JP2009065817A - Voltage control method for distribution system - Google Patents

Voltage control method for distribution system Download PDF

Info

Publication number
JP2009065817A
JP2009065817A JP2007233936A JP2007233936A JP2009065817A JP 2009065817 A JP2009065817 A JP 2009065817A JP 2007233936 A JP2007233936 A JP 2007233936A JP 2007233936 A JP2007233936 A JP 2007233936A JP 2009065817 A JP2009065817 A JP 2009065817A
Authority
JP
Japan
Prior art keywords
voltage
bank
distribution line
sending
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007233936A
Other languages
Japanese (ja)
Inventor
Keiichi Shimizu
慶一 清水
Kenji Izumi
健児 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Daihen Corp
Original Assignee
Kansai Electric Power Co Inc
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Daihen Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2007233936A priority Critical patent/JP2009065817A/en
Publication of JP2009065817A publication Critical patent/JP2009065817A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations

Abstract

<P>PROBLEM TO BE SOLVED: To provide a voltage control method for distribution system, which can contribute to the improvement of quality in power distribution, by a bank sending voltage regulator operating always in the direction of improving voltage deviation. <P>SOLUTION: When voltage deviation from an upper limit value within a specified range is judged, for example, in a distribution line A in a bank [1], a part of the load of a distribution line B of a heavy load is shifted to the distribution line D of another bank [3], and the sending current of the bank [1] is reduced to the target sending current, and it guides a bank sending voltage regulator to perform an operation of reducing the sending voltage to the target sending voltage. As a result, the deviation from the upper limit voltage of the distribution line A is dissolved, and the drop of terminal voltage of the distribution line B is also improved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、変電所から引き出された複数の配電線を経て負荷に電力を供給する配電系統における各配電線の電圧を管理する方法に関する。   The present invention relates to a method of managing the voltage of each distribution line in a distribution system that supplies power to a load via a plurality of distribution lines drawn from a substation.

変電所から引き出された複数の各配電線には区分開閉器が接続され、また、各配電線の相互間には連系開閉器が接続されている。そして、配電系統の電圧は、所定の規定電圧範囲(例えば、低圧換算で、101±6=95〜107Vの範囲)に収まるよう電圧の管理を行う必要がある。
このため、例えば、特許文献1では、取り込んだ配電系統の電気的情報を基にバンクの最適電圧値を算出し、バンクの送出電圧をこの最適電圧値に制御する送出電圧調整装置を開示する。
A division switch is connected to each of the plurality of distribution lines drawn out from the substation, and an interconnection switch is connected between the distribution lines. And it is necessary to manage the voltage so that the voltage of the distribution system falls within a predetermined specified voltage range (for example, a range of 101 ± 6 = 95 to 107 V in terms of low voltage).
For this reason, for example, Patent Document 1 discloses a transmission voltage adjusting device that calculates an optimum voltage value of a bank based on the acquired electrical information of the distribution system and controls the sending voltage of the bank to the optimum voltage value.

特許第3249275号Japanese Patent No. 3249275

一般的な配電系統では、負荷の増大と共に電圧降下も増大する傾向にあることから、従来のバンク送出電圧調整装置は、バンク送出電流を検出し、その電流値の増大に応じて送出電圧を上昇させる電圧調整機能を備えている。
しかるに、同一バンク内に、太陽光発電や風力発電を利用した分散型電源や進相用コンデンサ設備を有する需要家が連なる配電線と重負荷が連なる配電線とが存在すると、例えば、当該バンク全体としては軽負荷である場合、重負荷配電線での電圧が規定電圧範囲の下限値を逸脱しても、バンク送出電圧調整装置は比較的低い電圧を出力するに留まり、電圧逸脱を改善する方向に動作しない。逆に、当該バンク全体としては重負荷である場合、分散型電源や進相用コンデンサが連なる配電線での電圧が規定電圧範囲の上限値を逸脱しても、バンク送出電圧調整装置は比較的高い電圧を出力するに留まり、電圧逸脱を改善する方向に動作しない。このため、バンク送出電圧調整装置による有効な電圧管理が実現されないという問題があった。
In a general power distribution system, the voltage drop tends to increase as the load increases. Therefore, the conventional bank sending voltage regulator detects the bank sending current and increases the sending voltage according to the increase in the current value. A voltage adjustment function is provided.
However, in the same bank, if there is a distribution line connecting consumers with distributed power sources using solar power generation or wind power generation or phase-advancing capacitor facilities and distribution lines connecting heavy loads, for example, the entire bank In the case of a light load, even if the voltage on the heavy load distribution line deviates from the lower limit value of the specified voltage range, the bank sending voltage regulator only outputs a relatively low voltage, and the direction to improve the voltage deviation Does not work. Conversely, if the bank as a whole has a heavy load, even if the voltage on the distribution line connecting the distributed power source and the phase advance capacitor deviates from the upper limit of the specified voltage range, the bank sending voltage adjustment device is relatively It only outputs a high voltage and does not operate in a direction to improve voltage deviation. For this reason, there has been a problem that effective voltage management by the bank transmission voltage adjusting device is not realized.

この発明は、以上のような従来の問題点を解消するためになされたもので、バンク送出電圧調整装置が常に電圧逸脱を改善する方向に動作することで、配電品質の向上に寄与しうる配電系統の電圧管理方法を提供するものである。   The present invention has been made to solve the above-described conventional problems, and the distribution voltage that can contribute to the improvement of the distribution quality by the bank sending voltage adjusting device always operating in the direction of improving the voltage deviation. A voltage management method for the system is provided.

この発明に係る配電系統の電圧管理方法は、変電所の複数のバンクと、この各バンクから引き出された複数の配電線と、各配電線に接続された区分開閉器と、各配電線の相互間に接続された連系開閉器と、バンク毎にその送出端に設けられ配電線へのバンク送出電圧を調整するバンク送出電圧調整装置とを備え、配電線に接続された負荷に電力を供給する配電系統の各配電線の電圧を管理する方法であって、
バンク送出電圧調整装置は、予め設定された送出電圧電流特性に基づき当該バンクの送出電流に応じてバンク送出電圧を調整するものであり、
各配電線上の管理対象点における電圧、電流を監視する監視手段を備え、
監視手段からの出力に基づき管理対象点の電圧が予め設定された所定の規定電圧範囲から逸脱しているか否かを判別し、電圧逸脱が判別されたとき、配電線の内電圧逸脱が判別された配電線を引き出す処理対象バンクのバンク送出電圧調整装置について電圧逸脱量から目標送出電圧を算出すると共に送出電圧電流特性に基づき目標送出電圧に応じた目標送出電流を算出し、処理対象バンクの送出電流が目標送出電流となるよう処理対象バンクの配電線と処理対象バンクと異なるバンクの配電線との相互間に接続された連系開閉器のいずれかの開閉状態を電圧逸脱が判別された処理対象時点における開閉状態から反転させるとともに当該連系開閉器の開閉状態の反転に伴う必要性に応じて区分開閉器のいずれかの開閉状態を処理対象時点における開閉状態から反転させることにより処理対象バンクの配電線における電圧逸脱を解消するものである。
A voltage management method for a distribution system according to the present invention includes a plurality of substation banks, a plurality of distribution lines drawn from the banks, a section switch connected to each distribution line, and a mutual connection between the distribution lines. Power supply to the load connected to the distribution line is provided with an interconnected switch connected between them and a bank transmission voltage adjustment device that adjusts the bank transmission voltage to the distribution line for each bank. A method for managing the voltage of each distribution line of the distribution system,
The bank sending voltage adjustment device adjusts the bank sending voltage according to the sending current of the bank based on the sending voltage current characteristic set in advance.
It has monitoring means to monitor the voltage and current at the management target point on each distribution line,
Based on the output from the monitoring means, it is determined whether or not the voltage of the management target point deviates from a predetermined voltage range set in advance, and when the voltage deviation is determined, the internal voltage deviation of the distribution line is determined. For the bank sending voltage adjustment device of the bank to be processed that pulls out the distribution line, the target sending voltage is calculated from the voltage deviation amount, and the target sending current corresponding to the target sending voltage is calculated based on the sending voltage and current characteristics, and the sending of the processing bank is executed. Processing in which voltage deviation is determined in the switching state of one of the interconnection switches connected between the distribution line of the bank to be processed and the distribution line of a bank different from the processing bank so that the current becomes the target delivery current Invert from the open / closed state at the target time, and change the open / closed state of any of the segmented switches at the target time according to the necessity associated with the reverse of the open / closed state of the interconnection switch. It is intended to eliminate the voltage deviation in the distribution line to be processed bank by reversing the open and closed states.

以上のように、この発明では、電圧逸脱が判別されると、バンク送出電流が目標送出電流となるよう、処理対象バンクの配電線に連なる連系開閉器のいずれかおよび区分開閉器のいずれかの開閉状態を反転するようにしたので、バンク送出電圧調整装置が電圧逸脱を解消する方向に有効に動作する。   As described above, according to the present invention, when a voltage deviation is determined, any one of the interconnected switches connected to the distribution line of the bank to be processed and any of the divisional switches so that the bank sending current becomes the target sending current. Since the open / close state of the bank is reversed, the bank sending voltage adjusting device operates effectively in the direction of eliminating the voltage deviation.

実施の形態1.
図1は、本願発明を適用する配電系統の一例を示す構成図である。図の例では、変電所SSは、3つのバンク[1]〜[3]で構成され、各バンクでは、負荷時タップ切換変圧器TRによりその送出電圧が調整される。バンク[1]からは、FCB(界磁遮断器)を経て配電線Aと配電線Bとが引き出されている。そして、配電線A、Bのそれぞれには、所定の間隔で区分開閉器SWが接続されており、図示は省略しているが、各区分開閉器SWの間に各需要家の負荷や分散型電源が接続されている。また、バンク[2]からは配電線Cが、バンク[3]からは配電線Dがそれぞれ引き出されている。
更に、各配電線の相互間には、連系開閉器VSが接続されている。例えば、連系開閉器VS1は、配電線Aと配電線Cとの間に接続され、連系開閉器VS2は、配電線Aと配電線Dとの間に接続されている。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram showing an example of a power distribution system to which the present invention is applied. In the example of the figure, the substation SS is composed of three banks [1] to [3], and in each bank, the transmission voltage is adjusted by the on-load tap switching transformer TR. The distribution line A and the distribution line B are drawn out from the bank [1] through an FCB (field breaker). Each distribution line A, B is connected to a division switch SW at a predetermined interval and is not shown in the figure. The power supply is connected. Further, the distribution line C is drawn from the bank [2], and the distribution line D is drawn from the bank [3].
Furthermore, the interconnection switch VS is connected between the distribution lines. For example, the interconnection switch VS1 is connected between the distribution line A and the distribution line C, and the interconnection switch VS2 is connected between the distribution line A and the distribution line D.

そして、各開閉器の位置が配電線上の管理対象点となっており、各開閉器に内蔵されたセンサで検出された電圧、電流のデータが、各開閉器子局TPから通信線Lを経て変電所子局SPに集められ、更に中央装置CPにより収集される。これらセンサを含む開閉器子局TP、通信線L、変電所子局SPおよび中央装置CPにより本願請求項1の監視手段を構成する。
以下で詳述する、配電系統の電圧管理方法に係る演算はこの中央装置CPで実行し、その出力としての、各開閉器を開閉操作する信号は、中央装置CPから変電所子局SPを経て各開閉器子局TPに送出される。
なお、各開閉器子局からのデータ収集方式としては、例えば、常時ポーリング方式を採用するのがよいが、開閉器子局の数によっては、開閉器子局では短い周期でデータを採取保存しておき、上位装置からのポーリング時に、保存しているデータを上位装置へ返送する方式を採用してもよい。
The position of each switch is a management target point on the distribution line, and the voltage and current data detected by the sensor built in each switch is transmitted from each switch slave station TP via the communication line L. It is collected at the substation slave station SP and further collected by the central device CP. The switch slave station TP, the communication line L, the substation slave station SP and the central device CP including these sensors constitute the monitoring means of claim 1 of the present application.
The operation related to the voltage management method of the distribution system, which will be described in detail below, is executed by this central device CP, and the signal for opening / closing each switch as its output is sent from the central device CP via the substation slave station SP. It is sent to each switch slave station TP.
As a data collection method from each switch slave station, for example, it is preferable to adopt a constant polling method, but depending on the number of switch slave stations, the switch slave stations collect and store data at a short cycle. In addition, a method of returning stored data to the host device at the time of polling from the host device may be employed.

図2は、本願発明になる電圧管理方法の手順を示すフローチャートで、以下、各ステップの順に説明する。
ステップS1:配電系統の常時監視
各配電線に設置されている開閉器子局TPから電圧計測値を中央装置CPによりポーリング収集し、各配電線上の管理対象点における電圧の常時監視を行う。
ステップS2:系統電圧規定範囲逸脱配電線の有無判別
ステップS1で収集した監視情報を基に中央装置CPにて系統電圧規定範囲逸脱配電線有無の判別を行う。なお、このステップS2は、本願請求項2の第1のステップに相当する。
FIG. 2 is a flowchart showing the procedure of the voltage management method according to the present invention, which will be described below in the order of each step.
Step S1: Constant monitoring of the distribution system The voltage measurement value is polled and collected by the central device CP from the switch slave station TP installed in each distribution line, and the voltage at the management target point on each distribution line is constantly monitored.
Step S2: Discrimination of presence / absence of distribution line deviating from system voltage regulation range On the basis of the monitoring information collected in step S1, the central device CP discriminates the presence / absence of distribution line from system voltage regulation range. This step S2 corresponds to the first step of claim 2 of the present application.

この規定電圧範囲としては、低圧換算で、例えば、101±6Vが基本とされる。しかし、変圧器+低圧線+引き込み線における最大電圧降下(5.5V)を考慮して、その下限側の設定レベルは、101−6+5.5=100.5V(高圧換算値:100.5×6600/105=6317V)とされる。
また、上限側の設定レベルは、高圧線+変圧器における電圧降下(2.0V)を考慮して、101+6+2=109V(高圧換算値:109×6600/105=6851V)とされる。
As the specified voltage range, for example, 101 ± 6 V is basically used in terms of low voltage. However, considering the maximum voltage drop (5.5V) in the transformer + low voltage line + lead-in line, the setting level on the lower limit side is 101-6 + 5.5 = 100.5V (high voltage conversion value: 100.5 × 6600/105 = 6317V).
The upper limit set level is 101 + 6 + 2 = 109 V (high voltage conversion value: 109 × 6600/105 = 6851 V) in consideration of the voltage drop (2.0 V) in the high voltage line + transformer.

ステップS2で、判定が無のときはステップS1に戻り、電圧監視を継続する。判定が有のとき、即ち、監視電圧が規定範囲を逸脱したときは、ステップS3に進む。   If no determination is made in step S2, the process returns to step S1 and voltage monitoring is continued. When the determination is yes, that is, when the monitoring voltage deviates from the specified range, the process proceeds to step S3.

ステップS3:バンク送出電圧調整装置の情報取得
自動・手動切替器43Aの接点情報から、電圧逸脱が判別された配電線を引き出すバンク(以下、処理対象バンクと称す)のバンク送出電圧調整装置が自動制御の状態にあるのか手動操作の状態にあるのかの情報を取得する。更に、当該バンク送出電圧調整装置のタップ位置および送出電圧と送出電流との関係を示す送出電圧電流特性を特定するために必要なデータを取得する。
Step S3: Obtaining information of bank sending voltage adjusting device The bank sending voltage adjusting device of a bank (hereinafter referred to as a processing target bank) that draws a distribution line whose voltage deviation is determined from the contact information of the automatic / manual switch 43A is automatically set. Acquires information on whether it is in the control state or the manual operation state. Furthermore, data necessary for specifying the tap position of the bank sending voltage adjusting device and sending voltage / current characteristics indicating the relation between sending voltage and sending current are acquired.

ステップS3で取得した情報から自動・手動切替器43Aが手動位置にある場合(ステップS4でNO)は、以下の本願発明による手法は適用できないので、処理を終了する。自動・手動切替器43Aが自動位置にある場合(ステップS4でYES)は、ステップS5に進む。
ステップS5:タップ操作可能の判定
現在、即ち、ステップS2で電圧逸脱が判別された時点(以下、処理対象時点と称す)におけるタップ位置を取得し、そのタップ位置が上限値または下限値にあり、電圧逸脱を解消する方向へのタップ位置変更が出来ない場合(ステップS5でNO)は、以下の本願発明による手法は適用できないので、処理を終了する。電圧逸脱を解消する方向へのタップ位置変更が可能と判別された場合(ステップS5でYES)は、ステップS6に進む。
If the automatic / manual switching device 43A is in the manual position from the information acquired in step S3 (NO in step S4), the following method according to the present invention cannot be applied, and the process is terminated. If the automatic / manual switch 43A is in the automatic position (YES in step S4), the process proceeds to step S5.
Step S5: Determining whether tap operation is possible Currently, that is, the tap position at the time when the voltage deviation is determined in Step S2 (hereinafter referred to as the processing target time) is acquired, and the tap position is at the upper limit value or the lower limit value. If the tap position cannot be changed in a direction to eliminate the voltage deviation (NO in step S5), the following method according to the present invention cannot be applied, and the process is terminated. If it is determined that the tap position can be changed in the direction to eliminate the voltage deviation (YES in step S5), the process proceeds to step S6.

ステップS6:目標送出電圧算出
電圧逸脱が判別された配電線の電圧逸脱量から目標とするバンク送出電圧を算出する(本願請求項2の第2のステップが相当する)。
上限逸脱の場合は、(1)式で、下限逸脱の場合は、(2)式で算出される。
Step S6: Target sending voltage calculation The target bank sending voltage is calculated from the voltage deviation amount of the distribution line whose voltage deviation is determined (corresponding to the second step of claim 2 of the present application).
In the case of deviation from the upper limit, the calculation is performed by the expression (1).

V≦V−(V−VHwarn) ・・・(1)
V≧V+(VLwarn−V) ・・・(2)
V ≦ V 0 − (V H −V Hwarn ) (1)
V ≧ V 0 + (V Lwarn −V L ) (2)

但し、
V:目標送出電圧
:現在のバンク送出電圧
:電圧逸脱配電線の最高電圧
:電圧逸脱配電線の最低電圧
Hwarn:規定範囲上限値
Lwarn:規定範囲下限値
However,
V: target sending voltage V 0 : current bank sending voltage V H : maximum voltage of voltage deviation distribution line V L : minimum voltage of voltage deviation distribution line V Hwarn : specified range upper limit value V Lwarn : specified range lower limit value

なお、バンク送出電圧調整装置は、通例、負荷時タップ切換変圧器TRを用いてその送出電圧を不連続なタップ電圧毎に変化させて調整するものであるので、目標送出電圧Vとしては、上限逸脱の場合は、(1)式を満足する範囲で最も高いタップ電圧を選定し、下限逸脱の場合は、(2)式を満足する範囲で最も低いタップ電圧を選定する。   Note that the bank sending voltage adjustment device usually adjusts the sending voltage by changing it every discontinuous tap voltage using the on-load tap switching transformer TR. In the case of deviation, the highest tap voltage is selected within the range that satisfies equation (1), and in the case of deviation from the lower limit, the lowest tap voltage is selected in the range that satisfies equation (2).

ステップS7:目標バンク二次電流算出
バンク送出電圧調整装置の送出電圧電流特性に基づきステップS6で算出した目標送出電圧に応じた目標バンク二次電流(目標送出電流)を算出する(本願請求項2の第3のステップが相当する)。
送出電圧と送出電流との関係を規定する送出電圧電流特性は、配電系統の系統運用指針等に基づき設定されるものであるが、例えば、(3)式で表される。
Step S7: Target bank secondary current calculation A target bank secondary current (target output current) corresponding to the target output voltage calculated in step S6 is calculated based on the output voltage / current characteristics of the bank output voltage adjusting device. Corresponds to the third step).
The transmission voltage / current characteristic that defines the relationship between the transmission voltage and the transmission current is set based on a system operation guideline or the like of the power distribution system, and is represented by, for example, Expression (3).

Vs=c1×Is+c2 ・・・(3)   Vs = c1 × Is + c2 (3)

但し、
Vs:送出電圧
Is:送出電流
c1、c2:定数で、配電系統のインピーダンス特性や、負荷力率によって決まる
However,
Vs: Sending voltage Is: Sending current c1, c2: Constants, determined by impedance characteristics of distribution system and load power factor

(3)式のVsにステップS6で算出した目標送出電圧Vを代入することにより目標バンク二次電流Iを算出する。   The target bank secondary current I is calculated by substituting the target sending voltage V calculated in step S6 for Vs in the equation (3).

ステップS8:負荷移行量算出
ステップS7で算出した目標バンク二次電流から処理対象バンクの変化させるべき負荷量である負荷移行量を(4)式により算出する(本願請求項2の第4のステップが相当する)。
Step S8: Load shift amount calculation The load shift amount, which is the load amount that should be changed in the bank to be processed, is calculated from the target bank secondary current calculated in step S7 by the formula (4) (fourth step of claim 2 of the present application) Is equivalent).

ΔI=I−ΣIDLi ・・・(4) ΔI = I−ΣI DLi (4)

但し、
ΔI:負荷移行量
DLi:現在(処理対象時点)における処理対象バンクに連なる各配電線の負荷
However,
ΔI: Load transfer amount I DLi : Load of each distribution line connected to the processing target bank at the present time (processing target time)

ステップS9:系統切替パターン抽出
処理対象バンクにおける負荷移行量がステップS8の(4)式で算出されたΔI以上となるための系統切替パターンを抽出する。
ここで、系統切替パターンとは、対象とする配電系統上の各連系開閉器VSおよび各区分開閉器SWの開閉状態によって特定されるものである。そして、このステップS9では、実際には、処理対象バンクの配電線に連なる連系開閉器VSのいずれかの開閉状態を処理対象時点における開閉状態から反転させるとともに当該連系開閉器VSの開閉状態の反転に伴う必要性に応じて区分開閉器SWのいずれかの開閉状態を処理対象時点における開閉状態から反転させることで得られる各連系開閉器VSおよび各区分開閉器SWの開閉状態で特定される系統切替パターンであって、上記負荷移行量を実現しうるすべての系統切替パターンを抽出し、後述するステップS10で採用できない系統切替パターンを排除し、更に、ステップS10で残った系統切替パターンから後述するステップS11で最適な系統切替パターンを選定する。なお、このステップS9は、本願請求項2の第5のステップに相当する。
Step S9: System switching pattern extraction A system switching pattern is extracted so that the load shift amount in the processing target bank is equal to or larger than ΔI calculated by the equation (4) in step S8.
Here, the system switching pattern is specified by the open / close state of each interconnection switch VS and each section switch SW on the target distribution system. In step S9, in actuality, the switching state of any one of the interconnection switches VS connected to the distribution lines in the bank to be processed is reversed from the opening / closing state at the time of the processing target, and the switching state of the linkage switch VS. Identified by the switching state of each interconnection switch VS and each switching unit SW obtained by reversing the switching state of one of the segment switches SW from the switching state at the time of processing according to the necessity accompanying the reversal of All the system switching patterns that can realize the load shift amount are extracted, the system switching patterns that cannot be adopted in step S10, which will be described later, are excluded, and the system switching patterns that remain in step S10 From step S11 described later, an optimum system switching pattern is selected. This step S9 corresponds to the fifth step of claim 2 of the present application.

次に、ステップS9による系統切替パターンの抽出要領を簡単な回路例に基づき説明する。
先ず、図3(a)は、先の図1でバンク[1]から引き出された配電線Aに分散型電源が連系されており、この配電線Aにおける分散型電源との連系点での電圧が規定範囲上限値を逸脱している状態を示している。
図4は、この場合の処理対象時点、即ち、電圧逸脱が判別された時点における配電線A〜Dの回路構成および各開閉器の開閉状態を示す。そして、ここでは、図2のステップS2で電圧逸脱が判別された配電線は、バンク[1]から引き出され分散型電源Gが連なる配電線Aであり、バンク[1]が処理対象バンクである。
Next, the system switching pattern extraction procedure in step S9 will be described based on a simple circuit example.
First, FIG. 3A is a connection point of the distributed power source to the distribution line A drawn from the bank [1] in FIG. The voltage of is deviating from the specified range upper limit value.
FIG. 4 shows the circuit configuration of the distribution lines A to D and the open / close state of each switch at the time of processing in this case, that is, when voltage deviation is determined. Here, the distribution line whose voltage deviation is determined in step S2 of FIG. 2 is the distribution line A drawn from the bank [1] and connected to the distributed power source G, and the bank [1] is the bank to be processed. .

従って、系統切替パターンの抽出は、このバンク[1]の配電線AまたはBと、異バンク、従って、バンク[2]の配電線Cまたはバンク[3]の配電線Dとの相互間に接続された連系開閉器、図4では、常開VS1、常開VS2、常開VS4の3台のいずれかを閉路させるパターンを抽出することになる。なお、ここでは、連系開閉器VSをすべて常開VSと表示している。これは、一般的な配電線給電運用においては、連系開閉器を開とした状態で各配電線が所定の規定電圧範囲内で運用できることを原則としているためである。これに対し、本願発明では、何らかの理由で、特定の連系開閉器を閉路した状態で、ステップS2の電圧逸脱が判別される場合も想定しており、従って、処理対象時点における連系開閉器を開路状態に限定していない。もっとも、説明上、特に支障の無い限り、以下では、一般的な運用に基づき常開VSとの呼称も使用するものとする。   Therefore, the system switching pattern is extracted by connecting between the distribution line A or B of the bank [1] and the distribution line C of the different bank, that is, the bank [2] or the distribution line D of the bank [3]. In FIG. 4, a pattern for closing any one of the normally open VS1, normally open VS2, and normally open VS4 is extracted. Here, all the interconnection switches VS are indicated as normally open VS. This is because, in general, distribution line power feeding operation is based on the principle that each distribution line can be operated within a predetermined specified voltage range with the interconnection switch open. On the other hand, in the present invention, it is assumed that for some reason, the voltage deviation in step S2 is determined in a state in which a specific interconnection switch is closed. Is not limited to the open circuit state. However, for the sake of explanation, the name “normally open VS” is also used below based on general operation unless there is a particular problem.

図3(a)は、配電線Aでは、電圧が上限値を逸脱しているが、同じバンク[1]に連なる配電線Bが重負荷のため、バンク[1]全体としては比較的重負荷である場合である。そこで、本願発明では、図3(b)に示すように、配電線Bの負荷の内、ステップS8で算出された負荷移行量に相当する負荷量を異バンクに移行させ、バンク[1]の送出電流をステップS7で算出された目標バンク二次電流まで低減させ、バンク[1]のバンク送出電圧調整装置がその送出電圧をステップS6で算出された目標送出電圧まで低減する動作をするよう誘導する訳である。   FIG. 3A shows that the distribution line A has a voltage that deviates from the upper limit, but the distribution line B connected to the same bank [1] is a heavy load, so the bank [1] as a whole is a relatively heavy load. This is the case. Therefore, in the present invention, as shown in FIG. 3B, among the loads on the distribution line B, the load amount corresponding to the load shift amount calculated in step S8 is transferred to a different bank, and the bank [1] The sending current is reduced to the target bank secondary current calculated in step S7, and the bank sending voltage adjusting device of bank [1] is guided to operate to reduce the sending voltage to the target sending voltage calculated in step S6. That is why.

図5は、図3(b)の方向の動作を促すべく抽出された系統切替パターンの一例を示す。ここでは、処理対象バンク[1]の配電線Bと異バンク[3]の配電線Dとを接続する連系開閉器VS4の開閉状態を、処理対象時点における開閉状態(ここでは、開の状態)から反転、従って、閉の状態としている。そして、この連系開閉器VS4の開閉状態の反転に伴う必要性に応じて、図5に示すように、連系開閉器VS4に連なる、配電線B上の区分開閉器SWB2の開閉状態を、処理対象時点における開閉状態(ここでは、閉の状態)から反転、従って、開の状態としている。   FIG. 5 shows an example of the system switching pattern extracted to promote the operation in the direction of FIG. Here, the open / close state of the interconnection switch VS4 that connects the distribution line B of the processing target bank [1] and the distribution line D of the different bank [3] is the open / closed state at the time of the processing target (here, the open state). ), And therefore closed. And according to the necessity accompanying reversal of the open / close state of the interconnection switch VS4, as shown in FIG. 5, the open / close state of the division switch SWB2 on the distribution line B connected to the interconnection switch VS4, The state is reversed from the open / closed state (here, the closed state) at the time of processing, and is therefore in the open state.

以上の連系開閉器VS4および区分開閉器SWB2の開閉状態の反転の結果、処理対象時点(図4)には、バンク[1]の配電線Bの末端に接続されていた需要家負荷の1個が、異バンク[3]の配電線Cに切り替えて接続される、即ち、当該需要家負荷が異バンクに移行される。これにより、図3(c)に示すように、バンク[1]のバンク送出電圧調整装置が動作してその送出電圧を低減して配電線Aの上限電圧逸脱が解消され、配電線Bの末端電圧降下も改善される。   As a result of the reversal of the switching state of the interconnection switch VS4 and the section switch SWB2, the customer load 1 connected to the terminal of the distribution line B of the bank [1] at the processing target time point (FIG. 4). Are switched and connected to the distribution line C of the different bank [3], that is, the customer load is transferred to the different bank. As a result, as shown in FIG. 3C, the bank sending voltage adjusting device of the bank [1] operates to reduce the sending voltage, and the upper limit voltage deviation of the distribution line A is eliminated. The voltage drop is also improved.

図6(a)は、配電線Bでは、電圧が下限値を逸脱しているが、同じバンク[1]に連なる配電線Aには分散型電源が連なり、バンク[1]全体としては比較的軽負荷である場合である。そこで、本願発明では、図6(b)に示すように、配電線Aに、ステップS8で算出された負荷移行量に相当する負荷量を異バンクから取り込み、バンク[1]の送出電流をステップS7で算出された目標バンク二次電流まで増大させ、バンク[1]のバンク送出電圧調整装置がその送出電圧をステップS6で算出された目標送出電圧まで上昇する動作をするよう誘導する訳である。   In FIG. 6A, the voltage of the distribution line B deviates from the lower limit value, but the distributed power supply is connected to the distribution line A connected to the same bank [1]. This is a case of light load. Therefore, in the present invention, as shown in FIG. 6 (b), the distribution line A is loaded with a load amount corresponding to the load transfer amount calculated in step S8 from a different bank, and the current sent from the bank [1] is stepped. This is because the bank secondary voltage calculated in S7 is increased to the target bank secondary current, and the bank transmission voltage adjusting device of bank [1] is guided to perform an operation of increasing the transmission voltage to the target transmission voltage calculated in step S6. .

図7は、電圧の下限値逸脱が判別された処理対象時点における配電線A〜Dの回路構成および各開閉器の開閉状態を示す。
図8は、図6(b)の方向の動作を促すべく抽出された系統切替パターンの一例を示す。ここでは、処理対象バンク[1]の配電線Aと異バンク[2]の配電線Cとを接続する連系開閉器VS1の開閉状態を、処理対象時点における開閉状態(ここでは、開の状態)から反転、従って、閉の状態としている。そして、この連系開閉器VS1の開閉状態の反転に伴う必要性に応じて、図8に示すように、連系開閉器VS1に連なる、配電線C上の区分開閉器SWC1の開閉状態を、処理対象時点における開閉状態(ここでは、閉の状態)から反転、従って、開の状態としている。
FIG. 7 shows the circuit configuration of the distribution lines A to D and the open / close state of each switch at the time when the deviation from the lower limit of the voltage is determined.
FIG. 8 shows an example of the system switching pattern extracted to promote the operation in the direction of FIG. Here, the open / close state of the interconnection switch VS1 that connects the distribution line A of the processing target bank [1] and the distribution line C of the different bank [2] is defined as the switching state (in this case, the open state) at the time of the processing target. ), And therefore closed. And according to the necessity accompanying reversal of the open / close state of this interconnection switch VS1, as shown in FIG. 8, the open / close state of the division switch SWC1 on the distribution line C connected to the interconnection switch VS1, The state is reversed from the open / closed state (here, the closed state) at the time of the processing target, and is therefore in the open state.

以上の連系開閉器VS1および区分開閉器SWC1の開閉状態の反転の結果、処理対象時点(図7)には、異バンク[2]の配電線Cの末端に接続されていた需要家負荷の1個が、処理対象バンク[1]の配電線Aに切り替えて接続される、即ち、当該需要家負荷が処理対象バンクに取り込まれる。これにより、図6(c)に示すように、バンク[1]のバンク送出電圧調整装置が動作してその送出電圧を増大して配電線Bの下限電圧逸脱が解消され、配電線Aの電圧上昇も改善される。   As a result of the reversal of the switching state of the interconnection switch VS1 and the section switch SWC1, the customer load connected to the terminal of the distribution line C in the different bank [2] is not processed at the time point (FIG. 7). One is switched and connected to the distribution line A of the processing target bank [1], that is, the customer load is taken into the processing target bank. As a result, as shown in FIG. 6C, the bank sending voltage adjusting device of the bank [1] operates to increase the sending voltage, and the lower limit voltage deviation of the distribution line B is eliminated. The rise is also improved.

以上では、上限電圧逸脱、下限電圧逸脱のいずれの場合も抽出した1つの系統切替パターンを説明したが、例えば、2台以上の連系開閉器の開閉状態を反転させることで特定される系統切替パターン等、電圧逸脱を解消しうる全ての系統切替パターンを抽出する。   In the above, one system switching pattern extracted in both cases of the upper limit voltage deviation and the lower limit voltage deviation has been described. For example, the system switching specified by reversing the switching states of two or more interconnected switches All system switching patterns that can eliminate voltage deviation such as patterns are extracted.

図2のステップS9で抽出された全ての系統切替パターンは、次に、ステップS10において、系統運用上予め設定された切替制約条件(制約項)を満たすか否かを判別する(本願請求項2の第6のステップに相当する)。
この制約項の具体的な内容は、対象の配電系統を管轄する電力会社の系統運用指針等により種々の内容となり、以下に、簡単に項目名を例示するのみに留めるものとする。
All the system switching patterns extracted in step S9 in FIG. 2 next determine in step S10 whether or not a switching constraint condition (constraint term) set in advance for system operation is satisfied (claim 2 of this application). (Corresponding to the sixth step).
The specific contents of this restriction item are various contents depending on the system operation guideline of the power company having jurisdiction over the target distribution system, and only the item names are illustrated below.

1:他配電線への分散型電源移動の禁止(分散型電源の管理を特別に行うためである)。2:切替後系統での過負荷状態の禁止(配電線や開閉器の電流を許容値内に管理するためである)。3:B種接地抵抗値違反の禁止(高低圧混触事故時の低圧機器破壊防止のためである)。4:作業中および作業計画有りの配電線の操作禁止(現場作業員の安全確保のためである)。5:ループ点過電流違反の禁止(ループ投入した場合の開閉器過電流通電を防止するためである)。6:再閉路リレー最大区間数超過違反の禁止(系統の再閉路の運用基準を遵守するためである)。   1: Prohibition of movement of distributed power supply to other distribution lines (for special management of distributed power supply). 2: Prohibition of overload in the system after switching (for managing the current of distribution lines and switches within the allowable value). 3: Prohibition of violation of Class B grounding resistance value (to prevent destruction of low-voltage equipment during high-low pressure accidents). 4: Prohibition of operation of distribution lines during work and work plans (to ensure the safety of field workers). 5: Prohibition of loop point overcurrent violation (to prevent switch overcurrent energization when the loop is turned on). 6: Prohibition of exceeding violation of the maximum number of reclosing relays (to comply with the system reclosing operation standard).

ステップS10で、先のステップS9により抽出された系統切替パターンの全てがその制約項の条件を満足しない場合は、本願発明による系統切替は中止せざるを得ず処理を終了する。   In step S10, when all the system switching patterns extracted in the previous step S9 do not satisfy the condition of the constraint term, the system switching according to the present invention must be stopped and the processing is terminated.

以上のステップS10における判別で残った系統切替パターンは、次のステップS11において、目的項による最適切替パターンの選定が行われる(本願請求項2の第7のステップが相当する)。
ここで、目的項とは、最適の系統切替パターンを選定する際の評価基準である。
For the system switching pattern remaining in the determination in step S10, the optimum switching pattern is selected according to the target term in the next step S11 (corresponding to the seventh step of claim 2 of the present application).
Here, the objective term is an evaluation criterion for selecting an optimum system switching pattern.

この最適系統切替パターンの選定基準は、先の制約項の設定の場合と同様、具体的な内容は、対象の配電系統を管轄する電力会社等の系統運用指針等により種々の内容となるが、ここではその一例を簡単に紹介する。
例えば、設定された各種目的項kiとそれぞれの目的項に設定された重み付け係数αiとで表現される適応度fを、下式により全ての対象系統切替パターンについて演算し、適応度fが最大のものを最適切替パターンとして選定する。
The selection criteria for this optimum system switching pattern, as in the case of the previous restriction item setting, will vary depending on the system operation guidelines, etc. of the power company that has jurisdiction over the target distribution system. Here are some examples.
For example, the fitness f expressed by the various objective terms ki set and the weighting coefficient αi set for each objective term is calculated for all target system switching patterns by the following formula, and the fitness f is the maximum. Select one as the optimum switching pattern.

f=1/(α1・k1+α2・k2+α3・k3+α4・k4+α5・k5+α6・k6+α7)   f = 1 / (α1 · k1 + α2 · k2 + α3 · k3 + α4 · k4 + α5 · k5 + α6 · k6 + α7)

上式で、k1は、切替後の系統電圧改善を評価するものである。電圧改善度の最大を0、最小を1と正規化する。α1は、目的項k1の重み付け係数である。
k2は、系統切替手順数を評価するもので、開閉器の切替累計回数を抑えるため、系統切替実行手順が少ないものから優先順位を高くする。このため、作成した系統切替手順数をカウントし、最小を0、最大を1と正規化する。α2は、目的項k2の重み付け係数である。
In the above equation, k1 evaluates the system voltage improvement after switching. The maximum voltage improvement is normalized to 0 and the minimum to 1. α1 is a weighting coefficient of the target term k1.
k2 is for evaluating the number of system switching procedures, and in order to suppress the cumulative number of switching times of the switch, the priority order is increased from the one with fewer system switching execution procedures. For this reason, the number of created system switching procedures is counted, and the minimum is normalized to 0 and the maximum is normalized to 1. α2 is a weighting coefficient of the target term k2.

k3は、ループ切替先配電系統を評価するもので、ループ切替先配電線の系統種類により、同一バンク(高)→同一変電所(中)→同一上位系統(低)と順位付けする。このため、ループ切替先の配電線の上位系統を配電自動化システムのデータを使って追いかけ系統の種類を判定する。最大の評価のものを0、最小を1と正規化する。α3は、目的項k3の重み付け係数である。
k4は、開閉器の切替累計回数を評価するもので、機械的寿命と電気的寿命を考慮し、この切替累計回数が少ないものを優先して選定するようにする。切替累計回数最小のものを0、最大を1と正規化する。α4は、目的項k4の重み付け係数である。
k3 evaluates the loop switching destination distribution system, and ranks the same bank (high) → same substation (middle) → same upper system (low) according to the system type of the loop switching destination distribution line. For this reason, the type of the chase system is determined using the data of the distribution automation system for the upper system of the distribution line of the loop switching destination. Normalize the highest evaluation as 0 and the minimum as 1. α3 is a weighting coefficient of the target term k3.
k4 is an evaluation of the cumulative number of switching times of the switch. In consideration of the mechanical life and the electrical life, k4 is selected with priority. Normalize the minimum number of total switching times to 0 and the maximum to 1. α4 is a weighting coefficient of the target term k4.

k5は、切替系統の損失を評価するもので、系統切替後の潮流状態から損失値を算出し、系統損失値の最小のものを0、最大を1と正規化する。α5は、目的項k5の重み付け係数である。
k6は、切替系統の負荷バランスを評価するもので、系統切替後の同一バンク内配電線の過負荷に対する余裕を出来るだけ持たせるため負荷バランスの評価を行う。配電線許容電流値と負荷電流との差の2乗平均から求めた裕度が最大のものを0、最小を1と正規化する。α6は、目的項k6の重み付け係数である。
α7は、kiが全て0の場合のゼロ除算防止の係数である。
k5 evaluates the loss of the switching system. The loss value is calculated from the power flow state after the system switching, and the minimum value of the system loss value is normalized to 0 and the maximum is normalized to 1. α5 is a weighting coefficient of the target term k5.
k6 evaluates the load balance of the switching system, and evaluates the load balance to give as much margin as possible to the overload of the distribution lines in the same bank after the system switching. The maximum tolerance obtained from the mean square of the difference between the distribution line allowable current value and the load current is normalized to 0, and the minimum is normalized to 1. α6 is a weighting coefficient of the target term k6.
α7 is a coefficient for preventing division by zero when ki is all zero.

図2に戻り、次に、ステップS12で、最適切替手順を実行する(本願請求項2の第8のステップが相当する)。即ち、中央装置CPが、選定された最適系統切替パターンの手順に従って、既述したように、遠隔制御にて必要な各連系開閉器、区分開閉器である現場機器を操作し切替を実施する。   Returning to FIG. 2, next, in step S12, an optimal switching procedure is executed (corresponding to the eighth step of claim 2 of the present application). That is, according to the procedure of the selected optimum system switching pattern, the central device CP operates and switches the field devices that are each interconnection switch and section switch necessary for remote control as described above. .

系統切替後、事故時の時限順送対応のため、中央装置CPは、現場機器に対して標準運用状態、時限等を仮設定し(ステップS13)、仮標準登録をする(ステップS14)。
更に、ステップS15で、中央装置CPは、配電系統を常時監視し、切替要因の排除判定を行い、排除が判定されると、ステップS16で、切替前の系統状態に切り戻す(本願請求項3の第9および第10のステップが相当する)。
After the system switching, the central device CP provisionally sets the standard operation state, time limit, etc. for the field device in order to cope with timed sequential transmission at the time of an accident (step S13), and performs temporary standard registration (step S14).
Further, in step S15, the central device CP constantly monitors the power distribution system, performs the exclusion determination of the switching factor, and when the exclusion is determined, switches back to the system state before the switching in step S16 (this claim 3). Corresponds to the ninth and tenth steps).

即ち、切替動作実行後における監視手段からの出力を適用して切替動作実行前の回路条件による各配電線上の電圧を算出しこれら算出電圧が規定電圧範囲から逸脱しているか否かを判別し、電圧逸脱が無いと判別されたときは切替動作実行前の回路条件となるよう連系開閉器および区分開閉器のいずれかの開閉状態を切替動作実行後の開閉状態から反転させる切替動作を実行させる。
従って、切替動作実行前の回路条件が、先の図4や図7で説明した、全ての連系開閉器が開状態である標準運用状態の回路条件である場合は、この切り戻しのステップを設けることにより、一連の電圧逸脱をもたらす要因が喪失すると、速やかに配電系統をその標準運用状態に復帰させることが出来る。
That is, applying the output from the monitoring means after execution of the switching operation to calculate the voltage on each distribution line according to the circuit conditions before execution of the switching operation, to determine whether these calculated voltages deviate from the specified voltage range, When it is determined that there is no voltage deviation, a switching operation is performed to reverse the switching state of either the interconnection switch or the section switch from the switching state after the switching operation so that the circuit condition before the switching operation is performed. .
Therefore, if the circuit condition before executing the switching operation is the circuit condition in the standard operation state in which all the interconnection switches described with reference to FIGS. 4 and 7 are open, this switching step is performed. By providing, if a factor causing a series of voltage deviations is lost, the power distribution system can be quickly returned to its standard operating state.

以上のように、本願発明に係る配電系統の電圧管理方法は、電圧逸脱が判別された配電線のバンクに連なる連系開閉器のいずれかおよび関連する区分開閉器のいずれかの開閉状態を反転することでバンク送出電圧調整装置の動作を誘導し、電圧逸脱状態の改善を図るもので、その具体的な方法は、図2等で説明したものに限定されることなく、更に、必ずしも、分散型電源が連なる配電系統に限らず、各種の配電系統に広く適用でき、電圧改善の効果を奏するものである。   As described above, the voltage management method for the distribution system according to the present invention inverts the open / close state of any of the interconnection switches connected to the distribution line bank in which the voltage deviation is determined and any of the related division switches. In this way, the operation of the bank transmission voltage adjusting device is induced to improve the voltage deviation state. The specific method is not limited to that described with reference to FIG. The present invention can be widely applied to various power distribution systems as well as power distribution systems with continuous power supplies, and has an effect of voltage improvement.

本願発明を適用する配電系統の一例を示す構成図である。It is a block diagram which shows an example of the power distribution system to which this invention is applied. 本願発明の実施の形態1における電圧管理方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the voltage management method in Embodiment 1 of this invention. 分散型電源が連なる配電線Aで、電圧が規定範囲上限値を逸脱している状態および本願発明による電圧逸脱解消の要領を概念的に示す図である。It is a figure which shows notionally the point of the voltage departure from the state which the voltage has deviated from the regulation range upper limit value, and the voltage deviation elimination by this invention in the distribution line A with which a distributed power supply continues. 図3で電圧逸脱が判別された時点における配電線A〜Dの回路構成および各開閉器の開閉状態を示す図である。FIG. 4 is a diagram illustrating a circuit configuration of distribution lines A to D and a switching state of each switch when a voltage deviation is determined in FIG. 3. 図2のステップS9で抽出された系統切替パターンの一例を示す図である。It is a figure which shows an example of the system | strain switching pattern extracted by step S9 of FIG. 重負荷配電線Bで、電圧が規定範囲下限値を逸脱している状態および本願発明による電圧逸脱解消の要領を概念的に示す図である。It is a figure which shows notionally the state of the voltage deviating from a regulation range lower limit, and the point of voltage deviation elimination by this invention in the heavy load distribution line B. 図6で電圧逸脱が判別された時点における配電線A〜Dの回路構成および各開閉器の開閉状態を示す図である。FIG. 7 is a diagram illustrating a circuit configuration of distribution lines A to D and a switching state of each switch at the time when a voltage deviation is determined in FIG. 6. 図2のステップS9で抽出された系統切替パターンの一例を示す図である。It is a figure which shows an example of the system | strain switching pattern extracted by step S9 of FIG.

符号の説明Explanation of symbols

A〜D 配電線、VS1〜VS4 連系開閉器、SW 区分開閉器、SS 変電所、
TP 開閉器子局、L 通信線、SP 変電所子局、CP 中央装置。
A to D distribution lines, VS1 to VS4 interconnection switch, SW section switch, SS substation,
TP switch slave station, L communication line, SP substation slave station, CP central unit.

Claims (5)

変電所の複数のバンクと、この各バンクから引き出された複数の配電線と、上記各配電線に接続された区分開閉器と、上記各配電線の相互間に接続された連系開閉器と、上記バンク毎にその送出端に設けられ上記配電線へのバンク送出電圧を調整するバンク送出電圧調整装置とを備え、上記配電線に接続された負荷に電力を供給する配電系統の上記各配電線の電圧を管理する方法であって、
上記バンク送出電圧調整装置は、予め設定された送出電圧電流特性に基づき当該バンクの送出電流に応じて上記バンク送出電圧を調整するものであり、
上記各配電線上の管理対象点における電圧、電流を監視する監視手段を備え、
上記監視手段からの出力に基づき上記管理対象点の電圧が予め設定された所定の規定電圧範囲から逸脱しているか否かを判別し、上記電圧逸脱が判別されたとき、上記配電線の内上記電圧逸脱が判別された配電線を引き出す処理対象バンクのバンク送出電圧調整装置について上記電圧逸脱量から目標送出電圧を算出すると共に上記送出電圧電流特性に基づき上記目標送出電圧に応じた目標送出電流を算出し、上記処理対象バンクの送出電流が上記目標送出電流となるよう上記処理対象バンクの配電線と上記処理対象バンクと異なるバンクの配電線との相互間に接続された連系開閉器のいずれかの開閉状態を上記電圧逸脱が判別された処理対象時点における開閉状態から反転させるとともに当該連系開閉器の開閉状態の反転に伴う必要性に応じて上記区分開閉器のいずれかの開閉状態を上記処理対象時点における開閉状態から反転させることにより上記処理対象バンクの配電線における上記電圧逸脱を解消することを特徴とする配電系統の電圧管理方法。
A plurality of substation banks, a plurality of distribution lines drawn from each bank, a section switch connected to each distribution line, and an interconnection switch connected between each distribution line; A bank sending voltage adjusting device provided at the sending end for each bank to adjust the bank sending voltage to the distribution line, and each distribution of the distribution system for supplying power to a load connected to the distribution line. A method for managing the voltage of a wire,
The bank sending voltage adjusting device adjusts the bank sending voltage according to the sending current of the bank based on a preset sending voltage / current characteristic,
The monitoring means for monitoring the voltage and current at the management target point on each distribution line,
Based on the output from the monitoring means, it is determined whether or not the voltage at the management target point has deviated from a predetermined voltage range set in advance, and when the voltage deviation is determined, A target sending voltage is calculated from the voltage deviation amount for the bank sending voltage adjustment device of the bank to be processed that pulls out the distribution line whose voltage deviation is determined, and the target sending current corresponding to the target sending voltage is calculated based on the sending voltage current characteristic. Any of the interconnection switches calculated and connected between the distribution line of the processing target bank and the distribution line of a bank different from the processing target bank so that the transmission current of the processing target bank becomes the target transmission current Reversing the open / close state from the open / close state at the time of processing when the voltage deviation is determined, and according to the necessity accompanying reversal of the open / close state of the interconnection switch Voltage management method of the distribution system, characterized in that to solve the above voltage deviation in the distribution line of the processed bank by inverting either the open or closed state of said section switches from the switching state at the time the processing target.
上記監視手段からの出力に基づき上記管理対象点の電圧が予め設定された所定の規定電圧範囲から逸脱しているか否かを判別する第1のステップ、この第1のステップで上記電圧逸脱が判別されたとき、上記配電線の内上記電圧逸脱が判別された配電線を引き出す処理対象バンクのバンク送出電圧調整装置について上記電圧逸脱量から目標送出電圧を算出する第2のステップ、上記送出電圧電流特性に基づき上記第2のステップで算出された上記目標送出電圧に応じた目標送出電流を算出する第3のステップ、この第3のステップで算出された上記目標送出電流と上記電圧逸脱が判別された処理対象時点における送出電流とから上記処理対象バンクの変化させるべき負荷量である負荷移行量を算出する第4のステップ、この第4のステップで算出された負荷移行量を実現するため上記処理対象バンクの配電線と上記処理対象バンクと異なるバンクの配電線との相互間に接続された連系開閉器のいずれかの開閉状態を上記処理対象時点における開閉状態から反転させるとともに当該連系開閉器の開閉状態の反転に伴う必要性に応じて上記区分開閉器のいずれかの開閉状態を上記処理対象時点における開閉状態から反転させることで得られる上記各連系開閉器および各区分開閉器の開閉状態を特定する系統切替パターンをすべて抽出する第5のステップ、この第5のステップで抽出された上記系統切替パターンについて系統運用上予め設定された切替制約条件を満たすか否かを判別する第6のステップ、この第6のステップで上記切替制約条件を満たすと判別された上記系統切替パターンから系統運用上予め設定された評価基準に基づき優先的に適用する最適系統切替パターンを抽出する第7のステップ、および上記第7のステップで抽出された上記最適系統切替パターンで特定される回路条件となるよう上記連系開閉器および上記区分開閉器のいずれかの開閉状態を上記処理対象時点の開閉状態から反転させる切替動作を実行させる第8のステップを備えたことを特徴とする請求項1記載の配電系統の電圧管理方法。 A first step for determining whether or not the voltage at the management target point deviates from a predetermined voltage range set in advance based on an output from the monitoring means, and the voltage deviation is determined in the first step. A second step of calculating a target transmission voltage from the voltage deviation amount for a bank transmission voltage adjusting device of a bank to be processed that pulls out the distribution line in which the voltage deviation is determined among the distribution lines; A third step of calculating a target transmission current according to the target transmission voltage calculated in the second step based on characteristics, and the target transmission current calculated in the third step and the voltage deviation are determined. A fourth step of calculating a load shift amount, which is a load amount to be changed in the processing target bank, from the transmission current at the processing target time point, in this fourth step In order to realize the load transfer amount issued, the open / close state of any of the interconnection switches connected between the distribution line of the processing target bank and the distribution line of a bank different from the processing target bank is the processing target. It is obtained by reversing the open / closed state at the time and reversing the open / closed state of any of the segmented switches from the open / closed state at the processing target time according to the necessity accompanying reversal of the open / closed state of the interconnection switch. A fifth step of extracting all the system switching patterns for specifying the switching states of the interconnection switches and the divisional switches, and the system switching pattern extracted in the fifth step is preset in system operation. A sixth step of determining whether or not a switching constraint condition is satisfied; and the system switching pattern determined to satisfy the switching constraint condition in the sixth step And a circuit condition specified by the optimum system switching pattern extracted in the seventh step, and a seventh step of extracting an optimum system switching pattern preferentially applied based on an evaluation criterion set in advance in system operation 8. The method according to claim 1, further comprising an eighth step of executing a switching operation for reversing the open / closed state of any of the interconnected switch and the segmented switch from the open / closed state at the time of processing. Voltage management method for the described distribution system. 上記第8のステップで上記切替動作を実行させた後、当該切替動作実行後における上記監視手段からの出力を適用して上記切替動作実行前の回路条件による上記各配電線上の上記管理対象点の電圧を算出しこれら算出電圧が上記規定電圧範囲から逸脱しているか否かを判別する第9のステップ、およびこの第9のステップで上記算出電圧の電圧逸脱が無いと判別されたとき上記切替動作実行前の回路条件となるよう上記連系開閉器および上記区分開閉器のいずれかの開閉状態を上記切替動作実行後の開閉状態から反転させる切替動作を実行させる第10のステップを備えたことを特徴とする請求項2記載の配電系統の電圧管理方法。 After the switching operation is executed in the eighth step, the output of the monitoring means after the switching operation is applied to apply the output of the management target point on each distribution line according to the circuit conditions before the switching operation is executed. A ninth step of calculating voltages and determining whether or not these calculated voltages deviate from the specified voltage range, and the switching operation when it is determined that there is no voltage deviation of the calculated voltage in the ninth step; A tenth step of executing a switching operation for reversing the switching state of either the interconnection switch or the section switch from the switching state after the switching operation is performed so as to satisfy the circuit condition before the execution; The voltage management method for a power distribution system according to claim 2, wherein: 上記バンク送出電圧調整装置がその送出電圧を不連続なタップ電圧毎に変化させて調整するものである場合、
上記第2のステップにおいては、上記電圧逸脱量から算出した目標送出電圧を第1次算出値とし、この第1次算出値に対し上記処理対象時点における送出電圧との差がより大きくなる条件で上記第1次算出値に最も近い電圧を上記タップ電圧から選定し当該選定したタップ電圧を上記第3のステップで使用する目標送出電圧とすることを特徴とする請求項2または3記載の配電系統の電圧管理方法。
When the bank sending voltage adjustment device is to adjust the sending voltage by changing every discontinuous tap voltage,
In the second step, the target transmission voltage calculated from the voltage deviation amount is set as a primary calculation value, and the difference between the primary calculation value and the transmission voltage at the processing target time is larger with respect to the primary calculation value. 4. The distribution system according to claim 2, wherein a voltage closest to the first calculated value is selected from the tap voltage, and the selected tap voltage is set as a target transmission voltage used in the third step. Voltage management method.
上記配電線に、分散型電源が接続されていることを特徴とする請求項1ないし4のいずれかに記載の配電系統の電圧管理方法。 5. The voltage management method for a distribution system according to claim 1, wherein a distributed power source is connected to the distribution line.
JP2007233936A 2007-09-10 2007-09-10 Voltage control method for distribution system Pending JP2009065817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007233936A JP2009065817A (en) 2007-09-10 2007-09-10 Voltage control method for distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007233936A JP2009065817A (en) 2007-09-10 2007-09-10 Voltage control method for distribution system

Publications (1)

Publication Number Publication Date
JP2009065817A true JP2009065817A (en) 2009-03-26

Family

ID=40559880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007233936A Pending JP2009065817A (en) 2007-09-10 2007-09-10 Voltage control method for distribution system

Country Status (1)

Country Link
JP (1) JP2009065817A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036091A (en) * 2009-08-05 2011-02-17 Sanken Electric Co Ltd Voltage regulator and voltage-adjusting method
JP2012147577A (en) * 2011-01-12 2012-08-02 Chugoku Electric Power Co Inc:The Operation method of distribution system, and operation apparatus and program for distribution system
JP2013027089A (en) * 2011-07-19 2013-02-04 Mitsubishi Electric Corp Voltage control apparatus
JP2013243925A (en) * 2009-05-07 2013-12-05 Dominion Resources Inc Voltage conservation using advanced metering infrastructure and substation centralized voltage control
WO2014024731A1 (en) * 2012-08-06 2014-02-13 株式会社 東芝 Linkage system switching device and power control system
WO2014054108A1 (en) * 2012-10-01 2014-04-10 富士通株式会社 Power distribution management device, voltage determination method, and voltage determination program
US9325174B2 (en) 2013-03-15 2016-04-26 Dominion Resources, Inc. Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis
US9354641B2 (en) 2013-03-15 2016-05-31 Dominion Resources, Inc. Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis
US9367075B1 (en) 2013-03-15 2016-06-14 Dominion Resources, Inc. Maximizing of energy delivery system compatibility with voltage optimization using AMI-based data control and analysis
US9563218B2 (en) 2013-03-15 2017-02-07 Dominion Resources, Inc. Electric power system control with measurement of energy demand and energy efficiency using t-distributions
US9847639B2 (en) 2013-03-15 2017-12-19 Dominion Energy, Inc. Electric power system control with measurement of energy demand and energy efficiency
JP2018137845A (en) * 2017-02-20 2018-08-30 株式会社明電舎 Voltage control device with voltage regulator, and voltage control method thereof
CN109816247A (en) * 2019-01-26 2019-05-28 国网福建省电力有限公司 It is associated with the electric grid investment decision-making modeling method and device of modification measures and route heavy duty
US10732656B2 (en) 2015-08-24 2020-08-04 Dominion Energy, Inc. Systems and methods for stabilizer control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201141A (en) * 1997-01-08 1998-07-31 Toshiba Corp Voltage monitor control apparatus for distribution system
JP2004220500A (en) * 2003-01-17 2004-08-05 Hokuriku Electric Power Co Inc:The Voltage regulating method for distribution system and automatic voltage regulator used therefor
JP2004274812A (en) * 2003-03-05 2004-09-30 Hitachi Ltd Method for supporting to maintain power quality in distribution system and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201141A (en) * 1997-01-08 1998-07-31 Toshiba Corp Voltage monitor control apparatus for distribution system
JP2004220500A (en) * 2003-01-17 2004-08-05 Hokuriku Electric Power Co Inc:The Voltage regulating method for distribution system and automatic voltage regulator used therefor
JP2004274812A (en) * 2003-03-05 2004-09-30 Hitachi Ltd Method for supporting to maintain power quality in distribution system and system

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243925A (en) * 2009-05-07 2013-12-05 Dominion Resources Inc Voltage conservation using advanced metering infrastructure and substation centralized voltage control
JP2011036091A (en) * 2009-08-05 2011-02-17 Sanken Electric Co Ltd Voltage regulator and voltage-adjusting method
JP2012147577A (en) * 2011-01-12 2012-08-02 Chugoku Electric Power Co Inc:The Operation method of distribution system, and operation apparatus and program for distribution system
JP2013027089A (en) * 2011-07-19 2013-02-04 Mitsubishi Electric Corp Voltage control apparatus
WO2014024731A1 (en) * 2012-08-06 2014-02-13 株式会社 東芝 Linkage system switching device and power control system
JPWO2014054108A1 (en) * 2012-10-01 2016-08-25 富士通株式会社 Distribution management device, voltage determination method, and voltage determination program
WO2014054108A1 (en) * 2012-10-01 2014-04-10 富士通株式会社 Power distribution management device, voltage determination method, and voltage determination program
US9835659B2 (en) 2012-10-01 2017-12-05 Fujitsu Limited Power distribution management method, voltage determination method, and recording medium for determining transmission voltage of substation
US9887541B2 (en) 2013-03-15 2018-02-06 Dominion Energy, Inc. Electric power system control with measurement of energy demand and energy efficiency using T-distributions
US10768655B2 (en) 2013-03-15 2020-09-08 Dominion Energy, Inc. Maximizing of energy delivery system compatibility with voltage optimization
US9553453B2 (en) 2013-03-15 2017-01-24 Dominion Resources, Inc. Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis
US9563218B2 (en) 2013-03-15 2017-02-07 Dominion Resources, Inc. Electric power system control with measurement of energy demand and energy efficiency using t-distributions
US9582020B2 (en) 2013-03-15 2017-02-28 Dominion Resources, Inc. Maximizing of energy delivery system compatibility with voltage optimization using AMI-based data control and analysis
US9678520B2 (en) 2013-03-15 2017-06-13 Dominion Resources, Inc. Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis
US9354641B2 (en) 2013-03-15 2016-05-31 Dominion Resources, Inc. Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis
US9847639B2 (en) 2013-03-15 2017-12-19 Dominion Energy, Inc. Electric power system control with measurement of energy demand and energy efficiency
US9325174B2 (en) 2013-03-15 2016-04-26 Dominion Resources, Inc. Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis
US11550352B2 (en) 2013-03-15 2023-01-10 Dominion Energy, Inc. Maximizing of energy delivery system compatibility with voltage optimization
US10274985B2 (en) 2013-03-15 2019-04-30 Dominion Energy, Inc. Maximizing of energy delivery system compatibility with voltage optimization
US11132012B2 (en) 2013-03-15 2021-09-28 Dominion Energy, Inc. Maximizing of energy delivery system compatibility with voltage optimization
US10386872B2 (en) 2013-03-15 2019-08-20 Dominion Energy, Inc. Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis
US10476273B2 (en) 2013-03-15 2019-11-12 Dominion Energy, Inc. Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis
US10666048B2 (en) 2013-03-15 2020-05-26 Dominion Energy, Inc. Electric power system control with measurement of energy demand and energy efficiency using t-distributions
US10784688B2 (en) 2013-03-15 2020-09-22 Dominion Energy, Inc. Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis
US9367075B1 (en) 2013-03-15 2016-06-14 Dominion Resources, Inc. Maximizing of energy delivery system compatibility with voltage optimization using AMI-based data control and analysis
US10775815B2 (en) 2013-03-15 2020-09-15 Dominion Energy, Inc. Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis
US10732656B2 (en) 2015-08-24 2020-08-04 Dominion Energy, Inc. Systems and methods for stabilizer control
US11353907B2 (en) 2015-08-24 2022-06-07 Dominion Energy, Inc. Systems and methods for stabilizer control
US11755049B2 (en) 2015-08-24 2023-09-12 Dominion Energy, Inc. Systems and methods for stabilizer control
JP2018137845A (en) * 2017-02-20 2018-08-30 株式会社明電舎 Voltage control device with voltage regulator, and voltage control method thereof
CN109816247A (en) * 2019-01-26 2019-05-28 国网福建省电力有限公司 It is associated with the electric grid investment decision-making modeling method and device of modification measures and route heavy duty
CN109816247B (en) * 2019-01-26 2022-07-05 国网福建省电力有限公司 Power grid investment decision modeling method and device for associating transformation measures with line heavy load

Similar Documents

Publication Publication Date Title
JP2009065817A (en) Voltage control method for distribution system
EP2506384B1 (en) System and method for operating a tap changer
EP0673101B1 (en) Electrical power distribution monitoring system and method
US6219591B1 (en) Voltage instability predictor (VIP)—method and system for performing adaptive control to improve voltage stability in power systems
US8351233B2 (en) Closed-loop control method for an HVDC transfer installation having a DC voltage intermediate circuit and self-commutated converters
US10819112B1 (en) Feeder line fault response using direct current interconnection system
JP2007288877A (en) Power quality maintenance supporting method and system for power distribution system in linkage with a plurality of decentralized power sources
WO2000077908A1 (en) An application and method for voltage instability predictor (vip)
US20220253080A1 (en) Smart voltage reduction and reverse power operating mode determination for load tap charging transformers and voltage regulators
JP2010161865A (en) System and method for protecting ground of distribution system and program
WO1993020497A1 (en) Control system and method for the parallel operation of voltage regulators
JP2012175778A (en) Voltage reactive power control device
JP2009065816A (en) Voltage control method for distribution system
WO2019150586A1 (en) Centralized voltage control device and centralized voltage control system
JP4224309B2 (en) Voltage adjustment method for distribution system and automatic voltage adjustment device used for the method
JP6596858B2 (en) Automatic voltage adjusting device and automatic voltage adjusting method
JP6942321B2 (en) Average current control system
JP6848234B2 (en) Voltage monitoring and control device
JPH11206018A (en) Controller for substation voltage and reactive power
JPH1066261A (en) Apparatus and method for automatic loop changeover of distribution line
WO2020198565A1 (en) Feeder line fault response using direct current interconnection system
Gajić et al. Using IEC 61850 analogue goose messages for OLTC control of parallel transformers
KR200352461Y1 (en) Device for saving electricity added automatic power factor control function
RU2767517C1 (en) Method and device for automatic voltage control in an electric network using an electric energy accumulator
JP5415511B2 (en) Prediction method of transformer tap value

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213