JP2009047596A - Impact strength evaluating method - Google Patents

Impact strength evaluating method Download PDF

Info

Publication number
JP2009047596A
JP2009047596A JP2007214910A JP2007214910A JP2009047596A JP 2009047596 A JP2009047596 A JP 2009047596A JP 2007214910 A JP2007214910 A JP 2007214910A JP 2007214910 A JP2007214910 A JP 2007214910A JP 2009047596 A JP2009047596 A JP 2009047596A
Authority
JP
Japan
Prior art keywords
drop
impact strength
drop height
height
maximum acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007214910A
Other languages
Japanese (ja)
Other versions
JP5055528B2 (en
Inventor
Takakatsu Nakajima
隆勝 中嶋
Hiroshi Uchida
宏 打田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Federation of Agricultural Cooperative Associations
Osaka Prefecture
Original Assignee
National Federation of Agricultural Cooperative Associations
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40499950&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2009047596(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by National Federation of Agricultural Cooperative Associations, Osaka Prefecture filed Critical National Federation of Agricultural Cooperative Associations
Priority to JP2007214910A priority Critical patent/JP5055528B2/en
Publication of JP2009047596A publication Critical patent/JP2009047596A/en
Application granted granted Critical
Publication of JP5055528B2 publication Critical patent/JP5055528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an impact strength evaluating method capable of easily and accurately evaluating the impact strength of a product or the like. <P>SOLUTION: In this method, the impact strength is evaluated using drop test data obtained by previously measuring the relation between the drop height of a dropping weight to a buffer material and the maximum acceleration and velocity variation regarding a plurality of kinds of buffer materials. The method includes a first step (step S3) of repeating the drop of a sample of each buffer material while gradually raising the drop height and acquiring a limit drop height for breaking the sample, a second step (step S4) of acquiring maximum acceleration and velocity variation corresponding to the limit drop height for each buffer material based on the drop test data, and a third step (step S5) of deriving a breakage boundary curve of the sample based on the acquired maximum acceleration and velocity variation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、衝撃強さ評価方法に関する。   The present invention relates to an impact strength evaluation method.

製品の衝撃強さの評価は、どのような衝撃パルスによって製品が破損するかを把握するために行われ、例えば、製品の輸送過程で発生する落下衝撃から製品を保護するための緩衝包装設計や、使用中に落下のおそれがある携帯機器の製品設計などにおいて利用されている。   The impact strength of a product is evaluated in order to understand what kind of shock pulse causes the product to break. For example, a shock-absorbing package design for protecting the product from a drop impact generated during the transportation of the product. It is used in the product design of portable devices that may fall during use.

製品衝撃強さを評価する方法として、JIS Z0019にも規格化されているように、製品の損傷境界曲線を把握することが一般に行われている。例えば、特許文献1には、陰極線管の耐衝撃性能を評価するために、衝撃試験機の落下テーブルに専用の固定治具を介して陰極線管を取り付け、正弦半波及び台形波をそれぞれ衝撃波として速度変化試験及び加速度試験を順次行うことにより、損傷境界曲線の作成に必要なデータを取得する方法が開示されている。
特開2002−110045号公報
As a method for evaluating product impact strength, it is generally performed to grasp a damage boundary curve of a product as standardized in JIS Z0019. For example, in Patent Document 1, in order to evaluate the impact resistance performance of a cathode ray tube, a cathode ray tube is attached to a drop table of an impact tester via a dedicated fixing jig, and a sine half wave and a trapezoidal wave are respectively used as shock waves. A method of acquiring data necessary for creating a damage boundary curve by sequentially performing a speed change test and an acceleration test is disclosed.
JP 2002-110045 A

ところが、従来のように衝撃試験機を用いる方法は、専用治具の作成や取り付けが煩雑なだけでなく、所望の衝撃パルスを発生させるために装置自体の構成も大がかりであることから、各製品開発現場などにおいて手軽に使用できるものとはいえず、簡便な評価方法が必要とされていた。   However, the conventional method using an impact tester is not only complicated to create and attach a dedicated jig, but also has a large configuration of the device itself to generate a desired shock pulse. It was not easy to use at development sites, and a simple evaluation method was needed.

そこで、本発明は、製品等の衝撃強さを容易且つ高精度に評価することができる衝撃強さ評価方法の提供を目的とする。   Accordingly, an object of the present invention is to provide an impact strength evaluation method capable of easily and accurately evaluating the impact strength of a product or the like.

本発明の前記目的は、緩衝材に対する落錘の落下高さと最大加速度及び速度変化との関係を複数種類の前記緩衝材について予め測定した試験データを用いて、衝撃強さを評価する方法であって、前記各緩衝材に対する供試品の落下を、落下高さを徐々に上げながら繰り返し行い、供試品が破損する限界落下高さを取得する第1のステップと、前記試験データに基づいて、前記緩衝材毎の前記限界落下高さに対応する最大加速度及び速度変化を取得する第2のステップと、取得した前記最大加速度及び速度変化に基づいて、供試品の損傷境界曲線を導出する第3のステップとを備える衝撃強さ評価方法により達成される。   The object of the present invention is a method for evaluating impact strength using test data obtained by measuring in advance a plurality of types of the buffer material, the relationship between the falling height of the falling weight with respect to the buffer material and the maximum acceleration and speed change. The first step of repeatedly dropping the test sample with respect to each of the buffer materials while gradually increasing the drop height to obtain a limit drop height at which the test sample is damaged, and based on the test data The second step of acquiring the maximum acceleration and speed change corresponding to the limit fall height for each buffer material, and the damage boundary curve of the test sample is derived based on the acquired maximum acceleration and speed change. And an impact strength evaluation method comprising the third step.

この衝撃強さ評価方法において、前記第3のステップは、予め設定された条件に基づいて損傷境界曲線を基準化した基準曲線を前記損傷境界曲線に変換するステップを含むことが好ましい。   In this impact strength evaluation method, it is preferable that the third step includes a step of converting a reference curve obtained by standardizing a damage boundary curve into the damage boundary curve based on a preset condition.

また、前記第1のステップは、供試品の複数の部位に対して、当該部位が破損する前記限界落下高さを取得するステップを含むことが可能であり、前記損傷境界曲線の導出を前記部位毎に行うことができる。   In addition, the first step may include a step of acquiring, for a plurality of parts of the specimen, the limit drop height at which the part is damaged, and deriving the damage boundary curve This can be done for each part.

本発明によれば、製品等の衝撃強さを容易且つ高精度に評価することができる。   According to the present invention, the impact strength of a product or the like can be evaluated easily and with high accuracy.

以下、本発明の実施形態について添付図面を参照して説明する。図1は、本発明の衝撃強さ評価方法の一例を説明するためのフローチャートである。衝撃強さの評価対象としては、落下衝撃などにより破損するおそれがあるすべての製品や商品などが含まれ、例えば、携帯電話、ノートパソコン、デジタルカメラなどの家電機器や、スイカ、桃、イチゴなどの青果物を挙げることができる。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a flowchart for explaining an example of the impact strength evaluation method of the present invention. Impact strength evaluation targets include all products and products that may be damaged by a drop impact, such as home appliances such as mobile phones, laptop computers, digital cameras, watermelons, peaches, strawberries, etc. Can be mentioned.

まず、衝撃強さを評価する前提として、予め落錘を用いて種々の緩衝材に対する落下試験を行う(ステップS1)。落下試験においては、汎用の落下試験機を用いることができるが、落下する供試品の姿勢を所望の状態に維持することが可能であれば、必ずしも落下試験機を用いる必要はなく、緩衝材に対して供試品を手作業で落下させるようにしてもよい。   First, as a premise for evaluating the impact strength, drop tests are performed on various cushioning materials using a falling weight in advance (step S1). In the drop test, a general-purpose drop tester can be used, but it is not always necessary to use a drop tester as long as the posture of the falling specimen can be maintained in a desired state. Alternatively, the specimen may be dropped manually.

供試品に落下衝撃を生じさせる落下面は、通常の落下試験では十分な剛性を有する地面とされるが、本発明では、落下面に種々の緩衝材を配置して供試品の落下試験を行い、緩衝材毎に落下試験データを取得する。緩衝材としては、ある程度の緩衝性に加えて繰り返しの衝撃に対する性能の変化が小さく、且つ、発生する衝撃パルスの形状が安定しているものが好ましく、例えば、発泡ラバー、ラバー、ゲル、フェルトマット、ゴムパッドなどを挙げることができる。緩衝材は、衝撃パルスの安定した波形が得られる程度に十分な厚みを有することが好ましく、破損するときの加速度が広範囲にわたって分散されるように、弾性係数などが異なるものを複数用意しておくことが好ましい。また、緩衝材として、緩衝作用をほとんど有しない強固な地面などを選択することもできる。   The drop surface that causes a drop impact on the specimen is a ground having sufficient rigidity in a normal drop test, but in the present invention, a drop test of the specimen is performed by placing various cushioning materials on the drop surface. To obtain drop test data for each cushioning material. As the cushioning material, in addition to a certain degree of cushioning, it is preferable that the change in performance against repeated impacts is small and the shape of the generated impact pulse is stable. For example, foamed rubber, rubber, gel, felt mat And rubber pads. It is preferable that the cushioning material has a thickness sufficient to obtain a stable waveform of the shock pulse, and a plurality of materials having different elastic coefficients and the like are prepared so that the acceleration at the time of breakage is dispersed over a wide range. It is preferable. Further, as the cushioning material, it is possible to select a strong ground having almost no cushioning action.

落下試験は、落錘の表面上部などに加速度センサを固定し、種々の高さから緩衝材に落錘を落下させて正弦半波衝撃パルスを作用させ、このパルス波形から最大加速度及び速度変化を算出する。正弦半波衝撃パルス波形の概要を、図2に示す。   In the drop test, an acceleration sensor is fixed to the top surface of the falling weight, etc., the falling weight is dropped onto the buffer material from various heights, and a sine half-wave shock pulse is applied. calculate. An outline of the sine half-wave shock pulse waveform is shown in FIG.

落下試験は、種々の製品に対応できるように、落錘の質量や衝突面の形状などを変えて行い、これらをデータベース化しておくことが好ましい。一例として、落錘の衝突面を球殻面(半径50mm)及び平面(30mm四方)の2種類、落錘の質量を5.8kg及び11.6kgの2種類として、これらの組み合わせによる合計4パターンについて、ゴムパッドを緩衝材とした場合の衝撃エネルギと最大衝撃荷重との関係を測定した結果を図3に示す。いずれのパターンにおいても、衝撃エネルギと最大衝撃荷重との関係はほぼ線形であり、一次式で近似することができる。衝撃エネルギは、落下高さ×質量であり、最大衝撃荷重は、最大加速度×質量であるから、図3は、落下高さと最大加速度との関係を表している。   The drop test is preferably performed by changing the mass of the falling weight, the shape of the collision surface, and the like so as to be compatible with various products and making them into a database. As an example, the impact surface of the falling weight is 2 types of spherical shell surface (radius 50 mm) and flat surface (30 mm square), and the weight of falling weight is 2 types of 5.8 kg and 11.6 kg. Fig. 3 shows the results of measuring the relationship between impact energy and maximum impact load when a rubber pad is used as a cushioning material. In any pattern, the relationship between the impact energy and the maximum impact load is almost linear, and can be approximated by a linear expression. Since the impact energy is the drop height × mass, and the maximum impact load is the maximum acceleration × mass, FIG. 3 shows the relationship between the drop height and the maximum acceleration.

落下高さと速度変化との関係についても、上記と同様に落下試験から明らかにすることができる。例えば、速度変化をΔV、緩衝材との反発係数をe、落下高さをhとすると、下記数式1が成り立つため、落下試験において測定した各緩衝材との反発係数eから、落下高さと速度変化との関係を求めることができる。   The relationship between the drop height and the speed change can be clarified from the drop test in the same manner as described above. For example, if the change in speed is ΔV, the restitution coefficient with the buffer material is e, and the drop height is h, the following formula 1 is established. Therefore, the drop height and speed are calculated from the restitution coefficient e with each buffer material measured in the drop test. The relationship with change can be determined.

[数1]
ΔV=(1+e)√(2gh)
こうして、ある緩衝材に対する落錘の落下高さと最大加速度及び速度変化との関係を求めることができ、これを他の緩衝材についても行うことで、複数種類の緩衝材についての落下試験データをデータベースに格納する(ステップS2)。
[Equation 1]
ΔV = (1 + e) √ (2gh)
In this way, the relationship between the falling height of the falling weight with respect to a certain buffer material and the maximum acceleration and speed change can be obtained, and by performing this for other buffer materials, the drop test data for a plurality of types of buffer materials is stored in the database. (Step S2).

次に、評価対象となる供試品について、破損に至る限界落下高さを測定する。上述した落錘の落下試験で用いたいずれかの緩衝材を落下面に載置し、この緩衝材に供試品を落下する。この測定も、落下試験機を用いて行うことが可能であり、或いは試験機を用いずに手作業で行ってもよい。   Next, the limit drop height that leads to breakage is measured for the specimen to be evaluated. One of the buffer materials used in the drop weight drop test described above is placed on the drop surface, and the sample is dropped on this buffer material. This measurement can also be performed using a drop tester, or can be performed manually without using a tester.

供試品の最初の落下高さを、破損しないと思われる最も高い値に設定し、徐々に落下高さを増加させて供試品を繰り返し落下させ、供試品が破損した時点で終了する。限界落下高さは、供試品における特定の脆弱部位が破損に至る限界の落下高さであり、例えば、落下高さを段階的に大きくした場合において、供試品が破損しない最大の落下高さや、供試品が破損した落下高さと破損しなかった最大の落下高さとの平均値を、限界落下高さとすることができる。   Set the initial drop height of the specimen to the highest value that does not appear to break, gradually increase the drop height, repeatedly drop the specimen, and end when the specimen is damaged . The limit drop height is the limit drop height at which a specific fragile part of the specimen will be damaged.For example, when the drop height is increased stepwise, the maximum drop height at which the specimen does not break In addition, an average value of the drop height at which the test sample is damaged and the maximum drop height at which the test sample is not damaged can be set as the limit drop height.

こうして、ある緩衝材に対する限界落下高さを求めた後、他の緩衝材についても同様に試験を行い、複数種類の緩衝材について、それぞれ限界落下高さを取得する(ステップS3)。   Thus, after obtaining the limit drop height for a certain buffer material, the other buffer materials are similarly tested, and the limit drop height is obtained for each of a plurality of types of buffer materials (step S3).

次に、上記ステップS2で生成した落下試験データに基づき、緩衝材毎の限界落下高さに対応する最大加速度及び速度変化を取得する(ステップS4)。データベースに格納された落下試験データは、緩衝材毎に、落錘の形状や質量などの特性に応じた落下高さと最大加速度及び速度変化との関係が整理されており、供試品の特性に最も合う落下試験データを選択して、限界落下高さに対応する最大加速度及び速度変化を抽出する。例えば、図3に示す落下試験データについて、供試品の衝突面が平面であり、供試品の質量が5.8kgの場合、該当する直線を抽出して、衝撃エネルギに対応する最大衝撃荷重から最大加速度を求めることができる。また、速度変化については、同じく落下試験データから反発係数eを求め、上記数式1により算出することができる。尚、図3において、衝撃エネルギと最大衝撃荷重との関係は、落錘の衝突面の形状が同じであれば、図5に示すように、質量に拘わらず同一の近似直線で表すことも可能であり、これによって限界落下高さに対応する最大加速度及び速度変化の抽出作業を容易にすることができる。   Next, based on the drop test data generated in step S2, the maximum acceleration and speed change corresponding to the limit drop height for each buffer material are acquired (step S4). The drop test data stored in the database organizes the relationship between drop height, maximum acceleration, and speed change according to characteristics such as the shape and mass of the drop weight for each cushioning material. The best drop test data is selected to extract the maximum acceleration and velocity changes corresponding to the critical drop height. For example, in the drop test data shown in FIG. 3, when the collision surface of the specimen is flat and the mass of the specimen is 5.8 kg, the corresponding straight line is extracted and the maximum impact load corresponding to the impact energy is extracted. The maximum acceleration can be obtained from Further, the change in speed can be calculated by the above formula 1 after obtaining the restitution coefficient e from the drop test data. In FIG. 3, the relationship between the impact energy and the maximum impact load can be expressed by the same approximate straight line regardless of the mass, as shown in FIG. 5, if the shape of the collision surface of the falling weight is the same. Thus, it is possible to facilitate the extraction operation of the maximum acceleration and the speed change corresponding to the limit drop height.

限界落下高さの取得は、他の緩衝材についても同様に行い、それぞれについて最大加速度及び速度変化を求める(ステップS5)。すなわち、最大加速度をA、速度変化をΔVとすると、N種類の緩衝材に対して、(A(1),ΔV(1)),(A(2),ΔV(2)),・・・,(A(N),ΔV(N))が得られる。ここで、1〜Nの番号は、速度変化の昇順に順次付与している。   The limit fall height is obtained in the same manner for other cushioning materials, and the maximum acceleration and speed change are obtained for each of them (step S5). That is, assuming that the maximum acceleration is A and the speed change is ΔV, (A (1), ΔV (1)), (A (2), ΔV (2)),... , (A (N), ΔV (N)). Here, the numbers 1 to N are given in order of increasing speed.

この後、各緩衝材に対する最大加速度及び速度変化に基づいて、供試品の損傷境界曲線を導出する(ステップS5)。本実施形態においては、この導出に、予め設定された条件に基づく損傷境界曲線を基準化した基準曲線を利用する。例えば、「応答系の固有振動数が1Hzで、伝達加速度が1を超えると破損する」と仮定した場合の正弦半波衝撃パルスに対する損傷境界曲線は、y座標を比加速度a、x座標を比速度変化Δvとして、理論式から図4のように求めることが可能であり、これを基準曲線とすることができる。   Thereafter, a damage boundary curve of the specimen is derived based on the maximum acceleration and speed change for each buffer material (step S5). In the present embodiment, a reference curve obtained by standardizing a damage boundary curve based on a preset condition is used for this derivation. For example, the damage boundary curve for a sinusoidal half-wave shock pulse assuming that the natural frequency of the response system is 1 Hz and the transmission acceleration exceeds 1 is as follows. The speed change Δv can be obtained from a theoretical formula as shown in FIG. 4 and can be used as a reference curve.

上述した基準曲線は、固有振動数及び伝達加速度のみに依存する曲線であり、固有振動数及び伝達加速度が明らかになれば、この基準曲線から損傷境界曲線を求めることができる。すなわち、求める損傷境界曲線の入力最大加速度をA、入力速度変化をΔVとすると、基準曲線における比加速度a及び比速度変化Δvは、下記の数式2及び数式3によって表される。   The reference curve described above is a curve that depends only on the natural frequency and the transmission acceleration. If the natural frequency and the transmission acceleration are clarified, a damage boundary curve can be obtained from the reference curve. That is, if the maximum input acceleration of the damage boundary curve to be obtained is A and the input speed change is ΔV, the specific acceleration a and the specific speed change Δv in the reference curve are expressed by the following formulas 2 and 3.

[数2]
a=A/a
[数3]
Δv=ΔV・(f/a
ここで、aは製品の最も脆弱な部位の強度(伝達加速度)であり、fは製品の固有振動数である。
[Equation 2]
a = A / ac
[Equation 3]
Δv = ΔV · (f c / a c )
Here, a c is the strength (transmission acceleration) of the most vulnerable part of the product, and f c is the natural frequency of the product.

基準曲線は、図4に示すように比速度変化ΔVが増加すると、比加速度aが1に近づくことから、上述したN種類の(A(1),ΔV(1)),(A(2),ΔV(2)),・・・,(A(N),ΔV(N))について、基準曲線上の対応する(a(1),Δv(1)),(a(2),Δv(2)),・・・,(a(N),Δv(N))を考えた場合、上記の数式2において、速度変化が最大であるΔV(N)に対応するa(N)が1であると仮定すると、a=A(N)になる。 Since the specific acceleration a approaches 1 when the specific speed change ΔV increases as shown in FIG. 4, the reference curve has the N types (A (1), ΔV (1)), (A (2)) described above. , ΔV (2)),..., (A (N), ΔV (N)), the corresponding (a (1), Δv (1)), (a (2), Δv ( 2)),..., (A (N), Δv (N)), a (N) corresponding to ΔV (N) in which the speed change is maximum is 1 in Equation 2 above. Assuming that there is, a c = A (N).

また、aの値が明らかになれば、上記数式2より、a(1)=A(1)/aとして求めることができ、基準曲線から、a(1)に対応するΔv(1)も求めることができる。こうして得られたa、Δv(1)及びΔV(1)の値を上記数式3に代入して、fを算出することができる。 Further, if the apparent value of a c, from the equation 2, a (1) = A (1) / a that can be obtained as c, the reference curve, a Delta] v corresponding to (1) (1) Can also be sought. Thus obtained a c, the value of Delta] v (1) and [Delta] V (1) are substituted into the equation 3, it is possible to calculate the f c.

及びfが求まれば、これらの値を初期値として、上記数式2及び3から、基準曲線を損傷境界曲線に変換することができる。(A(1),ΔV(1)),(A(2),ΔV(2)),・・・,(A(N),ΔV(N))の値は明らかであるから、得られた損傷境界曲線に対して最小二乗法を適用する等して、誤差が最小となる損傷境界曲線を得ることができる。 Once a c and f c are obtained, the reference curve can be converted into a damage boundary curve from the above equations 2 and 3 using these values as initial values. Since the values of (A (1), ΔV (1)), (A (2), ΔV (2)),..., (A (N), ΔV (N)) are clear, they were obtained. A damage boundary curve with a minimum error can be obtained by applying a least square method to the damage boundary curve.

このように、本実施形態の衝撃強さ評価方法によれば、複数の緩衝材に対する落錘の落下試験データを予め取得しておくことで、各緩衝材に対する供試品の限界落下高さから、損傷境界曲線を得ることができる。したがって、高価で大がかりな衝撃試験機を用いる必要がなく、製品の損傷境界曲線を容易に導出することができる。   Thus, according to the impact strength evaluation method of the present embodiment, by obtaining in advance drop test data of falling weights for a plurality of cushioning materials, from the limit fall height of the specimen for each cushioning material. Damage boundary curve can be obtained. Therefore, it is not necessary to use an expensive and large impact tester, and the damage boundary curve of the product can be easily derived.

精度の高い基準曲線を導出するためには、落錘衝突時の反発係数が広範囲にわたる多数の緩衝材についての落下試験データが存在することが好ましいが、最低2種類の緩衝材に対するデータがあれば、損傷境界曲線を求めることができる。2種類の緩衝材としては、例えば、強固な地面及び緩衝マットを選択することができ、前者の緩衝材についての加速度A(1)を無限大とみなし、このときの速度変化ΔV(1)を許容速度変化とする。ΔV(1)に対応する比速度変化Δv(1)は、基準曲線における最小の値と仮定することができ、図4のグラフで約0.08となる。したがって、Δv(1)及びΔV(1)の値が既知となり、上記数式3からf/aの値が求まる。この値と、後者の緩衝材についての速度変化ΔV(2)とを用いて、上記数式3から比速度変化Δv(2)を求めることができ、基準曲線からΔv(2)に対応するa(2)を求めることができる。この結果、a(2)及びA(2)の値が既知となるので、上記数式2からaの値を求めることができ、上記数式3からfの値を求めることができる。こうして、供試品に対する損傷境界曲線を導出することができる。 In order to derive a highly accurate reference curve, it is preferable that there are drop test data for a large number of shock absorbing materials with a wide range of coefficient of restitution at the time of falling weight collision. Damage boundary curve can be obtained. As the two types of cushioning material, for example, a solid ground and a cushioning mat can be selected, and the acceleration A (1) for the former cushioning material is regarded as infinite, and the speed change ΔV (1) at this time is defined as Allowable speed change. The specific speed change Δv (1) corresponding to ΔV (1) can be assumed to be the minimum value in the reference curve, and is about 0.08 in the graph of FIG. Therefore, the value of Delta] v (1) and [Delta] V (1) is known, the value of f c / a c are obtained from the above equation 3. Using this value and the speed change ΔV (2) for the latter cushioning material, the specific speed change Δv (2) can be obtained from Equation 3 above, and a ( 2) can be obtained. As a result, since the values of a (2) and A (2) are known, the value of a c can be obtained from the above equation 2, and the value of f c can be obtained from the above equation 3. In this way, a damage boundary curve for the specimen can be derived.

また、本実施形態においては、正弦半波衝撃パルスに対する落下試験データ及び基準曲線を作成して、損傷境界曲線を導出するようにしているが、衝撃波の形状は正弦半波に限定されるものではなく、台形波、方形波等であってもよい。   In this embodiment, drop test data and a reference curve for a sine half-wave shock pulse are created to derive a damage boundary curve. However, the shape of the shock wave is not limited to a sine half-wave. There may be a trapezoidal wave, a square wave, or the like.

また、本実施形態においては、製品の脆弱部位を1つ選択して、この部位の限界落下高さから損傷境界曲線を導出するようにしているが、破損する可能性がある複数の脆弱部位を選択し、それぞれの部位について損傷境界曲線を導出するようにしてもよい。   In the present embodiment, one fragile part of the product is selected, and the damage boundary curve is derived from the limit drop height of this part. However, a plurality of fragile parts that may be damaged are selected. It is also possible to select and derive a damage boundary curve for each part.

本発明の衝撃強さ評価方法の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the impact strength evaluation method of this invention. 正弦半波衝撃パルス波形の概要図である。It is a schematic diagram of a sine half wave shock pulse waveform. 衝撃エネルギと最大衝撃荷重との関係を測定した結果の一例を示す図である。It is a figure which shows an example of the result of having measured the relationship between impact energy and the maximum impact load. 基準曲線の一例を示す図である。It is a figure which shows an example of a reference | standard curve. 図3に示す測定結果の近似直線を引き直した図である。It is the figure which redrawn the approximate straight line of the measurement result shown in FIG.

Claims (3)

緩衝材に対する落錘の落下高さと最大加速度及び速度変化との関係を複数種類の前記緩衝材について予め測定した落下試験データを用いて、衝撃強さを評価する方法であって、
前記各緩衝材に対する供試品の落下を、落下高さを徐々に上げながら繰り返し行い、供試品が破損する限界落下高さを取得する第1のステップと、
前記落下試験データに基づいて、前記緩衝材毎の前記限界落下高さに対応する最大加速度及び速度変化を取得する第2のステップと、
取得した前記最大加速度及び速度変化に基づいて、供試品の損傷境界曲線を導出する第3のステップとを備える衝撃強さ評価方法。
A method of evaluating impact strength using drop test data measured in advance for a plurality of types of the cushioning material and the relationship between the falling height of the falling weight with respect to the cushioning material and the maximum acceleration and speed change,
A first step of repeatedly dropping the test piece with respect to each of the buffer materials while gradually increasing the drop height to obtain a limit drop height at which the test piece is damaged;
A second step of obtaining a maximum acceleration and speed change corresponding to the limit drop height for each of the buffer materials based on the drop test data;
And a third step of deriving a damage boundary curve of the specimen based on the acquired maximum acceleration and speed change.
前記第3のステップは、予め設定された条件に基づいて損傷境界曲線を基準化した基準曲線を前記損傷境界曲線に変換するステップを含む請求項1に記載の衝撃強さ評価方法。 The impact strength evaluation method according to claim 1, wherein the third step includes a step of converting a reference curve obtained by standardizing a damage boundary curve into the damage boundary curve based on a preset condition. 前記第1のステップは、供試品の複数の脆弱部位について、当該脆弱部位が破損する前記限界落下高さを取得するステップを含み、
前記損傷境界曲線の導出を前記脆弱部位毎に行う請求項1または2に記載の衝撃強さ評価方法。





The first step includes, for a plurality of vulnerable parts of the specimen, obtaining the limit drop height at which the vulnerable parts are damaged,
The impact strength evaluation method according to claim 1, wherein the damage boundary curve is derived for each fragile site.





JP2007214910A 2007-08-21 2007-08-21 Impact strength evaluation method Active JP5055528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007214910A JP5055528B2 (en) 2007-08-21 2007-08-21 Impact strength evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007214910A JP5055528B2 (en) 2007-08-21 2007-08-21 Impact strength evaluation method

Publications (2)

Publication Number Publication Date
JP2009047596A true JP2009047596A (en) 2009-03-05
JP5055528B2 JP5055528B2 (en) 2012-10-24

Family

ID=40499950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007214910A Active JP5055528B2 (en) 2007-08-21 2007-08-21 Impact strength evaluation method

Country Status (1)

Country Link
JP (1) JP5055528B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111751073A (en) * 2020-06-30 2020-10-09 苏州苏试试验集团股份有限公司 Control device and control method of pneumatic collision test bed
CN113420451A (en) * 2021-06-29 2021-09-21 沈阳铁路信号有限责任公司 Design method of buffer package

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055778A (en) * 1998-08-05 2000-02-25 Fujitsu Ltd Drop testing apparatus
JP2002110045A (en) * 2000-09-29 2002-04-12 Toshiba Corp Fixing jig for drop-and-impact test on cathode-ray tube
JP2005350122A (en) * 2004-06-11 2005-12-22 Nagoya Mourudo:Kk Pulp mold cushioning material, and its manufacturing die
JP2006146076A (en) * 2004-11-24 2006-06-08 Sharp Corp Portable equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055778A (en) * 1998-08-05 2000-02-25 Fujitsu Ltd Drop testing apparatus
JP2002110045A (en) * 2000-09-29 2002-04-12 Toshiba Corp Fixing jig for drop-and-impact test on cathode-ray tube
JP2005350122A (en) * 2004-06-11 2005-12-22 Nagoya Mourudo:Kk Pulp mold cushioning material, and its manufacturing die
JP2006146076A (en) * 2004-11-24 2006-06-08 Sharp Corp Portable equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111751073A (en) * 2020-06-30 2020-10-09 苏州苏试试验集团股份有限公司 Control device and control method of pneumatic collision test bed
CN113420451A (en) * 2021-06-29 2021-09-21 沈阳铁路信号有限责任公司 Design method of buffer package

Also Published As

Publication number Publication date
JP5055528B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
Mangal et al. Structural monitoring of offshore platforms using impulse and relaxation response
Lim et al. Investigating the drop impact of portable electronic products
JP6763394B2 (en) Recording medium for storing the soil quality judgment device, soil quality judgment method and program
Lichtensteiger et al. Impact parameters of spherical viscoelastic objects and tomatoes
JP2016183940A (en) Impact testing device and method for calculating adjustment value of impact testing device
WO2019161088A1 (en) Power pole system
JP5801696B2 (en) Evaluation method of collapse risk of unstable rock mass
JP5055528B2 (en) Impact strength evaluation method
JP6688619B2 (en) Impact device used for impact elastic wave method
JP2006234648A (en) Method for quick loading test of pile
CN105953990B (en) A kind of analysis method of structural damping property for spacecraft stent
Radoičić et al. Experimental identification of overall structural damping of system
CN106885674B (en) Pendulum rushes testing machine spectrum shape base construction method and adjustment method
JP2004317364A (en) Device for quick loading test of pile
Zhao et al. Mechanical modeling and analysis of board level drop test of electronic package
Sands et al. Reliability and validity of a low-cost portable force platform
CN105068113A (en) Method for judging dangerous pumice stones on slope
Varghese et al. Test methodology for impact testing of portable electronic products
CN107063611B (en) Anti-seismic evaluation method for electrical equipment made of pillar composite material
JP4863796B2 (en) Pile bearing capacity measurement method
CN203518955U (en) Tennis ball pressure resistance deformation laser detection device
RU2653554C1 (en) Method of vibroacoustic tests of specimens and models
Heaslip et al. Analysis of experimental shock and impact response data of a printed wire board
Ren et al. Calibration of measured FRFs based on mass identification method
RU2762782C1 (en) Method for impact testing of objects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5055528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250