which time-series images of smoke from a chimney existing in the calculation target area are placed, recording is continuously performed at regular time intervals as shown in FIG.

該連続画像の同一画素座標での時間方向の輝度を(1)式を用いてフーリエ変換して、図5に示すように、画面のパワースペクトルEPを求める。ここで、時間刻みΔt=1秒、積分画像数2N=64枚とした。 The luminance in the time direction at the same pixel coordinates of the continuous image is Fourier-transformed using equation (1) to obtain a screen power spectrum E P as shown in FIG. Here, the time increment Δt = 1 second and the number of integrated images 2N = 64.

流体振動のパワースペクトルの卓越周波数を求めるため、画面のパワースペクトルEPと、等方性乱流のパワースペクトルETとの差E1を求める。等方性乱流のパワースペクトルETは、画面のパワースペクトルEPの周波数との両対数グラフの勾配Tを調べ、T=−1とした。等方性乱流のパワースペクトルETは周波数fの−1乗に比例すると考えられ、aを定数として(2)式で示される。(3)式で示される画面のパワースペクトルEPと等方性乱流のパワースペクトルETとの差E1が、流体振動のパワースペクトルを示し、E1の分布のうち最大の値を示すピークの周波数が卓越周波数であり、流体振動のパワースペクトルの卓越周波数fOをカルマン渦起因の振動周波数fとする。 In order to obtain the dominant frequency of the power spectrum of fluid vibration, the difference E 1 between the power spectrum E P of the screen and the power spectrum E T of isotropic turbulence is obtained. The power spectrum E T of the isotropic turbulent flow is obtained by examining the slope T of the log-log graph with the frequency of the power spectrum E P of the screen, and T = −1. The power spectrum E T of isotropic turbulence is considered to be proportional to the frequency −1 to the first power, and is expressed by equation (2), where a is a constant. The difference E 1 between the power spectrum E P of the screen represented by the expression (3) and the power spectrum E T of isotropic turbulence indicates the power spectrum of the fluid vibration, and indicates the maximum value of the distribution of E 1. frequency peak is dominant frequency, the dominant frequency f O of the power spectrum of the fluid vibration and the vibration frequency f of the Karman vortex caused.

(4)式を用いて、図7に示すカルマン渦起因の振動周波数fと、図6に示す煙突に向かって吹く風の風速uと、煙突の直径Dとから、図8に示すストローハル数Stの時系列を求める。   From the vibration frequency f caused by Karman vortex shown in FIG. 7, the wind speed u of the wind blowing toward the chimney shown in FIG. 6, and the chimney diameter D using the equation (4), the Strouhal number shown in FIG. Obtain the time series of St.

ストローハル数Stとレイノルズ数Reの間には、図9に示すような曲線の関係式があるが、本装置では、図9に示すように直線に近似して(5)式の係数bを求め、(5)式からレイノルズ数Reを求め、(6)式を用いて図10に示す渦拡散係数Kを求める。(7)式により拡散幅σを求め、図12に示すように煙画像の噴出方向を用いて、拡散幅σをその水平成分σyと垂直成分σzに分解する。   Between the Strouhal number St and the Reynolds number Re, there is a relational expression of a curve as shown in FIG. 9, but this apparatus approximates a straight line as shown in FIG. The Reynolds number Re is obtained from the equation (5), and the eddy diffusion coefficient K shown in FIG. 10 is obtained using the equation (6). The diffusion width σ is obtained from the equation (7), and the diffusion width σ is decomposed into its horizontal component σy and vertical component σz using the direction of ejection of the smoke image as shown in FIG.

求めた拡散幅σ、及び測定した粉塵拡散量と気象条件から数値解析により粉塵の拡散分布を求める。   Dust diffusion distribution is obtained by numerical analysis from the obtained diffusion width σ and the measured dust diffusion amount and weather conditions.

本発明と従来のPasquill-Gifford線図を用いた手法により求めた粉塵発生源から100mm地点における拡散幅の垂直成分を図11に示す。図11は時間と垂直拡散幅との関係を示す特性図である。本発明による結果は時系列の変化を、従来の装置による結果はPasquill安定度段階分類がC、D、E、Fの場合の結果を示した。両方を比較すると、値は同じオーダーであるが、従来法では離散的変化するのに対して、本発明では時系列に連続して変化しているのが分かる。   FIG. 11 shows the vertical component of the diffusion width at a point of 100 mm from the dust source determined by the method using the present invention and the conventional Pasquill-Gifford diagram. FIG. 11 is a characteristic diagram showing the relationship between time and vertical diffusion width. The results according to the present invention show changes over time, and the results with the conventional apparatus show results when the Pasquill stability stage classification is C, D, E, F. When both are compared, the values are in the same order, but it can be seen that the values change continuously in time series in the present invention, whereas they change discretely in the conventional method.

本発明は、気象条件の観測値と煙突からの煙の時系列画像から直接拡散幅を求めるので、気象条件の観測値と拡散係数の関係が7段階の従来法以上に細かく、高い精度となり、かつ、コストも低くすることが可能となった。   Since the present invention obtains the diffusion width directly from the observation value of the weather condition and the time-series image of the smoke from the chimney, the relationship between the observation value of the weather condition and the diffusion coefficient is finer than the conventional method of seven stages, and becomes high accuracy, In addition, the cost can be reduced.

図13には、本発明の大気中拡散シミュレーション装置として機能しうるコンピュータのハードウェア構成例を示す。コンピュータは、装置全体を制御する中央処理装置であるCPU51、各種入力条件や解析結果等を表示する表示部52、解析結果等を保存するハードディスク等の記憶部53を有する。また、制御プログラム、各種アプリケーションプログラム、データ等を記憶するROM(リードオンリーメモリ)54を有する。また、上記制御プログラムに基づいてCPU51が各部を制御しながら処理を行うときに用いる作業領域であるRAM(ランダムアクセスメモリ)55、及びキーボード、マウス等の入力部56等から構成されている。   FIG. 13 shows a hardware configuration example of a computer that can function as the atmospheric diffusion simulation apparatus of the present invention. The computer includes a CPU 51 that is a central processing unit that controls the entire apparatus, a display unit 52 that displays various input conditions, analysis results, and the like, and a storage unit 53 such as a hard disk that stores analysis results and the like. Further, it has a ROM (Read Only Memory) 54 for storing a control program, various application programs, data and the like. The CPU 51 includes a RAM (Random Access Memory) 55 which is a work area used when the CPU 51 performs processing while controlling each unit based on the control program, and an input unit 56 such as a keyboard and a mouse.

なお、本発明の目的は、上述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システム或いは装置に供給することによっても達成される。この場合、そのシステム或いは装置のコンピュータ(又はCPUやMPU)が記憶媒体に格納されたプログラムコードを読み出し実行する。   The object of the present invention can also be achieved by supplying a storage medium storing software program codes for realizing the functions of the above-described embodiments to a system or apparatus. In this case, the computer (or CPU or MPU) of the system or apparatus reads and executes the program code stored in the storage medium.

この場合、記憶媒体から読み出されたプログラムコード自体が上述した実施形態の機能を実現することになり、プログラムコード自体及びそのプログラムコードを記憶した記憶媒体は本発明を構成することになる。プログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、CD−R、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。   In this case, the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the program code itself and the storage medium storing the program code constitute the present invention. As a storage medium for supplying the program code, for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a CD-R, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.

本実施形態における粉塵の大気中への拡散を求めるための粉塵の大気中拡散シミュレーション装置の機能構成を示す図である。It is a figure which shows the function structure of the atmospheric diffusion simulation apparatus of the dust for calculating | requiring the spreading | diffusion of the dust in air | atmosphere in this embodiment. 本実施形態における粉塵の大気中への拡散を求めるための粉塵の大気中拡散シミュレーション方法のフローチャートである。It is a flowchart of the atmospheric | air-diffusion simulation method of the dust for calculating | requiring the spreading | diffusion of the dust in air | atmosphere in this embodiment. 煙突からの煙の時系列画像を示す図である。It is a figure which shows the time-sequential image of the smoke from a chimney. 画面のパワースペクトルEPの求め方を説明するための図であり、(a)が連続画像の概念を示す図、(b)が特性図である。It is a diagram for explaining how to determine the power spectrum E P of the screen, a diagram, (b) is a characteristic diagram showing the concept of a continuous image (a). 画面のパワースペクトルEPと周波数fとの関係を示す特性図である。It is a characteristic view which shows the relationship between the power spectrum E P of the screen and the frequency f. 煙突に向かって吹く風の風速uの時系列を示す特性図である。It is a characteristic view which shows the time series of the wind speed u of the wind which blows toward a chimney. カルマン渦起因の振動周波数fの時系列を示す特性図である。It is a characteristic view which shows the time series of the vibration frequency f resulting from Karman vortex. ストローハル数Stの時系列を示す特性図である。It is a characteristic view which shows the time series of the Strouhal number St. ストローハル数Stとレイノルズ数Reとの関係を示す特性図である。It is a characteristic view which shows the relationship between Strouhal number St and Reynolds number Re. 渦拡散係数Kの時系列を示す特性図である。It is a characteristic view showing a time series of the eddy diffusion coefficient K. 本発明と従来法との比較を説明するための図であり、垂直拡散幅の時系列を示す特性図である。It is a figure for demonstrating the comparison with this invention and the conventional method, and is a characteristic view which shows the time series of a perpendicular | vertical diffusion width. 拡散幅σの水平成分をσyと垂直成分σzとへの分解を説明するための図であり、(a)が煙の進行方向の単位ベクトルV、鉛直単位ベクトルev、水平単位ベクトルehの関係を示す図、(b)が煙突から発生する煙の画像を示す図である。It is a figure for demonstrating decomposition | disassembly into the horizontal component of (sigma) y and the vertical component (sigma) z of the spreading | diffusion width (sigma), (a) is the relationship between the unit vector V of the advancing direction of smoke, the vertical unit vector ev, and the horizontal unit vector eh. FIG. 4B is a diagram showing an image of smoke generated from the chimney. 本発明の大気中拡散シミュレーション装置として機能しうるコンピュータのハードウェア構成例を示す図である。It is a figure which shows the hardware structural example of the computer which can function as an atmospheric diffusion simulation apparatus of this invention. Pasquill-Gifford線図を用いた手法による大気中拡散シミュレーションを説明するための図である。It is a figure for demonstrating the atmospheric diffusion simulation by the method using the Pasquill-Gifford diagram. Pasquill-Gifford線図における拡散幅の水平成分の特性図である。It is a characteristic figure of the horizontal component of the diffusion width in a Pasquill-Gifford diagram. Pasquill-Gifford線図における拡散幅の垂直成分の特性図である。It is a characteristic view of the vertical component of the diffusion width in the Pasquill-Gifford diagram.

符号の説明Explanation of symbols

101 記録部
102 パワースペクトル演算部
103 振動周波数演算部
104 渦拡散計数・拡散幅演算部
105 拡散幅分解部
106 シミュレーション部
DESCRIPTION OF SYMBOLS 101 Recording part 102 Power spectrum calculating part 103 Vibration frequency calculating part 104 Eddy diffusion count / diffusion width calculating part 105 Diffusion width decomposing part 106 Simulation part

Claims (3)

粉塵の大気中への拡散を求めるための粉塵の大気中拡散シミュレーション装置であって、
定置した1台以上のカメラを用いて、計測対象地域に存在する煙突からの煙の時系列画像を一定時間間隔で連続的に記録する手段と、
連続画像の同一画素座標での時間方向の輝度をフーリエ変換して、画面のパワースペクトルの時系列を求める手段と、
画面のパワースペクトルから等方性乱流のパワースペクトルを求め、画面のパワースペクトルと等方性乱流のパワースペクトルの差からカルマン渦起因の振動周波数を求める手段と、
カルマン渦起因の振動周波数と風速と煙突の直径からストローハル数を求め、ストローハル数とレイノルズ数の関係を用いて渦拡散係数と拡散幅を求める手段と、
煙突からの煙の噴出方向の画像を用いて、拡散幅を水平成分と垂直成分に分解する手段と、
拡散幅の水平成分と拡散幅の垂直成分、気象条件、粉塵条件を用いて数値解析により粉塵の拡散をシミュレーションする手段とを備えたことを特徴とする粉塵の大気中拡散シミュレーション装置。
An apparatus for simulating the diffusion of dust into the atmosphere to determine the diffusion of dust into the atmosphere,
Means for continuously recording time-series images of smoke from a chimney existing in the measurement target area at fixed time intervals using one or more stationary cameras;
Means for Fourier transforming the luminance in the time direction at the same pixel coordinates of the continuous image to obtain a time series of the power spectrum of the screen;
A means for obtaining a power spectrum of isotropic turbulence from the power spectrum of the screen, and obtaining a vibration frequency caused by the Karman vortex from a difference between the power spectrum of the screen and the power spectrum of the isotropic turbulence;
A means for obtaining the Strouhal number from the vibration frequency and wind speed caused by the Karman vortex and the diameter of the chimney, and obtaining the eddy diffusion coefficient and the diffusion width using the relationship between the Strouhal number and the Reynolds number,
Means for decomposing the diffusion width into a horizontal component and a vertical component using an image of the direction of smoke emission from the chimney;
An apparatus for simulating the diffusion of dust in the atmosphere, comprising means for simulating the diffusion of dust by numerical analysis using a horizontal component of the diffusion width, a vertical component of the diffusion width, weather conditions, and dust conditions.
粉塵の大気中への拡散を求めるための粉塵の大気中拡散シミュレーション方法であって、
定置した1台以上のカメラを用いて、計測対象地域に存在する煙突からの煙の時系列画像を一定時間間隔で連続的に記録するステップと、
連続画像の同一画素座標での時間方向の輝度をフーリエ変換して、画面のパワースペクトルの時系列を求めるステップと、
画面のパワースペクトルから等方性乱流のパワースペクトルを求め、画面のパワースペクトルと等方性乱流のパワースペクトルの差からカルマン渦起因の振動周波数を求めるステップと、
カルマン渦起因の振動周波数と風速と煙突の直径からストローハル数を求め、ストローハル数とレイノルズ数の関係を用いて渦拡散係数と拡散幅を求めるステップと、
煙突からの煙の噴出方向の画像を用いて、拡散幅を水平成分と垂直成分に分解するステップと、
拡散幅の水平成分と拡散幅の垂直成分、気象条件、粉塵条件を用いて数値解析により粉塵の拡散をシミュレーションするステップとを有することを特徴とする粉塵の大気中拡散シミュレーション方法。
A method for simulating the diffusion of dust into the atmosphere to determine the diffusion of dust into the atmosphere,
Using a fixed one or more cameras, continuously recording a time-series image of smoke from a chimney existing in a measurement target area at regular time intervals;
Fourier transforming the luminance in the time direction at the same pixel coordinates of the continuous image to obtain a time series of the power spectrum of the screen;
Obtaining a power spectrum of isotropic turbulence from the power spectrum of the screen, obtaining a vibration frequency caused by the Karman vortex from the difference between the power spectrum of the screen and the power spectrum of the isotropic turbulence;
Obtaining the Strouhal number from the vibration frequency, wind speed and chimney diameter caused by the Karman vortex, obtaining the vortex diffusion coefficient and diffusion width using the relationship between the Strouhal number and the Reynolds number;
Decomposing the diffusion width into a horizontal component and a vertical component using an image of the direction of smoke emission from the chimney;
A method for simulating the diffusion of dust in the atmosphere, comprising the step of simulating the diffusion of dust by numerical analysis using a horizontal component of the diffusion width, a vertical component of the diffusion width, weather conditions, and dust conditions.
粉塵の大気中への拡散を求めるための粉塵の大気中拡散シミュレーションを行うプログラムであって、
コンピュータを、
定置した1台以上のカメラを用いて、計測対象地域に存在する煙突からの煙の時系列画像を一定時間間隔で連続的に記録する手段と、
連続画像の同一画素座標での時間方向の輝度をフーリエ変換して、画面のパワースペクトルの時系列を求める手段と、
画面のパワースペクトルから等方性乱流のパワースペクトルを求め、画面のパワースペクトルと等方性乱流のパワースペクトルの差からカルマン渦起因の振動周波数を求める手段と、
カルマン渦起因の振動周波数と風速と煙突の直径からストローハル数を求め、ストローハル数とレイノルズ数の関係を用いて渦拡散係数と拡散幅を求める手段と、
煙突からの煙の噴出方向の画像を用いて、拡散幅を水平成分と垂直成分に分解する手段と、
拡散幅の水平成分と拡散幅の垂直成分、気象条件、粉塵条件を用いて数値解析により粉塵の拡散をシミュレーションする手段として機能させるためのプログラム。
A program for simulating the diffusion of dust into the atmosphere to determine the diffusion of dust into the atmosphere,
Computer
Means for continuously recording time-series images of smoke from a chimney existing in the measurement target area at fixed time intervals using one or more stationary cameras;
Means for Fourier transforming the luminance in the time direction at the same pixel coordinates of the continuous image to obtain a time series of the power spectrum of the screen;
A means for obtaining a power spectrum of isotropic turbulence from the power spectrum of the screen, and obtaining a vibration frequency caused by the Karman vortex from a difference between the power spectrum of the screen and the power spectrum of the isotropic turbulence;
A means for obtaining the Strouhal number from the vibration frequency and wind speed caused by the Karman vortex and the diameter of the chimney, and obtaining the eddy diffusion coefficient and the diffusion width using the relationship between the Strouhal number and the Reynolds number,
Means for decomposing the diffusion width into a horizontal component and a vertical component using an image of the direction of smoke emission from the chimney;
A program for functioning as a means of simulating the diffusion of dust by numerical analysis using the horizontal component of the diffusion width and the vertical component of the diffusion width, weather conditions, and dust conditions.
JP2007237178A 2007-09-12 2007-09-12 Dust atmospheric dispersion simulation apparatus, method and program Expired - Fee Related JP4837640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007237178A JP4837640B2 (en) 2007-09-12 2007-09-12 Dust atmospheric dispersion simulation apparatus, method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007237178A JP4837640B2 (en) 2007-09-12 2007-09-12 Dust atmospheric dispersion simulation apparatus, method and program

Publications (2)

Publication Number Publication Date
JP2009068970A true JP2009068970A (en) 2009-04-02
JP4837640B2 JP4837640B2 (en) 2011-12-14

Family

ID=40605387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007237178A Expired - Fee Related JP4837640B2 (en) 2007-09-12 2007-09-12 Dust atmospheric dispersion simulation apparatus, method and program

Country Status (1)

Country Link
JP (1) JP4837640B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105479491A (en) * 2016-01-20 2016-04-13 蔡权 Accurate and intelligent mechanical arm
CN105652030A (en) * 2016-01-20 2016-06-08 时建华 Intelligent liquid crystal display for high-rise building
CN105675912A (en) * 2016-01-20 2016-06-15 邱炎新 Intelligent monitoring type high tower structure of power transmission lines
CN105675913A (en) * 2016-01-20 2016-06-15 肖小玉 Intelligent machine for forming foundation pile of bridge pier
CN110414153A (en) * 2019-07-31 2019-11-05 辽宁工程技术大学 A kind of method of determining open coal mine dust recycling range
CN113031009A (en) * 2021-03-12 2021-06-25 宁波市气象网络与装备保障中心 Laser radar monitoring method for distinguishing fog and haze

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264437A (en) * 1988-08-31 1990-03-05 Kansai Electric Power Co Inc:The Measuring method of amount of scattered powder dust from powder particle substance storing place, apparatus therefor and monitoring apparatus of scattering of dust utilizing the same
JPH07260945A (en) * 1994-03-23 1995-10-13 Nkk Corp Estimation method and control method for dust concentration
JPH1194692A (en) * 1997-09-24 1999-04-09 Mitsubishi Heavy Ind Ltd Diffusion testing device
JP2001256475A (en) * 2001-04-27 2001-09-21 Ced System Inc System for detecting black smoke
JP2005172442A (en) * 2003-12-08 2005-06-30 Mitsubishi Heavy Ind Ltd Method and apparatus for predicting concentration of atmospheric pollutant and program and apparatus for predicting concentration of atmospheric pollutant
JP2005283202A (en) * 2004-03-29 2005-10-13 Mitsubishi Heavy Ind Ltd Diffusion state prediction method and diffusion state prediction system of diffusate
JP2005292041A (en) * 2004-04-02 2005-10-20 Nippon Telegr & Teleph Corp <Ntt> System and method for prediction-calculating chemical substance emission amount

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264437A (en) * 1988-08-31 1990-03-05 Kansai Electric Power Co Inc:The Measuring method of amount of scattered powder dust from powder particle substance storing place, apparatus therefor and monitoring apparatus of scattering of dust utilizing the same
JPH07260945A (en) * 1994-03-23 1995-10-13 Nkk Corp Estimation method and control method for dust concentration
JPH1194692A (en) * 1997-09-24 1999-04-09 Mitsubishi Heavy Ind Ltd Diffusion testing device
JP2001256475A (en) * 2001-04-27 2001-09-21 Ced System Inc System for detecting black smoke
JP2005172442A (en) * 2003-12-08 2005-06-30 Mitsubishi Heavy Ind Ltd Method and apparatus for predicting concentration of atmospheric pollutant and program and apparatus for predicting concentration of atmospheric pollutant
JP2005283202A (en) * 2004-03-29 2005-10-13 Mitsubishi Heavy Ind Ltd Diffusion state prediction method and diffusion state prediction system of diffusate
JP2005292041A (en) * 2004-04-02 2005-10-20 Nippon Telegr & Teleph Corp <Ntt> System and method for prediction-calculating chemical substance emission amount

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105479491A (en) * 2016-01-20 2016-04-13 蔡权 Accurate and intelligent mechanical arm
CN105652030A (en) * 2016-01-20 2016-06-08 时建华 Intelligent liquid crystal display for high-rise building
CN105675912A (en) * 2016-01-20 2016-06-15 邱炎新 Intelligent monitoring type high tower structure of power transmission lines
CN105675913A (en) * 2016-01-20 2016-06-15 肖小玉 Intelligent machine for forming foundation pile of bridge pier
CN110414153A (en) * 2019-07-31 2019-11-05 辽宁工程技术大学 A kind of method of determining open coal mine dust recycling range
CN110414153B (en) * 2019-07-31 2022-10-28 辽宁工程技术大学 Method for determining dust diffusion range of open pit coal mine
CN113031009A (en) * 2021-03-12 2021-06-25 宁波市气象网络与装备保障中心 Laser radar monitoring method for distinguishing fog and haze

Also Published As

Publication number Publication date
JP4837640B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4837640B2 (en) Dust atmospheric dispersion simulation apparatus, method and program
EP3346428A1 (en) Sensor design support apparatus, sensor design support method and computer program
JP5743930B2 (en) Atmospheric diffuse substance source search device, atmospheric diffuse substance source search system, and atmospheric diffuse substance source search method
Yu et al. Size dependence of the ratio of aerosol coagulation to deposition rates for indoor aerosols
Maronga Monin–Obukhov similarity functions for the structure parameters of temperature and humidity in the unstable surface layer: Results from high-resolution large-eddy simulations
Taruya et al. Nonlinear stochastic biasing from the formation epoch distribution of dark halos
JP4879863B2 (en) Dust atmospheric dispersion simulation apparatus, method and program
CN103620338A (en) Surface measurement system and method
Maynard et al. A physical model for flame height intermittency
Anderson Measurement of Prandtl number as a function of Richardson number avoiding self-correlation
Ferrero et al. An evaluation of a Lagrangian stochastic model for the assessment of odours
US10302613B2 (en) Estimation of concentration of particulate matter in atmosphere
JP6248652B2 (en) Ventilation measurement system and ventilation measurement method
JP7302866B2 (en) Precipitation Intensity Calculation Device, Precipitation Intensity Calculation Program, and Precipitation Intensity Calculation Method
Esmaili et al. A new approach for calculating the mass flow rate of entrained air in a freefalling material stream
JP6728648B2 (en) Calculation device and calculation program
Venkatram The role of meteorological inputs in estimating dispersion from surface releases
KR101564519B1 (en) Method of searching for unsteady dust source position of dustfall
Wilson et al. Dependence of predictive skill for outdoor narrowband and broadband sound levels on the atmospheric representation
JP2005321290A (en) Aerodynamic sound source probe system and aerodynamic sound source probe method
JP2015031636A (en) Estimation method of dust fall amount, apparatus, program and storage medium
Clement et al. A functional approach to vertical turbulent transport of scalars in the atmospheric surface layer
Du et al. A stochastic time series model for threshold crossing statistics of concentration fluctuations in non-intermittent plumes
JP2002207002A (en) Atmospheric environment simulation system
König Large-eddy simulation modelling for urban Scale

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4837640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees