JP2009048965A - Battery pack, and manufacturing method thereof - Google Patents

Battery pack, and manufacturing method thereof Download PDF

Info

Publication number
JP2009048965A
JP2009048965A JP2007216677A JP2007216677A JP2009048965A JP 2009048965 A JP2009048965 A JP 2009048965A JP 2007216677 A JP2007216677 A JP 2007216677A JP 2007216677 A JP2007216677 A JP 2007216677A JP 2009048965 A JP2009048965 A JP 2009048965A
Authority
JP
Japan
Prior art keywords
assembled battery
restraint
unit cells
load
vertical direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007216677A
Other languages
Japanese (ja)
Inventor
Akira Yamamoto
山本  彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007216677A priority Critical patent/JP2009048965A/en
Publication of JP2009048965A publication Critical patent/JP2009048965A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery pack capable of exhibiting a stable battery performance over a long term, and to provide a manufacturing method thereof. <P>SOLUTION: As for the battery pack 10, a plurality of single cells 12 in which an electrode body having a form that sheet-shaped electrodes are overlapped over each other is housed into a container together with an electrolytic solution are arranged in a plurality of numbers in a prescribed direction and restricted in a state applied with a load in the arranging direction. At the lower side in the vertical direction of the plurality of the single cells 12, a position restricted by the load larger than that of the upper side in the vertical direction of the single cells 12 is installed. Such a constitution is achieved, for example, by means that upper part restriction bands 211, 212 and lower part restriction bands 213, 214 bridged over in the arranging direction of the single cells 12 are arranged by making a position different in the vertical direction and that the restriction load of the lower part restriction band arranged more downward is made larger than that of the upper part restriction bands 211, 212. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数の単電池を配列してなる組電池および該組電池の製造方法に関する。   The present invention relates to an assembled battery formed by arranging a plurality of unit cells and a method for manufacturing the assembled battery.

軽量で高エネルギー密度が得られるリチウムイオン電池、ニッケル水素電池その他の二次電池あるいはキャパシタ等の蓄電素子を単電池とし、複数の該単電池を所定方向に配列してなる組電池は、車両搭載用電源、あるいはパソコンや携帯端末等の電源として重要性が高まっている。かかる組電池の一つの代表的な構成では、上記複数の単電池をコンパクトにまとめるとともに互いの位置ずれを防ぐために、上記配列方向に荷重が加えられた状態で上記複数の単電池を拘束している。この種の組電池に関する従来技術文献として特許文献1〜3が挙げられる。
また、軽量で高エネルギー密度が得られるリチウムイオン電池を単電池として複数直列に接続した組電池は、車両搭載用高出力電源として特に好ましく用いられるものとして期待されている。
An assembled battery formed by arranging a plurality of unit cells in a predetermined direction as a unit cell, such as a lithium ion battery, a nickel hydride battery or other secondary battery or a capacitor, which can obtain a light and high energy density, is mounted on a vehicle. It is becoming increasingly important as a power source for computers, or as a power source for personal computers and mobile terminals. In one typical configuration of such an assembled battery, the plurality of unit cells are constrained in a state where a load is applied in the arrangement direction in order to collect the plurality of unit cells in a compact manner and prevent mutual displacement. Yes. Patent Documents 1 to 3 are cited as prior art documents relating to this type of assembled battery.
In addition, an assembled battery in which a plurality of lithium ion batteries that are lightweight and have a high energy density are connected in series as single cells is expected to be particularly preferably used as a high-output power supply for vehicles.

特開平9−115490号公報JP-A-9-115490 特開2001−68081号公報JP 2001-68081 A 特開平9−120808号公報JP-A-9-120808

ところで、上記単電池としてシート状の電極が重ね合わされた形態の電極体が液状の電解質(電解液)とともに容器に収容された構成の単電池を用いる場合、製造時には上記電解液が上記電極体の各部に適切に行き渡って(典型的には、該電極体の全体に十分に浸透して)いたとしても、長期間の使用等によって該電解液が部分的に足りなくする箇所が生じることがある。上記電解液の配置は重力の影響を受けるため、特に上記電極体のうち鉛直方向上側に位置する部分では、このような電解液の不足(いわゆる「液枯れ」現象)が起こりやすい。かかる事象の発生は電池性能を低下させる虞があるので好ましくない。   By the way, in the case of using a unit cell having a configuration in which a sheet-like electrode is stacked in a container together with a liquid electrolyte (electrolyte) as the unit cell, the electrolyte is used in the manufacturing process. Even if it is properly distributed to each part (typically sufficiently permeating the entire electrode body), there may be a portion where the electrolytic solution is partially insufficient due to long-term use or the like. . Since the arrangement of the electrolyte solution is affected by gravity, such a shortage of electrolyte solution (so-called “liquid drainage” phenomenon) is likely to occur particularly in a portion of the electrode body located on the upper side in the vertical direction. Occurrence of such an event is not preferable because there is a possibility that the battery performance is deteriorated.

本発明は、上記従来の組電池における上述した課題を解決すべくなされたものであって、上記液枯れ現象の発生を防止して長期間に亘り安定した電池性能を発揮することのできる組電池を提供することを目的とする。また本発明は、そのような組電池を製造する方法および該組電池を備える車両を提供することである。   The present invention has been made to solve the above-described problems in the above-described conventional assembled battery, and can prevent the occurrence of the liquid withdrawing phenomenon and exhibit stable battery performance over a long period of time. The purpose is to provide. Moreover, this invention is providing the method of manufacturing such an assembled battery, and a vehicle provided with this assembled battery.

本発明によると、シート状の電極が重ね合わされた形態の電極体が電解液とともに容器に収容された単電池(典型的には、リチウムイオン電池等の二次電池)を複数備えた組電池が提供される。前記複数の単電池は、所定方向に配列され且つ該配列方向に荷重が加えられた状態で拘束されている。ここで、前記拘束は、前記複数の単電池の鉛直方向下側に該単電池の鉛直方向上側よりも大きな前記荷重で拘束された箇所が設けられるようになされている。   According to the present invention, there is provided an assembled battery including a plurality of unit cells (typically, secondary batteries such as lithium ion batteries) in which electrode bodies in a form in which sheet-like electrodes are stacked are accommodated in a container together with an electrolytic solution. Provided. The plurality of single cells are arranged in a predetermined direction and are restrained in a state where a load is applied in the arrangement direction. Here, the restraint is such that a portion restrained by the load larger than the upper side in the vertical direction of the unit cells is provided on the lower side in the vertical direction of the plurality of unit cells.

一般に、組電池を構成する単電池(典型的には、主として該単電池を構成する電極体)は、充放電(すなわち充電状態(SOC)の変動)や温度変化等によって膨張・収縮する。このとき、該単電池の一部の箇所が他の箇所よりも強く(すなわち、より大きな荷重が加えられた状態で)拘束されていると、上記膨張の際に相対的に強く拘束された箇所にある電解液が相対的に弱く拘束された箇所へ送り出されるという一種のポンピング作用を生じさせることができる。したがって、ここに開示される組電池によると、上記組電池の鉛直方向下(以下、単に「下」ということもある。)側が、該組電池の鉛直方向上(以下、単に「上」ということもある。)側よりも強く拘束されていることにより、上記ポンピング作用によって容器の下側から上側へと電解液を押し上げる(移動させる)ことができる。このことによって上述した液枯れの発生を防止し、電極体の各部に電解液が適切に行き渡った状態を維持することができる。したがって、本発明に係る組電池によると、より長期に亘って安定した性能が発揮され得る。   In general, a unit cell constituting an assembled battery (typically, an electrode body mainly constituting the unit cell) expands and contracts due to charging / discharging (that is, variation in the state of charge (SOC)), temperature change, and the like. At this time, if a part of the unit cell is constrained more strongly than the other part (that is, in a state where a larger load is applied), the part is relatively strongly restrained during the expansion. A kind of pumping action can be generated in which the electrolyte in the tank is sent out to a relatively weakly restrained portion. Therefore, according to the assembled battery disclosed herein, the lower side in the vertical direction of the assembled battery (hereinafter sometimes simply referred to as “lower”) is the upper side in the vertical direction of the assembled battery (hereinafter simply referred to as “upper”). By being restrained more strongly than the side, the electrolyte can be pushed up (moved) from the lower side to the upper side by the pumping action. As a result, the occurrence of the above-mentioned liquid withering can be prevented, and the state in which the electrolytic solution has been properly distributed to each part of the electrode body can be maintained. Therefore, according to the assembled battery according to the present invention, stable performance can be exhibited over a longer period.

なお、本明細書において「単電池」とは、組電池を構成する個々の蓄電素子を指す用語であって、特に限定しない限り種々の組成の電池、キャパシタを包含する。また、「二次電池」とは、繰り返し充電可能な電池一般をいい、リチウムイオン電池、ニッケル水素電池等のいわゆる蓄電池を包含する。リチウムイオン電池を構成する蓄電素子は、ここでいう「単電池」に包含される典型例であり、そのような単電池を複数備えて成るリチウムイオン電池モジュールは、ここで開示される「組電池」の一つの典型例である。ここに開示される技術は、扁平形状の外形を有する単電池(例えばリチウムイオン電池)の所定数を、その扁平面が積み重なる方向(積層方向)に配列し、それらの単電池の電極端子を直列または並列に接続してなる組電池に特に好ましく適用され得る。   In the present specification, the “single cell” is a term indicating individual power storage elements constituting the assembled battery, and includes batteries and capacitors of various compositions unless specifically limited. The “secondary battery” refers to a battery that can be repeatedly charged, and includes so-called storage batteries such as lithium ion batteries and nickel metal hydride batteries. The electric storage element constituting the lithium ion battery is a typical example included in the “unit cell” referred to herein, and the lithium ion battery module including a plurality of such unit cells is disclosed in the “assembled battery” Is a typical example. In the technology disclosed herein, a predetermined number of single cells (for example, lithium ion batteries) having a flat outer shape are arranged in a direction in which the flat surfaces are stacked (stacking direction), and electrode terminals of the single cells are arranged in series. Or it can apply especially preferably to the assembled battery formed by connecting in parallel.

ここに開示される組電池は、好ましい一態様として、前記複数の単電池の配列方向に架け渡されて該複数の単電池を拘束する複数の拘束バンドを備える。それら複数の拘束バンドは鉛直方向に位置を異ならせて配置されている。そして、鉛直方向上側に配置された拘束バンドよりも鉛直方向下側に配置された拘束バンドのほうが大きな拘束力で前記複数の単電池を拘束するように構成されている。
かかる構成の組電池によると、相対的に上側を拘束する拘束バンドに比べて相対的に下側を拘束する拘束バンドの拘束力を大きくする(換言すれば、下側の拘束バンドをより強く締め付ける)という簡単な方法により、各拘束バンドで拘束された部分に加えられる荷重を調節し、上述のように組電池の下側により強い荷重(拘束荷重)が加えられた箇所が設けられた拘束状態をより的確に形成することができる。したがって、該組電池を構成する単電池において上記電解液を押し上げる作用をより適切に働かせ得ることから、電極体の各部に電解液が適切に行き渡った状態をより確実に維持することができる。したがって、本態様の組電池によると、より長期に亘って安定した性能が発揮され得る。
The assembled battery disclosed herein includes, as a preferred embodiment, a plurality of restraining bands that are spanned in the arrangement direction of the plurality of unit cells and restrain the plurality of unit cells. The plurality of restraint bands are arranged at different positions in the vertical direction. The restraint band disposed on the lower side in the vertical direction is configured to restrain the plurality of single cells with a greater restraining force than the restraint band disposed on the upper side in the vertical direction.
According to the assembled battery having such a configuration, the restraining force of the restraining band that restrains the lower side is made larger than the restraining band that restrains the upper side relatively (in other words, the lower restraining band is tightened more strongly). ) By adjusting the load applied to the part restrained by each restraining band by a simple method, and the restraint state where the place where a stronger load (restraint load) is applied to the lower side of the assembled battery as described above is provided Can be formed more accurately. Therefore, since the action of pushing up the electrolytic solution can be appropriately performed in the unit cell constituting the assembled battery, it is possible to more reliably maintain the state where the electrolytic solution is properly distributed to each part of the electrode body. Therefore, according to the assembled battery of this aspect, stable performance can be exhibited over a longer period.

ここに開示される組電池は、前記複数の単電池の配列方向の両端に配置されて該単電池とともに拘束されるエンドプレートを備えた構成であり得る。かかる構成によると、上記エンドプレートを介して上記複数の単電池に拘束荷重が加えられるので、上記組電池の下側の相対的に大きな荷重が加えられる箇所と該組電池の上側の相対的に小さな荷重が加えられる箇所との間で該荷重が徐々に変化するような拘束状態を容易に実現することができる。このような拘束状態にある組電池では、該組電池を構成する単電池において上記電解液を押し上げる作用をより適切に働かせ得ることから、電極体の各部に電解液が適切に行き渡った状態をより確実に維持することができる。したがって、本態様の組電池によると、より長期に亘って安定した性能が発揮され得る。   The assembled battery disclosed herein may be configured to include end plates that are disposed at both ends in the arrangement direction of the plurality of unit cells and are restrained together with the unit cells. According to such a configuration, a restraining load is applied to the plurality of single cells via the end plate. Therefore, a location where a relatively large load is applied to the lower side of the assembled battery and a relatively upper position of the assembled battery are compared. It is possible to easily realize a restraint state in which the load gradually changes between the places where a small load is applied. In an assembled battery in such a constrained state, the action of pushing up the electrolytic solution in the unit cell constituting the assembled battery can be made to work more appropriately, so that the state in which the electrolytic solution is properly distributed to each part of the electrode body is more It can be reliably maintained. Therefore, according to the assembled battery of this aspect, stable performance can be exhibited over a longer period.

ここに開示される技術は、例えば、前記電極体が前記重ね合わされたシート状電極を捲回してなる捲回電極体であって、前記配列方向が捲回軸の側面方向となる向きで前記捲回電極体が前記容器に収容された構成の単電池を備えた組電池に好ましく適用され得る。上記捲回電極体は、一般に捲回軸方向に比べて該捲回軸の側面方向により大きく膨張収縮する。したがって、捲回軸の側面方向が配列方向(すなわち拘束荷重が加えられる方向)となるように配置された捲回電極体を備える単電池によると、上記電解液を押し上げる作用をより適切に働かせ得るので、電極体の各部に電解液が適切に行き渡った状態をより確実に維持することができる。したがって、上記構成の単電池を備えた組電池によると、より長期に亘って安定した性能が発揮され得る。   The technique disclosed herein is, for example, a wound electrode body obtained by winding the stacked sheet-like electrode, and the winding direction is such that the arrangement direction is a side surface direction of a winding axis. The present invention can be preferably applied to an assembled battery including a unit cell having a configuration in which a rotating electrode body is accommodated in the container. The wound electrode body generally expands and contracts more greatly in the side surface direction of the winding shaft than in the winding shaft direction. Therefore, according to the unit cell including the wound electrode body arranged so that the side surface direction of the wound shaft is the arrangement direction (that is, the direction in which the restraining load is applied), the action of pushing up the electrolyte can be more appropriately performed. Therefore, it is possible to more reliably maintain the state in which the electrolytic solution is properly distributed to each part of the electrode body. Therefore, according to the assembled battery including the single battery having the above-described configuration, stable performance can be exhibited over a longer period.

本発明によると、また、複数の単電池を備えた組電池を製造する方法が提供される。その方法は、シート状の電極が重ね合わされた形態の電極体が電解液とともに容器に収容された単電池を複数用意(製造、購入等)することを含む。また、前記複数の単電池を所定方向に配列することを含む。また、前記配列された複数の単電池を該配列方向に荷重が加えられた状態で拘束することを含む。ここで、前記拘束は、前記複数の単電池の下側に該単電池の鉛直方向上側よりも大きな前記荷重で拘束される箇所が設けられるように行われる。
かかる方法によると、鉛直方向下側に上側よりも強く拘束された箇所が設けられていることにより上述したポンピング作用によって電極体の各部に電解液が適切に行き渡った状態を維持し得る組電池を適切に製造することができる。したがって、本発明の方法により製造された組電池によると、より長期に亘って安定した性能が発揮され得る。上記製造方法は、ここに開示されるいずれかの組電池を製造する方法として好ましく採用され得る。
According to the present invention, a method for manufacturing an assembled battery including a plurality of single cells is also provided. The method includes preparing (manufacturing, purchasing, etc.) a plurality of unit cells in which an electrode body in a form in which sheet-like electrodes are superimposed is housed in a container together with an electrolytic solution. Further, the method includes arranging the plurality of unit cells in a predetermined direction. Further, the method includes restraining the plurality of arranged single cells in a state where a load is applied in the arrangement direction. Here, the restraint is performed such that a portion restrained by the load larger than the upper side in the vertical direction of the unit cells is provided below the plurality of unit cells.
According to such a method, an assembled battery that can maintain the state in which the electrolyte is appropriately distributed to each part of the electrode body by the above-described pumping action by providing a portion that is restrained more strongly than the upper side on the lower side in the vertical direction. Can be manufactured properly. Therefore, according to the assembled battery manufactured by the method of the present invention, stable performance can be exhibited over a longer period. The above manufacturing method can be preferably employed as a method for manufacturing any of the assembled batteries disclosed herein.

ここに開示されるいずれかの組電池(ここに開示されるいずれかの方法により製造された組電池であり得る。)は、上述のように長期に亘って安定した性能を発揮し得ることから、車両に搭載される組電池(例えば、自動車等の車両のモータ(電動機)用の電源)として好適である。したがって本発明によると、ここに開示されるいずれかの組電池を備えた車両が提供される。   Any of the assembled batteries disclosed herein (which may be an assembled battery manufactured by any of the methods disclosed herein) can exhibit stable performance over a long period of time as described above. It is suitable as an assembled battery (for example, a power source for a motor (electric motor) of a vehicle such as an automobile) mounted on the vehicle. Therefore, according to this invention, the vehicle provided with one of the assembled batteries disclosed here is provided.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極、負極およびセパレータの構成および製法、電極体の製造方法、車両への組電池搭載方法)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
本発明に係る組電池は、特に自動車等の車両に搭載されるモータ(電動機)用電源として好適に使用し得る。したがって本発明は、図7に模式的に示すように、かかる組電池10を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)1を提供する。
Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for carrying out the present invention (for example, configuration and manufacturing method of positive electrode, negative electrode and separator, manufacturing method of electrode body, assembled battery for vehicle) The mounting method) can be grasped as a design matter of those skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
The assembled battery according to the present invention can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Accordingly, as schematically shown in FIG. 7, the present invention provides a vehicle (typically an automobile equipped with an electric motor such as an automobile, particularly a hybrid automobile, an electric automobile, and a fuel cell automobile) 1 having such an assembled battery 10 as a power source. I will provide a.

ここに開示される技術を適用して製造される組電池は、シート状の電極(正極シートおよび負極シート)が重ね合わされた形態の電極体が液状電解質とともに容器に収容された単電池(典型的には、扁平な箱型形状の外形を有する単電池)を配列し該配列方向(積層方向)に拘束してなる組電池であればよく、各単電池の構成は特に制限されない。本発明の適用対象として好適な単電池の例として、リチウム二次電池(例えばリチウムイオン電池)、ニッケル水素電池、電気二重層キャパシタ等の二次電池が挙げられる。なかでもリチウムイオン電池を単電池とする組電池への適用が好ましい。リチウムイオン電池は高エネルギー密度で高出力を実現できる二次電池であるため、高性能な組電池、特に車両搭載用組電池(電池モジュール)を構築することができる。また本発明は、それら配列された複数個の単電池が直列または並列(典型的には直列)に接続された形態の組電池およびその製造方法として好適である。   An assembled battery manufactured by applying the technology disclosed herein is a single battery (typically, an electrode body in which sheet-like electrodes (a positive electrode sheet and a negative electrode sheet) are overlapped and accommodated in a container together with a liquid electrolyte. The battery may be an assembled battery in which unit cells having a flat box-shaped outer shape are arranged and restrained in the arrangement direction (stacking direction), and the configuration of each unit cell is not particularly limited. Examples of a single battery suitable as an application target of the present invention include secondary batteries such as a lithium secondary battery (for example, a lithium ion battery), a nickel metal hydride battery, and an electric double layer capacitor. In particular, application to an assembled battery in which a lithium ion battery is a single battery is preferable. Since the lithium ion battery is a secondary battery that can achieve high output at a high energy density, a high-performance assembled battery, in particular, an assembled battery for a vehicle (battery module) can be constructed. The present invention is also suitable as an assembled battery in which a plurality of arranged single cells are connected in series or in parallel (typically in series) and a method for manufacturing the battery.

特に限定することを意図したものではないが、以下、扁平な箱型(直方体)形状のリチウムイオン電池を単電池とし、該単電池の複数個をそれらの幅広面(最も面積の広い面)が重なる方向(積層方向)に配列し、直列に接続してなる組電池を例として本発明を詳細に説明する。また、以下の図面において、同様の作用を奏する部材・部位には同じ符号を付し、重複する説明は省略または簡略化することがある。   Although not intended to be particularly limited, hereinafter, a flat box-shaped (rectangular) lithium ion battery is referred to as a single cell, and a plurality of the single cells have a wide surface (the surface having the largest area). The present invention will be described in detail by taking as an example an assembled battery arranged in an overlapping direction (stacking direction) and connected in series. Moreover, in the following drawings, the same code | symbol is attached | subjected to the member and site | part which show | plays the same effect | action, and the overlapping description may be abbreviate | omitted or simplified.

以下に示す実施形態に係る組電池を構成する単電池は、従来の組電池に装備される単電池と同様、典型的には所定の電池構成材料(正負極それぞれの集電体に正負極それぞれの活物質が保持されたシート状の電極、セパレータ等)を具備する電極体と、該電極体および適当な液状電解質(電解液)を収容する容器とを備える。
一例として図1および図2に示すように、本例に係る組電池10は、積層方向に配列された複数(典型的には10〜50個程度、例えば28個)の同形状の単電池12を備える。単電池12は、後述する扁平形状の捲回電極体を収容し得る形状(本実施形態では扁平な箱形)の容器14を備える。この組電池10は、典型的には、上記積層方向がほぼ水平方向となる姿勢で、換言すれば扁平な箱型容器14の幅広面14Aがほぼ鉛直方向に立つ姿勢で使用(例えば車両に搭載)される。
The cell constituting the assembled battery according to the embodiment shown below is typically a predetermined battery constituent material (positive and negative electrodes on each positive and negative electrode current collector, as in the case of the single battery equipped in the conventional assembled battery. And an electrode body having a sheet-like electrode, a separator and the like in which the active material is held, and a container for housing the electrode body and an appropriate liquid electrolyte (electrolyte).
As an example, as shown in FIGS. 1 and 2, the assembled battery 10 according to this example includes a plurality (typically about 10 to 50, for example, 28) of unit cells 12 having the same shape arranged in the stacking direction. Is provided. The unit cell 12 includes a container 14 having a shape (a flat box shape in this embodiment) that can accommodate a flat wound electrode body to be described later. The assembled battery 10 is typically used in a posture in which the stacking direction is substantially horizontal, in other words, in a posture in which the wide surface 14A of the flat box-shaped container 14 is substantially vertical (for example, mounted in a vehicle). )

容器14には、捲回電極体の正極と電気的に接続する正極端子15および該電極体の負極と電気的に接続する負極端子16が設けられている。図示するように、隣接する単電池12間において一方の正極端子15と他方の負極端子16とが接続具17によって電気的に接続される。このように各単電池12を直列に接続することにより、所望する電圧の組電池10が構築される。
なお、これら容器14には、容器内部で発生したガス抜きのための安全弁等が従来の単電池容器と同様に設けられ得る。かかる容器14の構成自体は本発明を特徴付けるものではないため、詳細な説明は省略する。
The container 14 is provided with a positive electrode terminal 15 electrically connected to the positive electrode of the wound electrode body and a negative electrode terminal 16 electrically connected to the negative electrode of the electrode body. As shown in the figure, one positive terminal 15 and the other negative terminal 16 are electrically connected by a connector 17 between adjacent unit cells 12. Thus, the assembled battery 10 of the desired voltage is constructed | assembled by connecting each cell 12 in series.
These containers 14 may be provided with a safety valve or the like for venting the gas generated inside the container as in the case of a conventional single cell container. Since the configuration of the container 14 itself does not characterize the present invention, a detailed description is omitted.

容器14の材質は、従来の単電池で使用されるものと同じであればよく特に制限はない。上下で異ならせた拘束荷重を各単電池(特に、該容器に収容された電極体)に適切に付与して該単電池の膨張収縮によるポンピング作用を有効に働かせやすく且つ車両等への搭載に適するという観点から、本発明の実施に好適なものとしては、比較的軽量であり且つ拘束荷重によって撓みやすい材質が挙げられる。例えば、金属(例えばアルミニウム、スチール)製の容器、合成樹脂(例えばポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、あるいはポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリアミド系樹脂等の高融点樹脂)製の容器等を好ましく用いることができる。あるいは、電池の外装体として従来使用されている樹脂フィルム製容器、例えば高融点樹脂(例えばポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリアミド系樹脂等の高融点樹脂)から構成された外面(保護)層と、金属箔(例えばアルミニウム、スチール)から構成されたバリア層(すなわちガスや水分を遮断し得る層)と、熱融着性樹脂(比較的低融点である樹脂、例えばエチレンビニルアセテート、あるいはポリエチレン、ポリプロピレン等のポリオレフィン系樹脂)から構成された接着層との三層構造から成るラミネートフィルム製の容器であってもよい。本例に係る容器14は、壁面の厚さが約0.8mmのアルミニウム製である。   The material of the container 14 is not particularly limited as long as it is the same as that used in the conventional unit cell. Appropriately imparting a restraining load that is different between the upper and lower sides to each unit cell (especially, the electrode body accommodated in the container) to facilitate effective pumping action due to expansion and contraction of the unit cell, and for mounting on a vehicle or the like From the viewpoint of suitability, materials suitable for the implementation of the present invention include materials that are relatively lightweight and are easily deflected by restraint loads. For example, a container made of a metal (for example, aluminum or steel), a container made of a synthetic resin (for example, a polyolefin resin such as polyethylene or polypropylene, or a high melting point resin such as polyethylene terephthalate, polytetrafluoroethylene, or polyamide resin) is preferable. Can be used. Alternatively, a resin film container conventionally used as a battery exterior body, for example, an outer surface (protection) layer composed of a high-melting resin (for example, a high-melting resin such as polyethylene terephthalate, polytetrafluoroethylene, or polyamide-based resin) A barrier layer composed of a metal foil (for example, aluminum or steel) (that is, a layer capable of blocking gas and moisture) and a heat-fusible resin (a resin having a relatively low melting point, such as ethylene vinyl acetate or polyethylene, It may be a laminate film container having a three-layer structure with an adhesive layer made of a polyolefin-based resin such as polypropylene. The container 14 according to this example is made of aluminum having a wall thickness of about 0.8 mm.

図1および図2に示すように、同形状の複数の単電池12は、それぞれの正極端子15および負極端子16が交互に配置されるように一つづつ反転させつつ、容器14の幅広な面14A(すなわち容器14内に収容される後述する捲回電極体30の扁平面に対応する面)が対向する方向に配列されている。当該配列する単電池12の間ならびに単電池配列方向(積層方向)の両アウトサイドには、所定形状の冷却板11が容器14の幅広面14Aに密接した状態で配置されている。この冷却板11は、使用時に各単電池内で発生する熱を効率よく放散させるための放熱部材として機能するものであって、単電池12間に冷却用流体(典型的には空気)を導入可能なフレーム形状(例えば図示される櫛型のような側面からみて凹凸形状)を有する。熱伝導性の良い金属製もしくは軽量で硬質なポリプロピレンその他の合成樹脂製の冷却板11が好適である。   As shown in FIG. 1 and FIG. 2, the plurality of single cells 12 having the same shape are reversed one by one so that the positive terminals 15 and the negative terminals 16 are alternately arranged, and the wide surface of the container 14. 14A (that is, a surface corresponding to a flat surface of a wound electrode body 30 described later housed in the container 14) is arranged in a facing direction. A cooling plate 11 having a predetermined shape is arranged in close contact with the wide surface 14 </ b> A of the container 14 between the arranged unit cells 12 and both outsides in the unit cell arrangement direction (stacking direction). The cooling plate 11 functions as a heat radiating member for efficiently radiating the heat generated in each unit cell during use, and introduces a cooling fluid (typically air) between the unit cells 12. It has a possible frame shape (for example, an uneven shape when viewed from the side like a comb shape shown in the figure). A cooling plate 11 made of metal having good thermal conductivity or lightweight and hard polypropylene or other synthetic resin is suitable.

上記配列させた単電池12および冷却板11(以下、これらを総称して「単電池群24」ともいう。)の両アウトサイドに配置された冷却板11のさらに外側には、一対のエンドプレート18,19が配置されている。そして、上記単電池群24およびエンドプレート18,19の全体(以下「被拘束体」ともいう。)20が、両エンドプレート18,19を架橋(連結)するように取り付けられた複数の締め付け用拘束バンド21によって、該被拘束体20の積層方向(配列方向)に荷重が加えられた状態で拘束されている。   A pair of end plates is disposed on the outer side of the cooling plate 11 arranged on both outsides of the unit cell 12 and the cooling plate 11 (hereinafter collectively referred to as “single cell group 24”). 18 and 19 are arranged. A plurality of fastening cells are attached so that the whole cell group 24 and the end plates 18 and 19 (hereinafter also referred to as “constrained bodies”) 20 are attached so as to bridge (connect) the end plates 18 and 19. The restraint band 21 is restrained in a state where a load is applied in the stacking direction (arrangement direction) of the restrained bodies 20.

より詳しくは、図1によく示されるように、上記複数の拘束バンド21は、被拘束体20の一方の側面および他方の側面に沿ってほぼ同じ高さで該被拘束体20の配列方向に架け渡された一対(二本)の上部拘束バンド211,212と、これら上部拘束バンド211,212よりも鉛直方向下方において同様に被拘束体20の一方の側面および他方の側面に沿ってほぼ同じ高さで該被拘束体20の配列方向に架け渡された他の一対(二本)の下部拘束バンド213,214とからなる。上部拘束バンド211,212と下部拘束バンド213,214は、鉛直方向に高さを異ならせてほぼ平行に配置されている。そして、上部拘束バンド211,212は、被拘束体20の上部を所定の拘束力(拘束荷重)F1で拘束するように該拘束バンド211,212の長手方向の両端をそれぞれエンドプレート18,19に例えばリベット22で固定することにより取り付けられている。また、下部拘束バンド213,214は、被拘束体20の下部を上記拘束力F1よりも大きな所定の拘束力(拘束荷重)F2で拘束するように(すなわちF2>F1となるように)該拘束バンド213,214の長手方向の両端をそれぞれエンドプレート18,19にリベット22で固定することにより取り付けられている。   More specifically, as shown in FIG. 1, the plurality of restraining bands 21 are arranged at the same height along one side surface and the other side surface of the restrained body 20 in the arrangement direction of the restrained body 20. A pair (two) of upper restraint bands 211, 212 spanned and substantially the same along one side surface and the other side surface of the restraint body 20 in the vertical direction below these upper restraint bands 211, 212. It consists of another pair (two) of lower restraint bands 213 and 214 spanned in the arrangement direction of the restrained body 20 at a height. The upper restraint bands 211 and 212 and the lower restraint bands 213 and 214 are arranged substantially in parallel with different heights in the vertical direction. The upper restraining bands 211 and 212 are connected to the end plates 18 and 19 at both ends in the longitudinal direction of the restraining bands 211 and 212 so that the upper portion of the restrained body 20 is restrained by a predetermined restraining force (constraint load) F1. For example, it is attached by fixing with a rivet 22. The lower restraining bands 213 and 214 restrain the lower portion of the restrained body 20 with a predetermined restraining force (constraint load) F2 larger than the restraining force F1 (that is, F2> F1). Both ends of the bands 213 and 214 in the longitudinal direction are attached to the end plates 18 and 19 by fixing them with rivets 22, respectively.

上記拘束力(上部拘束荷重)F1および拘束力(下部拘束荷重)F2は、例えば、下部拘束荷重F2を100%として上部拘束荷重F1が凡そ20%〜95%(好ましくは30%〜90%、例えば50%〜80%)となるように設定することができる。また、下部拘束荷重F2が上部拘束荷重F1よりも凡そ1×10N(約100kgf)以上、好ましくは凡そ2×10N以上大きくなるようにF1およびF2を設定することができる。下部拘束荷重F2と上部拘束荷重F1との差の上限は特に限定されないが、通常は該拘束荷重の差(F2−F1)を凡そ10×10N(約1000kgf)以下とすることが適当である。例えば、上部拘束荷重F1を凡そ6×10N〜8×10N(約600kgf〜800kgf、例えば700kgf)程度とし、これに対して下部拘束荷重F2を凡そ10×10N〜12×10N(約1000kgf〜1200kgf、例えば1100kgf)程度とすることができる。なお、ここでいう上部拘束荷重は二本上部拘束バンド211,212により加えられる合計の拘束荷重(拘束力)を指す。下部拘束荷重についても同様である。 The restraint force (upper restraint load) F1 and restraint force (lower restraint load) F2 are, for example, about 20% to 95% (preferably 30% to 90%) of the upper restraint load F1 with the lower restraint load F2 being 100%. For example, it can be set to be 50% to 80%. Further, F1 and F2 can be set so that the lower restraint load F2 is larger than the upper restraint load F1 by about 1 × 10 3 N (about 100 kgf), preferably about 2 × 10 3 N or more. The upper limit of the difference between the lower restraint load F2 and the upper restraint load F1 is not particularly limited, but it is usually appropriate that the difference between the restraint loads (F2−F1) is about 10 × 10 3 N (about 1000 kgf) or less. is there. For example, the upper restraint load F1 is about 6 × 10 3 N to 8 × 10 3 N (about 600 kgf to 800 kgf, for example 700 kgf), and the lower restraint load F2 is about 10 × 10 3 N to 12 × 10. 3 N (about 1000 kgf to 1200 kgf, for example, 1100 kgf). The upper restraint load referred to here indicates the total restraint load (restraint force) applied by the two upper restraint bands 211 and 212. The same applies to the lower restraint load.

なお、上部拘束バンド211,212は単電池12の幅広面14Aの上端(すなわち容器12の上端角部)よりも少し(例えば10〜30mm程度)下がった位置に、また下部拘束バンド213,214は単電池12の幅広面14Aの下端(すなわち容器12の下端角部)よりも少し(例えば10〜30mm程度)上った位置に配置されている。このように角部を外した位置に配置することによって、これら拘束バンド21による拘束力を各単電池12の幅広面14Aにより適切に付加し、単電池12の膨張収縮によるポンピング作用をより効率よく発揮させることができる。また、図1,2では被拘束体20の一方の側面に沿って架け渡された拘束バンドと他方の側面に沿って架け渡された拘束バンドとが別体である例を示しているが、例えばエンドプレート18からエンドプレート19を回り込んでエンドプレート18に戻るように取り付けられる一本の拘束バンドにより被拘束体20の上部を拘束し、同様に構成された他の一本の拘束バンドにより被拘束体20の下部を拘束するようにしてもよい。   The upper restraint bands 211 and 212 are positioned slightly lower (for example, about 10 to 30 mm) than the upper end of the wide surface 14A of the unit cell 12 (that is, the upper corner of the container 12), and the lower restraint bands 213 and 214 are It is arranged at a position slightly higher (for example, about 10 to 30 mm) than the lower end of the wide surface 14A of the unit cell 12 (that is, the lower end corner of the container 12). By disposing the corners in such a position, the restraining force by the restraining bands 21 is appropriately applied to the wide surface 14A of each unit cell 12, and the pumping action by the expansion and contraction of the unit cell 12 is more efficiently performed. It can be demonstrated. In addition, in FIGS. 1 and 2, an example is shown in which the restraint band spanned along one side surface of the restrained body 20 and the restraint band spanned along the other side surface are separate. For example, the upper portion of the restrained body 20 is restrained by a single restraining band attached so as to go around the end plate 19 from the end plate 18 and return to the end plate 18, and by another restraining band similarly configured. The lower part of the restrained body 20 may be restrained.

エンドプレート18,19の材質および形状は特に限定されず、該エンドプレートの間に配置された単電池群24の下部に該単電池群24の上部よりも大きな拘束荷重が加えることができればよい。換言すれば、上記拘束荷重F1とF2との違いを、単電池群24を配列方向に圧縮する力の差異として適切に反映させ得るような材質および形状のエンドプレート18,19であればよい。例えば、金属、セラミック、樹脂(繊維を配合すること等により強化された樹脂が好ましい)およびこれらの複合材料を主体とするエンドプレートを使用することができる。本実施態様では、ナイロン66に30〜40質量%の割合でガラス繊維を配合した繊維強化プラスチックからなるエンドプレートを使用した。該エンドプレートは、単電池12の幅広面14Aとほぼ同じ平面形状(すなわち長方形状)を有する厚さ約15mmの板状に成形されている。該エンドプレートと拘束バンドとの結合方法(すなわち拘束バンドの固定方法)としては、上述したようなリベット止めのほか、例えばネジ止めを採用してもよい。   The material and shape of the end plates 18 and 19 are not particularly limited as long as a larger restraining load can be applied to the lower part of the unit cell group 24 arranged between the end plates than to the upper part of the unit cell group 24. In other words, the end plates 18 and 19 may be made of materials and shapes that can appropriately reflect the difference between the restraining loads F1 and F2 as a difference in force that compresses the unit cell group 24 in the arrangement direction. For example, an end plate mainly composed of metal, ceramic, resin (resin reinforced by blending fibers and the like) and a composite material thereof can be used. In this embodiment, an end plate made of fiber reinforced plastic in which glass fiber is blended with nylon 66 at a ratio of 30 to 40% by mass was used. The end plate is formed in a plate shape having a thickness of about 15 mm and having substantially the same planar shape (that is, a rectangular shape) as the wide surface 14A of the unit cell 12. As a method for coupling the end plate and the restraining band (that is, a restraining band fixing method), for example, screwing may be employed in addition to the riveting as described above.

次に、組電池10の構築に使用する単電池20について説明する。この単電池20は、通常のリチウムイオン電池の捲回電極体と同様、シート状正極32(以下「正極シート32」ともいう。)とシート状負極34(以下「負極シート34」ともいう。)とを計二枚のシート状セパレータ36(以下「セパレータシート36」ともいう。)とともに積層し、長手方向に捲回し、次いで得られた捲回体を側面方向(捲回軸に対して横方向)から押しつぶして拉げさせることによって作製され得る。
ここで、正極シート32と負極シート34とは、これらの長尺状シートの幅方向に位置をややずらして積層された状態で捲回される。その結果として、捲回電極体12の捲回軸方向の一方および他方の端部には、図2に示すように、正極シート32の幅方向の一端が捲回コア部分31(すなわち正極シート32の正極活物質層形成部分と負極シート34の負極活物質層形成部分とセパレータシート36とが密に捲回された部分)から外方にはみ出した正極はみ出し部32Aと、負極シート34の幅方向の一端が捲回コア部分19から外方にはみ出した負極はみ出し部34Aとがそれぞれ形成されている。正極はみ出し部(すなわち正極活物質層の非形成部分)32Aおよび負極はみ出し部(すなわち負極活物質層の非形成部分)34Aには正極リード端子32Bおよび負極リード端子34Bがそれぞれ付設されており、それらのリード端子32B,34Bがそれぞれ上述の正極端子15および負極端子16と電気的に接続される。
Next, the cell 20 used for construction of the assembled battery 10 will be described. The unit cell 20 has a sheet-like positive electrode 32 (hereinafter also referred to as “positive electrode sheet 32”) and a sheet-like negative electrode 34 (hereinafter also referred to as “negative electrode sheet 34”), similarly to a wound electrode body of a normal lithium ion battery. Are laminated together with a total of two sheet-like separators 36 (hereinafter also referred to as “separator sheet 36”), wound in the longitudinal direction, and then the obtained wound body is laterally oriented (transverse direction with respect to the winding axis). ) And squeezed away.
Here, the positive electrode sheet 32 and the negative electrode sheet 34 are wound in a state in which the positions are slightly shifted in the width direction of these long sheets. As a result, as shown in FIG. 2, one end in the width direction of the positive electrode sheet 32 is provided at one end and the other end in the winding axis direction of the wound electrode body 12. The positive electrode active material layer forming portion, the negative electrode active material layer forming portion of the negative electrode sheet 34, and the portion where the separator sheet 36 is wound tightly), and the positive electrode protruding portion 32A protruding outward, and the width direction of the negative electrode sheet 34 A negative electrode protruding portion 34 </ b> A in which one end thereof protrudes outward from the wound core portion 19 is formed. A positive electrode lead terminal 32B and a negative electrode lead terminal 34B are attached to the positive electrode protruding portion (ie, the non-formed portion of the positive electrode active material layer) 32A and the negative electrode protruding portion (ie, the non-formed portion of the negative electrode active material layer) 34A, respectively. Lead terminals 32B and 34B are electrically connected to the positive electrode terminal 15 and the negative electrode terminal 16, respectively.

かかる捲回電極体30を構成する材料および部材自体は、従来のリチウムイオン電池の電極体と同様でよく、特に制限はない。例えば、正極シート32は長尺状の正極集電体の上にリチウムイオン電池用正極活物質層が付与されて形成され得る。正極集電体にはアルミニウム箔(本実施形態)その他の正極に適する金属箔が好適に使用される。正極活物質としては従来からリチウムイオン電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、LiNiO、LiCoO、LiMn等のリチウム遷移金属酸化物が挙げられる。例えば、長さ2m〜6m(例えば4.5m)、幅8cm〜15cm(例えば12cm)、厚さ5μm〜20μm(例えば15μm)程度のアルミニウム箔を集電体として使用し、その表面の所定領域に常法によってニッケル酸リチウムを主体とするリチウムイオン電池用正極活物質層(例えばニッケル酸リチウム88質量%、アセチレンブラック10質量%、ポリテトラフルオロエチレン1質量%、カルボキシメチルセルロース1質量%)を形成することによって好適な正極シート32が得られる。 The material and the member constituting the wound electrode body 30 may be the same as those of a conventional lithium ion battery, and are not particularly limited. For example, the positive electrode sheet 32 can be formed by applying a positive electrode active material layer for a lithium ion battery on a long positive electrode current collector. For the positive electrode current collector, an aluminum foil (this embodiment) or other metal foil suitable for the positive electrode is preferably used. As the positive electrode active material, one type or two or more types of materials conventionally used in lithium ion batteries can be used without any particular limitation. Preferable examples include lithium transition metal oxides such as LiNiO 2 , LiCoO 2 , and LiMn 2 O 4 . For example, an aluminum foil having a length of 2 to 6 m (for example, 4.5 m), a width of 8 to 15 cm (for example, 12 cm), and a thickness of about 5 to 20 μm (for example, 15 μm) is used as a current collector. A positive electrode active material layer for lithium ion batteries mainly composed of lithium nickelate is formed by a conventional method (for example, lithium nickelate 88% by mass, acetylene black 10% by mass, polytetrafluoroethylene 1% by mass, carboxymethylcellulose 1% by mass). Thus, a suitable positive electrode sheet 32 is obtained.

一方、負極シート34は長尺状の負極集電体の上にリチウムイオン電池用負極活物質層が付与されて形成され得る。負極集電体には銅箔(本実施形態)その他の負極に適する金属箔が好適に使用される。負極活物質としては従来からリチウムイオン電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、グラファイトカーボンやアモルファスカーボン等の炭素系材料、リチウム遷移金属酸化物(リチウムチタン酸化物等)、リチウム遷移金属窒化物等が挙げられる。例えば、長さ2m〜6m(例えば5m)、幅8cm〜15cm(例えば12cm)、厚さ5μm〜20μm(例えば10μm)程度の銅箔を使用し、その表面の所定領域に常法によって黒鉛を主体とするリチウムイオン電池用負極活物質層(例えば黒鉛98質量%、スチレンブタジエンラバー1質量%、カルボキシメチルセルロース1質量%)を形成することによって好適な負極シート34が得られる。   On the other hand, the negative electrode sheet 34 can be formed by applying a negative electrode active material layer for a lithium ion battery on a long negative electrode current collector. For the negative electrode current collector, a copper foil (this embodiment) or other metal foil suitable for the negative electrode is preferably used. As the negative electrode active material, one type or two or more types of materials conventionally used in lithium ion batteries can be used without any particular limitation. Preferable examples include carbon-based materials such as graphite carbon and amorphous carbon, lithium transition metal oxides (such as lithium titanium oxide), and lithium transition metal nitrides. For example, a copper foil having a length of 2 m to 6 m (for example, 5 m), a width of 8 cm to 15 cm (for example, 12 cm), and a thickness of about 5 μm to 20 μm (for example, 10 μm) is used. A suitable negative electrode sheet 34 is obtained by forming a negative electrode active material layer for lithium ion batteries (for example, 98% by mass of graphite, 1% by mass of styrene butadiene rubber, and 1% by mass of carboxymethyl cellulose).

また、正負極シート32,34間に使用される好適なセパレータシート36としては多孔質ポリオレフィン系樹脂で構成されたものが例示される。例えば、長さ2m〜6m(例えば5.5m)、幅8cm〜12cm(例えば10cm)、厚さ5μm〜30μm(例えば25μm)程度の合成樹脂製(例えばポリエチレン、ポリプロピレン等のポリオレフィン製)の多孔質セパレータシートを好適に使用し得る。   Moreover, as a suitable separator sheet 36 used between the positive / negative electrode sheets 32 and 34, what was comprised with the porous polyolefin-type resin is illustrated. For example, a porous material made of a synthetic resin (for example, made of polyolefin such as polyethylene or polypropylene) having a length of 2 to 6 m (for example, 5.5 m), a width of 8 to 12 cm (for example, 10 cm), and a thickness of about 5 to 30 μm (for example, 25 μm). A separator sheet can be suitably used.

得られた扁平形状の捲回電極体30を、図4に示すように捲回軸が横倒しになるようにして容器14内に収容するとともに、適当な支持塩(例えばLiPF等のリチウム塩)を適当量(例えば濃度1M)含むジエチルカーボネートとエチレンカーボネートとの混合溶媒(例えば質量比1:1)のような非水電解液を注入して封止することによって単電池12が構築される。この非水電解液の注入量(単電池一個あたりの使用量)は、該電解液が電池構成要素の各部に適切に行きわたった状態(したがって、捲回電極体30が容器14に収容された状態における上部や捲回の中心部をも含めた捲回電極体30の全体において該電極体30のシート間によく浸透した状態)を実現し、さらにいくらかの電解液が余剰分として残るだけの分量とすることが適当である。この余剰分の電解液(余剰電解液)は重力により容器14の下部に滞留する。この下方に溜まった余剰電解液が電極体30の下方側の一部を浸し得る程度の電解液使用量とすることが好ましい。 The obtained flat wound electrode body 30 is accommodated in the container 14 so that the winding axis is laid down as shown in FIG. 4 and an appropriate supporting salt (for example, a lithium salt such as LiPF 6 ). A single battery 12 is constructed by injecting and sealing a nonaqueous electrolyte such as a mixed solvent of diethyl carbonate and ethylene carbonate (for example, a mass ratio of 1: 1) containing an appropriate amount (for example, concentration 1M). The injection amount of the non-aqueous electrolyte (amount used per unit cell) is such that the electrolyte is properly distributed to each part of the battery components (therefore, the wound electrode body 30 is accommodated in the container 14). The wound electrode body 30 including the upper part and the center of the wound in a state of being fully infiltrated between the sheets of the electrode body 30), and some electrolyte remains as a surplus. It is appropriate to use a quantity. This excess electrolyte solution (surplus electrolyte solution) stays in the lower part of the container 14 by gravity. It is preferable that the amount of electrolyte used is such that the excess electrolyte stored below can immerse a part of the lower side of the electrode body 30.

そして、このように構成された単電池14を上述のように冷却板11とともに配列して単電池群24を構成し、さらにその両外側にエンドプレート18,19を配置してなる被拘束体20を、上述した所定の拘束荷重F1,F2を満たすように二対(計四本)の拘束バンド21で拘束する。その後、隣接する単電池12の正極端子15と負極端子16とを接続具17で直列接続することによって本実施形態に係る組電池10が得られる。   The unit cells 14 thus configured are arranged together with the cooling plate 11 as described above to form a unit cell group 24, and further, end plates 18 and 19 are disposed on both outer sides of the constrained body 20. Are restrained by two pairs (four in total) of restraining bands 21 so as to satisfy the predetermined restraining loads F1 and F2 described above. Then, the assembled battery 10 which concerns on this embodiment is obtained by connecting the positive electrode terminal 15 and the negative electrode terminal 16 of the adjacent cell 12 in series with the connection tool 17. FIG.

このように構成された組電池10の機能を説明する。すなわち、組電池10を構成する各単電池12は、上述のように、上部拘束バンド211,212で拘束された箇所に比べて、下部拘束バンド213,214で拘束された箇所(上部拘束バンド211,212で拘束された箇所よりも鉛直方向下側)がより強く拘束されている。このことによって、単電池12の鉛直方向下側に、該単電池の鉛直方向上側よりも大きな拘束荷重で拘束された箇所が設けられている。図4では、この鉛直方向の位置による拘束荷重の差異を容器14の幅広面14Aに向かう矢印の長さとして模式的に表している。かかる拘束状態において、充放電(すなわち充電状態(SOC)の変動)や温度変化等によって捲回電極体30が厚み方向(単電池12の積層方向)に膨張しようとすると、該膨張に抗して上記拘束荷重が単電池12(電極体30)の下部を上部よりも強く圧迫する。その結果、図中に太い矢印で模式的に示すように、単電池12の下部にあった電解液が上側に(鉛直逆方向に)押し上げられる(ポンピング作用)。このことによって、長期の使用等により電解液が不足気味となりやすい電極体30の上部に電解液を供給(補充)することができる。   The function of the assembled battery 10 thus configured will be described. That is, each unit cell 12 constituting the assembled battery 10 has a portion restrained by the lower restraint bands 213 and 214 (upper restraint band 211 as compared with the place restrained by the upper restraint bands 211 and 212 as described above. , 212 is more strongly restrained in the vertical direction (lower than the part restrained at 212). Thus, a portion restrained by a restraining load larger than the upper side in the vertical direction of the unit cell is provided on the lower side in the vertical direction of the unit cell 12. In FIG. 4, the difference in the restraint load depending on the position in the vertical direction is schematically represented as the length of the arrow toward the wide surface 14 </ b> A of the container 14. In such a restrained state, when the wound electrode body 30 tries to expand in the thickness direction (in the stacking direction of the unit cells 12) due to charging / discharging (that is, variation in the state of charge (SOC)), temperature change, or the like, the expansion is resisted. The restraining load presses the lower part of the unit cell 12 (electrode body 30) more strongly than the upper part. As a result, as schematically shown by a thick arrow in the figure, the electrolytic solution at the lower part of the unit cell 12 is pushed upward (in the opposite vertical direction) (pumping action). Accordingly, the electrolyte can be supplied (supplemented) to the upper portion of the electrode body 30 where the electrolyte tends to be insufficient due to long-term use or the like.

本発明の構成を適用することによる効果を確認するため、以下の実験を行った。すなわち、上記実施形態に係る単電池12(ここでは単電池12として8個のリチウムイオン電池を使用した。)と冷却板11とエンドプレート18,19とを図2に示すように配列してなる被拘束体20を、上部拘束バンド211,212の拘束荷重(合計)が700kgf(約7×10N)となり下部拘束バンド213,214の拘束荷重(合計)が1100kgf(約1.1×10N)となるように拘束し、隣接する単電池の端子間を直列に接続して実施例に係る組電池10を作製した。一方、上部拘束バンド211,212の拘束荷重(合計)と下部拘束バンド213,214との拘束荷重(合計)をいずれも1000kgf(約1×10N)とした点以外は実施例に係る組電池10の作製と同様にして、比較例に係る組電池10を作製した。 In order to confirm the effect of applying the configuration of the present invention, the following experiment was performed. That is, the unit cell 12 according to the above embodiment (here, eight lithium ion batteries are used as the unit cell 12), the cooling plate 11, and the end plates 18 and 19 are arranged as shown in FIG. The restraint load (total) of the upper restraint bands 211 and 212 is 700 kgf (approximately 7 × 10 3 N), and the restraint load (total) of the lower restraint bands 213 and 214 is 1100 kgf (approximately 1.1 × 10). 3 N), and the terminals of adjacent unit cells were connected in series to produce the assembled battery 10 according to the example. On the other hand, the set according to the embodiment except that the restraint load (total) of the upper restraint bands 211 and 212 and the restraint load (total) of the lower restraint bands 213 and 214 are both 1000 kgf (about 1 × 10 3 N). The assembled battery 10 according to the comparative example was produced in the same manner as the production of the battery 10.

これら実施例および比較例に係る組電池をCC−CV充電によりSOC60%の充電状態に調整した。そして、各組電池を40W、60W、80Wおよび100Wの定電力(W)で放電させ、放電開始から電池電圧が3.0V(放電カット電圧)に低下するまでの時間(放電秒数)を測定した。その放電秒数に対して上記定電力放電における電力の値(W)をプロットすることで上記放電秒数が2秒となる電力値を求め、これを当該組電池の常温における初期放電出力とした。
次いで、これらの組電池を60℃の条件下で3.0Vから4.1Vまで定電流(10A)にて充電し、続いて同温度で4.1Vから3.0Vまで定電流(10A)にて放電させる充放電サイクルを市場における最大使用相当のサイクル数繰り返した(60℃における充放電サイクル試験)。かかるサイクル試験後の組電池について、上記初期放電出力と同様の方法により放電出力(サイクル後放電出力)を測定した。そして、各組電池につき初期放電出力を100%として該組電池のサイクル後放電出力の上記初期放電出力に対する割合(出力維持率)を算出したところ、実施例に係る組電池のサイクル後放電出力は比較例に係る組電池のサイクル後放電出力に比べて上記出力維持率が10〜15%向上していた。この結果は、実施例に係る組電池は比較例に係る組電池よりも劣化が少なく、より長期にわたって安定した電池性能(ここでは放電出力)を維持することを示すものである。
The assembled batteries according to these examples and comparative examples were adjusted to a SOC of 60% by CC-CV charging. Each assembled battery is discharged at a constant power (W) of 40 W, 60 W, 80 W and 100 W, and the time (discharge seconds) from the start of discharge until the battery voltage drops to 3.0 V (discharge cut voltage) is measured. did. By plotting the power value (W) in the constant power discharge against the discharge seconds, a power value at which the discharge seconds becomes 2 seconds was obtained, and this was used as the initial discharge output at room temperature of the assembled battery. .
Next, these assembled batteries were charged at a constant current (10 A) from 3.0 V to 4.1 V under a condition of 60 ° C., and then, at a constant current (10 A) from 4.1 V to 3.0 V at the same temperature. The number of cycles corresponding to the maximum use in the market was repeated (charge / discharge cycle test at 60 ° C.). For the assembled battery after the cycle test, the discharge output (post-cycle discharge output) was measured by the same method as the initial discharge output. And when the initial discharge output for each assembled battery was set to 100% and the ratio (output maintenance rate) of the post-cycle discharge output of the assembled battery to the initial discharge output was calculated, the post-cycle discharge output of the assembled battery according to the example was The output retention rate was improved by 10 to 15% compared to the post-cycle discharge output of the assembled battery according to the comparative example. This result shows that the assembled battery according to the example is less deteriorated than the assembled battery according to the comparative example, and maintains stable battery performance (here, discharge output) over a longer period.

以上、本発明の組電池製造方法および該方法によって製造され得る組電池の好ましい実施形態のいくつかについて詳細に説明したが、本発明をかかる具体的実施形態に限定する意図ではない。   As described above, some of the preferred embodiments of the assembled battery manufacturing method of the present invention and the assembled battery that can be manufactured by the method have been described in detail, but the present invention is not intended to be limited to such specific embodiments.

例えば、上述した実施形態では鉛直方向に位置を異ならせて配置された複数の拘束バンドの拘束荷重を異ならせることによって組電池を構成する単電池の下側に上側よりも大きな前記荷重で拘束された箇所が設けられた拘束状態を実現したが、かかる拘束状態を実現する方法は上記態様に限定されない。例えば図5に示すように、単電池群24の両外側に配置されるエンドプレート118,119の形状を、鉛直方向下側に上側よりも厚い部分が設けられた形状(ここでは、配列の内側すなわち単電池群24側に対向する面をテーパ面として構成することにより上部から下部に向かって厚くなった形状のエンドプレート118,119を例示している。)とし、該エンドプレート118,119の中央部を拘束バンド21で拘束した構成によっても、上記実施態様と同様に上記拘束状態を実現することができる。
また、図6に示すように、拘束バンド21のうちエンドプレート18,19の外側面に回りこんで該エンドプレート18,19に固定される両端部分21A,21Bを、該拘束バンド21の上部から下部に向かって内側(エンドプレート18,19の外側面に対向する側)に厚くなる形状としてもよい。その他、単電池群を構成する冷却板のうちの一部または全部を該冷却板の下部に上部よりも厚い箇所が設けられた形状(例えば、下方に向かって厚くなるテーパ形状)とする方法、冷却板とは別の部材として上部よりも下部が厚い形状(例えば板状)のスペーサ部材を被拘束体のいずれかの箇所に挟み込む方法、容器14の下部に上部よりも積層方向の厚み(外形)が大きい箇所を設ける方法、等を適宜採用することができる。
For example, in the above-described embodiment, the restraint loads of a plurality of restraint bands arranged at different positions in the vertical direction are made to be restrained by the load larger than the upper side on the lower side of the cells constituting the assembled battery. However, the method for realizing the restraint state is not limited to the above-described embodiment. For example, as shown in FIG. 5, the shape of the end plates 118 and 119 arranged on both outer sides of the unit cell group 24 is a shape in which a portion thicker than the upper side is provided on the lower side in the vertical direction (here, the inner side of the array). In other words, the end plates 118 and 119 having a shape that is thicker from the top to the bottom by configuring the surface facing the unit cell group 24 as a tapered surface are illustrated.) Also by the structure which restrained the center part with the restraint band 21, the said restraint state is realizable similarly to the said embodiment.
Further, as shown in FIG. 6, both end portions 21 </ b> A and 21 </ b> B that wrap around the outer surfaces of the end plates 18 and 19 of the restraining band 21 and are fixed to the end plates 18 and 19 are formed from above the restraining band 21. It is good also as a shape which becomes thick inside (side facing the outer surface of the end plates 18 and 19) toward the lower part. In addition, a method in which a part or all of the cooling plates constituting the unit cell group are formed in a shape in which a portion thicker than the upper portion is provided in the lower portion of the cooling plate (for example, a tapered shape that becomes thicker downward), As a separate member from the cooling plate, a spacer member having a thicker (e.g., plate-like) lower part than the upper part is sandwiched in any part of the constrained body. ) Can be used as appropriate.

また、図1,2では上部拘束バンド211,212および下部拘束バンド213,214がいずれも被拘束体20の側面に沿ってエンドプレート18,19の間に架け渡されるように拘束バンド21を配置しているが、各拘束バンドの配置はかかる態様に限定されず、例えば一本の上部拘束バンドがエンドプレート18から被拘束体20の上面に沿って延びエンドプレート19に至るように架け渡された態様としてもよい。   1 and 2, the restraint band 21 is disposed so that the upper restraint bands 211 and 212 and the lower restraint bands 213 and 214 are bridged between the end plates 18 and 19 along the side surface of the restrained body 20. However, the arrangement of the restraining bands is not limited to such an embodiment. For example, one upper restraining band extends from the end plate 18 along the upper surface of the restrained body 20 and reaches the end plate 19. It is good also as an aspect.

また、上述の実施形態では捲回電極体30の捲回軸が単電池12の幅方向(すなわち横倒し)となる向きで電極体30を容器14に収容しているが、上記捲回軸が単電池12の高さ方向(図2の上下方向)となる向きで該電極体30を容器14に収容してもよい。また、捲回タイプの電極体30に代えて、複数枚の正極シートと複数枚の負極シートをセパレータシートとともに交互に積層してなる積層タイプの電極体を用いてもよい。ここに開示される発明は、種々の構成を有する電極体を容器に収容してなる単電池(特に、捲回タイプまたは積層タイプの電極体を、該電極体を構成するシートが単電池の積層方向に重なる向きで容器に収容してなる単電池)の複数個を積層方向に配列してなる組電池に好ましく適用され得る。   Further, in the above-described embodiment, the electrode body 30 is accommodated in the container 14 in such a direction that the winding axis of the wound electrode body 30 is in the width direction of the unit cell 12 (that is, lying down). The electrode body 30 may be accommodated in the container 14 in a direction that is the height direction of the battery 12 (vertical direction in FIG. 2). Further, instead of the wound type electrode body 30, a laminated type electrode body in which a plurality of positive electrode sheets and a plurality of negative electrode sheets are alternately laminated together with a separator sheet may be used. The invention disclosed herein is a unit cell in which electrode bodies having various configurations are accommodated in a container (especially a wound type or a laminate type electrode body, and a sheet constituting the electrode body is a laminate of unit cells. The present invention can be preferably applied to an assembled battery in which a plurality of single cells housed in a container in an overlapping direction are arranged in the stacking direction.

また、組電池を構成する単電池の種類は上述したリチウムイオン電池に限られず、電極体構成材料や電解質が異なる種々の内容の電池、例えばリチウム金属やリチウム合金を負極とするリチウム二次電池、ニッケル水素電池、ニッケルカドミウム電池、あるいは電気二重層キャパシタであってもよい。
また、図1に示す組電池10は本発明を説明するために敢えてシンプルな構成としてあるが、本発明の構成および効果を損なわない限りにおいて様々な変形や装備の追加が行われ得ることは当業者には明らかである。例えば、自動車等の車両に搭載する場合、組電池の主要部(単電池群等)を保護するための外装カバー、車両の所定部位に当該組電池を固定するための部品、複数の組電池(電池モジュール)を相互に連結するための部品等が装備され得るが、このような装備の有無は本発明の技術的範囲を左右するものではない。
In addition, the type of unit cell constituting the assembled battery is not limited to the above-described lithium ion battery, but batteries having various contents with different electrode body constituent materials and electrolytes, for example, lithium secondary batteries having lithium metal or a lithium alloy as a negative electrode, It may be a nickel metal hydride battery, a nickel cadmium battery, or an electric double layer capacitor.
In addition, the assembled battery 10 shown in FIG. 1 has a simple configuration in order to explain the present invention, but various modifications and additions of equipment can be made without impairing the configuration and effects of the present invention. It is clear to the contractor. For example, when mounted on a vehicle such as an automobile, an exterior cover for protecting the main part (unit cell group, etc.) of the assembled battery, a part for fixing the assembled battery to a predetermined part of the vehicle, a plurality of assembled batteries ( However, the presence or absence of such equipment does not affect the technical scope of the present invention.

一実施形態に係る組電池の構成を示す斜視図である。It is a perspective view which shows the structure of the assembled battery which concerns on one Embodiment. 一実施形態に係る組電池の構成を示す側面図である。It is a side view which shows the structure of the assembled battery which concerns on one Embodiment. 捲回電極体の一例を模式的に示す正面図である。It is a front view which shows typically an example of a wound electrode body. 一実施形態に係る組電池の単電池の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the cell of the assembled battery which concerns on one Embodiment. 他の一実施形態に係る組電池の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the assembled battery which concerns on other one Embodiment. 他の一実施形態に係る組電池の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the assembled battery which concerns on other one Embodiment. 組電池を備えた車両(自動車)を模式的に示す側面図である。It is a side view which shows typically the vehicle (automobile) provided with the assembled battery.

符号の説明Explanation of symbols

1 車両(自動車)
10 組電池
12 単電池
14 容器
14A 幅広面
18,19,118,119 エンドプレート
20 被拘束体
21 拘束バンド
211,212 上部拘束バンド(拘束バンド)
213,214 下部拘束バンド(拘束バンド)
24 単電池群
30 捲回電極体
1 Vehicle (Automobile)
10 assembled battery 12 single cell 14 container 14A wide surface 18, 19, 118, 119 end plate 20 restrained body 21 restraint band 211, 212 upper restraint band (restraint band)
213, 214 Lower restraint band (restraint band)
24 cell group 30 wound electrode body

Claims (6)

シート状の電極が重ね合わされた形態の電極体が電解液とともに容器に収容された単電池を複数備えた組電池であって、
前記複数の単電池は、所定方向に配列され且つ該配列方向に荷重が加えられた状態で拘束されており、
ここで、前記拘束は、前記複数の単電池の鉛直方向下側に該単電池の鉛直方向上側よりも大きな前記荷重で拘束された箇所が設けられるようになされている、組電池。
An assembled battery including a plurality of unit cells in which a sheet-like electrode is stacked and an electrode body is housed in a container together with an electrolyte,
The plurality of single cells are arranged in a predetermined direction and restrained in a state where a load is applied in the arrangement direction,
Here, the restraint is an assembled battery in which a portion restrained by the load larger than the upper side in the vertical direction of the unit cells is provided on the lower side in the vertical direction of the plurality of unit cells.
前記複数の単電池の配列方向に架け渡されて該複数の単電池を拘束する複数の拘束バンドを備え、
該複数の拘束バンドは鉛直方向に位置を異ならせて配置されており、且つ鉛直方向上側に配置された拘束バンドよりも鉛直方向下側に配置された拘束バンドのほうが大きな拘束力で前記複数の単電池を拘束するように構成されている、請求項1に記載の組電池。
A plurality of restraining bands that are spanned in the arrangement direction of the plurality of unit cells and restrain the plurality of unit cells;
The plurality of restraint bands are arranged at different positions in the vertical direction, and the restraint band placed on the lower side in the vertical direction has a greater restraining force than the restraint band placed on the upper side in the vertical direction. The assembled battery according to claim 1, wherein the assembled battery is configured to restrain the single battery.
前記複数の単電池の配列方向の両端に配置されて該単電池とともに拘束されるエンドプレートをさらに備える、請求項1または2に記載の組電池。   The assembled battery according to claim 1, further comprising end plates disposed at both ends in the arrangement direction of the plurality of unit cells and restrained together with the unit cells. 前記電極体は前記重ね合わされたシート状電極を捲回してなる捲回電極体であって、該捲回電極体は前記配列方向が捲回軸の側面方向となる向きで前記容器に収容されている、請求項1から3のいずれか一項に記載の組電池。   The electrode body is a wound electrode body formed by winding the stacked sheet-like electrodes, and the wound electrode body is accommodated in the container in a direction in which the arrangement direction is a side surface direction of the winding axis. The assembled battery according to any one of claims 1 to 3. 複数の単電池を備えた組電池を製造する方法であって:
シート状の電極が重ね合わされた形態の電極体が電解液とともに容器に収容された単電池を複数用意すること;
前記複数の単電池を所定方向に配列すること;および、
前記配列された複数の単電池を該配列方向に荷重が加えられた状態で拘束すること;
を含み、
ここで、前記拘束は、前記複数の単電池の下側に該単電池の鉛直方向上側よりも大きな前記荷重で拘束される箇所が設けられるように行われる、組電池製造方法。
A method of manufacturing a battery pack having a plurality of single cells:
Preparing a plurality of unit cells in which electrode bodies in a form in which sheet-like electrodes are superimposed are housed in a container together with an electrolyte;
Arranging the plurality of single cells in a predetermined direction; and
Restraining the plurality of arranged cells in a state where a load is applied in the arrangement direction;
Including
Here, the restraint is performed in such a manner that a portion restrained by the load larger than the upper side in the vertical direction of the unit cells is provided below the plurality of unit cells.
請求項1から4のいずれか一項に記載の組電池を備える車両。   A vehicle comprising the assembled battery according to any one of claims 1 to 4.
JP2007216677A 2007-08-23 2007-08-23 Battery pack, and manufacturing method thereof Withdrawn JP2009048965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007216677A JP2009048965A (en) 2007-08-23 2007-08-23 Battery pack, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007216677A JP2009048965A (en) 2007-08-23 2007-08-23 Battery pack, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2009048965A true JP2009048965A (en) 2009-03-05

Family

ID=40500982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007216677A Withdrawn JP2009048965A (en) 2007-08-23 2007-08-23 Battery pack, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2009048965A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158341A1 (en) * 2010-06-16 2011-12-22 トヨタ自動車株式会社 Secondary battery assembly
WO2012163459A3 (en) * 2011-05-27 2013-04-25 Bayerische Motoren Werke Aktiengesellschaft Energy storage module comprising a plurality of in particular prismatic storage cells and method for producing an energy storage module
JP2013114752A (en) * 2011-11-24 2013-06-10 Toyota Motor Corp Band attachment device and band attachment method
WO2013098939A1 (en) * 2011-12-27 2013-07-04 トヨタ自動車株式会社 Secondary battery assembly
JP2013161543A (en) * 2012-02-01 2013-08-19 Toyota Motor Corp Secondary battery control device and control method
WO2014013981A1 (en) * 2012-07-17 2014-01-23 株式会社 東芝 Battery pack
JP2016009621A (en) * 2014-06-25 2016-01-18 株式会社豊田自動織機 Power storage module
DE102015214132A1 (en) 2014-07-31 2016-02-04 Gs Yuasa International Ltd. Current source module
JP2016219257A (en) * 2015-05-20 2016-12-22 株式会社Gsユアサ Power storage device
US9559346B2 (en) 2015-06-11 2017-01-31 Ford Global Technologies, Llc Traction battery electrical joint
KR20170027543A (en) * 2015-09-02 2017-03-10 주식회사 엘지화학 Battery Module having an improved coupling structure
JP2017126569A (en) * 2009-05-14 2017-07-20 株式会社Gsユアサ Battery pack
US9972813B2 (en) 2011-05-27 2018-05-15 Bayerische Motoren Werke Aktiengesellschaft Energy storage module comprising a plurality of prismatic storage cells and method for production thereof
US10056657B2 (en) 2011-05-27 2018-08-21 Bayerische Motoren Werke Aktiengesellschaft Energy storage module comprising a plurality of prismatic storage cells
JP2019169453A (en) * 2018-03-26 2019-10-03 トヨタ自動車株式会社 Battery pack
CN111902961A (en) * 2018-03-27 2020-11-06 松下知识产权经营株式会社 Electricity storage module

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9929386B2 (en) 2009-05-14 2018-03-27 Gs Yuasa International Ltd. Battery assembly
JP2017126569A (en) * 2009-05-14 2017-07-20 株式会社Gsユアサ Battery pack
WO2011158341A1 (en) * 2010-06-16 2011-12-22 トヨタ自動車株式会社 Secondary battery assembly
CN102439755A (en) * 2010-06-16 2012-05-02 丰田自动车株式会社 Secondary battery assembly
JP5187400B2 (en) * 2010-06-16 2013-04-24 トヨタ自動車株式会社 Secondary battery assembly
US8865331B2 (en) 2010-06-16 2014-10-21 Toyota Jidosha Kabushiki Kaisha Secondary battery assembly
WO2012163459A3 (en) * 2011-05-27 2013-04-25 Bayerische Motoren Werke Aktiengesellschaft Energy storage module comprising a plurality of in particular prismatic storage cells and method for producing an energy storage module
US10056657B2 (en) 2011-05-27 2018-08-21 Bayerische Motoren Werke Aktiengesellschaft Energy storage module comprising a plurality of prismatic storage cells
US9972813B2 (en) 2011-05-27 2018-05-15 Bayerische Motoren Werke Aktiengesellschaft Energy storage module comprising a plurality of prismatic storage cells and method for production thereof
EP2849256A3 (en) * 2011-05-27 2015-04-22 Bayerische Motoren Werke Aktiengesellschaft Energy storage module comprising several in particular prismatic storage cells and method for producing an energy storage module
US9882177B2 (en) 2011-05-27 2018-01-30 Bayerische Motoren Werke Aktiengesellschaft Energy storage module comprising a plurality of prismatic storage cells and method for production thereof
JP2013114752A (en) * 2011-11-24 2013-06-10 Toyota Motor Corp Band attachment device and band attachment method
US9312560B2 (en) 2011-12-27 2016-04-12 Toyota Jidosha Kabushiki Kaisha Secondary battery assembly
WO2013098939A1 (en) * 2011-12-27 2013-07-04 トヨタ自動車株式会社 Secondary battery assembly
JP2013161543A (en) * 2012-02-01 2013-08-19 Toyota Motor Corp Secondary battery control device and control method
WO2014013981A1 (en) * 2012-07-17 2014-01-23 株式会社 東芝 Battery pack
JP2016009621A (en) * 2014-06-25 2016-01-18 株式会社豊田自動織機 Power storage module
US9947958B2 (en) 2014-07-31 2018-04-17 Gs Yuasa International Ltd. Power source module
DE102015214132A1 (en) 2014-07-31 2016-02-04 Gs Yuasa International Ltd. Current source module
JP2016219257A (en) * 2015-05-20 2016-12-22 株式会社Gsユアサ Power storage device
US9559346B2 (en) 2015-06-11 2017-01-31 Ford Global Technologies, Llc Traction battery electrical joint
KR20170027543A (en) * 2015-09-02 2017-03-10 주식회사 엘지화학 Battery Module having an improved coupling structure
KR101953362B1 (en) * 2015-09-02 2019-05-22 주식회사 엘지화학 Battery Module having an improved coupling structure
US10361463B2 (en) 2015-09-02 2019-07-23 Lg Chem, Ltd. Battery module having improved fastening structure
JP2019169453A (en) * 2018-03-26 2019-10-03 トヨタ自動車株式会社 Battery pack
CN111902961A (en) * 2018-03-27 2020-11-06 松下知识产权经营株式会社 Electricity storage module

Similar Documents

Publication Publication Date Title
JP2009048965A (en) Battery pack, and manufacturing method thereof
JP4630855B2 (en) Battery pack and manufacturing method thereof
EP2549561B1 (en) Pouch type case and battery pack including same
JP4501080B2 (en) Battery pack and manufacturing method thereof
EP2779269B1 (en) Battery cell having a novel structure
US10263276B2 (en) Producing method of assembled battery
EP3151307A1 (en) Battery module and battery pack comprising same
JP3799463B2 (en) Battery module
JP6086240B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP2008108651A (en) Battery pack, and its manufacturing method
KR20140014839A (en) Secondary battery
KR102055852B1 (en) Pouch-typed secondary battery comprising modified leads and battery module comprising the same
KR20140033585A (en) Secondary battery
US20180123115A1 (en) Secondary battery
KR20100113996A (en) Battery cell having improved thermal stability and middle or large-sized battery module employed with the same
JP4562304B2 (en) Method for producing non-aqueous secondary battery
KR102248868B1 (en) Battery Pack Having Bus-bar
JP5344237B2 (en) Assembled battery
KR20140030431A (en) Secondary battery having case with multi electrode assembly-receiving portion
JP4009803B2 (en) Non-aqueous secondary battery
US9373826B2 (en) Storage battery module
US9437898B2 (en) Secondary battery including plurality of electrode assemblies
US9761857B2 (en) Electrode assembly for secondary battery
JP2002373633A (en) Battery pack
JP6660569B2 (en) Manufacturing method of assembled battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101102