JP2009056482A - Substrate dividing method and manufacturing method of display device - Google Patents

Substrate dividing method and manufacturing method of display device Download PDF

Info

Publication number
JP2009056482A
JP2009056482A JP2007225318A JP2007225318A JP2009056482A JP 2009056482 A JP2009056482 A JP 2009056482A JP 2007225318 A JP2007225318 A JP 2007225318A JP 2007225318 A JP2007225318 A JP 2007225318A JP 2009056482 A JP2009056482 A JP 2009056482A
Authority
JP
Japan
Prior art keywords
substrate
laser
laser beam
region
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007225318A
Other languages
Japanese (ja)
Inventor
Kazuto Yoshimura
和人 吉村
Atsushi Amako
淳 尼子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007225318A priority Critical patent/JP2009056482A/en
Publication of JP2009056482A publication Critical patent/JP2009056482A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate dividing method capable of reducing the number of scannings of laser beams. <P>SOLUTION: When dividing a division object substrate 4 by emitting the laser beams from the thickness direction of the division object substrate 4 to the division object substrate 4 of a TFT element substrate or the like, the energy of the laser beams is condensed over the whole area or almost the whole area in the thickness direction of the division object substrate 4 by diffracting the laser beams with a diffraction optical element 13 and a modified area 1 is formed in a condensing area. Accordingly, sufficient energy density is obtained by the long thin condensing area suitable for substrate division and the modified area 1 over the whole area or almost the whole area in the thickness direction of the division object substrate 4 is formed, so that the number of the scannings of the laser beams is reduced. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、レーザ光を照射して基板を分割する方法、特に基板の内部に改質領域を形成することにより基板を分割する基板分割方法、及びそれにより表示装置用基板を分割する表示装置の製造方法に関するものである。   The present invention relates to a method for dividing a substrate by irradiating a laser beam, particularly a substrate dividing method for dividing a substrate by forming a modified region inside the substrate, and a display device for dividing a substrate for a display device thereby. It relates to a manufacturing method.

このような基板分割方法としては、例えば下記の特許文献に記載されるものがある。このうち特許文献1では、基板の内部に改質領域を形成し、この改質領域が形成されている部分に外力を加えて基板を分割することが開示されている。また、特許文献2では、基板の厚さ方向に改質領域を複数形成し、その部分に外力を加えて基板を分割することが開示されている。また、特許文献3では、レーザビームの偏光方向の長軸と走査方向を一致させることが開示されている。また、特許文献4では、収差補正手段によってレーザビームの集光領域を長くして、つまりエネルギー密度の高い領域を長くして改質領域を厚さ方向に長くするようにしている。
特開2002−192367号公報 特開2002−205180号公報 特開2002−192369号公報 特開2007−021556号公報
Examples of such a substrate dividing method include those described in the following patent documents. Among these, Patent Document 1 discloses that a modified region is formed inside a substrate, and an external force is applied to a portion where the modified region is formed to divide the substrate. Patent Document 2 discloses that a plurality of modified regions are formed in the thickness direction of the substrate, and an external force is applied to the portion to divide the substrate. Patent Document 3 discloses that the major axis of the laser beam polarization direction coincides with the scanning direction. In Patent Document 4, the converging region of the laser beam is lengthened by the aberration correcting means, that is, the region having a high energy density is lengthened and the modified region is lengthened in the thickness direction.
JP 2002-192367 A JP 2002-205180 A JP 2002-192369 A JP 2007-021556 A

ところで、例えば液晶表示パネルに使用されるTFT(Thin Film Transistor)基板として、石英基板の何れか一方の端面にTFTとしての機能を有するTFT膜を形成したり、そうした石英基板を貼り合わせたりしてなる基板に対し、前記各特許文献に記載されるように、この基板にレーザビームを照射して改質領域を形成し、外力を加えて基板を分割しようとする場合には、一回のレーザビームの照射では基板内に形成される改質領域の当該基板の厚さ方向の長さが短いので、レーザビームの集光領域を基板の厚さ方向にずらしながら当該レーザビームを分割線に沿って複数回走査しなければならないという問題がある。これに対し、前記特許文献4のように収差補正によって集光領域を長くすることは可能であるが、例えば前記TFT基板の厚さ方向全域に及ぶように集光領域を長くしようとすると、集光領域の光軸直交方向の径が太くなってしまう。集光領域が長く且つ太くなると、集光領域におけるエネルギー密度が低下してしまうので、基板内に所望の改質領域を形成することができず、結局、収差補正による改質領域の長さの増大には限界がある。
本発明は、上記のような問題点に着目してなされたものであり、レーザビームの走査回数を低減することが可能な基板分割方法及び表示装置の製造方法を提供することを目的とするものである。
By the way, for example, as a TFT (Thin Film Transistor) substrate used in a liquid crystal display panel, a TFT film having a function as a TFT is formed on one end face of a quartz substrate, or such a quartz substrate is bonded together. As described in the above patent documents, a laser beam is irradiated on the substrate to form a modified region, and when an external force is applied to divide the substrate, a single laser is used. In the beam irradiation, the length of the modified region formed in the substrate in the thickness direction of the substrate is short, so that the laser beam is moved along the dividing line while shifting the laser beam focusing region in the thickness direction of the substrate. There is a problem that it is necessary to scan multiple times. On the other hand, it is possible to lengthen the condensing region by correcting the aberration as in Patent Document 4, but if the condensing region is extended so as to cover the entire thickness direction of the TFT substrate, for example, The diameter of the optical region in the direction perpendicular to the optical axis is increased. If the condensing region is long and thick, the energy density in the condensing region is reduced, so that a desired modified region cannot be formed in the substrate. There is a limit to growth.
The present invention has been made paying attention to the above-described problems, and an object of the present invention is to provide a substrate dividing method and a display device manufacturing method capable of reducing the number of scans of a laser beam. It is.

本発明の基板分割方法は、単一の又は複数の基板からなる基板に対し、レーザ光を照射して当該基板を分割する基板分割方法であって、回折光学素子でレーザ光を回折させ、少なくとも基板の厚さ方向の所望領域の全域にわたってレーザ光を照射して改質領域を形成することを特徴とするものである。
この発明によれば、回折光学素子でレーザ光を回折させ、少なくとも基板の厚さ方向の所望領域の全域にわたってレーザ光を照射して改質領域を形成することとしたため、基板分割に適した長くて細い集光領域により、十分なエネルギー密度を維持したまま基板の厚さ方向の所望領域の全域にわたって改質領域を形成することができ、これによりレーザ光の走査回数を低減することが可能となる。
A substrate dividing method according to the present invention is a substrate dividing method for dividing a substrate made of a single substrate or a plurality of substrates by irradiating a laser beam, diffracting the laser beam with a diffractive optical element, and at least The modified region is formed by irradiating laser light over the entire desired region in the thickness direction of the substrate.
According to the present invention, the modified region is formed by diffracting the laser beam with the diffractive optical element and irradiating the laser beam over at least the entire desired region in the thickness direction of the substrate. The thin and focused region allows the modified region to be formed over the entire desired region in the thickness direction of the substrate while maintaining a sufficient energy density, thereby reducing the number of laser light scans. Become.

また、改質領域を形成した後、基板に外力を加えることで当該基板を分割することを特徴とするものである。
この発明によれば、改質領域を形成した後、基板に外力を加えることで当該基板を分割することとしたため、基板を確実に且つ精度良く分割することができる。
また、本発明の基板分割方法は、レーザ光がフェムト秒レーザ、ピコ秒パルスレーザ、又はYAGレーザの何れかであることを特徴とするものである。
In addition, after the modified region is formed, the substrate is divided by applying an external force to the substrate.
According to the present invention, after the modified region is formed, the substrate is divided by applying an external force to the substrate, so that the substrate can be reliably and accurately divided.
The substrate dividing method of the present invention is characterized in that the laser beam is any one of a femtosecond laser, a picosecond pulse laser, and a YAG laser.

この発明によれば、レーザ光がフェムト秒レーザ、ピコ秒パルスレーザ、又はYAGレーザの何れかであることとしたため、基板の分割に適したレーザ光を用いて基板を分割することができる。
また、本発明の表示装置の製造方法は、前記本発明の基板分割方法で基板から表示装置用基板を分割することを特徴とするものである。
この発明によれば、前記本発明の基板分割方法で基板から表示装置用基板を分割することとしたため、基板の分割に係るレーザ光の走査回数を低減することで安価な表示装置を製造することができる。
According to the present invention, since the laser light is any one of a femtosecond laser, a picosecond pulse laser, or a YAG laser, the substrate can be divided using the laser light suitable for dividing the substrate.
The display device manufacturing method of the present invention is characterized in that a substrate for a display device is divided from a substrate by the substrate dividing method of the present invention.
According to this invention, since the display device substrate is divided from the substrate by the substrate dividing method of the present invention, an inexpensive display device can be manufactured by reducing the number of times of laser light scanning related to the substrate division. Can do.

次に、本発明の基板分割方法及び表示装置の製造方法の実施形態について、図面を用いて説明する。本実施形態は、液晶表示装置を構成する液晶表示パネルの製造工程において、当該液晶表示パネルに使用されるTFT基板をウエハ状の分割対象基板から切出す(分割する)ものである。ちなみに、液晶表示パネルは、周知のように、TFTを有するTFT基板、対向電極を有する対向基板、及び両基板間の隙間に充填された液晶などを備えて構成される。   Next, embodiments of the substrate dividing method and the display device manufacturing method of the present invention will be described with reference to the drawings. In the present embodiment, in a manufacturing process of a liquid crystal display panel constituting a liquid crystal display device, a TFT substrate used for the liquid crystal display panel is cut out (divided) from a wafer-like division target substrate. Incidentally, as is well known, the liquid crystal display panel includes a TFT substrate having TFTs, a counter substrate having counter electrodes, and liquid crystal filled in a gap between the substrates.

図1には、分割される直前の分割対象基板の平面図を示す。この分割対象基板(基板)4は、複数の石英基板を貼り合わせてなり、図示しない絶縁層、画素電極なども形成され、これらがTFT膜としてTFT基板上に構成されている。このTFT基板上にはシール部材や液晶も載置され、それらを挟むようにして対向基板が接合されている。更に、TFT基板及び対向基板の外側には防塵用の石英基板が接着剤層を挟んで貼り付けられており、これら全体が分割対象基板としてのTFT基板をなす。   FIG. 1 shows a plan view of a substrate to be divided immediately before being divided. The substrate to be divided (substrate) 4 is formed by bonding a plurality of quartz substrates, and an insulating layer, a pixel electrode, etc. (not shown) are also formed, and these are configured as a TFT film on the TFT substrate. A sealing member and liquid crystal are also placed on the TFT substrate, and a counter substrate is bonded so as to sandwich them. Further, a dust-proof quartz substrate is attached to the outside of the TFT substrate and the counter substrate with an adhesive layer sandwiched therebetween, and the whole forms a TFT substrate as a substrate to be divided.

図2には、本実施形態のレーザビーム照射装置の概略構成を示す。このレーザビーム照射装置10は、レーザビームを出射するレーザ光源11と、出射されたレーザビームを反射するダイクロイックミラー12と、反射したレーザビームを回折して集光する回折光学素子13とを備えている。また、このレーザビーム照射装置10は、前述した分割対象基板4を載置するステージ17と、ステージ17を回折光学素子13に対して水平面直交2軸方向、即ち図2に記載のX軸及びY軸方向に移動させるX軸スライド部20及びY軸スライド部21と、ステージ17に載置された分割対象基板4に対して、回折光学素子13の高さ方向、即ち図2に記載のZ軸方向の位置を変えてレーザビームの集光点の位置を調整するZ軸スライド機構14と、ダイクロイックミラー12を挟んで回折光学素子13と反対側に位置する撮像装置22とを備えている。   FIG. 2 shows a schematic configuration of the laser beam irradiation apparatus of the present embodiment. The laser beam irradiation apparatus 10 includes a laser light source 11 that emits a laser beam, a dichroic mirror 12 that reflects the emitted laser beam, and a diffractive optical element 13 that diffracts and focuses the reflected laser beam. Yes. In addition, the laser beam irradiation apparatus 10 includes a stage 17 on which the above-described division target substrate 4 is placed, and the stage 17 with respect to the diffractive optical element 13 in two directions perpendicular to the horizontal plane, that is, the X axis and Y axis shown in FIG. With respect to the X-axis slide portion 20 and the Y-axis slide portion 21 that are moved in the axial direction, and the division target substrate 4 placed on the stage 17, the height direction of the diffractive optical element 13, that is, the Z-axis shown in FIG. A Z-axis slide mechanism 14 that adjusts the position of the condensing point of the laser beam by changing the position of the direction, and an imaging device 22 that is located on the opposite side of the diffractive optical element 13 with the dichroic mirror 12 interposed therebetween are provided.

また、このレーザビーム照射装置10は、前記各構成を制御するメインコンピュータ30を備えており、メインコンピュータ30にはCPUや各種メモリの他に、撮像装置22で撮像した画像情報を処理する画像処理部34を備えている。撮像装置22は、同軸落射型光源とCCD(固体撮像素子)とが組み込まれており、同軸落射型光源から出射した可視光は、回折光学素子13を透過する際に回折して集光する。また、このメインコンピュータ30には、レーザ加工の際に用いられる各種加工条件のデータを入力する入力部35と、レーザ加工時の各種情報を表示する表示部36とが接続されている。また、レーザ光源11の出力やパルス幅、パルス周期を制御するレーザ制御部31と、Z軸スライド機構14を駆動して回折光学素子13のZ軸方向の位置を制御するレンズ制御部32と、X軸スライド部20とY軸スライド部21を夫々レール18,19に沿って移動させるサーボモータ(不図示)を駆動するステージ制御部33とが接続されている。   The laser beam irradiation apparatus 10 includes a main computer 30 that controls the above-described components. The main computer 30 includes image processing for processing image information captured by the imaging device 22 in addition to a CPU and various memories. Part 34 is provided. The imaging device 22 incorporates a coaxial incident light source and a CCD (solid-state image sensor), and the visible light emitted from the coaxial incident light source is diffracted and condensed when passing through the diffractive optical element 13. The main computer 30 is connected to an input unit 35 for inputting data of various processing conditions used during laser processing and a display unit 36 for displaying various information during laser processing. A laser control unit 31 that controls the output, pulse width, and pulse period of the laser light source 11; a lens control unit 32 that drives the Z-axis slide mechanism 14 to control the position of the diffractive optical element 13 in the Z-axis direction; A stage control unit 33 that drives a servo motor (not shown) that moves the X-axis slide unit 20 and the Y-axis slide unit 21 along the rails 18 and 19 is connected.

回折光学素子13をZ軸方向に移動させるZ軸スライド機構14には、移動距離を検出可能な位置センサが内蔵されており、レンズ制御部32は、この位置センサの出力を検出して回折光学素子13のZ軸方向の位置を制御可能となっている。従って、撮像装置22の同軸落射型光源から出射した可視光の焦点が分割対象基板4の表面に一致するように回折光学素子13をZ軸方向に移動させれば、分割対象基板4の厚さを計測することが可能である。   The Z-axis slide mechanism 14 that moves the diffractive optical element 13 in the Z-axis direction has a built-in position sensor that can detect the movement distance, and the lens control unit 32 detects the output of the position sensor to detect diffractive optics. The position of the element 13 in the Z-axis direction can be controlled. Therefore, if the diffractive optical element 13 is moved in the Z-axis direction so that the focus of the visible light emitted from the coaxial incident light source of the imaging device 22 coincides with the surface of the division target substrate 4, the thickness of the division target substrate 4 is increased. Can be measured.

なお、本実施形態では、ステージ17は、Y軸スライド部21に支持されているが、X軸スライド部20とY軸スライド部21との位置関係を逆転させてX軸スライド部20にステージ17が支持される形態としてもよい。また、θテーブルを介してステージ17をY軸スライド部21に支持することが好ましい。これによれば、分割対象基板4を光軸に対してより垂直な状態とすることが可能となる。   In the present embodiment, the stage 17 is supported by the Y-axis slide unit 21, but the positional relationship between the X-axis slide unit 20 and the Y-axis slide unit 21 is reversed to place the stage 17 on the X-axis slide unit 20. May be supported. Moreover, it is preferable to support the stage 17 on the Y-axis slide part 21 via the θ table. According to this, it becomes possible to make the division | segmentation object board | substrate 4 into a more perpendicular | vertical state with respect to an optical axis.

レーザ光源11としては、例えばチタンサファイヤを固体光源とするレーザビームをフェムト秒のパルス幅で出射する、所謂フェムト秒レーザが用いられる。この場合、パルスレーザビームは、波長分散特性を有しており、中心波長が800nm、パルス幅は凡そ300fs(フェムト秒)、パルス周期は5kHz、出力は凡そ1000mWである。レーザ光源11には、これに代えて、ピコ秒パルスレーザ(中心波長:800nm、パルス幅:3ps、平均出力:1W)やYAGレーザ(波長:355nm、パルス幅:35ns、平均出力:10W)を用いることも可能である。   As the laser light source 11, for example, a so-called femtosecond laser that emits a laser beam using titanium sapphire as a solid light source with a pulse width of femtosecond is used. In this case, the pulse laser beam has wavelength dispersion characteristics, the center wavelength is 800 nm, the pulse width is about 300 fs (femtosecond), the pulse period is 5 kHz, and the output is about 1000 mW. Instead of this, the laser light source 11 is a picosecond pulse laser (center wavelength: 800 nm, pulse width: 3 ps, average output: 1 W) or YAG laser (wavelength: 355 nm, pulse width: 35 ns, average output: 10 W). It is also possible to use it.

回折光学素子13としては、例えば本出願人が先に提案した特開2004−136358号公報に記載のものが適用可能である。この回折光学素子13は、例えば以下のようにして形成する。即ち、まず石英基板にレジストを塗布し、例えば周期が等しい同心円のレジストパターンに応じて、集光したレーザビームの露光量を変えながらレジストを露光し、その後、レジストを現像して凹凸形状のレジストパターンとし、このレジストパターンに、例えばCHF3等のイオン化したガスをあてて同パターンをマスクとして利用することにより、イオンエッチングで石英基板にパターンを転写し、その後、残存するレジストを除去して石英基板上に所望の凹凸形状の回折光学素子13を形成する。 As the diffractive optical element 13, for example, the one described in Japanese Patent Application Laid-Open No. 2004-136358 previously proposed by the present applicant can be applied. The diffractive optical element 13 is formed as follows, for example. That is, first, a resist is applied to a quartz substrate, and the resist is exposed while changing the exposure amount of the focused laser beam according to, for example, a concentric resist pattern having the same period. By applying an ionized gas such as CHF 3 to the resist pattern and using the pattern as a mask, the pattern is transferred to the quartz substrate by ion etching, and then the remaining resist is removed and the quartz is removed. A desired concavo-convex diffractive optical element 13 is formed on a substrate.

この回折光学素子13によれば、図3に示すように、その表面に周期が等しい同心円状の凹凸パターンが形成されているため、レーザビーム波面に位相変調を加えることができ、これにより被加工物である分割対象基板4に改質領域1を形成するのに必要な強度分布を持ったビームが得られ、このビームの強度分布によって分割対象基板4の厚さ(深さ)方向に形成される改質領域1の形状及び大きさを変えることができる。本実施形態では、この強度分布を調整することにより、図3に示すように、一回のレーザビームの照射によって分割対象基板4の厚さ方向の所望領域の全域にわたって改質領域1を形成し、当該改質領域1を形成した後、外力を加えるだけで当該分割対象基板4を分割可能とする。
分割対象基板4の厚さ方向の所望領域の全域にわたって改質領域1を形成するための回折光学素子13の同心円中心からの半径rに応じた位相分布Φ(r)は下記1式で与えられる。
According to this diffractive optical element 13, as shown in FIG. 3, a concentric uneven pattern having the same period is formed on the surface thereof, so that the phase modulation can be applied to the laser beam wavefront, whereby the workpiece is processed. A beam having an intensity distribution necessary for forming the modified region 1 is obtained on the division target substrate 4 which is an object, and is formed in the thickness (depth) direction of the division target substrate 4 by the intensity distribution of the beam. The shape and size of the modified region 1 can be changed. In the present embodiment, by adjusting this intensity distribution, the modified region 1 is formed over the entire desired region in the thickness direction of the substrate to be divided 4 by a single laser beam irradiation as shown in FIG. After the modified region 1 is formed, the division target substrate 4 can be divided only by applying an external force.
The phase distribution Φ (r) corresponding to the radius r from the center of the concentric circle of the diffractive optical element 13 for forming the modified region 1 over the entire desired region in the thickness direction of the division target substrate 4 is given by the following equation (1). .

Φ(r)=mod[2mπr/p] ……… (1)   Φ (r) = mod [2mπr / p] (1)

但し、mod[ ]は位相分布を2πで繰り返す関数を示し、mは回折光学素子13の回折次数、rは回折光学素子13の半径、pは回折光学素子13の同心円の周期を示す。この位相分布から得られる光軸zに応じた非回折ビームの強度分布I(z)は下記2式で与えられる。   Where mod [] represents a function that repeats the phase distribution at 2π, m represents the diffraction order of the diffractive optical element 13, r represents the radius of the diffractive optical element 13, and p represents the period of concentric circles of the diffractive optical element 13. The intensity distribution I (z) of the non-diffracted beam corresponding to the optical axis z obtained from this phase distribution is given by the following two equations.

I(z)=C1z・exp(−C22
1=2πI0sin2θ
2=2sin2θ/a2 ……… (2)
I (z) = C 1 z · exp (−C 2 z 2 )
C 1 = 2πI 0 sin 2 θ
C 2 = 2sin 2 θ / a 2 (2)

但し、入射ビームの強度分布はガウス分布でI(r)=I0exp(−2r2/a2)であり、その半径1/e2をaとした。また、レーザ波長をλとしたとき、sinθ=mλ/pであり、m次の回折波を利用した光軸z上のビーム整形であることを意味する。
更に、2式から、光軸z上の強度が最大となる位置Zcは、同式を微分することにより下記3式のように求まる。
However, the intensity distribution of the incident beam is Gaussian distribution I (r) = I 0 exp (−2r 2 / a 2 ), and the radius 1 / e 2 is a. Further, when the laser wavelength is λ, sin θ = mλ / p, which means beam shaping on the optical axis z using an mth-order diffracted wave.
Furthermore, the position Zc at which the intensity on the optical axis z is maximum is obtained from the following equation (3) by differentiating the equation.

Zc=(a/2)(p/λ)(1/m) ……… (3)   Zc = (a / 2) (p / λ) (1 / m) (3)

この3式から、分割対象基板4に厚さ方向の所望領域の全域にわたる改質領域1を形成するための強度分布を得るためには、例えば回折光学素子13の同心円状の凹凸パターンの周期pを変えたり、回折次数mを選んだりすればよい。光軸z上の強度が最大となる位置Zcにおけるビーム強度I(Zc)は下記4式で与えられる。   In order to obtain the intensity distribution for forming the modified region 1 over the entire desired region in the thickness direction on the substrate to be divided 4 from these three formulas, for example, the period p of the concentric uneven pattern of the diffractive optical element 13 Or the diffraction order m may be selected. The beam intensity I (Zc) at the position Zc at which the intensity on the optical axis z is maximum is given by the following four equations.

I(Zc)=(πaI0/exp(1/2))・m(λ/p) ……… (4) I (Zc) = (πaI 0 / exp (1/2)) · m (λ / p) (4)

4式から明らかなように、回折光学素子13の同心円状の凹凸パターンの周期pを短くすることにより光軸z上のビーム強度が高くなることが分かる。また、高次(m>1)の回折波を用いてビーム整形を行う場合にも、回折次数mが大きくなるほど光軸z上のビーム強度が高くなる。   As is apparent from equation (4), it is understood that the beam intensity on the optical axis z is increased by shortening the period p of the concentric uneven pattern of the diffractive optical element 13. Even when beam shaping is performed using a higher-order (m> 1) diffracted wave, the beam intensity on the optical axis z increases as the diffraction order m increases.

これらの関係から、ビーム強度分布I(z)を計算すると、例えば回折次数m=1の回折波を用いるものとし、レーザ波長λ=800nm、入射ビームの半径a=3.0mmとしたとき、例えば回折光学素子13の同心円状の凹凸パターンの周期p=20.0mmとすると、光軸z上の強度が最大となる位置Zcは37.5mmであり、分割対象基板4に改質領域1を形成する所定レベル以上の強度分布の深さは24mmとなる。また、回折光学素子13の同心円状の凹凸パターンの周期p=10.0mmの場合には、光軸z上の強度が最大となる位置Zcは18.8mmであり、分割対象基板4に改質領域1を形成する所定レベル以上の強度分布の深さは12mmとなる。また、回折光学素子13の同心円状の凹凸パターンの周期p=5.0mmの場合には、光軸z上の強度が最大となる位置Zcは9.4mmであり、分割対象基板4に改質領域1を形成する所定レベル以上の強度分布の深さは6mmとなる。   From these relationships, when calculating the beam intensity distribution I (z), for example, a diffracted wave of the diffraction order m = 1 is used, and when the laser wavelength λ = 800 nm and the incident beam radius a = 3.0 mm, for example, When the period p = 20.0 mm of the concentric uneven pattern of the diffractive optical element 13 is set, the position Zc at which the intensity on the optical axis z is maximum is 37.5 mm, and the modified region 1 is formed on the substrate 4 to be divided. The depth of the intensity distribution above the predetermined level is 24 mm. Further, in the case where the period p of the concentric concavo-convex pattern of the diffractive optical element 13 is 10.0 mm, the position Zc at which the intensity on the optical axis z is maximum is 18.8 mm. The depth of the intensity distribution above the predetermined level forming the region 1 is 12 mm. Further, when the period p of the concentric concavo-convex pattern of the diffractive optical element 13 is 5.0 mm, the position Zc at which the intensity on the optical axis z is maximum is 9.4 mm, which is modified to the division target substrate 4. The depth of the intensity distribution above the predetermined level that forms the region 1 is 6 mm.

本実施形態では、このようにして分割対象基板4の厚さ方向の所望領域の全域にわたって改質領域1を形成することができるので、例えば図4のように、分割線に沿ってレーザビームを一回走査するだけで、分割線全域に帯状の改質領域1を連続して形成することができ、その後、図4の上下方向に外力を加えれば、当該分割対象基板4を容易且つ正確に分割することができる。   In the present embodiment, since the modified region 1 can be formed over the entire desired region in the thickness direction of the substrate to be divided 4 in this way, for example, as shown in FIG. The band-shaped modified region 1 can be continuously formed over the entire dividing line by scanning once, and then, if an external force is applied in the vertical direction in FIG. Can be divided.

前記従来の基板分割方法では、例えば図2に示すように、例えば集光レンズなどによってレーザビームを集光しながら分割対象基板4に照射する。レーザビームの集光領域では、エネルギー密度が高くなるので、石英基板等の分割対象基板4内に改質領域1が形成される。但し、この改質領域1の基板厚さ方向の長さは短い。従って、図5に示すように、集光領域を基板厚さ方向にずらしながら、分割線に沿ってレーザビームを複数回走査することで、改質領域1を分割対象基板4の分割断面の厚さ方向に複数層形成し、その後、曲げモーメントを外力として加えて当該分割対象基板4を分割する。   In the conventional substrate dividing method, for example, as shown in FIG. 2, the substrate to be divided 4 is irradiated while condensing a laser beam with a condensing lens, for example. Since the energy density is high in the laser beam condensing region, the modified region 1 is formed in the target substrate 4 such as a quartz substrate. However, the length of the modified region 1 in the substrate thickness direction is short. Therefore, as shown in FIG. 5, the thickness of the divided cross section of the substrate 4 to be divided is changed by scanning the laser beam a plurality of times along the dividing line while shifting the condensing region in the substrate thickness direction. A plurality of layers are formed in the vertical direction, and then the substrate to be divided 4 is divided by applying a bending moment as an external force.

このレーザビームの集光、照射において、収差補正を行うと、集光領域が長くなる。また、石英基板外の空気中でレーザビームが一点に集光するようにした場合においても、レーザビームの石英基板内を通過する長さが長くなると、石英基板内では一点で集光しなくなり、集光領域が長くなることもある。このように集光領域が長くなると、改質領域1も長くなる。しかしながら、一般に、レーザビームの集光、照射において、レーザビームの集光領域が長くなると、その径も太くなる。例えば、TFT基板を分割対象基板4として、その厚さ方向の所望領域の全域が集光領域になるように、例えば収差補正を行うと、集光領域が太くなり過ぎ、集光領域におけるエネルギー密度が低くなって改質領域1を形成することができなくなる。   In this laser beam focusing and irradiation, if aberration correction is performed, the focusing area becomes long. In addition, even when the laser beam is focused at one point in the air outside the quartz substrate, if the length of the laser beam passing through the quartz substrate becomes longer, the laser beam is not focused at one point within the quartz substrate, The light condensing area may be long. Thus, when the condensing region becomes longer, the modified region 1 also becomes longer. However, in general, in condensing and irradiating a laser beam, when the condensing region of the laser beam becomes longer, the diameter becomes thicker. For example, when the aberration correction is performed so that the TFT substrate is the division target substrate 4 and the entire desired region in the thickness direction becomes the light collection region, the light collection region becomes too thick, and the energy density in the light collection region Becomes low and the modified region 1 cannot be formed.

これに対して、本実施形態のように、レーザビームを回折して集光する場合には、レーザ強度の高い領域が長く且つ細いので、分割対象基板4の厚さ方向の所望領域の全域にわたって改質領域1を形成することができる。
このように、本実施形態の基板分割方法によれば、単一の又は複数の基板からなる基板4に対し、レーザ光を照射して当該基板4を分割するにあたり、回折光学素子13でレーザ光を回折させ、少なくとも基板4の厚さ方向の所望領域の全域にわたってレーザ光を照射して改質領域1を形成することとしたため、基板分割に適した長くて細い集光領域により、十分なエネルギー密度を維持したまま基板4の厚さ方向の所望領域の全域にわたって改質領域1を形成することができ、これによりレーザビームの走査回数を低減することが可能となる。
On the other hand, when the laser beam is diffracted and condensed as in the present embodiment, the region having a high laser intensity is long and thin, so that the entire region of the desired region in the thickness direction of the division target substrate 4 is covered. The modified region 1 can be formed.
As described above, according to the substrate dividing method of the present embodiment, when the substrate 4 composed of a single substrate or a plurality of substrates is irradiated with the laser beam to divide the substrate 4, the diffractive optical element 13 uses the laser beam. , And the modified region 1 is formed by irradiating the entire region of the desired region in the thickness direction of the substrate 4 to form the modified region 1. The modified region 1 can be formed over the entire desired region in the thickness direction of the substrate 4 while maintaining the density, thereby reducing the number of scans of the laser beam.

また、改質領域1を形成した後、基板4に外力を加えることで当該基板4を分割することとしたため、基板4を確実に且つ精度良く分割することができる。
また、レーザ光がフェムト秒レーザ、ピコ秒パルスレーザ、又はYAGレーザの何れかであることとしたため、基板4の分割に適したレーザ光を用いて基板4を分割することができる。
また、本発明の基板分割方法で基板4から表示装置用基板を分割することとしたため、基板4の分割に係るレーザ光の走査回数を低減することで安価な表示装置を製造することができる。
In addition, after the modified region 1 is formed, the substrate 4 is divided by applying an external force to the substrate 4, so that the substrate 4 can be reliably and accurately divided.
Further, since the laser light is any one of a femtosecond laser, a picosecond pulse laser, or a YAG laser, the substrate 4 can be divided using a laser light suitable for dividing the substrate 4.
Further, since the display device substrate is divided from the substrate 4 by the substrate dividing method of the present invention, an inexpensive display device can be manufactured by reducing the number of times of laser light scanning related to the division of the substrate 4.

本発明を適用した分割対象基板の平面図である。It is a top view of the division | segmentation object board | substrate to which this invention is applied. 図1の基板分割方法に用いられるレーザビーム照射装置の概略構成図である。It is a schematic block diagram of the laser beam irradiation apparatus used for the board | substrate division | segmentation method of FIG. 図2の回折光学素子によるレーザビーム回折の説明図である。It is explanatory drawing of the laser beam diffraction by the diffractive optical element of FIG. 図2のレーザビーム照射装置で分割対象基板に形成される改質領域の説明図である。It is explanatory drawing of the modification | reformation area | region formed in a division | segmentation target board | substrate with the laser beam irradiation apparatus of FIG. 従来の基板分割方法の説明図である。It is explanatory drawing of the conventional board | substrate division | segmentation method.

符号の説明Explanation of symbols

1 改質領域、4 分割対象基板、10 レーザビーム照射装置、13 回折光学素子。 DESCRIPTION OF SYMBOLS 1 Modified area | region, 4 division | segmentation object board | substrate, 10 laser beam irradiation apparatus, 13 diffraction optical element.

Claims (4)

単一の又は複数の基板からなる基板に対し、レーザ光を照射して当該基板を分割する基板分割方法であって、回折光学素子で前記レーザ光を回折させ、少なくとも前記基板の厚さ方向の所望領域の全域にわたって前記レーザ光を照射して改質領域を形成することを特徴とする基板分割方法。   A substrate dividing method for dividing a substrate made of a single substrate or a plurality of substrates by irradiating the substrate with laser light, diffracting the laser light with a diffractive optical element, and at least in the thickness direction of the substrate A substrate dividing method, wherein the modified region is formed by irradiating the laser beam over the entire desired region. 前記改質領域を形成した後、前記基板に外力を加えることで当該基板を分割することを特徴とする請求項1に記載の基板分割方法。   The substrate dividing method according to claim 1, wherein after forming the modified region, the substrate is divided by applying an external force to the substrate. 前記レーザ光がフェムト秒レーザ、ピコ秒パルスレーザ、又はYAGレーザの何れかであることを特徴とする請求項1又は2に記載の基板分割方法。   3. The substrate dividing method according to claim 1, wherein the laser beam is any one of a femtosecond laser, a picosecond pulse laser, and a YAG laser. 前記請求項1乃至3の何れかに記載の基板分割方法で前記基板から表示装置用基板を分割することを特徴とする表示装置の製造方法。   4. A display device manufacturing method, wherein a display device substrate is divided from the substrate by the substrate dividing method according to claim 1.
JP2007225318A 2007-08-31 2007-08-31 Substrate dividing method and manufacturing method of display device Withdrawn JP2009056482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007225318A JP2009056482A (en) 2007-08-31 2007-08-31 Substrate dividing method and manufacturing method of display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007225318A JP2009056482A (en) 2007-08-31 2007-08-31 Substrate dividing method and manufacturing method of display device

Publications (1)

Publication Number Publication Date
JP2009056482A true JP2009056482A (en) 2009-03-19

Family

ID=40552714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007225318A Withdrawn JP2009056482A (en) 2007-08-31 2007-08-31 Substrate dividing method and manufacturing method of display device

Country Status (1)

Country Link
JP (1) JP2009056482A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125752A1 (en) * 2010-04-08 2011-10-13 株式会社フジクラ Method of forming microstructures, laser irradiation device, and substrate
CN102615432A (en) * 2011-01-25 2012-08-01 亚通公司 Method and apparatus for machining based on titled laser scanning
JP2016509540A (en) * 2013-01-15 2016-03-31 コーニング レーザー テクノロジーズ ゲーエムベーハーCORNING LASER TECHNOLOGIES GmbH Laser-based machining method and apparatus for sheet-like substrates using laser beam focal lines
KR20160098469A (en) * 2013-12-17 2016-08-18 코닝 인코포레이티드 Laser cutting of ion-exchangeable glass substrates
KR20160101085A (en) * 2013-12-17 2016-08-24 코닝 인코포레이티드 Method For Rapid Laser Drilling Of Holes In Glass and Products Made Therefrom
JP2017185547A (en) * 2010-07-12 2017-10-12 ロフィン−シナー テクノロジーズ インコーポレーテッド Method of material processing by laser filamentation
US10392290B2 (en) 2013-12-17 2019-08-27 Corning Incorporated Processing 3D shaped transparent brittle substrate
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US10611668B2 (en) 2013-12-17 2020-04-07 Corning Incorporated Laser cut composite glass article and method of cutting
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US11014845B2 (en) 2014-12-04 2021-05-25 Corning Incorporated Method of laser cutting glass using non-diffracting laser beams
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11542190B2 (en) 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US11697178B2 (en) 2014-07-08 2023-07-11 Corning Incorporated Methods and apparatuses for laser processing materials
US11713271B2 (en) 2013-03-21 2023-08-01 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125752A1 (en) * 2010-04-08 2011-10-13 株式会社フジクラ Method of forming microstructures, laser irradiation device, and substrate
US10399184B2 (en) 2010-07-12 2019-09-03 Rofin-Sinar Technologies Llc Method of material processing by laser filamentation
JP2017185547A (en) * 2010-07-12 2017-10-12 ロフィン−シナー テクノロジーズ インコーポレーテッド Method of material processing by laser filamentation
CN102615432A (en) * 2011-01-25 2012-08-01 亚通公司 Method and apparatus for machining based on titled laser scanning
JP2012152823A (en) * 2011-01-25 2012-08-16 Atton Corp Method and device for processing object using scanned laser beam irradiated in inclined angle direction
JP2016509540A (en) * 2013-01-15 2016-03-31 コーニング レーザー テクノロジーズ ゲーエムベーハーCORNING LASER TECHNOLOGIES GmbH Laser-based machining method and apparatus for sheet-like substrates using laser beam focal lines
US11345625B2 (en) 2013-01-15 2022-05-31 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US11028003B2 (en) 2013-01-15 2021-06-08 Corning Laser Technologies GmbH Method and device for laser-based machining of flat substrates
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US11713271B2 (en) 2013-03-21 2023-08-01 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10597321B2 (en) 2013-12-17 2020-03-24 Corning Incorporated Edge chamfering methods
KR102287201B1 (en) 2013-12-17 2021-08-09 코닝 인코포레이티드 Laser cutting of ion-exchangeable glass substrates
TWI669182B (en) * 2013-12-17 2019-08-21 美商康寧公司 Method for rapid laser drilling of holes in glass and products made therefrom
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
KR20160098469A (en) * 2013-12-17 2016-08-18 코닝 인코포레이티드 Laser cutting of ion-exchangeable glass substrates
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
JP2017510531A (en) * 2013-12-17 2017-04-13 コーニング インコーポレイテッド High speed laser drilling method for glass and glass products
US10611668B2 (en) 2013-12-17 2020-04-07 Corning Incorporated Laser cut composite glass article and method of cutting
KR20160101085A (en) * 2013-12-17 2016-08-24 코닝 인코포레이티드 Method For Rapid Laser Drilling Of Holes In Glass and Products Made Therefrom
US11148225B2 (en) 2013-12-17 2021-10-19 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10392290B2 (en) 2013-12-17 2019-08-27 Corning Incorporated Processing 3D shaped transparent brittle substrate
JP2017509568A (en) * 2013-12-17 2017-04-06 コーニング インコーポレイテッド Laser cutting of ion-exchangeable glass substrates
KR102280235B1 (en) * 2013-12-17 2021-07-22 코닝 인코포레이티드 Method For Rapid Laser Drilling Of Holes In Glass and Products Made Therefrom
US11697178B2 (en) 2014-07-08 2023-07-11 Corning Incorporated Methods and apparatuses for laser processing materials
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US11014845B2 (en) 2014-12-04 2021-05-25 Corning Incorporated Method of laser cutting glass using non-diffracting laser beams
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US11130701B2 (en) 2016-09-30 2021-09-28 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US11542190B2 (en) 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks

Similar Documents

Publication Publication Date Title
JP2009056482A (en) Substrate dividing method and manufacturing method of display device
JP6353683B2 (en) Laser processing apparatus and laser processing method
JP6258787B2 (en) Laser processing apparatus and laser processing method
KR102250704B1 (en) Laser machining device and laser machining method
JP5632751B2 (en) Processing object cutting method
JP6272145B2 (en) Laser processing apparatus and laser processing method
KR101757952B1 (en) Laser processing method
TWI647043B (en) Laser processing device and laser processing method
JP5840215B2 (en) Laser processing method and laser processing apparatus
TWI515068B (en) Laser processing method
WO2014156688A1 (en) Laser machining device and laser machining method
JP5905274B2 (en) Manufacturing method of semiconductor device
JP2011051011A (en) Laser beam machining method and method for manufacturing semiconductor device
JP2010017990A (en) Substrate dividing method
JP2010125507A (en) Laser beam machine
KR20120112774A (en) Laser processing system
WO2014156687A1 (en) Laser machining device and laser machining method
JP5242036B2 (en) Laser processing equipment
JP2003334683A (en) Apparatus and method for laser processing
WO2013039006A1 (en) Laser machining method
JP2007284310A (en) Laser scribing method, laser beam machining equipment and electrooptical device
KR20220103771A (en) laser processing equipment
JP2009050892A (en) Substrate dividing method and method of manufacturing display device
JP2009202190A (en) Method of dividing substrate and method of manufacturing display device
JP4698200B2 (en) Laser processing method and laser processing apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101102