JP2009032555A - Fuel cell apparatus - Google Patents

Fuel cell apparatus Download PDF

Info

Publication number
JP2009032555A
JP2009032555A JP2007195916A JP2007195916A JP2009032555A JP 2009032555 A JP2009032555 A JP 2009032555A JP 2007195916 A JP2007195916 A JP 2007195916A JP 2007195916 A JP2007195916 A JP 2007195916A JP 2009032555 A JP2009032555 A JP 2009032555A
Authority
JP
Japan
Prior art keywords
fuel
cell stack
fuel cell
reformer
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007195916A
Other languages
Japanese (ja)
Other versions
JP5328119B2 (en
Inventor
Takashi Ono
孝 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007195916A priority Critical patent/JP5328119B2/en
Publication of JP2009032555A publication Critical patent/JP2009032555A/en
Application granted granted Critical
Publication of JP5328119B2 publication Critical patent/JP5328119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell apparatus that can obtain a sufficient power generation quantity when starting a load following operation with high efficiency. <P>SOLUTION: A fuel cell apparatus includes a cell stack 25, a fuel gas supply means 2 for supplying fuel gas to a reformer 4 for generating hydrogen gas supplied to a fuel battery cell 24, an oxygen-containing gas supply means 3 for supplying oxygen-containing gas to the reformer 4 and the fuel battery cell 24, and a control device 14 for performing control to shift the power generation state of the cell stack 25 to a switched load following operation mode. The control device 14 can obtain a sufficient power generation quantity when starting a load following operation with high efficiency, since the device controls the cell stack so as to start the power generation of the cell stack 25 when a temperature of the cell stack 25 reaches a first temperature at which power generation can be started, and also controls the cell stack so as to continue to supply a predetermined flow rate of fuel gas supplied to the reformer 4 and oxygen-containing gas supplied to the cell stack 25 during a period that a predetermined time is elapsed exceeding a first set temperature from the start of activation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、改質器に供給する原燃料ガスおよび酸素含有ガスの供給量を制御する制御装置を具備する燃料電池装置に関する。   The present invention relates to a fuel cell device including a control device that controls the supply amounts of raw fuel gas and oxygen-containing gas supplied to a reformer.

近年、次世代エネルギーとして、燃料ガス(水素ガス)と酸素含有ガス(通常、空気である)とを用いて電力を得ることができる燃料電池と、この燃料電池を稼動するための補機類とを外装ケースに収納してなる燃料電池装置およびその運転方法が種々提案されている。   In recent years, as next-generation energy, a fuel cell that can obtain electric power using a fuel gas (hydrogen gas) and an oxygen-containing gas (usually air), and auxiliary equipment for operating the fuel cell, Various types of fuel cell devices and their operation methods have been proposed.

ここで、燃料電池装置の起動処理工程においては、燃料電池に燃料ガス(水素ガス)を供給するための改質器を所定の温度にまで上昇させるとともに、燃料電池(セル)を所定の温度にまで上昇させる必要がある。そして、燃料電池(セル)が所定の温度に達した後に、起動処理工程を終了し、燃料電池を発電状態へと切り替えることとなる。   Here, in the starting process step of the fuel cell device, the reformer for supplying the fuel gas (hydrogen gas) to the fuel cell is raised to a predetermined temperature, and the fuel cell (cell) is brought to a predetermined temperature. Need to be raised. Then, after the fuel cell (cell) reaches a predetermined temperature, the start-up process is terminated and the fuel cell is switched to the power generation state.

ここで、改質器の起動処理工程としては、天然ガス等の炭化水素ガスから燃料電池の発電に必要な水素を生成するための方法である部分酸化改質法(POX)、オートサーマル法(ATR)、水蒸気改質法(SR)を適宜組み合わせて行なうことが知られている。   Here, the reformer start-up process includes a partial oxidation reforming method (POX), an autothermal method (a method for generating hydrogen necessary for power generation of a fuel cell from a hydrocarbon gas such as natural gas). ATR) and a steam reforming method (SR) are known to be appropriately combined.

具体的には、例えば、改質器の温度が低い場合には部分酸化改質法により改質反応を行ない、部分酸化改質により改質器の温度が上昇するに伴い、部分酸化改質法からオートサーマル法に切り替えて改質反応を行ない、さらに改質器の温度が上昇した場合に、オートサーマル法から水蒸気改質法に切り替えて改質反応を行なうことが提案されている(例えば、特許文献1参照)。それにより、改質器の温度が上昇するとともに、改質器で生成される燃料ガス自体の温度が上昇する。   Specifically, for example, when the temperature of the reformer is low, the reforming reaction is performed by the partial oxidation reforming method, and as the temperature of the reformer rises by the partial oxidation reforming, the partial oxidation reforming method It is proposed that the reforming reaction is performed by switching from the autothermal method to the reforming reaction, and when the reformer temperature rises, the reforming reaction is performed by switching from the autothermal method to the steam reforming method (for example, Patent Document 1). As a result, the temperature of the reformer rises and the temperature of the fuel gas itself generated in the reformer rises.

そして、起動処理工程において改質器で生成された温められた燃料ガスや未反応のガス(被改質ガス)が燃料電池(セル)に供給され、温められた燃料ガスにより燃料電池自身が温められること、さらには燃料電池(セル)に供給される酸素含有ガスとの燃焼反応により燃料電池(セル)自身が加熱されることで、燃料電池の温度が上昇し、起動処理工程が完了する。
特開2004−319420号公報
Then, warmed fuel gas or unreacted gas (reformed gas) generated in the reformer in the start-up process is supplied to the fuel cell (cell), and the fuel cell itself is warmed by the warmed fuel gas. In addition, the fuel cell (cell) itself is heated by the combustion reaction with the oxygen-containing gas supplied to the fuel cell (cell), so that the temperature of the fuel cell rises and the start-up process is completed.
JP 2004-319420 A

ところで、燃料電池セルが固体酸化物形燃料電池セルの場合、要求される負荷にあわせて運転する負荷追従運転を行うことができ、さらには、負荷追従運転の発電量にあわせて、改質器に供給される燃料ガスや、改質器およびセルスタックに供給される酸素含有ガスの流量調整を行なって負荷追従運転を行なう、すなわち高効率の負荷追従運転を行うことができる(以下、この運転を高効率の負荷追従運転と称する。)。それゆえ、高効率の負荷追従運転の制御を行なっている場合には、負荷(要求電力)にあわせて、改質器に供給される燃料ガスや、改質器およびセルスタックに供給される酸素含有ガスの流量が調整される。   By the way, when the fuel cell is a solid oxide fuel cell, load follow-up operation can be performed according to the required load, and further, the reformer can be adjusted according to the power generation amount of the load follow-up operation. The load following operation can be performed by adjusting the flow rate of the fuel gas supplied to the gas generator and the oxygen-containing gas supplied to the reformer and the cell stack, that is, the highly efficient load following operation can be performed (hereinafter, this operation is performed). Is referred to as highly efficient load following operation). Therefore, when high-efficiency load following operation is controlled, the fuel gas supplied to the reformer and the oxygen supplied to the reformer and the cell stack are adjusted according to the load (required power). The flow rate of the contained gas is adjusted.

ここで、例えば燃料電池の起動において、燃料電池が起動状態から高効率の負荷追従運転(発電状態)に切り替えられた直後は、発電量が抑えられる(発電状態が一端リセット状態となる)ことから、改質器に供給される燃料ガスおよびセルスタックに供給される酸素含有ガスは最低流量で供給されることとなる。   Here, for example, in the start-up of the fuel cell, immediately after the fuel cell is switched from the start-up state to the high-efficiency load following operation (power generation state), the power generation amount is suppressed (the power generation state is once reset). The fuel gas supplied to the reformer and the oxygen-containing gas supplied to the cell stack are supplied at the minimum flow rate.

それゆえ、燃料電池装置の起動時において、改質器に供給される燃料ガスおよびセルスタックに供給される酸素含有ガスの供給量が、セルスタック(燃料電池セル)の温度上昇のために燃料ガスや酸素含有ガスが大量に供給されていた状態から、ただちに最低流量にまで減少することに伴い、燃料電池(セル)での燃焼反応が不安定となり、燃料電池セルが失火し、十分な発電量を得ることができなくなるといった問題が生じるおそれがあった。   Therefore, when the fuel cell device is started, the supply amount of the fuel gas supplied to the reformer and the oxygen-containing gas supplied to the cell stack is the fuel gas due to the temperature rise of the cell stack (fuel cell). As a result, the combustion reaction in the fuel cell (cell) becomes unstable due to the immediate decrease from the state in which a large amount of oxygen-containing gas was supplied to the minimum flow rate. There is a possibility that a problem may occur that it becomes impossible to obtain.

また、燃料電池が起動状態から高効率の負荷追従運転(発電状態)に切り替えられると、要求される負荷にあわせた発電が直ちに要求されるため、例えば高効率の負荷追従運転に切り替えられた直後に、大きな需用電力が生じた場合には、高効率の負荷追従運転に切り替えられた直後にもかかわらず高い発電量が要求され、それにあわせて改質器に供給される燃料ガスやセルスタックに供給される酸素含有ガスの供給量が急激に増加することとなる。   In addition, when the fuel cell is switched from the start-up state to the high-efficiency load following operation (power generation state), power generation according to the required load is immediately required. For example, immediately after switching to the high-efficiency load following operation. In addition, when a large amount of power demand is generated, a high power generation amount is required even immediately after switching to high-efficiency load following operation, and the fuel gas and cell stack supplied to the reformer accordingly. The supply amount of the oxygen-containing gas supplied to the abruptly increases.

その際、複数個の燃料電池セルを組み合わせたセルスタックにおいては、セルスタックの一部の温度が低く、十分な電圧が得られない場合があるといったおそれがあった。   At that time, in a cell stack in which a plurality of fuel cells are combined, there is a possibility that a part of the cell stack has a low temperature and a sufficient voltage may not be obtained.

一方で、燃料電池を起動状態から高効率の負荷追従運転(発電状態)に切り替えた際に、十分な電圧を得ることができるよう、燃料電池の起動状態から高効率の負荷追従運転(発電状態)に切り替えるセルスタックの設定温度を高温に設定した場合には、燃料電池装置の起動時間が非常に長くなるとともに、セルスタック(燃料電池セル)の一部が劣化するというおそれもあった。   On the other hand, when the fuel cell is switched from the start-up state to the high-efficiency load following operation (power generation state), the high-efficiency load follow-up operation (power generation state) When the set temperature of the cell stack to be switched to is set to a high temperature, the start-up time of the fuel cell device becomes very long and there is a risk that a part of the cell stack (fuel cell) deteriorates.

それゆえ、本発明においては、燃料電池装置の起動時における上記不具合を解消することができる燃料電池装置を提供することを目的とする。   SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a fuel cell device that can eliminate the above-mentioned problems at the time of starting the fuel cell device.

本発明の燃料電池装置は、収納容器内に複数の燃料電池セルを組み合わせてなるセルスタックを収納してなる燃料電池モジュールと、前記燃料電池セルに供給する水素ガスを生成するための改質器と、該改質器に燃料ガスを供給するための燃料ガス供給手段と、前記改質器および前記燃料電池セルに酸素含有ガスを供給するための酸素含有ガス供給手段と、前記燃料ガス供給手段および前記酸素含有ガス供給手段を制御するとともに、前記セルスタックの発電状態を切り替える制御を行なう制御装置とを具備する燃料電池装置であって、前記制御装置は、起動開始から前記セルスタックの温度が発電開始可能な第1の設定温度に達すると前記セルスタックの発電を開始するよう制御して負荷追従運転モードに移行させるとともに、起動開始から前記第1の設定温度を越えて所定時間が経過するまでの間は、前記改質器に供給される燃料ガスおよび前記セルスタックに供給される前記酸素含有ガスの所定流量を継続して供給するように前記燃料ガス供給手段および前記酸素含有ガス供給手段を制御することを特徴とする。   A fuel cell device according to the present invention includes a fuel cell module in which a cell stack formed by combining a plurality of fuel cells in a storage container, and a reformer for generating hydrogen gas to be supplied to the fuel cells. Fuel gas supply means for supplying fuel gas to the reformer, oxygen-containing gas supply means for supplying oxygen-containing gas to the reformer and the fuel cells, and the fuel gas supply means And a control device that controls the oxygen-containing gas supply means and performs control for switching the power generation state of the cell stack, wherein the control device is configured so that the temperature of the cell stack is When the first set temperature at which power generation can be started is reached, the cell stack is controlled to start power generation and shifted to the load following operation mode. The predetermined flow rate of the fuel gas supplied to the reformer and the oxygen-containing gas supplied to the cell stack is continuously supplied until a predetermined time elapses after the first set temperature is exceeded. The fuel gas supply means and the oxygen-containing gas supply means are controlled as described above.

このような燃料電池装置においては、定格運転時は高効率の負荷追従運転を行なう燃料電池装置において、セルスタックの温度が発電開始可能な第1の設定温度に達するとセルスタックの発電を開始するよう制御して負荷追従運転モードに移行させるとともに、起動開始から第1の設定温度を越えて所定時間が経過するまでの間は、改質器に供給される燃料ガスおよびセルスタックに供給される酸素含有ガスの所定流量を継続して供給するように、燃料ガス供給手段および酸素含有ガス供給手段を制御する制御装置を具備することから、発電状態を切り替えて、高効率の負荷追従運転を開始する際に、改質器に供給される燃料ガスおよびセルスタックに供給される酸素含有ガスの供給量が急激に減少することを抑制できる。   In such a fuel cell device, in a fuel cell device that performs high-efficiency load following operation during rated operation, power generation of the cell stack is started when the temperature of the cell stack reaches a first set temperature at which power generation can be started. The control is shifted to the load following operation mode, and the fuel gas supplied to the reformer and the cell stack are supplied from the start of the start until the predetermined time elapses after the first set temperature is exceeded. Since it is equipped with a control device that controls the fuel gas supply means and the oxygen-containing gas supply means so as to continuously supply a predetermined flow rate of the oxygen-containing gas, the power generation state is switched and high-efficiency load following operation is started. In doing so, it is possible to suppress a rapid decrease in the supply amount of the fuel gas supplied to the reformer and the oxygen-containing gas supplied to the cell stack.

それにより、燃料電池セルでの燃焼反応が不安定となり、燃料電池セルが失火し、十分な発電量を得ることができないといった問題が生じることを抑制することができる。   Accordingly, it is possible to suppress the occurrence of a problem that the combustion reaction in the fuel battery cell becomes unstable, the fuel battery cell misfires, and a sufficient power generation amount cannot be obtained.

また、起動開始から第1の設定温度を越えて所定時間が経過するまでの間は、改質器に供給される燃料ガスおよびセルスタックに供給される酸素含有ガスの所定流量を継続して供給するように、燃料ガス供給手段および酸素含有ガス供給手段を制御することから、継続してセルスタックの温度を上昇させることができ、セルスタックの一部の温度が低く、十分な電圧が得られないといった問題が生じることを抑制できる。   In addition, a predetermined flow rate of the fuel gas supplied to the reformer and the oxygen-containing gas supplied to the cell stack is continuously supplied until the predetermined time elapses after the start of starting. Thus, since the fuel gas supply means and the oxygen-containing gas supply means are controlled, the temperature of the cell stack can be continuously increased, and the temperature of a part of the cell stack is low, so that a sufficient voltage can be obtained. It is possible to suppress the occurrence of a problem that there is not.

さらに、セルスタックの温度が、発電開始可能な第1の設定温度に達すると、燃料電池セルの発電を開始することから、所定時間経過後に高効率の負荷追従運転を開始する場合に、改質器に供給される燃料ガスおよびセルスタックに供給される酸素含有ガスの供給量が急激に減少することを抑制できる。   Further, when the temperature of the cell stack reaches the first set temperature at which power generation can be started, power generation of the fuel cell is started. Therefore, when high-efficiency load following operation is started after a predetermined time has elapsed, reforming is performed. It is possible to suppress a rapid decrease in the supply amount of the fuel gas supplied to the vessel and the oxygen-containing gas supplied to the cell stack.

それにより、燃料電池セルでの燃焼反応が不安定となり、燃料電池セルが失火し、十分な発電量を得ることができないといった問題が生じることを抑制することができる。   Accordingly, it is possible to suppress the occurrence of a problem that the combustion reaction in the fuel battery cell becomes unstable, the fuel battery cell misfires, and a sufficient power generation amount cannot be obtained.

また、本発明の燃料電池装置は、前記所定時間は、起動開始から前記セルスタックが安定して作動する最高温度である第2の設定温度に達するまでの時間であることが好ましい。   In the fuel cell device of the present invention, it is preferable that the predetermined time is a time from the start of activation to a second set temperature that is a maximum temperature at which the cell stack operates stably.

このような燃料電池装置においては、例えばセルスタックの第2の設定温度をセルスタックが安定して作動する最高温度に設定し、第2の設定温度に達した後は高効率の負荷追従運転を開始する。   In such a fuel cell device, for example, the second set temperature of the cell stack is set to the maximum temperature at which the cell stack operates stably, and after the second set temperature is reached, highly efficient load following operation is performed. Start.

それにより、セルスタック(燃料電池セル)の一部が非常に高温となることで、セルスタックの作動が不安定となる(セルスタックが劣化する)ことを抑制できる。   Thereby, it becomes possible to prevent the operation of the cell stack from becoming unstable (deteriorating the cell stack) due to a part of the cell stack (fuel cell) becoming extremely high temperature.

また、本発明の燃料電池装置は、前記所定時間は、起動開始から前記セルスタックの発電量が所定の発電量となるまでの時間であることが好ましい。   In the fuel cell device of the present invention, it is preferable that the predetermined time is a time from the start of startup until the power generation amount of the cell stack reaches a predetermined power generation amount.

このような燃料電池装置においては、改質器に供給される燃料ガスおよびセルスタックに供給される酸素含有ガスの所定流量を供給する時間を、セルスタックの発電量が所定の発電量となるまでの時間とすることにより、高効率の負荷追従運転開始時に、改質器に供給される燃料ガスおよびセルスタックに供給される酸素含有ガスの供給量が急激に減少することを抑制できる。   In such a fuel cell device, the time for supplying a predetermined flow rate of the fuel gas supplied to the reformer and the oxygen-containing gas supplied to the cell stack is set until the power generation amount of the cell stack reaches the predetermined power generation amount. By setting this time, it is possible to suppress a rapid decrease in the supply amount of the fuel gas supplied to the reformer and the oxygen-containing gas supplied to the cell stack at the start of the high-efficiency load following operation.

それにより、燃料電池セルでの燃焼反応が不安定となり、燃料電池セルが失火し、十分な発電量を得ることができないといった問題が生じることを抑制することができる。   Accordingly, it is possible to suppress the occurrence of a problem that the combustion reaction in the fuel battery cell becomes unstable, the fuel battery cell misfires, and a sufficient power generation amount cannot be obtained.

また、本発明の燃料電池装置は、前記改質器に供給される前記燃料ガスの所定流量が最大流量であることが好ましい。   In the fuel cell device of the present invention, the predetermined flow rate of the fuel gas supplied to the reformer is preferably a maximum flow rate.

このような燃料電池装置においては、改質器に供給される燃料ガスの所定流量を最大流量とすることにより、改質器およびセルスタックの温度を素早く上昇させることができ、燃料電池装置の起動時間を短縮することができる。   In such a fuel cell device, by setting the predetermined flow rate of the fuel gas supplied to the reformer to the maximum flow rate, the temperature of the reformer and the cell stack can be quickly increased, and the fuel cell device is activated. Time can be shortened.

また、本発明の燃料電池装置は、前記燃料電池セルが、固体酸化物形燃料電池セルであることが好ましい。   In the fuel cell device of the present invention, the fuel cell is preferably a solid oxide fuel cell.

このような燃料電池装置においては、燃料電池セルが固体酸化物形燃料電池セルであることから、燃料電池モジュールの運転温度が非常に高温であり、改質器に供給される燃料ガスおよび酸素含有ガスの供給量の変動が大きくなる。それゆえ、本発明の燃料電池装置を適用するにあたり有用となる。   In such a fuel cell device, since the fuel cell is a solid oxide fuel cell, the operating temperature of the fuel cell module is very high, and contains fuel gas and oxygen supplied to the reformer. The fluctuation of the gas supply amount becomes large. Therefore, it is useful in applying the fuel cell device of the present invention.

本発明の燃料電池装置は、セルスタックの温度が起動開始から発電開始可能な第1の設定温度に達するとセルスタックの発電を開始するよう制御して負荷追従運転モードに移行させるとともに、起動開始から第1の設定温度を越えて所定時間が経過するまでの間、改質器に供給される燃料ガスおよびセルスタックに供給される酸素含有ガスの所定流量を継続して供給するように、燃料ガス供給手段および酸素含有ガス供給手段を制御する制御装置を具備することから、発電状態を切り替えて、高効率の負荷追従運転を開始する際に、改質器に供給される燃料ガスおよびセルスタックに供給される酸素含有ガスの供給量が急激に減少することを抑制でき、燃料電池セルでの燃焼反応が不安定となり、燃料電池セルが失火し、十分な発電量を得ることができないといった問題が生じることを抑制することができる。   The fuel cell device according to the present invention controls to start power generation of the cell stack when the temperature of the cell stack reaches the first set temperature at which power generation can be started from the start of startup, and shifts to the load following operation mode. The fuel gas is supplied to the reformer and the oxygen-containing gas supplied to the cell stack so that the predetermined flow rate of the fuel gas and the cell stack is continuously supplied until the predetermined time elapses after the first set temperature is exceeded. The fuel gas and the cell stack that are supplied to the reformer when the power generation state is switched and the high-efficiency load following operation is started because the control device that controls the gas supply unit and the oxygen-containing gas supply unit is provided. Can be prevented from suddenly decreasing, the combustion reaction in the fuel cell becomes unstable, the fuel cell misfires, and a sufficient amount of power is obtained It is possible to prevent the bets a problem can not occur.

図1は、本発明の燃料電池装置を備えてなる燃料電池システムの構成の一例を示した構成図である。このような燃料電池システムは、本発明の燃料電池装置である発電を行なう発電ユニット、熱交換後の湯水を貯湯する貯湯ユニット、これらのユニット間を水が循環するための循環ポンプおよび循環配管から構成されている。なお、本発明の燃料電池装置を、発電ユニット、貯湯ユニット、循環ポンプおよび循環配管の全てを具備したものとすることもできる。   FIG. 1 is a configuration diagram showing an example of a configuration of a fuel cell system including the fuel cell device of the present invention. Such a fuel cell system includes a power generation unit that performs power generation that is the fuel cell device of the present invention, a hot water storage unit that stores hot water after heat exchange, a circulation pump and a circulation pipe for circulating water between these units. It is configured. Note that the fuel cell device of the present invention may include all of the power generation unit, the hot water storage unit, the circulation pump, and the circulation pipe.

図1に示す燃料電池装置(システム)は、天然ガスや灯油等の被改質ガスを供給する燃料ガス供給手段2、酸素含有ガスを燃料電池1に供給するための酸素含有ガス供給手段3、被改質ガス(燃料ガス)を改質するための改質器4を具備している。   A fuel cell apparatus (system) shown in FIG. 1 includes a fuel gas supply means 2 for supplying a gas to be reformed such as natural gas and kerosene, an oxygen-containing gas supply means 3 for supplying an oxygen-containing gas to the fuel cell 1, A reformer 4 for reforming a gas to be reformed (fuel gas) is provided.

ここで、改質器4にて水蒸気改質を行なう場合には、改質器4に水を供給する必要がある。それゆえ、図1に示す燃料電池装置においては、燃料電池1の発電により生じた排ガス(排熱)と水とで熱交換を行なう熱交換器13、熱交換により生成された凝縮水を貯水する凝縮水タンク19、熱交換器13で生成された凝縮水を凝縮水タンク19に供給するための凝縮水供給管21が設けられており、凝縮水タンク19に貯水された水(凝縮水)が、水ポンプ11により改質器4に供給される。   Here, when steam reforming is performed in the reformer 4, it is necessary to supply water to the reformer 4. Therefore, in the fuel cell device shown in FIG. 1, the heat exchanger 13 that performs heat exchange between the exhaust gas (exhaust heat) generated by the power generation of the fuel cell 1 and water, and the condensed water generated by the heat exchange are stored. A condensed water supply pipe 21 for supplying condensed water generated in the condensed water tank 19 and the heat exchanger 13 to the condensed water tank 19 is provided, and water (condensed water) stored in the condensed water tank 19 is supplied. The water pump 11 supplies the reformer 4 with the water.

一方、凝縮水タンク19に貯水される水の量が少ない場合においては、外部より供給される水(水道水等)を純水に処理し改質器4に供給することが好ましく、図1においては外部から供給される水を純水に処理する手段として、水を浄化するための活性炭フィルタ装置7、逆浸透膜装置8および浄化された水を純水にするためのイオン交換樹脂装置9の各装置からなる水処理装置Xを具備している。また、これらの各装置を、水供給管5によりこの順で接続して配置しており、さらに水供給管5には、水供給管5に供給される水量を調整するための給水弁6が設けられている。そして、イオン交換樹脂装置9にて生成された純水は水タンク10に貯水され、水ポンプ11により改質器4に水が供給される。なお、図1においては、凝縮水タンク19と水タンク10とがタンク連結管20にて連結されている状態を示しており、水ポンプ11により水タンク10に貯水された凝縮水または外部から供給され純水に処理された水を改質器4に供給する。なお図1においては、これら改質器4に水を供給するための手段を、一点鎖線により囲って示している。   On the other hand, when the amount of water stored in the condensed water tank 19 is small, it is preferable to treat the water (such as tap water) supplied from the outside into pure water and supply it to the reformer 4, as shown in FIG. Is an activated carbon filter device 7 for purifying water, a reverse osmosis membrane device 8 and an ion exchange resin device 9 for purifying purified water as pure water as means for treating water supplied from outside. The water treatment apparatus X which consists of each apparatus is comprised. These devices are connected and arranged in this order by a water supply pipe 5, and the water supply pipe 5 has a water supply valve 6 for adjusting the amount of water supplied to the water supply pipe 5. Is provided. The pure water generated in the ion exchange resin device 9 is stored in the water tank 10 and water is supplied to the reformer 4 by the water pump 11. FIG. 1 shows a state in which the condensed water tank 19 and the water tank 10 are connected by the tank connecting pipe 20, and the condensed water stored in the water tank 10 by the water pump 11 or supplied from the outside. The purified water is supplied to the reformer 4. In FIG. 1, the means for supplying water to the reformer 4 is shown surrounded by a one-dot chain line.

さらに、図1に示す燃料電池装置(システム)は、燃料電池1にて発電された直流電力を交流電力に切り替え外部負荷に供給するためのパワーコンディショナ12が設けられており、このパワーコンディショナ12を系統電源(負荷)と接続することで、燃料電池1の発電が開始されるとともに、負荷追従運転が開始されることとなる。   Further, the fuel cell apparatus (system) shown in FIG. 1 is provided with a power conditioner 12 for switching the DC power generated by the fuel cell 1 to AC power and supplying it to an external load. By connecting 12 to the system power supply (load), the power generation of the fuel cell 1 is started and the load following operation is started.

そして、図1に示す燃料電池装置(システム)は、この燃料ガス供給手段2や酸素含有ガス供給手段3、さらにはパワーコンディショナ12等を制御する制御装置14が設けられている。なお、各制御については後述するものとし、制御装置14は各制御を行なう制御部を1つの収納容器に収納する、もしくはそれぞれ別個の装置とすることができる。   The fuel cell apparatus (system) shown in FIG. 1 is provided with a control device 14 for controlling the fuel gas supply means 2, the oxygen-containing gas supply means 3, and the power conditioner 12 and the like. Note that each control will be described later, and the control device 14 can store a control unit for performing each control in one storage container or can be a separate device.

なお、図1においては、燃料電池1にて発電された熱交換器13の出口に設けられ熱交換器13の出口を流れる水(循環水流)の水温を測定するための出口水温センサ15が設けられており、上述した各装置により、発電ユニットが構成されている。   In FIG. 1, an outlet water temperature sensor 15 is provided for measuring the temperature of water (circulated water stream) provided at the outlet of the heat exchanger 13 generated by the fuel cell 1 and flowing through the outlet of the heat exchanger 13. The power generation unit is configured by the above-described devices.

また貯湯ユニットは、熱交換後の湯水を貯湯するための貯湯タンク18を具備して構成されている。   The hot water storage unit includes a hot water storage tank 18 for storing hot water after heat exchange.

さらに、熱交換器13と貯湯タンク18との間で水を循環させるための循環ポンプ16、循環配管17が設けられており、発電ユニット、貯湯ユニット、循環ポンプ16、循環配管17をあわせて燃料電池装置(システム)が構成される。   Furthermore, a circulation pump 16 and a circulation pipe 17 for circulating water between the heat exchanger 13 and the hot water storage tank 18 are provided, and the power generation unit, the hot water storage unit, the circulation pump 16 and the circulation pipe 17 are combined to produce fuel. A battery device (system) is configured.

なお、図中の矢印は、燃料ガス、酸素含有ガス、水の各流れ方向を示したものであり、また破線は制御装置14に伝送される主な信号経路、または制御装置14より伝送される主な信号経路を示している。また、同一の構成については同一の番号を付するものとし、以下同様である。さらに図示していないが、燃料ガス供給手段2と改質器4との間に、燃料ガスを加湿するための燃料ガス加湿器を設けることも可能である。   In addition, the arrow in a figure shows each flow direction of fuel gas, oxygen-containing gas, and water, and a broken line is transmitted from the main signal path | route transmitted to the control apparatus 14, or the control apparatus 14. The main signal paths are shown. The same components are denoted by the same reference numerals, and so on. Although not shown, it is also possible to provide a fuel gas humidifier for humidifying the fuel gas between the fuel gas supply means 2 and the reformer 4.

なお、燃料電池セルとしては、各種燃料電池セルが知られているが、燃料電池を小型化する上で、固体酸化物形燃料電池セルとすることができる。それにより、燃料電池のほか、燃料電池の動作に必要な補機類を小型化することができ、燃料電池装置を小型化することができる。またあわせて、家庭用燃料電池で求められる変動する負荷に追従する負荷追従運転を行なうことができる。   Various types of fuel cells are known as the fuel cells. However, in order to reduce the size of the fuel cell, a solid oxide fuel cell can be used. Thereby, in addition to the fuel cell, auxiliary machinery necessary for the operation of the fuel cell can be reduced in size, and the fuel cell device can be reduced in size. At the same time, it is possible to perform a load following operation that follows a fluctuating load required for a household fuel cell.

図2は、本発明の燃料電池装置を構成する部材である燃料電池モジュールの一例を示す外観斜視図である。燃料電池モジュール22は、直方体状の収納ケース23の内部に、複数の燃料電池セル24を並設して電気的に直列に接続してなる燃料電池セルスタック25(以下、セルスタックという場合がある)を収納する。図2においては、燃料電池セル24として、燃料電池セル24の内部を長手方向に反応ガス(水素ガス等)が流れる中空平板型の燃料電池セル24を例示している。また、天然ガスや灯油等の燃料を改質して、燃料電池セル24にて使用する水素ガスを生成するための改質器4が、セルスタック25の上部に配置されている。さらにセルスタック25は、生成された水素ガスを燃料電池セル24に供給するためのマニホールド26の上面に立設されており、改質器4で生成された水素ガスが、マニホールド26を介して燃料電池セル24に供給される。そして、これらの構成により燃料電池セルスタック装置27が構成されている。   FIG. 2 is an external perspective view showing an example of a fuel cell module which is a member constituting the fuel cell device of the present invention. The fuel cell module 22 includes a fuel cell stack 25 (hereinafter, referred to as a cell stack) in which a plurality of fuel cells 24 are arranged in parallel inside a rectangular parallelepiped storage case 23 and electrically connected in series. ). In FIG. 2, as the fuel cell 24, a hollow plate type fuel cell 24 in which a reaction gas (hydrogen gas or the like) flows in the longitudinal direction inside the fuel cell 24 is illustrated. A reformer 4 for reforming a fuel such as natural gas or kerosene to generate hydrogen gas used in the fuel battery cell 24 is disposed at the upper portion of the cell stack 25. Further, the cell stack 25 is erected on the upper surface of the manifold 26 for supplying the generated hydrogen gas to the fuel cell 24, and the hydrogen gas generated by the reformer 4 is supplied to the fuel via the manifold 26. The battery cell 24 is supplied. And the fuel cell stack apparatus 27 is comprised by these structures.

なお、図2においては、収納ケース23の一部(前面)を取り外し、内部に収納されている燃料電池セルスタック装置27を前方に取り出した状態を示している。ここで、図2に示した燃料電池モジュール22においては、燃料電池セルスタック装置27を、収納ケース23内にスライドさせて収納することが可能である。   FIG. 2 shows a state in which a part (front surface) of the storage case 23 is removed and the fuel cell stack device 27 stored inside is taken out forward. Here, in the fuel cell module 22 shown in FIG. 2, the fuel cell stack device 27 can be slid and stored in the storage case 23.

図3は、図2で示す燃料電池モジュール22のX断面図であり、内部に温度センサ35を配置してなる燃料電池モジュール31の一例を示す。   FIG. 3 is an X sectional view of the fuel cell module 22 shown in FIG. 2 and shows an example of the fuel cell module 31 in which the temperature sensor 35 is arranged.

図3で示す収納ケース23は、内壁30と外壁32を有する二重壁構造で、外壁32により収納ケース23の外枠が形成されるとともに、内壁30によりセルスタック25(燃料電池セルスタック装置27)を収納する発電室29が形成されている。   The storage case 23 shown in FIG. 3 has a double wall structure having an inner wall 30 and an outer wall 32. The outer wall 32 forms an outer frame of the storage case 23, and the inner wall 30 defines a cell stack 25 (fuel cell stack device 27). ) Is formed.

さらに収納ケース23においては、内壁30と外壁32との間を、燃料電池セル24に導入する反応ガスの流路としており、例えば、燃料電池セル24に導入する燃料ガスや酸素含有ガスが流れる。   Further, in the storage case 23, a reaction gas flow path introduced into the fuel cell 24 is formed between the inner wall 30 and the outer wall 32, and for example, fuel gas or oxygen-containing gas introduced into the fuel cell 24 flows.

ここで内壁30には、セルスタック25(燃料電池セル24)の配列方向における幅に対応し、内壁30と外壁32とで形成される流路に連通してセルスタック25の配列方向に沿った側面側よりセルスタック25に反応ガスを導入するための反応ガス導入部材28が備えられている。また、反応ガス導入部材28の下端側(燃料電池セル24の下端側)には、燃料電池セル24に反応ガスを導入するための吹出口34が設けられている。なお図3において、反応ガス導入部材28は、収納ケース23の上面側から発電室29に垂下する形状を示しており、反応ガス導入部材28は、互いに所定間隔を空けて並設された一対の板部材により反応ガス導入流路を形成し、下端側で底部材に接合して形成されている。そして、反応ガス導入部材28の内部に、測温部36がセルスタック25の最も高い温度となる部位の近傍に位置するよう温度センサ35が収納ケース23の上面側より挿入されている。なお、温度センサ35としては、例えば熱電対等を用いることができる。また、セルスタック25の最も高い温度となる部位とは、セルスタック25(燃料電池セル24)の配列方向における中央部で、かつ燃料電池セル24の長手方向における中央部となる。   Here, the inner wall 30 corresponds to the width in the arrangement direction of the cell stack 25 (fuel cell 24) and communicates with the flow path formed by the inner wall 30 and the outer wall 32 along the arrangement direction of the cell stack 25. A reaction gas introduction member 28 for introducing a reaction gas into the cell stack 25 from the side surface side is provided. Further, on the lower end side of the reaction gas introduction member 28 (lower end side of the fuel cell 24), an air outlet 34 for introducing the reaction gas into the fuel cell 24 is provided. In FIG. 3, the reaction gas introduction member 28 has a shape that hangs down from the upper surface side of the storage case 23 to the power generation chamber 29, and the reaction gas introduction member 28 is a pair of parallelly arranged at predetermined intervals. The reaction gas introduction flow path is formed by the plate member, and is formed by joining the bottom member on the lower end side. A temperature sensor 35 is inserted into the reaction gas introduction member 28 from the upper surface side of the storage case 23 so that the temperature measuring unit 36 is located in the vicinity of the portion where the cell stack 25 has the highest temperature. In addition, as the temperature sensor 35, a thermocouple etc. can be used, for example. Further, the highest temperature portion of the cell stack 25 is a central portion in the arrangement direction of the cell stack 25 (fuel cell 24) and a central portion in the longitudinal direction of the fuel cell 24.

ここで、燃料電池セルとして固体酸化物形燃料電池セルを用いる燃料電池装置の起動処理工程においては、燃料電池セル24に供給する水素ガスを生成するための改質反応を行なう改質器4を所定の温度にまで上昇させるとともに、セルスタック25(燃料電池セル24)を所定の温度にまで上昇させる必要があり、セルスタック25が所定の温度に達すると起動処理工程を終了し、燃料電池を発電状態へと切り替えることとなる。   Here, in the start-up process of the fuel cell device using solid oxide fuel cells as the fuel cells, the reformer 4 that performs a reforming reaction for generating hydrogen gas to be supplied to the fuel cells 24 is provided. It is necessary to raise the cell stack 25 (fuel cell 24) to a predetermined temperature while raising the temperature to a predetermined temperature. When the cell stack 25 reaches a predetermined temperature, the start-up process is terminated, It will be switched to the power generation state.

ここで改質器4での改質反応としては、例えば、部分酸化改質、オートサーマル、水蒸気改質を順に行なう改質法を採用することができる。具体的には、まず燃料ガス供給手段2より供給される燃料ガスを用いて部分酸化改質を行なう。なお、部分酸化改質を行なうにあたり空気(酸素)が必要となり、図1においては燃料電池1に酸素含有ガスを供給する酸素含有ガス供給手段3を共用する場合の例を示したが、別の供給手段を設けて改質器4に空気を供給してもいい。   Here, as the reforming reaction in the reformer 4, for example, a reforming method in which partial oxidation reforming, autothermal, and steam reforming are sequentially performed can be employed. Specifically, first, partial oxidation reforming is performed using the fuel gas supplied from the fuel gas supply means 2. Note that air (oxygen) is required to perform partial oxidation reforming, and FIG. 1 shows an example in which the oxygen-containing gas supply means 3 for supplying the oxygen-containing gas to the fuel cell 1 is shared. Air may be supplied to the reformer 4 by providing a supply means.

ここで部分酸化改質は発熱反応であるため、改質反応に伴い改質器4の温度が上昇する。そして、改質器4の温度上昇に伴い、部分酸化改質と水蒸気改質とを組み合わせたオートサーマル、さらには水蒸気改質へと切り替えることができ、改質器4の温度が所定の温度に達することができる。なお、オートサーマルや水蒸気改質で必要な水は、図1で示した水タンク10に貯水された水(凝縮水等)を、水ポンプ11により改質器4に供給することで供給できる。   Here, since the partial oxidation reforming is an exothermic reaction, the temperature of the reformer 4 increases with the reforming reaction. As the temperature of the reformer 4 rises, it can be switched to autothermal that combines partial oxidation reforming and steam reforming, and further to steam reforming, and the temperature of the reformer 4 reaches a predetermined temperature. Can reach. Water necessary for autothermal or steam reforming can be supplied by supplying water (condensed water or the like) stored in the water tank 10 shown in FIG.

そして、改質器4の温度上昇に伴い、改質器4で生成される水素ガス自体の温度が上昇するため、改質器4で生成され燃料電池セル24に供給された温められた水素ガスにより、燃料電池セル24自身が温められる。   Then, as the temperature of the reformer 4 rises, the temperature of the hydrogen gas itself generated by the reformer 4 rises, so that the warmed hydrogen gas generated by the reformer 4 and supplied to the fuel cell 24 is used. Thus, the fuel cell 24 itself is warmed.

さらに、燃料電池セル24(セルスタック25)の上部側では、改質器4により供給される水素ガスや、改質器4で反応しなかった未反応ガス(燃料ガス)が、セルスタック25に供給される酸素含有ガスと燃焼反応を行なうことで、燃料電池セル24(セルスタック25)の温度を上昇させることができる。   Furthermore, on the upper side of the fuel battery cell 24 (cell stack 25), hydrogen gas supplied by the reformer 4 and unreacted gas (fuel gas) that has not reacted in the reformer 4 are transferred to the cell stack 25. By performing a combustion reaction with the supplied oxygen-containing gas, the temperature of the fuel cell 24 (cell stack 25) can be raised.

なお、例えば図2や図3に示したように、改質器4をセルスタック25の上部に配置した場合においては、燃料電池セル24の上部側での燃焼反応による熱を改質器4に伝熱することができることから、改質器4の起動工程に必要となる時間、すなわち改質器4が所定の温度となるまでの時間を短くすることができる。   For example, as shown in FIG. 2 and FIG. 3, when the reformer 4 is arranged on the upper part of the cell stack 25, heat from the combustion reaction on the upper side of the fuel cell 24 is given to the reformer 4. Since heat can be transferred, the time required for the start-up process of the reformer 4, that is, the time until the reformer 4 reaches a predetermined temperature can be shortened.

一方、セルスタック25の起動処理においては、温度センサ39にてセルスタック25の最も高い温度となる部位(もしくはその近傍)の温度が測定され、その温度情報が制御装置14に伝送される。そして温度センサ39で測定されるセルスタック25の温度が所定の温度(第1の設定温度)に達すると、制御装置14は燃料電池1が発電開始可能であると判断し、パワーコンディショナ12に対し、系統電源(負荷)と接続してセルスタック25の運転を負荷追従運転モードに移行させるよう信号を伝送する。   On the other hand, in the activation process of the cell stack 25, the temperature sensor 39 measures the temperature (or the vicinity thereof) of the cell stack 25 at the highest temperature, and transmits the temperature information to the control device 14. When the temperature of the cell stack 25 measured by the temperature sensor 39 reaches a predetermined temperature (first set temperature), the control device 14 determines that the fuel cell 1 can start power generation, and causes the power conditioner 12 to On the other hand, a signal is transmitted to connect the system power supply (load) and shift the operation of the cell stack 25 to the load following operation mode.

ここで、燃料電池セルが固体酸化物形燃料電池セルである場合には、要求される負荷にあわせて運転する負荷追従運転を行うことができる。さらには、負荷追従運転の発電量にあわせて、改質器に供給される燃料ガスや、改質器およびセルスタックに供給される酸素含有ガスの流量調整を行なって負荷追従運転を行なう、すなわち高効率の負荷追従運転を行うことができる。それゆえ、効率よい燃料電池装置とすることができる。そのため、制御装置14は、セルスタック25の温度が第1の設定温度に達すると、負荷追従運転モードに移行するよう制御し、要求される負荷にあわせて燃料ガス供給手段2や酸素含有ガス供給手段3を制御し、適量の燃料ガスを改質器4に、適量の酸素含有ガスをセルスタック25に供給する。なお高効率の負荷追従運転において、負荷が小さい場合や負荷がない場合においては、改質器4に供給される燃料ガスおよびセルスタック25に供給される酸素含有ガスを最低流量で流すよう制御される。ここで最低流量とは、燃料ガス供給手段2や酸素含有ガス供給手段3が供給できる最も少ない流量を意味する。   Here, in the case where the fuel cell is a solid oxide fuel cell, a load following operation that operates in accordance with a required load can be performed. Furthermore, the load following operation is performed by adjusting the flow rate of the fuel gas supplied to the reformer and the oxygen-containing gas supplied to the reformer and the cell stack in accordance with the power generation amount of the load following operation. High-efficiency load following operation can be performed. Therefore, an efficient fuel cell device can be obtained. Therefore, when the temperature of the cell stack 25 reaches the first set temperature, the control device 14 controls to shift to the load following operation mode, and supplies the fuel gas supply means 2 and the oxygen-containing gas supply according to the required load. The means 3 is controlled to supply an appropriate amount of fuel gas to the reformer 4 and an appropriate amount of oxygen-containing gas to the cell stack 25. In high-efficiency load following operation, when the load is small or when there is no load, the fuel gas supplied to the reformer 4 and the oxygen-containing gas supplied to the cell stack 25 are controlled to flow at a minimum flow rate. The Here, the minimum flow rate means the smallest flow rate that can be supplied by the fuel gas supply means 2 and the oxygen-containing gas supply means 3.

しかしながら、このような高効率の負荷追従運転を行なう燃料電池装置においては、燃料電池1が起動処理から負荷追従運転モードに移行して、高効率の負荷追従運転が開始された直後は、発電状態が一端リセットされた状態(すなわち、発電量が0の状態)となるため、改質器4には最低流量の燃料ガスが、セルスタック25には最低流量の酸素含有ガスが供給されることとなる。   However, in such a fuel cell device that performs high-efficiency load following operation, immediately after the fuel cell 1 shifts from the startup process to the load following operation mode and the high-efficiency load following operation is started, the power generation state Is reset (ie, the amount of power generation is zero), the reformer 4 is supplied with the lowest flow rate fuel gas, and the cell stack 25 is supplied with the lowest flow rate oxygen-containing gas. Become.

それに伴い、セルスタック25の温度を発電開始可能となるまで(第1の設定温度に達するまで)上昇させるために、燃料ガスおよび酸素含有ガスが大量に供給されていた状態から、ただちに最低流量にまで減少することに伴い、セルスタック25の上部側での燃焼反応が不安定となり、燃料電池セルが失火するおそれがあった。   Along with this, in order to increase the temperature of the cell stack 25 until it is possible to start power generation (until the first set temperature is reached), the fuel gas and the oxygen-containing gas are immediately supplied to a minimum flow rate from the state in which a large amount of fuel gas and oxygen-containing gas are supplied. As a result, the combustion reaction on the upper side of the cell stack 25 becomes unstable, and the fuel cell may be misfired.

それゆえ、本発明においては、高効率の負荷追従運転を行なう燃料電池装置において、セルスタック25の温度が発電開始可能な第1の設定温度に達するとセルスタック25の発電を開始するよう制御して負荷追従運転モードに移行させるとともに、起動開始から第1の設定温度を越えて所定時間が経過するまでの間は、改質器4に供給される燃料ガスおよびセルスタック25に供給される酸素含有ガスの所定流量を継続して供給するよう制御する制御装置14を具備している。   Therefore, in the present invention, in the fuel cell device that performs the high-efficiency load following operation, when the temperature of the cell stack 25 reaches the first set temperature at which power generation can be started, control is performed so that power generation of the cell stack 25 is started. The fuel gas supplied to the reformer 4 and the oxygen supplied to the cell stack 25 are shifted to the load following operation mode from the start of startup until the predetermined time elapses after the first set temperature is exceeded. A control device 14 for controlling to continuously supply a predetermined flow rate of the contained gas is provided.

具体的には、温度センサ39により測定されるセルスタック25の温度情報が制御装置14に伝送される。制御装置14はセルスタック25の温度が第1の設定温度に達した後は、パワーコンディショナ12に対し、セルスタック25(燃料電池セル24)を発電状態に切り替える指令を伝送し、燃料電池装置を系統電源(負荷)と接続して、負荷追従運転モードに移行するよう指令する。あわせて、制御手段14は燃料ガス供給手段2および酸素含有ガス供給手段3に対して、改質器4に供給される燃料ガスおよびセルスタック25に供給される酸素含有ガスの所定流量を供給するよう信号を伝送する。   Specifically, temperature information of the cell stack 25 measured by the temperature sensor 39 is transmitted to the control device 14. After the temperature of the cell stack 25 reaches the first set temperature, the control device 14 transmits a command for switching the cell stack 25 (fuel cell 24) to the power generation state to the power conditioner 12, and the fuel cell device. Is connected to the system power supply (load) and commanded to shift to the load following operation mode. In addition, the control means 14 supplies the fuel gas supply means 2 and the oxygen-containing gas supply means 3 with a predetermined flow rate of the fuel gas supplied to the reformer 4 and the oxygen-containing gas supplied to the cell stack 25. So that the signal is transmitted.

それにより、セルスタック25(燃料電池1)が発電状態に切り替わり負荷追従運転モードに移行して、高効率の負荷追従運転が開始される際に、改質器4に供給される燃料ガスおよびセルスタック25に供給される酸素含有ガスの供給量が急激に減少し、それに伴い燃料電池セル24が失火し、十分な発電量を得ることができないといった問題が生じることを抑制できる。なお、改質器4に供給される燃料ガスの所定流量とは、言い換えるとセルスタック25に供給される水素ガスの所定流量と言い換えることも可能である。   As a result, when the cell stack 25 (fuel cell 1) switches to the power generation state and shifts to the load following operation mode, and the highly efficient load following operation is started, the fuel gas and the cell supplied to the reformer 4 It can be suppressed that the supply amount of the oxygen-containing gas supplied to the stack 25 rapidly decreases, and the fuel cell 24 is misfired accordingly, and a problem that a sufficient power generation amount cannot be obtained. In addition, the predetermined flow rate of the fuel gas supplied to the reformer 4 can be restated as the predetermined flow rate of the hydrogen gas supplied to the cell stack 25.

なお、図3において、温度センサ39はセルスタック25の最も高い温度となる部位の温度を測定しているが、これはセルスタック25の温度が所定の温度を超えた場合に、セルスタック25(燃料電池セル24)が劣化したり破損したりして、安定に作動することができなくなるおそれがあるためである。また、セルスタック25が発電開始可能となるセルスタック25の温度(第1の設定温度)としては、例えば約650℃程度とすることができる。   In FIG. 3, the temperature sensor 39 measures the temperature of the highest part of the cell stack 25. This is because when the temperature of the cell stack 25 exceeds a predetermined temperature, the cell stack 25 ( This is because the fuel battery cell 24) may be deteriorated or damaged, and may not be able to operate stably. Further, the temperature (first set temperature) of the cell stack 25 at which the cell stack 25 can start power generation can be about 650 ° C., for example.

一方、図3で示したように、温度センサ39がセルスタック25の劣化や破損を抑制すべくセルスタック25の最高温度のみを測定している場合には、セルスタック25(燃料電池1)を発電状態に切り替え負荷追従運転モードに移行する際に、セルスタック25の一部の温度が低く、十分な電圧が得られないといった問題が生じるおそれがあるが、本発明においてはセルスタック25の温度が第1の設定温度に達し、起動開始から第1の設定温度を越えて所定時間の間は、改質器4に供給される燃料ガスとセルスタック25に供給される酸素含有ガスの所定流量を継続して供給するため、継続してセルスタック25の温度を上昇させることができ、安定して十分な電圧を得ることができる。   On the other hand, as shown in FIG. 3, when the temperature sensor 39 measures only the maximum temperature of the cell stack 25 in order to suppress the deterioration and breakage of the cell stack 25, the cell stack 25 (fuel cell 1) is When switching to the power generation state and shifting to the load following operation mode, there is a possibility that the temperature of a part of the cell stack 25 is low and a sufficient voltage cannot be obtained. Reaches the first set temperature and exceeds the first set temperature from the start of startup for a predetermined time, a predetermined flow rate of the fuel gas supplied to the reformer 4 and the oxygen-containing gas supplied to the cell stack 25 Is continuously supplied, the temperature of the cell stack 25 can be continuously increased, and a sufficient voltage can be stably obtained.

なお、この場合の所定流量の燃料ガスと酸素含有ガスとは、セルスタック25の温度が第1の設定温度に達するまで供給していた量と同一の量とすることができる。それにより、セルスタック25の温度を継続して上昇させることができ、安定して発電を行なうことができる。   In this case, the fuel gas and the oxygen-containing gas at a predetermined flow rate can be set to the same amounts as those supplied until the temperature of the cell stack 25 reaches the first set temperature. Thereby, the temperature of the cell stack 25 can be continuously raised, and power generation can be performed stably.

また、セルスタック25の温度が第1の設定温度に達し、起動開始から第1の設定温度を越えて所定時間経過後に高効率の負荷追従運転を開始する場合に、すでにセルスタック25が発電を開始していることから、改質器4に供給される燃料ガスおよびセルスタック25に供給される酸素含有ガスの供給量が急激に減少することを抑制できる。それにより、セルスタック25の温度が第1の設定温度に達し、起動開始から第1の設定温度を越えて所定時間経過後(セルスタック25の温度が第1の設定温度に達して所定時間経過後)に、高効率の負荷追従運転を開始する時にも、燃料電池セル24が失火することが抑制できる。   In addition, when the temperature of the cell stack 25 reaches the first set temperature and exceeds the first set temperature from the start of starting and starts a high-efficiency load following operation after a predetermined time has elapsed, the cell stack 25 has already generated power. Since it has started, it can suppress that supply_amount | feed_rate of the fuel gas supplied to the reformer 4 and the oxygen-containing gas supplied to the cell stack 25 decreases rapidly. Thereby, the temperature of the cell stack 25 reaches the first set temperature, and after the predetermined time has elapsed since the start of starting, the predetermined time has elapsed (the temperature of the cell stack 25 has reached the first set temperature and the predetermined time has elapsed). Later, when the highly efficient load following operation is started, the fuel cell 24 can be prevented from being misfired.

なお、セルスタック25の温度が第1の設定温度に達してから、高効率の負荷追従運転を開始するまでの間(すなわち、負荷追従運転モードに移行している間)は、適宜要求負荷に応じて電力を供給することができるが、この場合は、改質器4に供給される燃料ガスおよびセルスタック25に供給される酸素含有ガスを、セルスタック25の温度が第1の設定温度に達するまで供給していた量と同一の量を供給することから、負荷追従運転は行なえるものの、高効率の負荷追従運転を行なうことは難しいこととなる。   It should be noted that during the period from when the temperature of the cell stack 25 reaches the first set temperature until the start of the high-efficiency load following operation (that is, during the transition to the load following operation mode), the required load is appropriately set. In this case, the fuel gas supplied to the reformer 4 and the oxygen-containing gas supplied to the cell stack 25 are supplied with the temperature of the cell stack 25 set to the first set temperature. Since the same amount as that which has been supplied until it reaches is supplied, load following operation can be performed, but it is difficult to perform highly efficient load following operation.

ところで、制御装置14は、セルスタック25の温度が第1の設定温度を越えて所定時間の間は、改質器4に供給される燃料ガスおよびセルスタック25に供給される酸素含有ガスの所定流量を継続して供給するよう制御するが、この場合に、長時間継続して所定流量の燃料ガスおよび酸素含有ガスを供給し続けると、発電効率が悪い状態が継続することとなる。   By the way, the control device 14 determines the predetermined amount of the fuel gas supplied to the reformer 4 and the oxygen-containing gas supplied to the cell stack 25 for a predetermined time after the temperature of the cell stack 25 exceeds the first set temperature. Control is performed so that the flow rate is continuously supplied. In this case, if the fuel gas and the oxygen-containing gas at a predetermined flow rate are continuously supplied for a long time, the state where the power generation efficiency is poor continues.

したがって、制御装置14は、セルスタック25の温度が第1の設定温度を越えて所定時間が経過した後は、セルスタック25は高効率の負荷追従運転を開始するよう制御することが好ましい。それにより、セルスタック25の運転を高効率の負荷追従運転に切り替えた後は、発電効率を向上することができる。   Therefore, it is preferable that the control device 14 performs control so that the cell stack 25 starts a high-efficiency load following operation after a predetermined time has elapsed after the temperature of the cell stack 25 exceeds the first set temperature. Thereby, after the operation of the cell stack 25 is switched to the high-efficiency load following operation, the power generation efficiency can be improved.

ここで、セルスタック25の温度が第1の設定温度を越えて所定時間とは、例えば、セルスタック25が安定して作動する最高温度である第2の設定温度に達するまでの時間とすることができる。   Here, the predetermined time after the temperature of the cell stack 25 exceeds the first set temperature is, for example, the time until it reaches the second set temperature, which is the maximum temperature at which the cell stack 25 operates stably. Can do.

そして、セルスタック25の温度が第1の設定温度を越えて所定時間を、セルスタック25の第2の設定温度に達するまでの時間とすることにより、セルスタック25(燃料電池セル24)が劣化や破壊するといったことを抑制(防止)できるとともに、第1の設定温度を越えて所定時間の間に、セルスタック25の温度を十分に高めることができ、安定して十分な電圧を得ることができる。   The cell stack 25 (fuel cell 24) is deteriorated by setting the predetermined time after the temperature of the cell stack 25 exceeds the first set temperature to reach the second set temperature of the cell stack 25. It is possible to suppress (prevent) the destruction of the cell stack 25 and to sufficiently increase the temperature of the cell stack 25 for a predetermined time exceeding the first set temperature, and to obtain a sufficient voltage stably. it can.

また、セルスタック25の温度が第2の設定温度に達した後は、高効率の負荷追従運転を開始することにより、制御装置14は要求電力にあわせて燃料ガスおよび酸素含有ガスを供給するよう制御することで、燃料電池1の発電効率を高めることができる。   In addition, after the temperature of the cell stack 25 reaches the second set temperature, the control device 14 supplies the fuel gas and the oxygen-containing gas in accordance with the required power by starting the high-efficiency load following operation. By controlling, the power generation efficiency of the fuel cell 1 can be increased.

なお、第2の設定温度は、燃料電池セル24(セルスタック25)の形状や構成等により適宜設定することができるが、例えば第2の設定温度を850℃〜1000℃の範囲とすることができる。   The second set temperature can be set as appropriate depending on the shape and configuration of the fuel cell 24 (cell stack 25). For example, the second set temperature is set to a range of 850 ° C. to 1000 ° C. it can.

また、セルスタック25の温度が第1の設定温度を越えて所定時間を、セルスタック25の第2の設定温度に達するまでの時間とするほか、セルスタック25の発電量が所定の発電量となるまでの時間とすることもできる。   In addition to setting the predetermined time after the temperature of the cell stack 25 exceeds the first set temperature to reach the second set temperature of the cell stack 25, the power generation amount of the cell stack 25 is equal to the predetermined power generation amount. It can also be the time until.

制御装置14は、セルスタック25の温度が第1の設定温度に達した後は、セルスタック25(燃料電池1)の発電を開始するよう制御する。そして、上述したのと同様に、セルスタック25の温度が第1の設定温度に達した後、長時間継続して所定流量の燃料ガスおよび酸素含有ガスを供給し続けると、発電効率が悪い状態が継続することとなるため、セルスタック25の温度が第1の設定温度を越えて所定時間が経過した後は、燃料電池1の運転として高効率の負荷追従運転を開始することが好ましい。   The control device 14 controls the power generation of the cell stack 25 (fuel cell 1) to start after the temperature of the cell stack 25 reaches the first set temperature. As described above, when the temperature of the cell stack 25 reaches the first set temperature and the fuel gas and the oxygen-containing gas at a predetermined flow rate are continuously supplied for a long time, the power generation efficiency is poor. Therefore, after the predetermined time has elapsed after the temperature of the cell stack 25 exceeds the first set temperature, it is preferable to start the highly efficient load following operation as the operation of the fuel cell 1.

ここで、燃料電池1の運転として高効率の負荷追従運転を開始する際に、要求電力が少ないもしくは要求電力がない場合においては、改質器4に供給される燃料ガスおよびセルスタック25に供給される酸素含有ガスの供給量が急激に減少し、それに伴い燃料電池セル24が失火し、十分な発電量を得ることができないという問題が生じるおそれがある。   Here, when starting the high-efficiency load following operation as the operation of the fuel cell 1, if the required power is low or there is no required power, the fuel gas supplied to the reformer 4 and the cell stack 25 are supplied. As a result, the supply amount of the oxygen-containing gas to be rapidly decreased, and the fuel cell 24 may be misfired accordingly, which may cause a problem that a sufficient power generation amount cannot be obtained.

したがって、セルスタック25の温度が第1の設定温度を越えて所定時間経過後に、燃料電池1の運転として高効率の負荷追従運転を開始する場合に、改質器4に供給される燃料ガスおよびセルスタック25に供給される酸素含有ガスの供給量が急激に減少しないよう、セルスタック25の発電量が所定の発電量となった際に、燃料電池1の運転として高効率の負荷追従運転を開始することが好ましい。   Therefore, when a highly efficient load following operation is started as the operation of the fuel cell 1 after a predetermined time has passed after the temperature of the cell stack 25 exceeds the first set temperature, the fuel gas supplied to the reformer 4 and When the power generation amount of the cell stack 25 reaches a predetermined power generation amount so that the supply amount of the oxygen-containing gas supplied to the cell stack 25 does not rapidly decrease, high-efficiency load following operation is performed as the operation of the fuel cell 1. It is preferable to start.

それにより、燃料電池1が高効率の負荷追従運転を開始する際に、改質器4に供給される燃料ガスおよびセルスタック25に供給される酸素含有ガスの供給量が急激に減少することを抑制でき、あわせて、燃料電池セル24が失火し、十分な発電量を得ることができないという問題が生じることを抑制できる。   Thereby, when the fuel cell 1 starts the high-efficiency load following operation, the supply amount of the fuel gas supplied to the reformer 4 and the oxygen-containing gas supplied to the cell stack 25 is rapidly reduced. In addition, it is possible to suppress the occurrence of a problem that the fuel battery cell 24 misfires and a sufficient amount of power generation cannot be obtained.

なお、ここでいう所定の発電量は、例えば一定の発電量とすることもできるし、また所定時間に所定の発電量を超えた時間等により定義することもできる。   The predetermined power generation amount here may be a constant power generation amount, for example, or may be defined by a time exceeding a predetermined power generation amount for a predetermined time.

ところで、改質器4に供給される燃料ガスおよびセルスタック25に供給される酸素含有ガスは、燃料電池装置1に具備する燃料ガス供給手段2や酸素含有ガス供給手段3の供給能力に応じて供給されるが、改質器4やセルスタック25の温度を素早く上昇させ、燃料電池1の起動時間を短くする点で、燃料ガス供給手段2における最大の供給量(最大流量)にて供給することが好ましい。   Incidentally, the fuel gas supplied to the reformer 4 and the oxygen-containing gas supplied to the cell stack 25 depend on the supply capacity of the fuel gas supply means 2 and the oxygen-containing gas supply means 3 provided in the fuel cell device 1. Although it is supplied, the temperature of the reformer 4 and the cell stack 25 is quickly raised to shorten the start-up time of the fuel cell 1 and is supplied at the maximum supply amount (maximum flow rate) in the fuel gas supply means 2. It is preferable.

それゆえ、燃料ガス供給手段2を制御し、改質器4に供給される燃料ガスを、燃料電池1の運転として高効率の負荷追従運転を開始するまでは、最大流量で供給することで、燃料電池1の起動時間を短縮することができる。   Therefore, by controlling the fuel gas supply means 2 and supplying the fuel gas supplied to the reformer 4 at the maximum flow rate until the highly efficient load following operation is started as the operation of the fuel cell 1, The startup time of the fuel cell 1 can be shortened.

なお、この場合においてセルスタック25に供給される酸素含有ガスの量は、燃料ガスの供給量に応じて供給すればよい。したがって、改質器4に供給される燃料ガスを最大流量で供給している場合には、その最大流量に応じた酸素含有ガスを、酸素含有ガス供給手段3を制御して供給することが好ましい。   In this case, the amount of oxygen-containing gas supplied to the cell stack 25 may be supplied according to the amount of fuel gas supplied. Therefore, when the fuel gas supplied to the reformer 4 is supplied at the maximum flow rate, it is preferable to supply the oxygen-containing gas corresponding to the maximum flow rate by controlling the oxygen-containing gas supply means 3. .

また、上述したように燃料電池セルとして固体酸化物形燃料電池セルを用いる場合、固体酸化物形燃料電池セルの運転温度が非常に高温であることから、改質器4に供給される燃料ガスやセルスタック25に供給される酸素含有ガスの供給量の変動が大きくなる。それゆえ、本発明の燃料電池装置を適用するにあたり非常に有効となる。   Further, as described above, when the solid oxide fuel cell is used as the fuel cell, the operating temperature of the solid oxide fuel cell is very high, so that the fuel gas supplied to the reformer 4 And the fluctuation | variation of the supply amount of the oxygen containing gas supplied to the cell stack 25 becomes large. Therefore, it is very effective in applying the fuel cell device of the present invention.

ここで、燃料電池セル24の形状としては、平板型、円筒型、中空平板型等が知られているが、燃料電池の発電を効率よく行なう上で、図2に示したように中空平板型の燃料電池セルとすることが好ましい。   Here, as the shape of the fuel cell 24, a flat plate type, a cylindrical type, a hollow flat plate type, and the like are known. However, in order to efficiently generate power of the fuel cell, a hollow flat plate type as shown in FIG. It is preferable to use the fuel cell.

このような、中空平板型の燃料電池セル24としては、内側に燃料極が、外側に酸素極が形成された燃料極支持タイプの中空平板型燃料電池を用いることができ、それによりさらに効率よく発電を行なうことができる。   As such a hollow plate type fuel cell 24, a fuel plate support type hollow plate type fuel cell in which a fuel electrode is formed on the inner side and an oxygen electrode is formed on the outer side can be used. Power generation can be performed.

以上、本発明について詳細に説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。   Although the present invention has been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications and improvements can be made without departing from the scope of the present invention.

例えば、燃料電池セル24として内側が燃料極、外側が酸素極とした燃料極支持タイプの中空平板型燃料電池セル24を示したが、例えば、内側が酸素極、外側が燃料極とした空気極支持タイプの中空平板型燃料電池セルや、固体高分子形燃料電池セル等の他の燃料電池セルを収納してなる燃料電池装置を用いることもできる。   For example, a fuel electrode support type hollow plate type fuel cell 24 having a fuel electrode on the inside and an oxygen electrode on the outside is shown as the fuel cell 24. For example, an air electrode having an oxygen electrode on the inside and a fuel electrode on the outside is shown. A fuel cell device in which another fuel cell such as a support type hollow flat plate fuel cell or a polymer electrolyte fuel cell is housed can also be used.

本発明の燃料電池装置の構成の一例を示す構成図である。It is a block diagram which shows an example of a structure of the fuel cell apparatus of this invention. 本発明の燃料電池装置における燃料電池モジュールの一例を示す外観斜視図である。It is an external appearance perspective view which shows an example of the fuel cell module in the fuel cell apparatus of this invention. 本発明の燃料電池装置における燃料電池モジュールの一例を示す断面図である。It is sectional drawing which shows an example of the fuel cell module in the fuel cell apparatus of this invention.

符号の説明Explanation of symbols

1:燃料電池
2:燃料ガス供給手段
3:酸素含有ガス供給手段
4:改質器
12:パワーコンディショナ
14:制御装置
22、31:燃料電池モジュール
23:収納容器
24:燃料電池セル
25:セルスタック
26:マニホールド
27:燃料電池セルスタック装置
28:ガス導入部材
35:温度センサ
1: Fuel cell 2: Fuel gas supply means 3: Oxygen-containing gas supply means 4: Reformer 12: Power conditioner 14: Controller 22, 31: Fuel cell module 23: Storage container 24: Fuel cell 25: Cell Stack 26: Manifold 27: Fuel cell stack device 28: Gas introduction member 35: Temperature sensor

Claims (5)

収納容器内に複数の燃料電池セルを組み合わせてなるセルスタックを収納してなる燃料電池モジュールと、前記燃料電池セルに供給する水素ガスを生成するための改質器と、該改質器に燃料ガスを供給するための燃料ガス供給手段と、前記改質器および前記燃料電池セルに酸素含有ガスを供給するための酸素含有ガス供給手段と、前記燃料ガス供給手段および前記酸素含有ガス供給手段を制御するとともに、前記セルスタックの発電状態を切り替える制御を行なう制御装置とを具備する燃料電池装置であって、前記制御装置は、起動開始から前記セルスタックの温度が発電開始可能な第1の設定温度に達すると前記セルスタックの発電を開始するよう制御して負荷追従運転モードに移行させるとともに、起動開始から前記第1の設定温度を越えて所定時間が経過するまでの間は、前記改質器に供給される燃料ガスおよび前記セルスタックに供給される前記酸素含有ガスの所定流量を継続して供給するように前記燃料ガス供給手段および前記酸素含有ガス供給手段を制御することを特徴とする燃料電池装置。 A fuel cell module in which a cell stack formed by combining a plurality of fuel cells is housed in a storage container, a reformer for generating hydrogen gas to be supplied to the fuel cells, and fuel in the reformer A fuel gas supply means for supplying gas; an oxygen-containing gas supply means for supplying an oxygen-containing gas to the reformer and the fuel battery cell; the fuel gas supply means and the oxygen-containing gas supply means; And a control device that performs control for switching the power generation state of the cell stack, wherein the control device has a first setting that allows the temperature of the cell stack to start power generation from start-up. When the temperature is reached, control is performed to start power generation of the cell stack to shift to the load following operation mode, and the first set temperature is exceeded from the start of startup. Until the predetermined time elapses, the fuel gas supply means and the fuel gas supply means to continuously supply a predetermined flow rate of the fuel gas supplied to the reformer and the oxygen-containing gas supplied to the cell stack, and A fuel cell device that controls the oxygen-containing gas supply means. 前記所定時間は、起動開始から前記セルスタックが安定して作動する最高温度である第2の設定温度に達するまでの時間であることを特徴とする請求項1に記載の燃料電池装置。 2. The fuel cell device according to claim 1, wherein the predetermined time is a time from the start of startup to a second set temperature that is a maximum temperature at which the cell stack operates stably. 前記所定時間は、起動開始から前記セルスタックの発電量が所定の発電量となるまでの時間であることを特徴とする請求項1に記載の燃料電池装置。 2. The fuel cell device according to claim 1, wherein the predetermined time is a time from the start of startup until the power generation amount of the cell stack reaches a predetermined power generation amount. 前記改質器に供給される前記燃料ガスの所定流量が最大流量であることを特徴とする請求項1乃至請求項3のうちいずれかに記載の燃料電池。 The fuel cell according to any one of claims 1 to 3, wherein a predetermined flow rate of the fuel gas supplied to the reformer is a maximum flow rate. 前記燃料電池セルが、固体酸化物形燃料電池セルであることを特徴とする請求項1乃至請求項4のうちいずれかに記載の燃料電池装置。 The fuel cell device according to any one of claims 1 to 4, wherein the fuel cell is a solid oxide fuel cell.
JP2007195916A 2007-07-27 2007-07-27 Fuel cell device Active JP5328119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007195916A JP5328119B2 (en) 2007-07-27 2007-07-27 Fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007195916A JP5328119B2 (en) 2007-07-27 2007-07-27 Fuel cell device

Publications (2)

Publication Number Publication Date
JP2009032555A true JP2009032555A (en) 2009-02-12
JP5328119B2 JP5328119B2 (en) 2013-10-30

Family

ID=40402864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007195916A Active JP5328119B2 (en) 2007-07-27 2007-07-27 Fuel cell device

Country Status (1)

Country Link
JP (1) JP5328119B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101901925A (en) * 2009-05-28 2010-12-01 Toto株式会社 Solid electrolyte fuel cell
EP2256851A1 (en) 2009-05-28 2010-12-01 Toto Ltd. Solid oxide fuel cell device
EP2264821A1 (en) 2009-05-28 2010-12-22 Toto Ltd. Solid oxide fuel cell device
EP2306575A1 (en) 2009-09-30 2011-04-06 Toto Ltd. Solid oxide fuel cell device
JP2012009206A (en) * 2010-06-23 2012-01-12 Rinnai Corp Power generator
JP4868268B1 (en) * 2011-01-05 2012-02-01 Toto株式会社 Solid oxide fuel cell
KR101275489B1 (en) 2011-12-26 2013-06-17 포스코에너지 주식회사 Operation method of fuel cell system
US20130171534A1 (en) * 2010-09-30 2013-07-04 Toto Ltd. Solid oxide fuel cell device
US20130196239A1 (en) * 2010-09-30 2013-08-01 Toto Ltd. Solid oxide fuel cell device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262371A (en) * 1991-02-18 1992-09-17 Fuji Electric Co Ltd Operating method for fuel cell with phosphoric acid
JP2004087169A (en) * 2002-08-23 2004-03-18 Nissan Motor Co Ltd Generator
JP2004288562A (en) * 2003-03-25 2004-10-14 Ebara Ballard Corp Fuel cell power generation system
JP2005317405A (en) * 2004-04-30 2005-11-10 Kyocera Corp Operation method of fuel cell structure
JP2006012656A (en) * 2004-06-28 2006-01-12 Aisin Seiki Co Ltd Fuel cell system
JP2006059550A (en) * 2004-08-17 2006-03-02 Mitsubishi Materials Corp Fuel cell power plant and operation control method
JP2006190605A (en) * 2005-01-07 2006-07-20 Nippon Oil Corp Starting method of solid oxide fuel cell system
JP2006236862A (en) * 2005-02-25 2006-09-07 Toyota Motor Corp Fuel cell system and vehicle loading it
JP2006318714A (en) * 2005-05-11 2006-11-24 Aisin Seiki Co Ltd Fuel cell system
JP2006331863A (en) * 2005-05-26 2006-12-07 Toyota Motor Corp Fuel cell system and control method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262371A (en) * 1991-02-18 1992-09-17 Fuji Electric Co Ltd Operating method for fuel cell with phosphoric acid
JP2004087169A (en) * 2002-08-23 2004-03-18 Nissan Motor Co Ltd Generator
JP2004288562A (en) * 2003-03-25 2004-10-14 Ebara Ballard Corp Fuel cell power generation system
JP2005317405A (en) * 2004-04-30 2005-11-10 Kyocera Corp Operation method of fuel cell structure
JP2006012656A (en) * 2004-06-28 2006-01-12 Aisin Seiki Co Ltd Fuel cell system
JP2006059550A (en) * 2004-08-17 2006-03-02 Mitsubishi Materials Corp Fuel cell power plant and operation control method
JP2006190605A (en) * 2005-01-07 2006-07-20 Nippon Oil Corp Starting method of solid oxide fuel cell system
JP2006236862A (en) * 2005-02-25 2006-09-07 Toyota Motor Corp Fuel cell system and vehicle loading it
JP2006318714A (en) * 2005-05-11 2006-11-24 Aisin Seiki Co Ltd Fuel cell system
JP2006331863A (en) * 2005-05-26 2006-12-07 Toyota Motor Corp Fuel cell system and control method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101901925B (en) * 2009-05-28 2014-03-19 Toto株式会社 Solid oxide fuel cell device
EP2264821A1 (en) 2009-05-28 2010-12-22 Toto Ltd. Solid oxide fuel cell device
US9331351B2 (en) 2009-05-28 2016-05-03 Toto Ltd. Solid oxide fuel cell device
US8900764B2 (en) 2009-05-28 2014-12-02 Toto Ltd. Solid oxide fuel cell device
US8741495B2 (en) 2009-05-28 2014-06-03 Toto Ltd. Solid oxide fuel cell device
JP2011009193A (en) * 2009-05-28 2011-01-13 Toto Ltd Solid-oxide fuel cell
JP2011009194A (en) * 2009-05-28 2011-01-13 Toto Ltd Solid electrolyte fuel cell
CN101901925A (en) * 2009-05-28 2010-12-01 Toto株式会社 Solid electrolyte fuel cell
CN101901919A (en) * 2009-05-28 2010-12-01 Toto株式会社 Solid electrolyte fuel cell
EP2256847A1 (en) 2009-05-28 2010-12-01 Toto Ltd. Solid oxide fuel cell device
EP2256851A1 (en) 2009-05-28 2010-12-01 Toto Ltd. Solid oxide fuel cell device
JP2011096635A (en) * 2009-09-30 2011-05-12 Toto Ltd Solid electrolyte fuel cell device
US8501358B2 (en) 2009-09-30 2013-08-06 Toto Ltd. Solid oxide fuel cell device
EP2306575A1 (en) 2009-09-30 2011-04-06 Toto Ltd. Solid oxide fuel cell device
JP2012009206A (en) * 2010-06-23 2012-01-12 Rinnai Corp Power generator
US20130196239A1 (en) * 2010-09-30 2013-08-01 Toto Ltd. Solid oxide fuel cell device
US20130171534A1 (en) * 2010-09-30 2013-07-04 Toto Ltd. Solid oxide fuel cell device
US9209469B2 (en) * 2010-09-30 2015-12-08 Toto Ltd. Solid oxide fuel cell device
US9214690B2 (en) * 2010-09-30 2015-12-15 Toto Ltd. Solid oxide fuel cell device
JP4868268B1 (en) * 2011-01-05 2012-02-01 Toto株式会社 Solid oxide fuel cell
KR101275489B1 (en) 2011-12-26 2013-06-17 포스코에너지 주식회사 Operation method of fuel cell system

Also Published As

Publication number Publication date
JP5328119B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5328119B2 (en) Fuel cell device
JP5213865B2 (en) Fuel cell device
JP5121269B2 (en) Fuel cell device
JP5528451B2 (en) Fuel cell device
WO2012165516A1 (en) Fuel cell device
JP6205282B2 (en) Fuel cell system
JP2007141787A (en) Operation method of fuel cell power generation device
JP5955040B2 (en) Fuel cell system
JP2009104886A (en) Operation method on load increase of fuel cell system
JP2010153063A (en) Fuel battery device
JP5591249B2 (en) Fuel cell device
JP2013058339A (en) Fuel cell system
JP5132143B2 (en) Fuel cell device
JP2014010896A (en) Fuel cell device
US9219283B2 (en) Method for controlling fuel cell device during power generation start by controlling power conditioner
JP6211970B2 (en) Fuel cell device
JP6050036B2 (en) Fuel cell device
JP6230925B2 (en) Fuel cell system
JP2009117170A (en) Hydrogen and power generating system, and load following power generation method therein
JP2010153062A (en) Fuel battery device
JP6208463B2 (en) Fuel cell device
JP6115230B2 (en) Fuel cell system
JP6141665B2 (en) Fuel cell device
JP6643061B2 (en) Fuel cell device
JP6211969B2 (en) Fuel cell device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130130

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130723

R150 Certificate of patent or registration of utility model

Ref document number: 5328119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150