JP2009066827A - Molding method of optical element - Google Patents

Molding method of optical element Download PDF

Info

Publication number
JP2009066827A
JP2009066827A JP2007236098A JP2007236098A JP2009066827A JP 2009066827 A JP2009066827 A JP 2009066827A JP 2007236098 A JP2007236098 A JP 2007236098A JP 2007236098 A JP2007236098 A JP 2007236098A JP 2009066827 A JP2009066827 A JP 2009066827A
Authority
JP
Japan
Prior art keywords
resin
layer
optical element
substrate
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007236098A
Other languages
Japanese (ja)
Other versions
JP5349777B2 (en
JP2009066827A5 (en
Inventor
Koichi Yoneya
公一 米谷
Kazunori Aoki
一▲乗▼ 青木
Senichi Hayashi
専一 林
Shunichi Miyazawa
俊一 宮沢
Masaaki Nakabayashi
正明 中林
Hiroaki Maekawa
浩章 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007236098A priority Critical patent/JP5349777B2/en
Publication of JP2009066827A publication Critical patent/JP2009066827A/en
Publication of JP2009066827A5 publication Critical patent/JP2009066827A5/ja
Application granted granted Critical
Publication of JP5349777B2 publication Critical patent/JP5349777B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To mold an optical element to which the fine pattern of a mold is transferred with high precision. <P>SOLUTION: First, a dummy substrate 11 to which a photocurable resin 12 is dripped, is pressed to a mold 10 with a fine pattern, and the resin 12 is pressed wide and then, is cured in such a state that the resin layer, the mold and the dummy substrate 11 remain not released. Thus the dummy substrate is removed. After that, an optically patterned part 2a of the resin layer 2 of the optical element, is molded by shining light and thereby, curing the resin. Following these procedures, a substrate 1 to which an uncured resin 13 is dripped, is pressed to the surface of the optically patterned part, and pressure is applied to elongate the resin 13. Further, the resin is cured by light irradiation and the resin layer 2 with the optically patterned part 2a and a base part 2b, and the substrate 1 are released in one piece from the mold 10. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金型の微細形状を転写させた樹脂層を有する複合型の光学素子の成形方法に関するものである。   The present invention relates to a method for molding a composite optical element having a resin layer to which a fine shape of a mold is transferred.

従来より、ガラス基板上に光硬化性の樹脂などからなる樹脂層を型(金型)で成型加工する方法、いわゆるレプリカ成形技術が知られている。レプリカ成形技術は、まず所望の光学形状を有する型成形面上に光硬化性の樹脂を滴下し、その上から基板で押し広げる。次に、所望の形状になったところで、光を照射して光硬化性の樹脂を硬化させ、それを離型する。このようにして高転写成形が可能となり、高精度な光学素子を成形することができる。   2. Description of the Related Art Conventionally, a so-called replica molding technique is known in which a resin layer made of a photocurable resin or the like is molded on a glass substrate with a mold (mold). In the replica molding technique, first, a photo-curing resin is dropped on a molding surface having a desired optical shape, and then spread on the substrate. Next, when the desired shape is obtained, light is irradiated to cure the photocurable resin, and the mold is released. In this way, high transfer molding is possible, and a highly accurate optical element can be molded.

しかし、レプリカ成形における問題点として、樹脂硬化中の硬化収縮による転写面の形状変形であるヒケがある。このヒケを回避する従来技術として、特許文献1に開示されたように、光学有効部外の型形状を工夫し、光学有効部に未硬化樹脂を供給する方法や、光学有効部外にヒケを発生させる方法が知られている。また、特許文献2、3、4では、所望の形状を多数層に分けて成形することにより、型成形面と反対側すなわち非成形面にヒケを発生させ精度の高い成形品を得る方法が開示されている。   However, as a problem in replica molding, there is a sink that is a shape deformation of the transfer surface due to curing shrinkage during resin curing. As a conventional technique for avoiding this sink, as disclosed in Patent Document 1, the mold shape outside the optically effective part is devised, and an uncured resin is supplied to the optically effective part. A method of generating is known. Patent Documents 2, 3, and 4 disclose a method of obtaining a highly accurate molded product by generating a sink on the opposite side to the mold forming surface, that is, the non-molded surface, by dividing a desired shape into multiple layers. Has been.

特開2002−96338号公報JP 2002-96338 A 特開2005−1319号公報JP 2005-1319 A 特開平6−254868号公報JP-A-6-254868 特開2005−144717号公報JP 2005-144717 A

特許文献1に記載された成形方法では、樹脂の流動性がなくなるにつれ、ヒケ回避の効果が薄くなり、抜本的な解決策ではない。また、特許文献2、3では、樹脂の塗布方法がスキージングや均一に塗布する方法がとられており、型が球面形状の場合、均一な層厚を制御することは困難である。   In the molding method described in Patent Document 1, as the resin fluidity is lost, the effect of avoiding sink marks is reduced, which is not a radical solution. In Patent Documents 2 and 3, the resin application method is squeezing or a uniform application method. When the mold has a spherical shape, it is difficult to control the uniform layer thickness.

特許文献4では、樹脂を光硬化する際、撥水処理をした基板側の樹脂層のみ剥離させたあと基板を取り外すとしているが、基板に接している樹脂層は完全な自由表面となっておらず、ベース層厚が10μm以下の薄層の場合、樹脂層の型側にも剥離が生じてしまう。このため、高水準な転写が得られない。   In Patent Document 4, when the resin is photocured, only the resin layer on the substrate side subjected to the water repellent treatment is peeled off and then the substrate is removed. However, the resin layer in contact with the substrate is a completely free surface. In the case of a thin layer having a base layer thickness of 10 μm or less, peeling occurs also on the mold side of the resin layer. For this reason, a high level transfer cannot be obtained.

特に、回折光学素子でベース部の層厚と光学形状部の格子高さが同程度か、ベース層厚の方が薄い場合すなわち肉厚比が大きい場合は顕著である。   Particularly, in the case of the diffractive optical element, the thickness of the base portion and the grating height of the optical shape portion are approximately the same, or the case where the base layer thickness is smaller, that is, the thickness ratio is large.

本発明は、肉厚比の大きい複合型の光学素子、例えば回折光学素子等を高精度に成形することのできる光学素子の成形方法を提供することを目的とするものである。   An object of the present invention is to provide an optical element molding method capable of molding a composite optical element having a large thickness ratio, such as a diffractive optical element, with high accuracy.

上述の課題を解決するために、本発明の光学素子の成形方法は、光学形状部を有する樹脂層を備えた光学素子の成形方法において、前記樹脂層に転写するための微細形状を有する金型に、未硬化の樹脂を付着させたダミー基板を押し付けて、前記樹脂層の前記光学形状部を含む1層目を成形し、前記ダミー基板を取り除く第1工程と、前記樹脂層の前記1層目を樹脂硬化させる第2工程と、前記樹脂層の前記1層目に、未硬化の樹脂を付着させた基板を押し付けて、前記樹脂層の2層目を成形し、樹脂硬化させる第3工程と、前記樹脂層の前記1層目及び前記2層目と前記基板とを一体として、前記金型から離型する第4工程と、を有することを特徴とする。   In order to solve the above-described problems, an optical element molding method of the present invention is a mold having a fine shape for transferring to the resin layer in the optical element molding method including a resin layer having an optical shape portion. A first step of pressing the dummy substrate to which the uncured resin is adhered, forming the first layer including the optical shape portion of the resin layer, and removing the dummy substrate; and the first layer of the resin layer A second step of resin-curing the eye, and a third step of pressing the substrate on which the uncured resin is adhered to the first layer of the resin layer to form the second layer of the resin layer and curing the resin And a fourth step of integrally releasing the first and second layers of the resin layer and the substrate from the mold.

ダミー基板を取り除いて光学形状部を有する1層目を樹脂硬化させることで、金型と接している側の光学形状部におけるヒケの発生を抑制する。これによって、ベース層厚が光学形状部の格子高さと同程度かそれ以下の回折光学素子等の、肉厚比の大きな複合型の光学素子を、型転写面に形状変形を発生させることなく高精度に成形することが可能になる。   By removing the dummy substrate and curing the first layer having the optical shape portion with resin, the occurrence of sink marks in the optical shape portion on the side in contact with the mold is suppressed. As a result, a composite optical element having a large thickness ratio, such as a diffractive optical element having a base layer thickness that is approximately equal to or less than the grating height of the optical shape portion, can be formed without causing shape deformation on the mold transfer surface. It becomes possible to mold with accuracy.

本発明を実施するための最良の形態を図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1は、一実施形態による光学素子の成形方法により成形された複合型の光学素子を示す。この光学素子は、基板(ガラス基板)1の上に、樹脂からなる最大厚Haの回折格子部である光学形状部2aと、ベース層厚Hbのベース部2bとを有する樹脂層2を備えている。   FIG. 1 shows a composite optical element molded by the optical element molding method according to an embodiment. This optical element includes, on a substrate (glass substrate) 1, a resin layer 2 having an optical shape portion 2a which is a diffraction grating portion made of resin and having a maximum thickness Ha, and a base portion 2b having a base layer thickness Hb. Yes.

図2は、本実施形態における光学素子の成形方法の各工程を示す図である。   FIG. 2 is a diagram showing each step of the optical element molding method in the present embodiment.

まず、図2(a)に示すように、所望の微細形状を反転した金型10を、精密切削加工機で作成する。このとき、光学有効部外の型外周部には土手を形成する。   First, as shown to Fig.2 (a), the metal mold | die 10 which reversed the desired fine shape is produced with a precision cutting machine. At this time, a bank is formed on the outer periphery of the mold outside the optically effective portion.

次に、図2(b)に示すように、ダミー基板11の撥水処理面の中心に未硬化の樹脂である光硬化性の樹脂12を適量滴下し、ダミー基板11に付着させる。次に図2(c)に示すように、ダミー基板11を、金型10とダミー基板11の中心が合うように接触させ、光硬化性の樹脂12に泡が入らないようにしながら押し付けて、樹脂12を型全面に伸ばす。   Next, as shown in FIG. 2B, an appropriate amount of a photo-curing resin 12 that is an uncured resin is dropped onto the center of the water repellent surface of the dummy substrate 11 and attached to the dummy substrate 11. Next, as shown in FIG. 2C, the dummy substrate 11 is brought into contact so that the centers of the mold 10 and the dummy substrate 11 are aligned, and pressed while preventing bubbles from entering the photocurable resin 12, Resin 12 is stretched over the entire mold surface.

樹脂12を広げ終わった後には、荷重をかけたまま、紫外線を除いた光を照射する。これにより硬化収縮によるヒケを樹脂12の一方の面に集中させて、樹脂層2の光学形状部2aを含む1層目を成形する。その後、ダミー基板11を取り除く。   After the resin 12 has been spread, light other than ultraviolet rays is irradiated with a load applied. As a result, sink marks due to curing shrinkage are concentrated on one surface of the resin 12, and the first layer including the optical shape portion 2a of the resin layer 2 is formed. Thereafter, the dummy substrate 11 is removed.

次に図2(d)及び(e)に示すように、樹脂12からなる1層目の上面が剥き出しになった状態で、光を照射する。まず、酸素含有雰囲気中で光を照射し、光硬化性の樹脂12の酸素による硬化阻害を利用し、型と接している面の硬化を進める。また、空気と接している上面の硬化を阻害することで、ヒケを型と接していない上面に発生しやすくさせるために行う。ヒケを十分発生させた後、光学形状部2aを含む1層目全体を樹脂硬化させるために、無酸素雰囲気中又は真空中で光を照射する。   Next, as shown in FIGS. 2D and 2E, light is irradiated with the top surface of the first layer made of the resin 12 exposed. First, light is irradiated in an oxygen-containing atmosphere, and curing of the surface in contact with the mold is advanced by utilizing the curing inhibition by oxygen of the photocurable resin 12. Moreover, it is carried out in order to make it easy to generate sink marks on the upper surface not in contact with the mold by inhibiting the hardening of the upper surface in contact with the air. After sufficiently generating sink marks, light is irradiated in an oxygen-free atmosphere or in vacuum in order to cure the entire first layer including the optical shape portion 2a.

次に図2(f)に示すように、基板1のカップリング処理面に前述と同じ未硬化の樹脂である光硬化性の樹脂13を適量滴下し、基板1に付着させる。次に、光学形状部2aと基板1の中心が合うように接触させ、図2(g)に示すように、基板1を加圧し樹脂13に泡が入らないようにしながら全面に伸ばす。これにより樹脂層2の2層目を形成し、光を照射して樹脂硬化させ、樹脂層2のベース部2bを形成する。その後、金型10を離型し、図2(h)に示す成形品を得る。   Next, as shown in FIG. 2 (f), an appropriate amount of a photocurable resin 13, which is the same uncured resin as described above, is dropped onto the coupling treatment surface of the substrate 1 and attached to the substrate 1. Next, the optical shape portion 2a and the substrate 1 are brought into contact with each other so that the centers of the optical shape portion 2a and the substrate 1 are aligned, and the substrate 1 is pressurized and stretched over the entire surface while preventing bubbles from entering the resin 13 as shown in FIG. Thus, a second layer of the resin layer 2 is formed, and the resin is cured by irradiating light to form the base portion 2b of the resin layer 2. Thereafter, the mold 10 is released to obtain a molded product shown in FIG.

なお、第1工程において用いるダミー基板11は、樹脂12からの取り外しを容易にするため、予め、金型10の密着力より下げる必要があり、撥水処理などを行うことが望ましい。そのほかにも、フッ素樹脂シートなどを挟むことなどがある。   Note that the dummy substrate 11 used in the first step needs to be lower than the adhesion force of the mold 10 in advance to facilitate removal from the resin 12, and it is desirable to perform water repellent treatment or the like. In addition, a fluororesin sheet may be sandwiched.

第1工程においては、急激な樹脂硬化を抑えるためと、層厚方向の不均一な硬化を抑えるために、ゆっくりと硬化させることが望ましい。   In the first step, it is desirable to cure slowly in order to suppress rapid resin curing and to suppress uneven curing in the layer thickness direction.

また、第1工程において、肉厚比の大きい光学素子を成形する場合は、ダミー基板11のみを剥離させようとしても、肉厚比が大きいために型側でも樹脂剥離が起きてしまい、高精度な光学素子を得られない場合がある。   Further, in the first step, when an optical element having a large thickness ratio is molded, even if only the dummy substrate 11 is peeled off, the thickness ratio is large, so that the resin is peeled off on the mold side. Optical elements may not be obtained.

そこで、型側にもダミー基板側にも樹脂剥離が起きないように以下のことを行っている。   Therefore, the following is performed so that the resin peeling does not occur on either the mold side or the dummy substrate side.

1つ目は、第1工程において急激な樹脂硬化を抑えるために、樹脂の光吸収の少ない長波長域(例えば可視光域のみ)の光を照射することや、弱照度の光を照射すること。2つ目は、第1工程において、図2(c)に示すように、ダミー基板11に荷重をかけながら光を照射することである。   First, in order to suppress rapid resin curing in the first step, irradiate light in a long wavelength region (for example, only in the visible light region) with little light absorption of the resin, or irradiate light with low illuminance. . Second, in the first step, as shown in FIG. 2C, the dummy substrate 11 is irradiated with light while applying a load.

第2工程における光照射は、まず、酸素による樹脂硬化阻害効果を活用し酸素含有雰囲気中で行うのが望ましい。その理由は金型10に接している樹脂12をより硬化させ、金型10とは接していない側の自由表面側の硬化を遅らせるためである。   It is desirable that the light irradiation in the second step is first performed in an oxygen-containing atmosphere utilizing the effect of inhibiting resin curing by oxygen. The reason is that the resin 12 in contact with the mold 10 is further cured, and the curing on the free surface side that is not in contact with the mold 10 is delayed.

これにより、樹脂12の自由表面側に硬化収縮によるヒケができる。その後、樹脂12に十分なヒケが発生したら、全体を均一に硬化させるため、酸素を除去した無酸素雰囲気中又は真空中で光照射を行うのが望ましい。   Thereby, sink marks due to curing shrinkage are formed on the free surface side of the resin 12. Thereafter, when sufficient sink marks are generated in the resin 12, it is desirable to perform light irradiation in an oxygen-free atmosphere or a vacuum in which oxygen is removed in order to uniformly cure the whole.

図2に示す手順により、直径60mmの基板ガラス(基板)上に、ベース層厚5μm、格子高さ12μmの回折格子形状を有する回折光学素子を成形した。   A diffractive optical element having a diffraction grating shape with a base layer thickness of 5 μm and a grating height of 12 μm was formed on a substrate glass (substrate) having a diameter of 60 mm by the procedure shown in FIG.

まず、図2(a)のように所望の形状を反転した金型を、精密切削加工機で作成した。このとき、光学有効部外である型外周部に3μmの土手を作っておく。   First, as shown in FIG. 2 (a), a mold having a desired shape inverted was prepared with a precision cutting machine. At this time, a 3 μm bank is made on the outer periphery of the mold, which is outside the optically effective portion.

次に、基板ガラスを2枚準備し、1枚はダミー基板とするため、撥水処理を施し、もう1枚の基板ガラスは、カップリング処理を施す。このとき、ダミー基板には、フッ素系撥水処理剤をガラス面全体に塗り、100℃で1時間加熱し乾かした。また、基板となる基板ガラスには、シラン系カップリング剤をガラス面全体に塗り、100℃で1時間加熱し乾かした。   Next, two substrate glasses are prepared, and one substrate is a dummy substrate, so that a water repellent treatment is performed, and the other substrate glass is subjected to a coupling treatment. At this time, a fluorine-based water repellent treatment agent was applied to the entire glass surface of the dummy substrate, and dried at 100 ° C. for 1 hour. In addition, a silane coupling agent was applied to the entire glass surface of the substrate glass serving as a substrate, and dried by heating at 100 ° C. for 1 hour.

第1工程として図2(b)及び(c)に示すように、準備したダミー基板の撥水処理面の中心に光硬化性の樹脂を適量滴下した。次に、ダミー基板を反転させ、金型とダミー基板11の中心が合うように接触させ、ダミー基板を加圧し樹脂に泡が入らないようにしながら型全面に伸ばした。これにより、ベース層厚がおおよそ3μmになる。このとき、かけた荷重は、700Nであった。樹脂を広げ終わった後、荷重をかけたまま、400nmシャープカットフィルターを用いて紫外線を除いた光を照射した。このときの照射条件は、8.4mW(405nm)で515秒である。   As a first step, as shown in FIGS. 2B and 2C, an appropriate amount of a photocurable resin was dropped onto the center of the water repellent surface of the prepared dummy substrate. Next, the dummy substrate was inverted and brought into contact so that the mold and the center of the dummy substrate 11 were aligned, and the dummy substrate was pressed and stretched over the entire surface of the mold while preventing bubbles from entering the resin. As a result, the base layer thickness is approximately 3 μm. At this time, the applied load was 700N. After the resin was spread out, the light excluding ultraviolet rays was irradiated using a 400 nm sharp cut filter while applying a load. The irradiation conditions at this time are 8.4 mW (405 nm) and 515 seconds.

上記の照射条件は、硬化収縮によるヒケを樹脂の両面で発生させないために、樹脂層の1層目をゆっくりと硬化させるための条件である。その後、ダミー基板を取り除く。これにより、型側にもダミー基板側にも樹脂剥離が起きない。   The above irradiation conditions are conditions for slowly curing the first layer of the resin layer so as not to cause sink marks due to curing shrinkage on both sides of the resin. Thereafter, the dummy substrate is removed. As a result, no resin peeling occurs on either the mold side or the dummy substrate side.

第2工程として、図2(d)及び(e)に示すように、樹脂層の1層目の上面が剥き出しになった状態で、まず第1の照射として、光を、13mW(405nm)で330秒照射後、18mW(365nm)で26分21秒照射した。次に第2の照射として、窒素パージを行いながら、12mW(405nm)で4分18秒照射後、16.5mW(365nm)で11分20秒照射した。第1の照射は、光硬化性の樹脂の酸素による硬化阻害を利用し、型と接している面の硬化を進め、空気と接している上面の硬化を阻害することで、ヒケを型と接していない上面に発生しやすくさせるために行った。また、第2の照射を、ヒケを十分発生させた後、樹脂全体を硬化させるために行った。   As the second step, as shown in FIGS. 2D and 2E, with the top surface of the first layer of the resin layer exposed, light is first emitted at 13 mW (405 nm) as the first irradiation. After irradiation for 330 seconds, irradiation was performed at 18 mW (365 nm) for 26 minutes and 21 seconds. Next, as the second irradiation, while performing nitrogen purge, irradiation was performed at 12 mW (405 nm) for 4 minutes and 18 seconds, and then irradiation was performed at 16.5 mW (365 nm) for 11 minutes and 20 seconds. The first irradiation utilizes the curing inhibition of the photocurable resin by oxygen, promotes the curing of the surface in contact with the mold, and inhibits the curing of the upper surface in contact with air, thereby bringing the sink into contact with the mold. It was done to make it easier to occur on the upper surface. Further, the second irradiation was performed in order to cure the entire resin after sufficiently generating sink marks.

第3工程として、図2(f)及び(g)に示すように、光学素子の基板となる基板ガラスのカップリング処理面に第1工程と同じ光硬化性の樹脂を適量滴下し、基板ガラスを反転させ、光学形状部と基板ガラスの中心が合うように接触させた。そして、基板ガラスを加圧し樹脂に泡が入らないようにしながら全面に伸ばした。これにより、樹脂層の2層目を形成すると、全体のベース層厚がおおよそ5μmになる。このとき、かけた荷重は、700Nである。樹脂を広げ終わった後、荷重をかけたまま、光を1.5mW(365nm)で280秒照射後、9mW(365nm)で34分53秒照射して、樹脂硬化させ、1層目と基板に接着する。   As a 3rd process, as shown in FIG.2 (f) and (g), a suitable quantity of the same photocurable resin as a 1st process is dripped at the coupling process surface of the substrate glass used as the board | substrate of an optical element, and a substrate glass Was reversed so that the optical shape portion and the center of the substrate glass were in contact with each other. Then, the substrate glass was pressed and stretched over the entire surface while preventing bubbles from entering the resin. Thus, when the second layer of the resin layer is formed, the total base layer thickness is approximately 5 μm. At this time, the applied load is 700N. After spreading the resin, with the load applied, light was irradiated at 1.5 mW (365 nm) for 280 seconds, then irradiated at 9 mW (365 nm) for 34 minutes 53 seconds to cure the resin, and the first layer and the substrate Glue.

照射後、第4工程として、1層目と2層目からなる樹脂層及び基板を一体として離型する。   After irradiation, as a fourth step, the resin layer composed of the first layer and the second layer and the substrate are released as a unit.

このようにして得られた回折光学素子を非接触3次元表面形状測定機New View5000(zygo社製)により評価した。本実施例における回折光学素子の格子高さの対型転写率は99.9%であり、非常に良い転写性を示した。   The diffractive optical element thus obtained was evaluated by a non-contact three-dimensional surface shape measuring instrument New View 5000 (manufactured by zygo). The transfer rate of the grating height of the diffractive optical element in this example was 99.9%, indicating a very good transferability.

比較例Comparative example

比較例として、図3に示す従来例による方法で、格子高さ12μmの回折格子金型を用いて回折光学素子を成形した。   As a comparative example, a diffractive optical element was molded using a diffraction grating mold having a grating height of 12 μm by the method according to the conventional example shown in FIG.

まず、図3(a)に示すように所望の形状を反転した金型110を、精密切削加工機で作成した。このとき、光学有効部外にはベース層厚を制御する土手はなく、金属のスペーサーで所望の層厚の回折光学素子形状を成形する。   First, as shown in FIG. 3A, a mold 110 in which a desired shape was inverted was created with a precision cutting machine. At this time, there is no bank for controlling the thickness of the base layer outside the optically effective portion, and a diffractive optical element shape having a desired layer thickness is formed with a metal spacer.

今回、ベース層厚を1.2μm、5μm、12μm、15μmの4通り設定した。   This time, the base layer thickness was set in four ways: 1.2 μm, 5 μm, 12 μm, and 15 μm.

次に基板101に、シラン系カップリング剤をガラス面全体に塗り、100℃で1時間加熱し乾かした。   Next, a silane coupling agent was applied to the entire glass surface on the substrate 101, and dried at 100 ° C. for 1 hour.

基板101のカップリング処理面に、上記実施例と同じ光硬化性の樹脂112を適量滴下した。次に図3(b)に示すように、基板101を反転させ、金型110と基板101の中心が合うように接触させ、基板101を加圧し樹脂112に泡が入らないようにしながら全面に伸ばして樹脂層102を形成した。その後、図3(c)に示すように紫外光を1.5mW(365nm)で280秒照射し、照射後に金型110と樹脂層102との樹脂剥離を観察した。   An appropriate amount of the same photocurable resin 112 as in the above example was dropped on the coupling surface of the substrate 101. Next, as shown in FIG. 3B, the substrate 101 is turned over so that the mold 110 and the center of the substrate 101 are in contact with each other, and the substrate 101 is pressed so that bubbles do not enter the resin 112. The resin layer 102 was formed by stretching. Thereafter, as shown in FIG. 3C, ultraviolet light was irradiated at 1.5 mW (365 nm) for 280 seconds, and the resin peeling between the mold 110 and the resin layer 102 was observed after the irradiation.

その結果、ベース層厚が1.2μm、5μm、12μmのものは剥離が観察され、ベース層厚が15μmのものは、剥離はなかった。   As a result, peeling was observed when the base layer thickness was 1.2 μm, 5 μm, and 12 μm, and no peeling was observed when the base layer thickness was 15 μm.

このことから肉厚比、いわゆるベース層厚と光学形状部の最大厚(格子高さ)との比が0.1以上、1以下の回折光学素子に関しては、本発明を用いずに成形することは困難であることが分かった。   Therefore, a diffractive optical element having a thickness ratio, that is, a ratio of a so-called base layer thickness and a maximum thickness (grating height) of the optical shape portion of 0.1 or more and 1 or less should be formed without using the present invention. Proved difficult.

一実施形態による光学素子の成形方法によって成形した光学素子の構成を示す模式図である。It is a schematic diagram which shows the structure of the optical element shape | molded by the shaping | molding method of the optical element by one Embodiment. 一実施形態による光学素子の成形方法によって光学素子を成形する手順を示す図である。It is a figure which shows the procedure which shape | molds an optical element with the shaping | molding method of the optical element by one Embodiment. 従来の成形方法によって光学素子を成形する手順を示す図である。It is a figure which shows the procedure which shape | molds an optical element with the conventional shaping | molding method.

符号の説明Explanation of symbols

1 基板
2 樹脂層
2a 光学形状部
2b ベース部
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Resin layer 2a Optical shape part 2b Base part

Claims (7)

光学形状部を有する樹脂層を備えた光学素子の成形方法において、
前記樹脂層に転写するための微細形状を有する金型に、未硬化の樹脂を付着させたダミー基板を押し付けて、前記樹脂層の前記光学形状部を含む1層目を成形し、前記ダミー基板を取り除く第1工程と、
前記樹脂層の前記1層目を樹脂硬化させる第2工程と、
前記樹脂層の前記1層目に、未硬化の樹脂を付着させた基板を押し付けて、前記樹脂層の2層目を成形し、樹脂硬化させる第3工程と、
前記樹脂層の前記1層目及び前記2層目と前記基板とを一体として、前記金型から離型する第4工程と、を有することを特徴とする光学素子の成形方法。
In a method for molding an optical element including a resin layer having an optical shape part,
A dummy substrate having an uncured resin attached is pressed against a mold having a fine shape for transferring to the resin layer, and the first layer including the optical shape portion of the resin layer is molded, and the dummy substrate A first step of removing
A second step of resin curing the first layer of the resin layer;
A third step of pressing the substrate on which the uncured resin is adhered to the first layer of the resin layer, molding the second layer of the resin layer, and curing the resin;
And a fourth step of integrally releasing the first and second layers of the resin layer and the substrate from the mold.
前記第1工程及び前記第3工程における前記未硬化の樹脂が、光硬化性の樹脂であることを特徴とする請求項1に記載の光学素子の成形方法。   The method for molding an optical element according to claim 1, wherein the uncured resin in the first step and the third step is a photocurable resin. 前記第2工程において、酸素含有雰囲気中で前記樹脂層の前記1層目に光を照射する工程を含むことを特徴とする請求項2に記載の光学素子の成形方法。   The method for molding an optical element according to claim 2, wherein the second step includes a step of irradiating light to the first layer of the resin layer in an oxygen-containing atmosphere. 前記第2工程において、無酸素雰囲気中又は真空中で前記樹脂層の前記1層目に光を照射する工程を含むことを特徴とする請求項2に記載の光学素子の成形方法。   The method for molding an optical element according to claim 2, wherein the second step includes a step of irradiating light to the first layer of the resin layer in an oxygen-free atmosphere or in a vacuum. 前記第3工程において、前記基板を加圧しながら前記樹脂層の前記2層目に光を照射することを特徴とする請求項2ないし4のいずれかに記載の光学素子の成形方法。   5. The method of molding an optical element according to claim 2, wherein, in the third step, light is applied to the second layer of the resin layer while pressurizing the substrate. 前記樹脂層のベース層厚と前記光学形状部の最大厚との比が、0.1以上、1以下であることを特徴とする請求項1ないし5のいずれかに記載の光学素子の成形方法。   The method for molding an optical element according to claim 1, wherein a ratio between a base layer thickness of the resin layer and a maximum thickness of the optical shape portion is 0.1 or more and 1 or less. . 請求項1ないし6のいずれかに記載の光学素子の成形方法によって成形された樹脂層を有することを特徴とする光学素子。   An optical element comprising a resin layer molded by the method for molding an optical element according to claim 1.
JP2007236098A 2007-09-12 2007-09-12 Optical element manufacturing method Expired - Fee Related JP5349777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007236098A JP5349777B2 (en) 2007-09-12 2007-09-12 Optical element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007236098A JP5349777B2 (en) 2007-09-12 2007-09-12 Optical element manufacturing method

Publications (3)

Publication Number Publication Date
JP2009066827A true JP2009066827A (en) 2009-04-02
JP2009066827A5 JP2009066827A5 (en) 2010-12-02
JP5349777B2 JP5349777B2 (en) 2013-11-20

Family

ID=40603615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007236098A Expired - Fee Related JP5349777B2 (en) 2007-09-12 2007-09-12 Optical element manufacturing method

Country Status (1)

Country Link
JP (1) JP5349777B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119725A1 (en) * 2009-04-13 2010-10-21 コニカミノルタオプト株式会社 Method for manufacturing wafer lens and method for manufacturing wafer lens laminated body
WO2012140851A1 (en) * 2011-04-13 2012-10-18 株式会社ニコン Method for manufacturing optical element and optical element
JP2012232449A (en) * 2011-04-28 2012-11-29 Canon Inc Method for forming composite optical element and mold
JP2019032518A (en) * 2017-08-04 2019-02-28 キヤノン株式会社 Diffraction optical element, manufacturing method thereof, and optical apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2849299B2 (en) * 1993-03-10 1999-01-20 キヤノン株式会社 Manufacturing method of composite precision molded products
JP2005001319A (en) * 2003-06-13 2005-01-06 Canon Inc Method for molding multilayer composite optical element
JP2005144717A (en) * 2003-11-12 2005-06-09 Ricoh Opt Ind Co Ltd Resin curing method and manufacturing method of resin molded product or the like
JP2006337985A (en) * 2005-06-03 2006-12-14 Samsung Electro-Mechanics Co Ltd Method of manufacturing high sag lens and lens manufactured by using the same method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2849299B2 (en) * 1993-03-10 1999-01-20 キヤノン株式会社 Manufacturing method of composite precision molded products
JP2005001319A (en) * 2003-06-13 2005-01-06 Canon Inc Method for molding multilayer composite optical element
JP2005144717A (en) * 2003-11-12 2005-06-09 Ricoh Opt Ind Co Ltd Resin curing method and manufacturing method of resin molded product or the like
JP2006337985A (en) * 2005-06-03 2006-12-14 Samsung Electro-Mechanics Co Ltd Method of manufacturing high sag lens and lens manufactured by using the same method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119725A1 (en) * 2009-04-13 2010-10-21 コニカミノルタオプト株式会社 Method for manufacturing wafer lens and method for manufacturing wafer lens laminated body
WO2012140851A1 (en) * 2011-04-13 2012-10-18 株式会社ニコン Method for manufacturing optical element and optical element
JP2012218394A (en) * 2011-04-13 2012-11-12 Nikon Corp Method of manufacturing optical element, and optical element
US9557455B2 (en) 2011-04-13 2017-01-31 Nikon Corporation Optical element
JP2012232449A (en) * 2011-04-28 2012-11-29 Canon Inc Method for forming composite optical element and mold
JP2019032518A (en) * 2017-08-04 2019-02-28 キヤノン株式会社 Diffraction optical element, manufacturing method thereof, and optical apparatus
JP7204363B2 (en) 2017-08-04 2023-01-16 キヤノン株式会社 Diffractive optical element, manufacturing method thereof, and optical apparatus

Also Published As

Publication number Publication date
JP5349777B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP4210257B2 (en) Manufacturing method of diffractive lens array mold
JP2000194142A (en) Pattern forming method and production of semiconductor device
WO2014115728A1 (en) Light-transmitting imprinting mold and method for manufacturing large-area mold
JP2010103464A5 (en)
KR101770809B1 (en) Method for forming fine pattern of polyimide by imprinting
JP5499668B2 (en) Imprint mold and pattern forming method using the mold
JP2008006820A (en) Soft mold and its manufacturing method
JP2006337985A (en) Method of manufacturing high sag lens and lens manufactured by using the same method
JP2013214627A (en) Master template for nanoimprint and manufacturing method of replica template
JP2007103914A5 (en)
JP5349777B2 (en) Optical element manufacturing method
JP5559574B2 (en) Transfer method
TW200901188A (en) Method of making an optical disc
JP2005122047A (en) Pattern forming method and optical element
KR101816838B1 (en) Replica mold for nano imprint, manufacturing method and equipment thereof
KR101208661B1 (en) Stamp for nano-imprint and manufacturing method thereof
JP6281592B2 (en) Manufacturing method of replica template
JP2006263975A (en) Manufacturing method of optical element
JP2009066827A5 (en)
KR101751683B1 (en) manufacturing method of elastomeric nano structure
JP4569185B2 (en) Method for forming film structure and film structure
JP2009066773A (en) Imprint mold and fine pattern forming method
JP6036865B2 (en) Imprint mold
JP2005353926A (en) Cleaning method and manufacturing method of substrate
JP2010147295A5 (en)

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101019

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R151 Written notification of patent or utility model registration

Ref document number: 5349777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees