JP2009064190A - Method for determining control parameter of drive of multi-axis moving element and its apparatus - Google Patents

Method for determining control parameter of drive of multi-axis moving element and its apparatus Download PDF

Info

Publication number
JP2009064190A
JP2009064190A JP2007230705A JP2007230705A JP2009064190A JP 2009064190 A JP2009064190 A JP 2009064190A JP 2007230705 A JP2007230705 A JP 2007230705A JP 2007230705 A JP2007230705 A JP 2007230705A JP 2009064190 A JP2009064190 A JP 2009064190A
Authority
JP
Japan
Prior art keywords
moving body
axis moving
torque
control parameter
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007230705A
Other languages
Japanese (ja)
Other versions
JP4840301B2 (en
Inventor
Yasuhiko Kawanami
靖彦 川波
Kozo Ide
耕三 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2007230705A priority Critical patent/JP4840301B2/en
Publication of JP2009064190A publication Critical patent/JP2009064190A/en
Application granted granted Critical
Publication of JP4840301B2 publication Critical patent/JP4840301B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for determining control parameters of drives of a moving element, which enables stable travel of a loaded moving element that takes movement of its center of gravity into consideration, in view of the fact that it has been conventionally impossible to provide proper instructions to each driving wheel of a loaded moving element during travel since movement of its center of travel has not been taken into consideration. <P>SOLUTION: A load W of unknown weight is placed on a multi-axis moving element 1 and away from its center of gravity. Until a certain speed is reached, the torque of each of the drives 3a to 3c which occurs as the moving element 1 is driven linearly is detected. The torque ratio of the drives 3a to 3c is calculated from the torques detected. The distance from the center of gravity is estimated from the torque ratio. With the estimated distance as a control parameter, computations are performed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、搬送車など移動体の走行制御方法に関するもので、特に、多軸移動体の各駆動装置の制御パラメータ決定方法およびその装置に関する。   The present invention relates to a traveling control method for a moving body such as a transport vehicle, and more particularly to a control parameter determination method and apparatus for each driving device of a multi-axis moving body.

電動機を駆動輪とした搬送車や移動台車に荷物を載せて走行させる場合、荷物の重量が判明していないと、駆動輪を速度制御する場合の最適な制御ゲインを設定することができず安定に走行制御することができない。
従来の移動体による荷物の重量測定方法として圧力センサや重量計測器上に荷物を搭載した状態の移動体を載せて重量を計測し、それを駆動輪の制御パラメータとして演算し、速度制御系の最適なゲインを求めていた。
一方、センサや測定装置を用いない重量測定方法として、特許文献1〜4の例があった。これらは、搭載物を載置台に搭載した時の載置台に備えた前輪の変形による外周変化の下での走行距離と搭載物無しの場合の走行距離とを比較して荷重を求めていた。また、他の搭載物の重量推定方法として、移動体を一定速度になるまで加速させ、この際に得られたトルクと加速度から移動体の搭載物の重量を推定していた。この重量を制御パラメータとして演算し、速度制御系のゲイン制御信号を演算することで安定な走行制御を実現していた。
特開2004-091079号公報 特開昭60-169912号公報(第4頁、図1) 特開昭60- 58313号公報(第6頁、図3) 特開昭62-659109号公報(第5頁、図3)
When traveling with a load on a transport vehicle or moving carriage that uses an electric motor as a drive wheel, if the weight of the load is not known, the optimal control gain for speed control of the drive wheel cannot be set and stable. Cannot be controlled.
As a conventional method of measuring the weight of a load by a moving body, the weight is measured by placing the moving body with the load mounted on a pressure sensor or a weight measuring instrument, and the weight is calculated as a control parameter for the driving wheel. The optimum gain was sought.
On the other hand, there existed the example of patent documents 1-4 as a weight measuring method which does not use a sensor and a measuring device. In these cases, the load is obtained by comparing the travel distance under the change in the outer circumference due to the deformation of the front wheel provided on the mounting table when the mounted object is mounted on the mounting table with the traveling distance in the case of no load. As another weight estimation method for the load, the moving object is accelerated to a constant speed, and the weight of the load on the moving object is estimated from the torque and acceleration obtained at this time. By calculating this weight as a control parameter and calculating a gain control signal of the speed control system, stable traveling control has been realized.
JP 2004-091079 A Japanese Patent Laid-Open No. 60-169912 (page 4, FIG. 1) JP-A-60-58313 (page 6, FIG. 3) JP-A-62-659109 (5th page, FIG. 3)

従来例の複数の駆動装置を持つ移動体は、一定速度まで加速する時に検出したトルクから搭載物の重量を推定していたが、重心位置のずれを考慮していないため、移動体の走行時に各駆動装置に適正な指令を与えることができず、安定な走行ができなかった。
本発明は、移動体上に重量不明の搭載物を任意の場所に配置しても、搭載物の重量および重心位置のずれを検出、または演算によって推定し、この重量および重心位置ずれを制御パラメータとして演算し、自動的に各駆動装置のゲイン調整することで安定な走行を実現できる多軸移動体の制御パラメータ決定方法を提供することを目的とする。
また、従来例では路面の動摩擦係数を考慮していないため、路面状況に応じた制御パラメータの決定ができず駆動輪を安定に制御することができなかった。本発明は、等速運動中に各駆動装置で検出させる動摩擦係数μも制御パラメータとして演算し、自動的に各駆動装置のゲイン調整することで安定な走行を実現できる多軸移動体の制御パラメータ決定方法を提供することを目的とする。
The moving body having a plurality of driving devices of the conventional example estimates the weight of the load from the torque detected when accelerating to a constant speed, but does not consider the deviation of the center of gravity position, so when moving the moving body An appropriate command could not be given to each drive unit, and stable running could not be performed.
The present invention detects or estimates the displacement of the weight and the center of gravity position of the mounted object even if an unknown weight mounted object is placed on the moving object, and the weight and the gravity center position deviation are controlled by the control parameter. It is an object of the present invention to provide a control parameter determination method for a multi-axis moving body that can realize stable traveling by calculating the gain of each driving device automatically.
Further, in the conventional example, since the dynamic friction coefficient of the road surface is not taken into consideration, the control parameter according to the road surface condition cannot be determined, and the driving wheel cannot be controlled stably. The present invention calculates the dynamic friction coefficient μ detected by each driving device during constant speed motion as a control parameter, and automatically adjusts the gain of each driving device to control the multi-axis moving body that can realize stable traveling The purpose is to provide a decision method.

上記問題を解決するため、本発明は、次のように構成したものである。
請求項1記載の多軸移動体の各駆動装置の制御パラメータ決定方法の発明は、筐体の側面に2つ以上の駆動装置を配置した多軸移動体の前記各駆動装置の制御パラメータ決定方法において、重量不明の搭載物を前記多軸移動体上に重心位置がずれた状態で置き、一定速度に到達するまで前記多軸移動体を直線に走行させたときに発生する各前記駆動装置のトルクを検出し、前記検出した各トルクから各前記駆動装置のトルク比を求め、前記トルク比から重心位置のずれた距離を推定し、前記距離を前記制御パラメータとして演算することで前記多軸移動体を安定に走行制御するようにしたのである。
請求項2記載の多軸移動体の各駆動装置の制御パラメータ決定方法の発明は、筐体の側面に2つ以上の駆動装置を配置した多軸移動体の前記各駆動装置の制御パラメータ決定方法において、重量不明の搭載物を前記多軸移動体上に重心位置がずれた状態で置き、一定角速度に到達するまで前記多軸移動体を、前記多軸移動体の重心を中心に回転させることでそれぞれの前記駆動装置間のトルク比を求め、前記トルク比を制御パラメータとして演算することで前記多軸移動体を安定に走行制御するようにしたのである。
請求項3記載の多軸移動体の各駆動装置の制御パラメータ決定方法の発明は、筐体の側面に2つ以上の駆動装置を配置した多軸移動体の前記各駆動装置の制御パラメータ決定方法において、重量不明の搭載物を前記多軸移動体上に重心位置がずれた状態で置き、前記多軸移動体を等速度運動させたときに発生する各前記駆動装置のトルクを検出し、前記駆動装置で検出されたトルク増加分から路面の動摩擦係数を推定し、 前記動摩擦係数を制御パラメータとして演算することで前記多軸移動体を安定に走行制御するようにしたのである。
In order to solve the above problems, the present invention is configured as follows.
The control parameter determining method for each driving device of the multi-axis moving body according to claim 1 is a control parameter determining method for each driving device of the multi-axis moving body in which two or more driving devices are arranged on a side surface of a housing. In each of the driving devices generated when the load of unknown weight is placed on the multi-axis moving body in a state where the position of the center of gravity is shifted and the multi-axis moving body travels in a straight line until reaching a constant speed. The multi-axis movement is performed by detecting a torque, obtaining a torque ratio of each of the driving devices from each detected torque, estimating a distance in which the center of gravity is shifted from the torque ratio, and calculating the distance as the control parameter. The body was controlled to run stably.
The control parameter determining method for each driving device of the multi-axis moving body according to claim 2 is a control parameter determining method for each driving device of the multi-axis moving body in which two or more driving devices are arranged on a side surface of a housing. In this case, the load of unknown weight is placed on the multi-axis moving body in a state where the position of the center of gravity is shifted, and the multi-axis moving body is rotated around the center of gravity of the multi-axis moving body until a certain angular velocity is reached. Thus, the torque ratio between the drive devices is obtained, and the torque ratio is calculated as a control parameter, so that the multi-axis moving body is stably controlled.
The control parameter determining method for each driving device of the multi-axis moving body according to claim 3 is a control parameter determining method for each driving device of the multi-axis moving body in which two or more driving devices are arranged on a side surface of a housing. The load of unknown weight is placed on the multi-axis moving body in a state where the position of the center of gravity is shifted, and the torque of each driving device generated when the multi-axis moving body is moved at a constant speed is detected, The dynamic friction coefficient of the road surface is estimated from the torque increase detected by the driving device, and the dynamic friction coefficient is calculated as a control parameter, so that the multi-axis moving body is stably controlled.

請求項4記載の発明は、請求項1〜3のいずれか1項記載の多軸移動体の各駆動装置の制御パラメータ決定方法において、前記検出した各トルクから速度の時間微分を用いて前記搭載物の重量を推定し、前記重量を制御パラメータとして演算することで前記多軸移動体を安定に走行制御するようにしたのである。
請求項5記載の発明は、請求項4記載の多軸移動体の各駆動装置の制御パラメータ決定方法において、前記パラメータ決定方法によって決定された各駆動装置の制御パラメータを基に各駆動装置に最適なゲイン調整をすることで前記多軸移動体を安定に走行制御するようにしたのである。
請求項6記載の発明は、請求項4記載の多軸移動体の各駆動装置の制御パラメータ決定方法において、式(1)から搭載物の重量を推定することで前記多軸移動体を安定に走行制御するようにしたのである。
(T3a1+T3b1)・cosθ = (M1+M2)・R2・dω/dt + M3・R2・dω/dt ・・・・・式(1)
ここで、T3a1+T3b1:駆動装置の検出トルク、θは多軸移動体と駆動輪との角度で、多軸移動体に取り付けられた駆動輪の数によって変化し、駆動輪が二輪の時はθ= 0、三輪の時はθ= 30°、M1:多軸移動体1の重量、M2:搭載物Wの重量、
M3:駆動輪3の重量、R:駆動輪3の半径、である。
請求項7記載の発明は、請求項5記載の多軸移動体の各駆動装置の制御パラメータ決定方法において、式(2)から駆動輪のトルク比を求め、式(3)〜(5)から各駆動輪のゲインを修正することで前記多軸移動体を安定に走行制御するようにしたのである。
T3a: T3b: T3c = (T3a1 * T3a2):( T3b1 * T3a2):( T3c2 * T3a1) ・・・・式(2)
ここで、T3a、T3b、T3c :駆動輪のトルク、
3a1、T3b1:一方向に直線運動させたときの駆動輪3a、3bのトルク、
3a2、T3c2:他の方向に直線運動させたときの駆動輪3a、3cのトルク、
G3a = G ・T3a /(T3a + T3b + T3c) ・・・・・・式(3)
G3b = G ・T3b /(T3a + T3b + T3c) ・・・・・・式(4)
G3c = G ・T3c /(T3a + T3b + T3c) ・・・・・・式(5)
ここで、G3a ,G3b ,G3c:各駆動輪の補正後のゲイン、
G:搭載物の推定重量を重心位置上で移動する時の駆動輪のゲイン
According to a fourth aspect of the present invention, in the method for determining a control parameter of each driving device for a multi-axis moving body according to any one of the first to third aspects, the mounting is performed using a time derivative of speed from each detected torque. By estimating the weight of the object and calculating the weight as a control parameter, the multi-axis moving body is stably controlled.
The invention according to claim 5 is the control parameter determination method for each drive device of the multi-axis moving body according to claim 4, and is optimal for each drive device based on the control parameter of each drive device determined by the parameter determination method. Thus, the multi-axis moving body is stably controlled by adjusting the gain appropriately.
According to a sixth aspect of the present invention, in the control parameter determining method for each drive device of the multi-axis moving body according to the fourth aspect, the multi-axis moving body can be stabilized by estimating the weight of the load from the equation (1). The driving was controlled.
(T 3a1 + T 3b1 ) ・ cosθ = (M 1 + M 2 ) ・ R 2・ dω / dt + M 3・ R 2・ dω / dt (1)
Here, T 3a1 + T 3b1 : Detected torque of the driving device, θ is an angle between the multi-axis moving body and the driving wheel, and changes depending on the number of driving wheels attached to the multi-axis moving body. When θ = 0, Three wheel θ = 30 °, M 1 : Weight of multi-axis moving body 1, M 2 : Weight of load W,
M 3 is the weight of the driving wheel 3, and R is the radius of the driving wheel 3.
According to a seventh aspect of the present invention, in the control parameter determining method for each drive device of the multi-axis moving body according to the fifth aspect, the torque ratio of the drive wheel is obtained from the equation (2), and from the equations (3) to (5) The multi-axis moving body is stably controlled by correcting the gain of each drive wheel.
T 3a : T 3b : T 3c = (T 3a1 * T 3a2 ) :( T 3b1 * T 3a2 ) :( T 3c2 * T 3a1 ) ・ ・ ・ ・ Formula (2)
Here, T 3a , T 3b , T 3c : Torque of driving wheel,
T 3a1 , T 3b1 : Torque of the drive wheels 3a, 3b when linearly moving in one direction,
T 3a2 , T 3c2 : Torques of the drive wheels 3a, 3c when linearly moving in other directions,
G 3a = G • T 3a / (T 3a + T 3b + T 3c ) ・ ・ ・ ・ ・ ・ Equation (3)
G 3b = G · T 3b / (T 3a + T 3b + T 3c ) ··· Equation (4)
G 3c = G · T 3c / (T 3a + T 3b + T 3c ) ········· Equation (5)
Where G 3a , G 3b , G 3c : the corrected gain of each drive wheel,
G: Gain of the drive wheel when moving the estimated weight of the load on the center of gravity

請求項8記載の多軸移動体の各駆動装置の制御パラメータ決定装置の発明は、筐体の側面に2つ以上の駆動装置を配置した多軸移動体の前記各駆動装置の制御パラメータ決定装置において、前記多軸移動体を加速させて直線走行又は回転させたときに発生する各前記駆動装置のトルクを検出するトルク検出手段と、前記検出した各トルクから各前記駆動装置のトルク比を求めるトルク比演算手段と、前記トルク比演算手段の演算したトルク比から重心位置のずれた距離を推定する重心位置推定手段と、前記重心位置推定手段の推定した距離を制御パラメータとして演算する制御パラメータ演算手段と、を備えたことで前記多軸移動体を安定に走行制御するようにしたのである。
請求項9記載の多軸移動体の各駆動装置の制御パラメータ決定装置の発明は、筐体の側面に2つ以上の駆動装置を配置した多軸移動体の前記各駆動装置の制御パラメータ決定装置において、前記多軸移動体を等速運動で直線走行させたときに発生する各前記駆動装置のトルクを検出するトルク検出手段と、前記検出されたトルクの増加分から路面の動摩擦係数を推定する路面動摩擦係数推定手段と、
前記路面動摩擦係数推定手段の推定した動摩擦係数を制御パラメータとして演算する制御パラメータ演算手段と、を備えたことで前記多軸移動体を安定に走行制御するようにしたのである。
請求項10記載の発明は、請求項8または9記載の多軸移動体の各駆動装置の制御パラメータ決定装置において、前記制御パラメータ演算手段が、前記検出した各トルクから速度の時間微分を用いて前記搭載物の重量を推定し、この推定重量を制御パラメータとして演算することで前記多軸移動体を安定に走行制御するようにしたのである。
請求項11記載の発明は、請求項10記載の多軸移動体の各駆動装置の制御パラメータ決定装置において、前記演算された制御パラメータを基に各駆動装置に最適なゲイン調整をするゲイン調整手段を備えたことで前記多軸移動体を安定に走行制御するようにしたのである。
The control parameter determining device for each driving device of the multi-axis moving body according to claim 8 is the control parameter determining device for each driving device of the multi-axis moving body in which two or more driving devices are arranged on the side surface of the housing. The torque detecting means for detecting the torque of each of the driving devices generated when the multi-axis moving body is accelerated and rotated or rotated, and the torque ratio of each of the driving devices is obtained from the detected torques. Torque ratio calculation means, center of gravity position estimation means for estimating the distance of the center of gravity position from the torque ratio calculated by the torque ratio calculation means, and control parameter calculation for calculating the distance estimated by the center of gravity position estimation means as control parameters The multi-axis moving body is stably controlled.
The invention of the control parameter determining device for each driving device of the multi-axis moving body according to claim 9 is the control parameter determining device for each driving device of the multi-axis moving body in which two or more driving devices are arranged on the side surface of the housing. A torque detecting means for detecting a torque of each of the driving devices generated when the multi-axis moving body is linearly moved at a constant speed, and a road surface for estimating a dynamic friction coefficient of the road surface from the detected increase in torque. Dynamic friction coefficient estimating means;
Control parameter calculation means for calculating the dynamic friction coefficient estimated by the road surface dynamic friction coefficient estimation means as a control parameter is provided, so that the multi-axis moving body is stably controlled.
A tenth aspect of the present invention is the control parameter determining device for each driving device of the multi-axis moving body according to the eighth or ninth aspect, wherein the control parameter calculating means uses a time derivative of the speed from each detected torque. The weight of the mounted object is estimated, and the estimated weight is calculated as a control parameter, so that the multi-axis moving body is stably controlled.
The invention as set forth in claim 11 is the control parameter determination device for each drive device of the multi-axis moving body according to claim 10, wherein the gain adjustment means performs optimum gain adjustment for each drive device based on the calculated control parameter. Thus, the multi-axis moving body is stably controlled for traveling.

請求項12記載の発明は、請求項10記載の多軸移動体の各駆動装置の制御パラメータ決定装置において、式(1)から搭載物の重量を推定することで前記多軸移動体を安定に走行制御するようにしたのである。
(T3a1+T3b1)・cosθ = (M1+M2)・R2・dω/dt + M3・R2・dω/dt ・・・・・式(1)
ここで、T3a1+T3b1:駆動装置の検出トルク、θは多軸移動体と駆動輪との角度で、多軸移動体に取り付けられた駆動輪の数によって変化し、駆動輪が二輪の時はθ= 0、三輪の時はθ= 30°、M1:多軸移動体1の重量、M2:搭載物Wの重量、
M3:駆動輪3の重量、R:駆動輪3の半径、である。
請求項13記載の発明は、請求項11記載の多軸移動体の各駆動装置の制御パラメータ決定装置において、前記ゲイン調整手段が、式(2)から駆動輪のトルク比を求め、式(3)〜(5)から各駆動輪のゲインを修正することで前記多軸移動体を安定に走行制御するようにしたのである。
T3a: T3b: T3c = (T3a1 * T3a2):( T3b1 * T3a2):( T3c2 * T3a1) ・・・・式(2)
ここで、T3a、T3b、T3c :駆動輪のトルク、
3a1、T3b1:一方向に直線運動させたときの駆動輪3a、3bのトルク、
3a2、T3c2:他の方向に直線運動させたときの駆動輪3a、3cのトルク、
G3a = G ・T3a /(T3a + T3b + T3c) ・・・・・・式(3)
G3b = G ・T3b /(T3a + T3b + T3c) ・・・・・・式(4)
G3c = G ・T3c /(T3a + T3b + T3c) ・・・・・・式(5)
ここで、G3a ,G3b ,G3c:各駆動輪の補正後のゲイン、
G:搭載物の推定重量を重心位置上で移動する時の駆動輪のゲイン
According to a twelfth aspect of the present invention, in the control parameter determining device for each drive device of the multi-axis moving body according to the tenth aspect, the multi-axis moving body can be stabilized by estimating the weight of the load from Equation (1). The driving was controlled.
(T 3a1 + T 3b1 ) ・ cosθ = (M 1 + M 2 ) ・ R 2・ dω / dt + M 3・ R 2・ dω / dt (1)
Here, T 3a1 + T 3b1 : Detected torque of the driving device, θ is an angle between the multi-axis moving body and the driving wheel, and changes depending on the number of driving wheels attached to the multi-axis moving body. When θ = 0, Three wheel θ = 30 °, M 1 : Weight of multi-axis moving body 1, M 2 : Weight of load W,
M 3 is the weight of the driving wheel 3, and R is the radius of the driving wheel 3.
According to a thirteenth aspect of the present invention, in the control parameter determination device for each driving device of the multi-axis moving body according to the eleventh aspect, the gain adjusting means obtains the torque ratio of the driving wheel from the equation (2), and the equation (3 From (5) to (5), the gain of each drive wheel is corrected to stably control the multi-axis moving body.
T 3a : T 3b : T 3c = (T 3a1 * T 3a2 ) :( T 3b1 * T 3a2 ) :( T 3c2 * T 3a1 ) ・ ・ ・ ・ Formula (2)
Here, T 3a , T 3b , T 3c : Torque of driving wheel,
T 3a1 , T 3b1 : Torque of the drive wheels 3a, 3b when linearly moving in one direction,
T 3a2 , T 3c2 : Torques of the drive wheels 3a, 3c when linearly moving in other directions,
G 3a = G • T 3a / (T 3a + T 3b + T 3c ) ・ ・ ・ ・ ・ ・ Equation (3)
G 3b = G · T 3b / (T 3a + T 3b + T 3c ) ··· Equation (4)
G 3c = G · T 3c / (T 3a + T 3b + T 3c ) ········· Equation (5)
Where G 3a , G 3b , G 3c : the corrected gain of each drive wheel,
G: Gain of the drive wheel when moving the estimated weight of the load on the center of gravity

請求項1に記載の発明によると、多軸移動体を一定速度に到達するまで直線に走行させたときに発生する各駆動装置間のトルク比から重心位置のずれを推定し、制御パラメータとして演算し、各駆動装置に最適なゲイン調整をすることで、多軸移動体の重心位置を中心とした安定な走行制御を実現することができる。
請求項2に記載の発明によると、多軸移動体において、重量不明の搭載物を多軸移動体上に置くことによって多軸移動体の重心位置がずれた状態で、一定角速度に到達するまで多軸移動体を、重心を中心に回転させることでそれぞれの駆動装置間のトルク比から重心位置を推定し、また制御パラメータを演算することで、多軸移動体の重心位置を中心とした安定な走行制御することができる。
請求項3および9に記載の発明によると、多軸移動体を等速度運動させる時に、駆動装置に発生するトルク増加分から路面の動摩擦係数μを推定し、制御パラメータとして演算し、多軸移動体を安定に走行制御することができる。
According to the first aspect of the present invention, the deviation of the center of gravity is estimated from the torque ratio between the driving devices generated when the multi-axis moving body travels linearly until reaching a constant speed, and is calculated as a control parameter. In addition, by performing optimum gain adjustment for each driving device, it is possible to realize stable traveling control around the center of gravity of the multi-axis moving body.
According to the second aspect of the present invention, in a multi-axis moving body, until a constant angular velocity is reached in a state where the center of gravity position of the multi-axis moving body is shifted by placing a load of unknown weight on the multi-axis moving body. By rotating the multi-axis moving body around the center of gravity, the center of gravity position is estimated from the torque ratio between the drive units, and by calculating the control parameters, the center of gravity of the multi-axis moving body is stable. Traveling control is possible.
According to the third and ninth aspects of the invention, when the multi-axis moving body is moved at a constant speed, the dynamic friction coefficient μ of the road surface is estimated from the torque increase generated in the drive device, and is calculated as a control parameter. Can be stably controlled.

請求項4および5に記載の発明によると、各駆動装置のトルクから速度の時間微分を用いて搭載物の重量を推定し、制御パラメータとして演算し、各駆動装置に最適なゲイン調整をすることで、多軸移動体の重心位置を中心とした安定な走行制御を実現することができる。
請求項6および12に記載の発明によると、式(1)から搭載物の重量を推定することで搭載物の重量の推定が簡単かつ正確に行えるようになる。
請求項7および13に記載の発明によると、式(2)〜(5)から各駆動輪のゲインの修正が簡単かつ正確に行えるようになる。
According to the invention described in claims 4 and 5, the weight of the load is estimated from the torque of each driving device using the time derivative of the speed, is calculated as a control parameter, and the optimum gain adjustment is performed for each driving device. Thus, stable traveling control centered on the position of the center of gravity of the multi-axis moving body can be realized.
According to the invention described in claims 6 and 12, the weight of the load can be estimated easily and accurately by estimating the weight of the load from the equation (1).
According to the seventh and thirteenth aspects of the present invention, the gain of each drive wheel can be easily and accurately corrected from the equations (2) to (5).

請求項8に記載の発明によると、多軸移動体を一定速度に到達するまで直線運動又は回転させたときに発生する各駆動装置間のトルク比から重心位置のずれを推定し、制御パラメータとして演算し、各駆動装置に最適なゲイン調整をすることで、多軸移動体の重心位置を中心とした安定な走行制御を実現することができる。
請求項10および11に記載の発明によると、各駆動装置のトルクから速度の時間微分を用いて搭載物の重量を推定し、制御パラメータとして演算し、各駆動装置に最適なゲイン調整をすることで、多軸移動体の重心位置を中心とした安定な走行制御を実現することができる。
According to the invention described in claim 8, the center-of-gravity position deviation is estimated from the torque ratio between the driving devices generated when the multi-axis moving body is linearly moved or rotated until reaching a constant speed, and is used as a control parameter. By calculating and performing optimum gain adjustment for each drive device, stable traveling control centered on the position of the center of gravity of the multi-axis moving body can be realized.
According to the invention described in claims 10 and 11, the weight of the load is estimated from the torque of each driving device using the time derivative of the speed, is calculated as a control parameter, and the optimum gain adjustment is performed for each driving device. Thus, stable traveling control centered on the position of the center of gravity of the multi-axis moving body can be realized.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

〈重心の推定方法〉
図1は、本発明の多軸移動体1の例で,(a)は上面図、(b)は正面図である。
筐体2の側面に3つの駆動輪3(3a〜3c)が互いに120度の間隔で取り付けられている。各駆動輪3a〜3cの外周にはそれぞれ駆動輪3a〜3cの軸方向3as〜3csに回転する多数の車輪5が配置されていることで、駆動輪3a〜3cは回転方向3ar〜3crのほかに軸方向3as〜3csにも移動することができる。多軸移動体1は、その上面中央に搭載物Wを載せて重心位置4を中心に走行、回転する。
<Method of estimating the center of gravity>
FIG. 1 is an example of a multi-axis moving body 1 according to the present invention, in which (a) is a top view and (b) is a front view.
Three drive wheels 3 (3a to 3c) are attached to the side surface of the housing 2 at intervals of 120 degrees. A large number of wheels 5 that rotate in the axial directions 3as to 3cs of the drive wheels 3a to 3c are arranged on the outer circumferences of the drive wheels 3a to 3c, respectively, so that the drive wheels 3a to 3c are in addition to the rotation directions 3ar to 3cr. It can also move in the axial direction 3as-3cs. The multi-axis moving body 1 travels and rotates around the center of gravity position 4 with the load W placed on the center of the upper surface thereof.

図2は本発明の三輪式多軸移動体の上に搭載物を載せた時の上面図である。
図において、多軸移動体1の上面に重量不明の搭載物Wを多軸移動体1の重心位置4からずらして載せた状態を示している。このように配置することで搭載物Wを含む多軸移動体1の重心は重心位置4から重心位置7へ移動する。
FIG. 2 is a top view when a load is placed on the three-wheeled multi-axis moving body of the present invention.
In the drawing, a state in which a load W of unknown weight is placed on the upper surface of the multiaxial moving body 1 while being shifted from the center of gravity position 4 of the multiaxial moving body 1 is shown. By arranging in this way, the center of gravity of the multi-axis moving body 1 including the load W moves from the center of gravity position 4 to the center of gravity position 7.

図3は図2のように搭載物Wを多軸移動体1上に中心からそれた位置に置いた際の搭載物Wの重量および重心位置を推定する方法のフローチャート8である。
まず、多軸移動体1上の搭載物Wの重量変化があったかどうかを判断し(9a)、判断結果、変化がなければステップ15aへ飛んでそのまま走行を続ける。
また、判断結果、変化があればまず一方向への直線運動ルーチンに移り、ステップ10aで一方向への直線運動をし、各駆動輪3a〜3cでの各トルク検出を行い(ステップ11a)、駆動輪3a〜3c間のトルク比検出を行う(ステップ12a)。
次に、他の方向への直線運動ルーチンに移り、前のステップ10aでの直線運動とは異なる方向に直線運動を行う(ステップ10b)。各駆動輪3a〜3cでの各トルク検出を行い(ステップ11b)、駆動輪3a〜3c間のトルク比検出を行う(ステップ12b)。
その後、ステップ13aで搭載物Wの重量と重心位置を推定し、これを制御パラメータとして演算し、各駆動輪3のゲイン補正を行った後(ステップ14a)、多軸移動体1を走行させる(ステップ15a)。
FIG. 3 is a flowchart 8 of a method for estimating the weight and the center of gravity position of the load W when the load W is placed on the multi-axis moving body 1 at a position off the center as shown in FIG.
First, it is determined whether or not there is a change in the weight of the load W on the multi-axis moving body 1 (9a), and if there is no change as a result of the determination, the process jumps to step 15a and continues running.
Further, if there is a change in the determination result, first, the routine moves to a linear motion routine in one direction, and linear motion in one direction is performed in step 10a, and each torque is detected in each of the drive wheels 3a to 3c (step 11a). Torque ratio detection between the drive wheels 3a to 3c is performed (step 12a).
Next, the process moves to a linear motion routine in another direction, and linear motion is performed in a direction different from the linear motion in the previous step 10a (step 10b). Each torque detection in each driving wheel 3a-3c is performed (step 11b), and the torque ratio detection between the driving wheels 3a-3c is performed (step 12b).
Thereafter, in step 13a, the weight and the center of gravity position of the load W are estimated, calculated as control parameters, and after gain correction for each drive wheel 3 (step 14a), the multi-axis moving body 1 is run ( Step 15a).

以上のフローチャート8の手法について図4〜図6を用いて具体的に説明する。
まず、図3のフローチャート8の1つめのルーチンを図4のようにして実行する。図4は本発明の三輪式多軸移動体を直線走行させた時の上面図である。図4のように搭載物Wを搭載した状態で重心位置4を通る駆動輪3cの軸に平行な方向19cに向かって多軸移動体1を一定速度に達するまで直線運動させる(図3のステップ10a)。この場合、駆動輪3aと3bには速度指令を与えるが、駆動輪3cには速度指令を与えず、駆動輪3cの外周に配備した車輪5を空転させる。
重心位置7が重心位置4から偏心している結果、直線運動している駆動輪3a、3bから反力として検出される駆動輪3aのトルクT3a120と駆動輪3bのトルクT3b121を検出する(図3のステップ11a)と、両者に差が生じる。そこで、駆動輪3a、3bのそれぞれの取り付け部を結ぶ軸線22をこのトルク比(T3a1:T3b1)で分配する。この場合、線分23は駆動輪3bのトルクT3b121による長さとなり、線分24は駆動輪3aのトルクT3a1による長さ20となり、この比で分配点25が求まる。
The method of the flowchart 8 will be specifically described with reference to FIGS.
First, the first routine of the flowchart 8 of FIG. 3 is executed as shown in FIG. FIG. 4 is a top view when the three-wheeled multi-axis moving body of the present invention is linearly traveled. As shown in FIG. 4, the multi-axis moving body 1 is linearly moved in a direction 19c parallel to the axis of the drive wheel 3c passing through the center of gravity position 4 with the load W mounted thereon until a constant speed is reached (step of FIG. 3). 10a). In this case, a speed command is given to the drive wheels 3a and 3b, but a speed command is not given to the drive wheel 3c, and the wheels 5 arranged on the outer periphery of the drive wheel 3c are idled.
As a result of the eccentricity of the center of gravity position 7 from the center of gravity position 4, the torque T 3a1 20 of the driving wheel 3a and the torque T 3b1 21 of the driving wheel 3b detected as reaction force from the driving wheels 3a and 3b that are linearly moving are detected. (Step 11a in FIG. 3) and a difference occur between the two. Therefore, the axis 22 connecting the mounting portions of the drive wheels 3a and 3b is distributed at this torque ratio (T 3a1 : T 3b1 ). In this case, the line segment 23 has a length due to the torque T 3b1 21 of the drive wheel 3b, and the line segment 24 has a length 20 due to the torque T 3a1 of the drive wheel 3a, and the distribution point 25 is obtained by this ratio.

次に、図3のフローチャート8の2つめのルーチンを図5のようにして実行する。図5は本発明の三輪式多軸移動体を他の方向へ直線走行させた時の上面図である。図5は図4の直線方向とは異なる直線方向へ直線運動させるもので、図において、重心位置4を通る駆動輪3bの軸方向に平行な方向19bに向かって多軸移動体1を一定速度に達するまで直線運動 10bさせる。
この場合、駆動輪3a、3cには速度指令を与えるが、駆動輪3bには速度指令を与えず、駆動輪3bの外周に配備した車輪5を空転させる。
この結果、重心位置7が重心位置4から偏心していることにより駆動輪3a、3cから反力として検出される駆動輪3aのトルクT3a2 26と駆動輪3cのトルクT3c227に差が生じる。駆動輪3a、3cのそれぞれの取り付け部を結ぶ軸線28をこのトルク比(T3a2:T3c2)で分配する。この場合、線分29は駆動輪3aのトルクT3a226による長さ、線分30は駆動輪3cのトルクT3c227による長さとなり、分配点31が求まる。
Next, the second routine of the flowchart 8 of FIG. 3 is executed as shown in FIG. FIG. 5 is a top view when the three-wheeled multi-axis moving body of the present invention is linearly moved in the other direction. FIG. 5 shows a linear motion in a linear direction different from the linear direction of FIG. 4. In the figure, the multiaxial moving body 1 is moved at a constant speed in a direction 19 b parallel to the axial direction of the drive wheel 3 b passing through the center of gravity position 4. 10b linear motion until reached.
In this case, the speed command is given to the drive wheels 3a and 3c, but the speed command is not given to the drive wheel 3b, and the wheels 5 arranged on the outer periphery of the drive wheel 3b are idled.
As a result, since the center of gravity position 7 is eccentric from the center of gravity position 4, a difference is generated between the torque T 3a2 26 of the driving wheel 3a detected as a reaction force from the driving wheels 3a and 3c and the torque T 3c2 27 of the driving wheel 3c. The axis 28 connecting the respective attachment portions of the drive wheels 3a and 3c is distributed at this torque ratio (T 3a2 : T 3c2 ). In this case, the line segment 29 has a length due to the torque T 3a2 26 of the drive wheel 3a, and the line segment 30 has a length due to the torque T 3c2 27 of the drive wheel 3c, and the distribution point 31 is obtained.

図6は本発明の三輪式多軸移動体に搭載物を載せた時の重心位置の求め方を説明する上面図である。図6から判るように、図4で求めた分配点25から駆動輪3cの軸に平行な直線32と、図5で求めた分配点31から駆動輪3bの軸に平行な直線33の交点から重心位置7を推定することができる。   FIG. 6 is a top view for explaining how to obtain the position of the center of gravity when a load is placed on the three-wheeled multi-axis moving body of the present invention. As can be seen from FIG. 6, from the intersection of the straight line 32 parallel to the axis of the drive wheel 3c from the distribution point 25 obtained in FIG. 4 and the straight line 33 parallel to the axis of the drive wheel 3b from the distribution point 31 obtained in FIG. The barycentric position 7 can be estimated.

重心位置7の位置をさらに精度よく求めるため、重心位置4を通る駆動輪3aの軸3as(図1a参照)方向に平行な方向19a(図6)にも多軸移動体1を直線運動させてもよい。この場合、駆動輪3b、3cには速度指令を与えるが、駆動輪3aには速度指令を与えず、駆動輪3aの外周に配備した車輪5を空転させて、駆動輪3bのトルクと駆動輪3cのトルクとを測定する。重心が移動していることからトルクに差が生じるので、駆動輪3b、3cのそれぞれの取り付け部を結ぶ軸線をこのトルク比で分配すれば分配点が求まる。そこでこの分配点から駆動輪3aの軸に平行な直線を引くと、図4および図5で求めた重心位置を通ることで推定重心が正確であることが確認できる。また、先の重心位置からずれていれば、3つの推定重心の描く三角形の重心を取る等の補正をすればよい。   In order to obtain the position of the center of gravity position 7 with higher accuracy, the multi-axis moving body 1 is linearly moved also in a direction 19a (FIG. 6) parallel to the direction of the axis 3as (see FIG. 1a) of the drive wheel 3a passing through the center of gravity position 4. Also good. In this case, a speed command is given to the drive wheels 3b and 3c, but a speed command is not given to the drive wheel 3a, and the wheel 5 provided on the outer periphery of the drive wheel 3a is idled so that the torque of the drive wheel 3b and the drive wheel The torque of 3c is measured. Since a difference in torque occurs because the center of gravity moves, a distribution point can be obtained by distributing the axis line connecting the mounting portions of the drive wheels 3b and 3c at this torque ratio. Therefore, when a straight line parallel to the axis of the drive wheel 3a is drawn from this distribution point, it can be confirmed that the estimated center of gravity is accurate by passing through the center of gravity position obtained in FIGS. If the center of gravity is shifted from the previous center of gravity, correction such as taking the center of gravity of the triangle drawn by the three estimated centers of gravity may be performed.

〈搭載物の重量推定方法〉
次に、搭載物Wの重量の推定方法を説明する。
図4で示した直線運動の方向19cに向かって多軸移動体1を一定速度Vに達するまで直線運動させた際に得られた駆動輪3a、3bから反力として検出されたトルクT3a1 17、T3b118とそのときの駆動輪3の各速度ωから以下の式によって算出する。
(T3a1+T3b1)・cosθ = (M1+M2)・R2・dω/dt + M3・R2・dω/dt ・・・・・式(1)
ここで、M1:多軸移動体1の重量、M2:搭載物Wの重量、M3:駆動輪3の重量
R:駆動輪3の半径
式(1)から搭載物Wの重量M2を推定することができる。θは多軸移動体1と駆動輪3との角度であり、多軸移動体1に取り付けられた駆動輪3の数によって変化する。駆動輪が二輪の時はθ= 0、三輪の時はθ= 30°となる。
<Method for estimating the weight of the load>
Next, a method for estimating the weight of the load W will be described.
Torque T 3a1 17 detected as a reaction force from the drive wheels 3a and 3b obtained when the multi-axis moving body 1 is linearly moved in the linear motion direction 19c shown in FIG. , T 3b1 18 and each speed ω of the driving wheel 3 at that time are calculated by the following equations.
(T 3a1 + T 3b1 ) ・ cosθ = (M 1 + M 2 ) ・ R 2・ dω / dt + M 3・ R 2・ dω / dt (1)
Here, M 1: weight of the multi-axis moving body 1, M 2: weight of the mounted object W, M 3: the weight of the driving wheel 3
R: Radius of the drive wheel 3 The weight M 2 of the load W can be estimated from the equation (1). θ is an angle between the multi-axis moving body 1 and the driving wheel 3 and changes depending on the number of driving wheels 3 attached to the multi-axis moving body 1. When there are two drive wheels, θ = 0, and when there are three wheels, θ = 30 °.

同様に、方向19bに向かって多軸移動体1を一定速度に達するまで直線運動させた場合も駆動輪3a、3cから検出されたトルクT3a2 23、T3c224を用いて式(1)から搭載物Wの重量を推定することができる。 Similarly, when the multiaxial moving body 1 is linearly moved in the direction 19b until reaching a constant speed, the torques T 3a2 23 and T 3c2 24 detected from the drive wheels 3a and 3c are used to obtain the equation (1). The weight of the load W can be estimated.

〈駆動輪のゲインの算出方法〉
次に、搭載物Wの推定重量を多軸移動体1の重心位置4上に載せて移動する場合の駆動輪3のゲインGをあらかじめ算出する。
図4で示した直線運動の方向方向19cに向かって多軸移動体1を一定速度に達するまで直線運動させたときに得られた駆動輪3a、3bのトルク比(T3a1:T3b1)と、図5で示した直線運動の方向19bに向かって多軸移動体1を一定速度に達するまで直線運動させたときに得られた駆動輪3a、3cのトルク比(T3a2:T3c2)から、3個の駆動輪3a、3b、3cのトルク比(T3a:T3b:T3c)を、式(2)により求める。

T3a: T3b: T3c = (T3a1 * T3a2):( T3b1 * T3a2):( T3c2 * T3a1) ・・・・式(2)

このトルク比(T3a:T3b:T3c)用いて、以下の式(3)、(4)、(5)によって各駆動輪3a、3b、3cのゲインを修正する。
G3a = G ・T3a /(T3a + T3b + T3c) ・・・・・・式(3)
G3b = G ・T3b /(T3a + T3b + T3c) ・・・・・・式(4)
G3c = G ・T3c /(T3a + T3b + T3c) ・・・・・・式(5)
ここで、G3a ,G3b ,G3c:各駆動輪の補正後のゲイン、
G:搭載物Wの推定重量を重心位置4上で移動する時の駆動輪3のゲイン
である。
このようにして算出した補正後のゲインを、駆動輪3の速度制御、位置制御に使用する。
<Calculation method of drive wheel gain>
Next, the gain G of the driving wheel 3 when the estimated weight of the load W is moved on the center of gravity position 4 of the multi-axis moving body 1 is calculated in advance.
The torque ratio (T 3a1 : T 3b1 ) of the drive wheels 3a and 3b obtained when the multi-axis moving body 1 is linearly moved in the linear movement direction direction 19c shown in FIG. 4 until reaching a constant speed. From the torque ratio (T 3a2 : T 3c2 ) of the drive wheels 3a and 3c obtained when the multi-axis moving body 1 is linearly moved in the linear movement direction 19b shown in FIG. 5 until reaching a constant speed. The torque ratio (T 3a : T 3b : T 3c ) of the three drive wheels 3a, 3b, and 3c is obtained by the equation (2).

T 3a : T 3b : T 3c = (T 3a1 * T 3a2 ) :( T 3b1 * T 3a2 ) :( T 3c2 * T 3a1 ) ・ ・ ・ ・ Formula (2)

Using the torque ratio (T 3a : T 3b : T 3c ), the gains of the drive wheels 3a, 3b, and 3c are corrected by the following equations (3), (4), and (5).
G 3a = G • T 3a / (T 3a + T 3b + T 3c ) ・ ・ ・ ・ ・ ・ Equation (3)
G 3b = G · T 3b / (T 3a + T 3b + T 3c ) ··· Equation (4)
G 3c = G · T 3c / (T 3a + T 3b + T 3c ) ········· Equation (5)
Where G 3a , G 3b , G 3c : the corrected gain of each drive wheel,
G: The gain of the driving wheel 3 when the estimated weight of the load W is moved on the center of gravity position 4.
The corrected gain calculated in this way is used for speed control and position control of the drive wheels 3.

〈駆動輪のゲインの別の算出方法〉
次に、各駆動輪3の別の補正ゲイン算出方法について説明する。
図7は本発明の三輪式多軸移動体の別のゲイン補正方法のフローチャートである。図7におけるフローチャート40は、まず、多軸移動体1上の搭載物Wの重量変化があったかどうかを判断し(9b)、判断結果、変化がなければステップ15bへ飛んでそのまま走行を続ける。また、判断結果、変化があればステップ41へ移って回転運動をし、各駆動輪3a〜3cでの各トルク検出を行い(ステップ11c)、駆動輪3a〜3c間のトルク比検出を行う(ステップ12c)。
次に搭載物Wの重量を推定し(ステップ42)、これを制御パラメータとして演算し、各駆動輪3のゲイン補正を行った後(ステップ14b)、多軸移動体1を走行させる(ステップ15b)。
<Another method for calculating drive wheel gain>
Next, another correction gain calculation method for each drive wheel 3 will be described.
FIG. 7 is a flowchart of another gain correction method for the three-wheeled multi-axis moving body of the present invention. In the flowchart 40 in FIG. 7, first, it is determined whether or not the weight of the load W on the multi-axis moving body 1 has changed (9b). If the result of the determination is that there is no change, the process jumps to step 15b and continues running. If there is a change as a result of the determination, the process moves to step 41 to perform a rotational motion, detect each torque in each drive wheel 3a-3c (step 11c), and detect a torque ratio between the drive wheels 3a-3c (step 11c). Step 12c).
Next, the weight of the load W is estimated (step 42), and this is calculated as a control parameter. After performing gain correction for each drive wheel 3 (step 14b), the multi-axis moving body 1 is caused to travel (step 15b). ).

次に、図7のフローチャート40の手法の具体的なやり方を図8を用いて説明する。図8は本発明の三輪式多軸移動体の上面図で、三輪式多軸移動体1の駆動輪3aの位置を角度ゼロとする重心位置4を中心とした円周42(点線)を示したものである。重心位置4を中心に1回転で一定角速度に達するまで多軸移動体1を回転運動する(図7のステップ41)ように速度指令を与えると、駆動輪3a、3b、3cのトルクT3a、T3b、T3cは、点線で示す円周42上の重心位置7の位置によって図9のような線図が得られる。図9は本発明の三輪式多軸移動体における重心位置と各駆動輪のトルクの相関関係を示す線図である。図において、(a)は駆動輪3aのトルク変化、(b)は駆動輪3bのトルク変化、(c)は駆動輪3cのトルク変化をそれぞれ示している。
図に示すように、駆動輪3a、3b、3cのトルクT3a、T3b、T3cは、円周43上の重心位置7の位置によってそれぞれの位相が2/3πずれたサイン波を描き、各サイン波の振幅の大きさは、搭載物Wの重量に比例して増減する。
例えば、重心位置7が図8のように多軸移動体1の上の点線で示す円周上に置かれていた場合、駆動輪3aのトルク、駆動輪3bのトルク、駆動輪3cのトルクのそれぞれの大きさはそれぞれ図中の矢印44、45、46の大きさとなる。
この各駆動輪のトルク大きさ44、45、46の長さをトルク比(T3a:T3b:T3c)として用いて上記式(3)、(4)、(5)から各駆動輪のゲインを修正することができる。
Next, the specific method of the method of the flowchart 40 of FIG. 7 is demonstrated using FIG. FIG. 8 is a top view of the three-wheeled multi-axis moving body of the present invention, and shows a circumference 42 (dotted line) centered on the center of gravity 4 where the position of the drive wheel 3a of the three-wheeled multi-axis moving body 1 is zero. It is a thing. When a speed command is given to rotate the multi-axis moving body 1 around the center of gravity position 4 until a constant angular velocity is reached in one rotation (step 41 in FIG. 7), torque T 3a of the drive wheels 3a, 3b, 3c, T 3b and T 3c are obtained as shown in FIG. 9 depending on the position of the center of gravity position 7 on the circumference 42 indicated by dotted lines. FIG. 9 is a diagram showing the correlation between the position of the center of gravity and the torque of each drive wheel in the three-wheel multi-axis moving body of the present invention. In the figure, (a) shows the torque change of the drive wheel 3a, (b) shows the torque change of the drive wheel 3b, and (c) shows the torque change of the drive wheel 3c.
As shown in the figure, the torques T 3a , T 3b , T 3c of the drive wheels 3a, 3b, 3c draw sine waves whose phases are shifted by 2 / 3π depending on the position of the center of gravity position 7 on the circumference 43, The amplitude of each sine wave increases or decreases in proportion to the weight of the load W.
For example, when the center-of-gravity position 7 is placed on the circumference indicated by the dotted line on the multi-axis moving body 1 as shown in FIG. 8, the torque of the driving wheel 3a, the torque of the driving wheel 3b, and the torque of the driving wheel 3c. The respective sizes are the sizes of arrows 44, 45 and 46 in the figure.
Using the lengths of the torque magnitudes 44, 45, and 46 of the drive wheels as the torque ratio (T 3a : T 3b : T 3c ), the above formulas (3), (4), and (5) Gain can be corrected.

〈二輪式多軸移動体の場合の搭載物重量および重心位置の推定方法〉
次に、図10のように多軸移動体1の駆動輪3が2輪の場合の搭載物重量および重心位置の推定方法について説明する。
〈二輪式多軸移動体の場合の重心位置の推定方法〉
まず、二輪式多軸移動体の場合の重心位置の推定方法について説明する。
図10は本発明の二輪式多軸移動体の例で、(a)は上面図、(b)は側面図、図11は本発明の二輪式多軸移動体の上に搭載物を載せた時の上面図である。
図10において、筐体2の互いの反対面に駆動輪3a、3bが設けられ、搭載物の無いときの重心位置は4となっている。また、筐体2には転倒防止のため補助輪47が取り付けられている。
図11のように多軸移動体1の上面に重量不明の搭載物Wを置くことで、多軸移動体1と搭載物Wを含む重心は、重心位置4から重心位置7へと移動する。
<Method of estimating the weight and center of gravity of the load in the case of a two-wheeled multi-axis moving body>
Next, a method for estimating the weight of the load and the center of gravity position when there are two drive wheels 3 of the multi-axis moving body 1 as shown in FIG. 10 will be described.
<Method of estimating the center of gravity for a two-wheeled multi-axis moving body>
First, a method for estimating the center of gravity in the case of a two-wheeled multi-axis moving body will be described.
FIG. 10 is an example of the two-wheeled multi-axis moving body of the present invention, (a) is a top view, (b) is a side view, and FIG. 11 is a mounted object on the two-wheeled multi-axis moving body of the present invention. It is a top view at the time.
In FIG. 10, drive wheels 3 a and 3 b are provided on opposite surfaces of the housing 2, and the center of gravity position when there is no mounted object is 4. In addition, an auxiliary wheel 47 is attached to the housing 2 to prevent it from falling.
As shown in FIG. 11, by placing the mounted object W of unknown weight on the upper surface of the multi-axis moving body 1, the center of gravity including the multi-axis moving body 1 and the mounted object W moves from the center of gravity position 4 to the center of gravity position 7.

図12は本発明の二輪式多軸移動体における重心および重量推定方法とゲイン補正方法のフローチャートである。図12に示すフローチャート48は、まず、多軸移動体1上の搭載物Wの重量変化があったかどうかを判断し(ステップ9c)、判断結果、変化がなければステップ15cへ飛んでそのまま走行を続ける。
また、判断結果、変化があれば、ステップ10cで直線運動をし、各駆動輪3a、3bでの各トルク検出を行い(ステップ11d)、駆動輪3a、3b間のトルク比検出を行う(ステップ12d)。その後、ステップ13cで搭載物Wの重量と重心位置を推定し、これを制御パラメータとして演算し、各駆動輪3a、3bのゲイン補正を行った後(ステップ14c)、多軸移動体1を走行させる(ステップ15c)。
FIG. 12 is a flowchart of the center-of-gravity and weight estimation method and gain correction method in the two-wheeled multi-axis moving body of the present invention. In the flowchart 48 shown in FIG. 12, first, it is determined whether or not the weight of the load W on the multi-axis moving body 1 has changed (step 9c), and if there is no change, the process jumps to step 15c and continues running. .
If there is a change as a result of the determination, a linear motion is performed at step 10c, each torque is detected at each drive wheel 3a, 3b (step 11d), and a torque ratio between the drive wheels 3a, 3b is detected (step). 12d). Thereafter, in step 13c, the weight and the center of gravity of the load W are estimated, calculated as control parameters, and after gain correction of each drive wheel 3a, 3b (step 14c), the multi-axis moving body 1 is traveled. (Step 15c).

フローチャート48の手法の具体的なやり方を説明する。
図13は本発明の二輪式多軸移動体に搭載物を載せた時の重心位置の求め方を説明する上面図である。図13のように多軸移動体1を方向49に向かって一定速度Vに達するまで直線運動させる(図12の10c)と、重心位置7が重心位置4から偏心していることにより駆動輪3a、3bで検出されるトルクはそれぞれT3a350、T3b3 51となる。
駆動輪3a、3bの取り付け軸を結ぶ軸線52を、直線運動10cで得られたトルク比(T3a3:T3b3)で分割される箇所に重心位置7が存在すると推定できる。この場合、重心位置7はトルクT3b351による長さ53と、トルクT3a350よる長さ54で分割される分配線55の上となる。
A specific method of the method of the flowchart 48 will be described.
FIG. 13 is a top view for explaining how to obtain the position of the center of gravity when a load is placed on the two-wheeled multi-axis moving body of the present invention. When the multi-axis moving body 1 is linearly moved in the direction 49 until reaching a constant speed V as shown in FIG. 13 (10c in FIG. 12), the center of gravity position 7 is decentered from the center of gravity position 4, thereby driving wheels 3a, each torque detected becomes T 3a3 50, T 3b3 51 in 3b.
Driving wheels 3a, the axis 52 connecting the mounting shaft of 3b, resulting torque ratio in linear motion 10c: the locations are split (T 3a3 T 3b3) can be estimated that the center of gravity position 7 is present. In this case, the center-of-gravity position 7 of the length 53 due to the torque T 3b3 51, the top of the distribution lines 55 divided by the torque T 3a3 50 by a length 54.

〈二輪式多軸移動体の場合の搭載物重量の推定方法〉
次に、二輪式多軸移動体の場合の搭載物重量の推定方法について説明する。
搭載物Wの重量は、式(6)からM2として推定することができる。
T3a +T3b = (M1+M2)・R2・dω/dt + M3・R2・dω/dt ・・・・・式(6)
ここで、M1:多軸移動体1の重量、M2:搭載物Wの重量、M3:駆動輪3の重量
R:駆動輪3の半径
<Method of estimating the weight of the load in the case of a two-wheeled multi-axis moving body>
Next, a method for estimating the weight of a load in the case of a two-wheeled multi-axis moving body will be described.
The weight of the load W can be estimated as M 2 from Equation (6).
T 3a + T 3b = (M 1 + M 2 ) ・ R 2・ dω / dt + M 3・ R 2・ dω / dt (6)
Here, M 1: weight of the multi-axis moving body 1, M 2: weight of the mounted object W, M 3: the weight of the driving wheel 3
R: radius of drive wheel 3

〈等速度運動による制御パラメータ決定方法〉
次に、多軸移動体1を等速度運動させた時に動摩擦係数を推定し、制御パラメータとして演算して前記多軸移動体を安定に走行制御させる方法について説明する。
多軸移動体1を等速度運動させた時、駆動輪3で検出されるトルクTmは式(7)のようになる。ここでは静摩擦係数は無視する。
Tm = μ・(M1+M2) ・g・r / S ・・・・・式(7)
ここで、μ:動摩擦係数、M1:多軸移動体1の重量、M2:搭載物Wの重量、
g:重力加速度、r:駆動輪3の半径、S : 駆動輪3の数である。
式(7)から動摩擦係数μが推定される。制御パラメータとして演算して駆動輪3のゲイン調整に使用する。
ここで、G3a’= G3a・(T + Tm) /T ・・・・・・式(7)
G3b’= G3b・(T + Tm) /T ・・・・・・式(8)
G3c’= G3c・(T + Tm) /T ・・・・・・式(9)
ここで、G3a’, G3b’, G3c’:各駆動輪の補正後のゲイン
G3a, G3b, G3c:搭載物重量、重心位置推定後の修正した各駆動輪のゲイン
T:搭載物重量、重心位置推定後の速度指令におけるトルク値、である。
<Method for determining control parameters by constant velocity motion>
Next, a method for estimating the dynamic friction coefficient when the multi-axis moving body 1 is moved at a constant speed, calculating as a control parameter, and stably controlling the multi-axis moving body will be described.
When the multi-axis moving body 1 is moved at a constant speed, the torque Tm detected by the drive wheel 3 is as shown in Expression (7). Here, the coefficient of static friction is ignored.
Tm = μ · (M 1 + M 2 ) · g · r / S Equation (7)
Where μ: dynamic friction coefficient, M 1 : weight of the multi-axis moving body 1, M 2 : weight of the load W,
g: gravitational acceleration, r: radius of the driving wheel 3, and S: the number of the driving wheel 3.
The dynamic friction coefficient μ is estimated from the equation (7). It is calculated as a control parameter and used for gain adjustment of the drive wheel 3.
Where G 3a '= G 3a · (T + Tm) / T ·········································
G 3b '= G 3b (T + Tm) / T (8)
G 3c '= G 3c・ (T + Tm) / T ・ ・ ・ ・ ・ ・ Equation (9)
Where G 3a ', G 3b ', G 3c ': Gain after correction of each drive wheel
G 3a , G 3b , G 3c : Load gain, gain of each driving wheel corrected after estimating the center of gravity
T: The weight of the load, and the torque value in the speed command after estimating the position of the center of gravity.

本発明の多軸移動体は、搭載物を多軸移動体上に搭載後、一定速度または一定各速度で移動させることで搭載物の重量、重心位置を推定し、自動的に制御パラメータを求めるため、任意の重量の搭載物を載せても制御の設定の手間が省け、多軸移動体の運用に利便性向上に期待できる。   The multi-axis moving body of the present invention estimates the weight and the center of gravity position of the load by moving the load on the multi-axis moving body at a constant speed or each constant speed, and automatically obtains control parameters. Therefore, it is possible to save the trouble of setting the control even when a load of an arbitrary weight is placed, and it can be expected to improve the convenience of operation of the multi-axis moving body.

本発明の三輪式多軸移動体の例で、(a)は上面図、(b)は正面図である。It is an example of the three-wheeled multi-axis moving body of this invention, (a) is a top view, (b) is a front view. 本発明の三輪式多軸移動体の上に搭載物を載せた時の上面図である。It is a top view when a load is placed on the three-wheeled multi-axis moving body of the present invention. 本発明の三輪式多軸移動体の重心および重量推定方法とゲイン補正方法 のフローチャートである。3 is a flowchart of a center of gravity and weight estimation method and gain correction method for a three-wheeled multi-axis moving body of the present invention. 本発明の三輪式多軸移動体を直線走行させた時の上面図である。It is a top view when the three-wheeled multi-axis moving body of the present invention is linearly traveled. 本発明の三輪式多軸移動体を別の方向へ直線走行させた時の上面図である。It is a top view when the three-wheeled multi-axis moving body of the present invention is linearly traveled in another direction. 本発明の三輪式多軸移動体に搭載物を載せた時の重心位置の求め方を説明する上面図である。It is a top view explaining how to obtain the position of the center of gravity when a load is placed on the three-wheeled multi-axis moving body of the present invention. 本発明の三輪式多軸移動体のゲイン補正方法フローチャートである。It is a gain correction method flowchart of the three-wheeled multi-axis moving body of the present invention. 本発明の三輪式多軸移動体の上面図である。It is a top view of the three-wheeled multi-axis moving body of the present invention. 本発明の三輪式多軸移動体における重心位置と各駆動輪のトルクの相関関係を示す線図である。It is a diagram which shows the correlation of the gravity center position in the three-wheeled multi-axis moving body of this invention, and the torque of each driving wheel. 本発明の二輪式多軸移動体の例で、(a)は上面図、(b)は側面図である。It is an example of the two-wheeled multi-axis moving body of this invention, (a) is a top view, (b) is a side view. 本発明の二輪式多軸移動体の上に搭載物を載せた時の上面図である。It is a top view when a load is placed on the two-wheeled multi-axis moving body of the present invention. 本発明の二輪式多軸移動体における重心および重量推定方法とゲイン補正方法のフローチャートである。It is a flowchart of the gravity center and weight estimation method and gain correction method in the two-wheeled multi-axis moving body of the present invention. 本発明の二輪式多軸移動体に搭載物を載せた時の重心位置の求め方を説明する上面図である。It is a top view explaining how to obtain the position of the center of gravity when a load is placed on the two-wheeled multi-axis moving body of the present invention.

符号の説明Explanation of symbols

1 多軸移動体
2 筐体
3a、3b、3c 駆動輪
4 搭載物のないときの重心位置
7 搭載物のあるときの重心位置
5 駆動輪の外周にあって駆動輪の軸方向に回転できる車輪
47 補助輪
W 搭載物
DESCRIPTION OF SYMBOLS 1 Multi-axis moving body 2 Housing | casing 3a, 3b, 3c Drive wheel 4 Center-of-gravity position when there is no load 7 Position of center of gravity when there is a load 5 Wheel which exists in the outer periphery of a drive wheel and can rotate to the axial direction of a drive wheel 47 Auxiliary wheel W

Claims (13)

筐体の側面に2つ以上の駆動装置を配置した多軸移動体の前記各駆動装置の制御パラメータ決定方法において、
重量不明の搭載物を前記多軸移動体上に重心位置がずれた状態で置き、
一定速度に到達するまで前記多軸移動体を直線に走行させたときに発生する各前記駆動装置のトルクを検出し、
前記検出した各トルクから各前記駆動装置のトルク比を求め、
前記トルク比から重心位置のずれた距離を推定し、
前記距離を前記制御パラメータとして演算することを特徴とする多軸移動体の各駆動装置の制御パラメータ決定方法。
In the control parameter determination method for each driving device of the multi-axis moving body in which two or more driving devices are arranged on the side surface of the housing,
Place the load of unknown weight on the multi-axis moving body with the center of gravity shifted,
Detecting the torque of each of the driving devices generated when the multi-axis moving body travels in a straight line until reaching a constant speed,
The torque ratio of each driving device is obtained from each detected torque,
Estimate the distance of the center of gravity shift from the torque ratio,
A control parameter determination method for each driving device of a multi-axis moving body, wherein the distance is calculated as the control parameter.
筐体の側面に2つ以上の駆動装置を配置した多軸移動体の前記各駆動装置の制御パラメータ決定方法において、
重量不明の搭載物を前記多軸移動体上に重心位置がずれた状態で置き、
一定角速度に到達するまで前記多軸移動体を、前記多軸移動体の重心を中心に回転させることでそれぞれの前記駆動装置間のトルク比を求め、
前記トルク比を制御パラメータとして演算することを特徴とする多軸移動体の各駆動装置の制御パラメータ決定方法。
In the control parameter determination method for each driving device of the multi-axis moving body in which two or more driving devices are arranged on the side surface of the housing,
Place the load of unknown weight on the multi-axis moving body with the center of gravity shifted,
Obtaining the torque ratio between the respective driving devices by rotating the multi-axis moving body around the center of gravity of the multi-axis moving body until reaching a certain angular velocity;
A control parameter determination method for each driving device of a multi-axis moving body, wherein the torque ratio is calculated as a control parameter.
筐体の側面に2つ以上の駆動装置を配置した多軸移動体の前記各駆動装置の制御パラメータ決定方法において、
重量不明の搭載物を前記多軸移動体上に重心位置がずれた状態で置き、
前記多軸移動体を等速度運動させたときに発生する各前記駆動装置のトルクを検出し、
前記駆動装置で検出されたトルク増加分から路面の動摩擦係数を推定し、
前記動摩擦係数を制御パラメータとして演算することを特徴とする多軸移動体の各駆動装置の制御パラメータ決定方法。
In the control parameter determination method for each driving device of the multi-axis moving body in which two or more driving devices are arranged on the side surface of the housing,
Place the load of unknown weight on the multi-axis moving body with the center of gravity shifted,
Detecting the torque of each driving device generated when the multi-axis moving body is moved at a constant speed,
Estimating the dynamic friction coefficient of the road surface from the increase in torque detected by the drive device,
A control parameter determination method for each driving device of a multi-axis moving body, wherein the dynamic friction coefficient is calculated as a control parameter.
前記検出した各トルクから速度の時間微分を用いて前記搭載物の重量を推定し、
前記重量を制御パラメータとして演算することを特徴とする請求項1〜3のいずれか1項記載の多軸移動体の各駆動装置の制御パラメータ決定方法。
Estimating the weight of the load using a time derivative of speed from each detected torque,
4. The method for determining a control parameter for each driving device of a multi-axis moving body according to claim 1, wherein the weight is calculated as a control parameter.
前記パラメータ決定方法によって決定された各駆動装置の制御パラメータを基に各駆動装置に最適なゲイン調整をすることを特徴とする請求項4記載の多軸移動体の各駆動装置の制御パラメータ決定方法。   5. The control parameter determining method for each driving device of a multi-axis moving body according to claim 4, wherein an optimum gain adjustment is made for each driving device based on a control parameter for each driving device determined by the parameter determining method. . 式(1)から搭載物の重量を推定することを特徴とする請求項4記載の多軸移動体の各駆動装置の制御パラメータ決定方法。
(T3a1+T3b1)・cosθ = (M1+M2)・R2・dω/dt + M3・R2・dω/dt ・・・・・式(1)
ここで、T3a1+T3b1:駆動装置の検出トルク、θは多軸移動体と駆動輪との角度で、多軸移動体に取り付けられた駆動輪の数によって変化し、駆動輪が二輪の時はθ= 0、三輪の時はθ= 30°、M1:多軸移動体1の重量、M2:搭載物Wの重量、
M3:駆動輪3の重量、R:駆動輪3の半径、である。
5. The method for determining control parameters for each drive unit of a multi-axis moving body according to claim 4, wherein the weight of the load is estimated from the equation (1).
(T 3a1 + T 3b1 ) ・ cosθ = (M 1 + M 2 ) ・ R 2・ dω / dt + M 3・ R 2・ dω / dt (1)
Here, T 3a1 + T 3b1 : Detected torque of the driving device, θ is an angle between the multi-axis moving body and the driving wheel, and changes depending on the number of driving wheels attached to the multi-axis moving body. When θ = 0, Three wheel θ = 30 °, M 1 : Weight of multi-axis moving body 1, M 2 : Weight of load W,
M 3 is the weight of the driving wheel 3, and R is the radius of the driving wheel 3.
式(2)から駆動輪のトルク比を求め、式(3)〜(5)から各駆動輪のゲインを修正することを特徴とする請求項5記載の多軸移動体の各駆動装置の制御パラメータ決定方法。
T3a: T3b: T3c = (T3a1 * T3a2):( T3b1 * T3a2):( T3c2 * T3a1) ・・・・式(2)
ここで、T3a、T3b、T3c :駆動輪のトルク、
3a1、T3b1:一方向に直線運動させたときの駆動輪3a、3bのトルク、
3a2、T3c2:他の方向に直線運動させたときの駆動輪3a、3cのトルク、
G3a = G ・T3a /(T3a + T3b + T3c) ・・・・・・式(3)
G3b = G ・T3b /(T3a + T3b + T3c) ・・・・・・式(4)
G3c = G ・T3c /(T3a + T3b + T3c) ・・・・・・式(5)
ここで、G3a ,G3b ,G3c:各駆動輪の補正後のゲイン、
G:搭載物の推定重量を重心位置上で移動する時の駆動輪のゲイン
6. The control of each driving device of a multi-axis moving body according to claim 5, wherein the torque ratio of the driving wheel is obtained from the equation (2), and the gain of each driving wheel is corrected from the equations (3) to (5). Parameter determination method.
T 3a : T 3b : T 3c = (T 3a1 * T 3a2 ) :( T 3b1 * T 3a2 ) :( T 3c2 * T 3a1 ) ・ ・ ・ ・ Formula (2)
Here, T 3a , T 3b , T 3c : Torque of driving wheel,
T 3a1 , T 3b1 : Torque of the drive wheels 3a, 3b when linearly moving in one direction,
T 3a2 , T 3c2 : Torques of the drive wheels 3a, 3c when linearly moving in other directions,
G 3a = G • T 3a / (T 3a + T 3b + T 3c ) ・ ・ ・ ・ ・ ・ Equation (3)
G 3b = G · T 3b / (T 3a + T 3b + T 3c ) ··· Equation (4)
G 3c = G · T 3c / (T 3a + T 3b + T 3c ) ········· Equation (5)
Where G 3a , G 3b , G 3c : the corrected gain of each drive wheel,
G: Gain of the drive wheel when moving the estimated weight of the load on the center of gravity
筐体の側面に2つ以上の駆動装置を配置した多軸移動体の前記各駆動装置の制御パラメータ決定装置において、
前記多軸移動体を加速させて直線走行又は回転させたときに発生する各前記駆動装置のトルクを検出するトルク検出手段と、
前記検出した各トルクから各前記駆動装置のトルク比を求めるトルク比演算手段と、
前記トルク比演算手段の演算したトルク比から重心位置のずれた距離を推定する重心位置推定手段と、
前記重心位置推定手段の推定した距離を制御パラメータとして演算する制御パラメータ演算手段と、を備えたことを特徴とする多軸移動体の各駆動装置の制御パラメータ決定装置。
In the control parameter determination device for each driving device of the multi-axis moving body in which two or more driving devices are arranged on the side surface of the housing,
Torque detecting means for detecting the torque of each of the driving devices generated when the multi-axis moving body is accelerated to travel linearly or rotate;
Torque ratio calculating means for obtaining a torque ratio of each of the drive devices from each detected torque;
Centroid position estimating means for estimating a distance shifted from the centroid position from the torque ratio calculated by the torque ratio calculating means;
And a control parameter calculation unit that calculates the distance estimated by the center-of-gravity position estimation unit as a control parameter.
筐体の側面に2つ以上の駆動装置を配置した多軸移動体の前記各駆動装置の制御パラメータ決定装置において、
前記多軸移動体を等速運動で直線走行させたときに発生する各前記駆動装置のトルクを検出するトルク検出手段と、
前記検出されたトルクの増加分から路面の動摩擦係数を推定する路面動摩擦係数推定手段と、
前記路面動摩擦係数推定手段の推定した動摩擦係数を制御パラメータとして演算する制御パラメータ演算手段と、を備えたことを特徴とする多軸移動体の各駆動装置の制御パラメータ決定装置。
In the control parameter determination device for each driving device of the multi-axis moving body in which two or more driving devices are arranged on the side surface of the housing,
Torque detecting means for detecting the torque of each of the driving devices generated when the multi-axis moving body travels linearly with constant speed motion;
Road surface dynamic friction coefficient estimating means for estimating the dynamic friction coefficient of the road surface from the detected increase in torque;
A control parameter determining device for each driving device of a multi-axis moving body, comprising: control parameter calculating means for calculating the dynamic friction coefficient estimated by the road surface dynamic friction coefficient estimating means as a control parameter.
前記制御パラメータ演算手段は、前記検出した各トルクから速度の時間微分を用いて前記搭載物の重量を推定し、この推定重量を制御パラメータとして演算することを特徴とする請求項8または9記載の多軸移動体の各駆動装置の制御パラメータ決定装置。   The said control parameter calculating means estimates the weight of the said mounting thing using the time derivative of speed from each said detected torque, and calculates this estimated weight as a control parameter. A control parameter determination device for each driving device of a multi-axis moving body. (請求項5の装置クレーム)
前記演算された制御パラメータを基に各駆動装置に最適なゲイン調整をするゲイン調整手段を備えたことを特徴とする請求項10記載の多軸移動体の各駆動装置の制御パラメータ決定装置。
(Device claim of claim 5)
11. The control parameter determination device for each drive device of a multi-axis moving body according to claim 10, further comprising gain adjustment means for performing an optimum gain adjustment for each drive device based on the calculated control parameter.
式(1)から搭載物の重量を推定することを特徴とする請求項10記載の多軸移動体の各駆動装置の制御パラメータ決定方法。
(T3a1+T3b1)・cosθ = (M1+M2)・R2・dω/dt + M3・R2・dω/dt ・・・・・式(1)
ここで、T3a1+T3b1:駆動装置の検出トルク、θは多軸移動体と駆動輪との角度で、多軸移動体に取り付けられた駆動輪の数によって変化し、駆動輪が二輪の時はθ= 0、三輪の時はθ= 30°、M1:多軸移動体1の重量、M2:搭載物Wの重量、
M3:駆動輪3の重量、R:駆動輪3の半径、である。
11. The method for determining control parameters for each drive unit of a multi-axis moving body according to claim 10, wherein the weight of the load is estimated from the equation (1).
(T 3a1 + T 3b1 ) ・ cosθ = (M 1 + M 2 ) ・ R 2・ dω / dt + M 3・ R 2・ dω / dt (1)
Here, T 3a1 + T 3b1 : Detected torque of the driving device, θ is an angle between the multi-axis moving body and the driving wheel, and changes depending on the number of driving wheels attached to the multi-axis moving body. When θ = 0, Three wheel θ = 30 °, M 1 : Weight of multi-axis moving body 1, M 2 : Weight of load W,
M 3 is the weight of the driving wheel 3, and R is the radius of the driving wheel 3.
前記ゲイン調整手段が、式(2)から駆動輪のトルク比を求め、式(3)〜(5)から各駆動輪のゲインを修正することを特徴とする請求項11記載の多軸移動体の各駆動装置の制御パラメータ決定方法。
T3a: T3b: T3c = (T3a1 * T3a2):( T3b1 * T3a2):( T3c2 * T3a1) ・・・・式(2)
ここで、T3a、T3b、T3c :駆動輪のトルク、
3a1、T3b1:一方向に直線運動させたときの駆動輪3a、3bのトルク、
3a2、T3c2:他の方向に直線運動させたときの駆動輪3a、3cのトルク、
G3a = G ・T3a /(T3a + T3b + T3c) ・・・・・・式(3)
G3b = G ・T3b /(T3a + T3b + T3c) ・・・・・・式(4)
G3c = G ・T3c /(T3a + T3b + T3c) ・・・・・・式(5)
ここで、G3a ,G3b ,G3c:各駆動輪の補正後のゲイン、
G:搭載物の推定重量を重心位置上で移動する時の駆動輪のゲイン
The multi-axis moving body according to claim 11, wherein the gain adjusting means obtains a torque ratio of the driving wheels from the equation (2) and corrects the gain of each driving wheel from the equations (3) to (5). Of determining control parameters for each of the drive units.
T 3a : T 3b : T 3c = (T 3a1 * T 3a2 ) :( T 3b1 * T 3a2 ) :( T 3c2 * T 3a1 ) ・ ・ ・ ・ Formula (2)
Here, T 3a , T 3b , T 3c : Torque of driving wheel,
T 3a1 , T 3b1 : Torque of the drive wheels 3a, 3b when linearly moving in one direction,
T 3a2 , T 3c2 : Torques of the drive wheels 3a, 3c when linearly moving in other directions,
G 3a = G • T 3a / (T 3a + T 3b + T 3c ) ・ ・ ・ ・ ・ ・ Equation (3)
G 3b = G · T 3b / (T 3a + T 3b + T 3c ) ··· Equation (4)
G 3c = G · T 3c / (T 3a + T 3b + T 3c ) ········· Equation (5)
Where G 3a , G 3b , G 3c : the corrected gain of each drive wheel,
G: Gain of the drive wheel when moving the estimated weight of the load on the center of gravity
JP2007230705A 2007-09-05 2007-09-05 Control parameter determining device and multi-axis moving body device for each driving device of multi-axis moving body Expired - Fee Related JP4840301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007230705A JP4840301B2 (en) 2007-09-05 2007-09-05 Control parameter determining device and multi-axis moving body device for each driving device of multi-axis moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007230705A JP4840301B2 (en) 2007-09-05 2007-09-05 Control parameter determining device and multi-axis moving body device for each driving device of multi-axis moving body

Publications (2)

Publication Number Publication Date
JP2009064190A true JP2009064190A (en) 2009-03-26
JP4840301B2 JP4840301B2 (en) 2011-12-21

Family

ID=40558728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007230705A Expired - Fee Related JP4840301B2 (en) 2007-09-05 2007-09-05 Control parameter determining device and multi-axis moving body device for each driving device of multi-axis moving body

Country Status (1)

Country Link
JP (1) JP4840301B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125350A (en) * 2011-12-13 2013-06-24 Nippon Sharyo Seizo Kaisha Ltd Electrically-driven carrier vehicle
WO2014061108A1 (en) * 2012-10-16 2014-04-24 パイオニア株式会社 Centroid estimation device and centroid estimation method
CN113075931A (en) * 2021-03-30 2021-07-06 西南科技大学 Three-wheel omnidirectional mobile robot and motion control method thereof
CN117404405A (en) * 2023-12-15 2024-01-16 成都乐创自动化技术股份有限公司 Independent motion controller and use method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960515A (en) * 1982-09-30 1984-04-06 Toshiba Corp Controlling method of positioning of carrying object
JPH0840686A (en) * 1994-07-27 1996-02-13 Mitsubishi Heavy Ind Ltd Travel control method of non-track type carrying truck
JPH09282037A (en) * 1996-04-15 1997-10-31 Shinko Electric Co Ltd Method for adjusting braking posture for unmanned carrier
JP2006075931A (en) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd Controlling method of robot
JP2006123854A (en) * 2004-11-01 2006-05-18 Matsushita Electric Ind Co Ltd Cargo transportation robot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960515A (en) * 1982-09-30 1984-04-06 Toshiba Corp Controlling method of positioning of carrying object
JPH0840686A (en) * 1994-07-27 1996-02-13 Mitsubishi Heavy Ind Ltd Travel control method of non-track type carrying truck
JPH09282037A (en) * 1996-04-15 1997-10-31 Shinko Electric Co Ltd Method for adjusting braking posture for unmanned carrier
JP2006075931A (en) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd Controlling method of robot
JP2006123854A (en) * 2004-11-01 2006-05-18 Matsushita Electric Ind Co Ltd Cargo transportation robot

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125350A (en) * 2011-12-13 2013-06-24 Nippon Sharyo Seizo Kaisha Ltd Electrically-driven carrier vehicle
WO2014061108A1 (en) * 2012-10-16 2014-04-24 パイオニア株式会社 Centroid estimation device and centroid estimation method
JPWO2014061108A1 (en) * 2012-10-16 2016-09-05 パイオニア株式会社 Center of gravity estimation apparatus and center of gravity estimation method
CN113075931A (en) * 2021-03-30 2021-07-06 西南科技大学 Three-wheel omnidirectional mobile robot and motion control method thereof
CN113075931B (en) * 2021-03-30 2022-04-08 西南科技大学 Three-wheel omnidirectional mobile robot and motion control method thereof
CN117404405A (en) * 2023-12-15 2024-01-16 成都乐创自动化技术股份有限公司 Independent motion controller and use method thereof
CN117404405B (en) * 2023-12-15 2024-03-19 成都乐创自动化技术股份有限公司 Independent motion controller and use method thereof

Also Published As

Publication number Publication date
JP4840301B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP3791663B2 (en) Omnidirectional moving vehicle and its control method
KR100958532B1 (en) Overturn prevention controller for two-wheeled vehicle
CN101443628B (en) Moving body with tilt angle estimating mechanism
JP6181412B2 (en) Simple distance meter
JP2004215350A (en) Drive controller, controlling method and two-wheeled vehicle
WO2007148818A1 (en) Posture angle detecting device and posture angle detecting method
EP1666890A1 (en) Rotary shaft control apparatus
KR101117040B1 (en) Inverted pendulum type moving mechanism
JP5321681B2 (en) Moving direction control device and computer program
JP2013145168A (en) Angular velocity error correction device of gyro for vehicle
JP4840301B2 (en) Control parameter determining device and multi-axis moving body device for each driving device of multi-axis moving body
CN103616023A (en) Two-dimensional pose measuring device of crawler-type vertical face wall-climbing robot and method
JP2009236821A (en) Device for detecting amount of change in rotation speed, and rotation control device using the same
KR20110082395A (en) Singled wheeled mobile robot
JP5907037B2 (en) Moving body
JP5790339B2 (en) Power transmission system test equipment
KR20100088304A (en) Mobile two-wheeled inverted pendulum system having multiple sensors
JP2011014100A (en) Inverted pendulum type mobile body and control method for the same
TW201801953A (en) Omnidirectional moving device and attitude control method
JP5300831B2 (en) Mechanical angle measuring device
JP6045517B2 (en) Vehicle tilt angle measuring device and optical axis control signal generating device
WO2016009900A1 (en) Wobble-type dynamometer system and method of controlling same
JP2006349399A (en) Azimuthal angle measuring instrument and movable body
JP2012141219A (en) Inclination angle detection device, method, program, and storage medium
JP2006177909A (en) Bias measurement method for inertial sensor, and device thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees