JP2009014479A - Object detection device for vehicle - Google Patents

Object detection device for vehicle Download PDF

Info

Publication number
JP2009014479A
JP2009014479A JP2007176094A JP2007176094A JP2009014479A JP 2009014479 A JP2009014479 A JP 2009014479A JP 2007176094 A JP2007176094 A JP 2007176094A JP 2007176094 A JP2007176094 A JP 2007176094A JP 2009014479 A JP2009014479 A JP 2009014479A
Authority
JP
Japan
Prior art keywords
point
vehicle
representative point
relative
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007176094A
Other languages
Japanese (ja)
Other versions
JP4843571B2 (en
Inventor
Katsuya Mizutani
克也 水谷
Hiroyuki Koike
弘之 小池
Hiroaki Tani
裕章 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007176094A priority Critical patent/JP4843571B2/en
Publication of JP2009014479A publication Critical patent/JP2009014479A/en
Application granted granted Critical
Publication of JP4843571B2 publication Critical patent/JP4843571B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an object detection device for a vehicle capable of detecting a relative position and a relative speed of a front vehicle with high accuracy. <P>SOLUTION: A representative point calculation means calculates an end point 87a to be calculated as an intersection point of two lines, when the two lines are recognized based on the arrangement of the reflection points of a font vehicle 87, and calculates the center-of-gravity point 77a of one line as a representative point, when the one line is recognized based on the arrangement of the reflection points of a front vehicle 77. A representative point correction means is so configured as to correct a representative point from an end point to a center-of-gravity point 86a, when a relative distance of a front vehicle 86 is not shorter than a predetermined distance d. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、車両用物体検知装置に関するものである。特に、レーザレーダを用いてパルス状の送信波を断続的に照射し、物体からの反射波を検出し、放射から検出までの時間により物体までの距離を算出し、物体の横幅、位置、動き等を計測し、警報や車両制御を行うことにより、障害物との接触回避を図る装置に関するものである。   The present invention relates to a vehicle object detection device. In particular, pulsed transmission waves are intermittently emitted using a laser radar, reflected waves from an object are detected, the distance to the object is calculated based on the time from emission to detection, and the width, position, and movement of the object are calculated. The present invention relates to a device for avoiding contact with an obstacle by measuring the above and performing an alarm and vehicle control.

様々な車両用物体検知装置が開発されている。スキャニング式レーダは、車両に電磁波レーダやレーザレーダ等を搭載し、スキャン機構により車両前方の所定角度範囲に光波やミリ波等の送信波を照射し、物体からの反射波を検出することにより、車両前方の物体を認識するものである。この種の装置は、例えば先行車両と所定の車間距離を維持するように車速を制御する装置に適用される。また車両前方の障害物を認識し、障害物と自車両との相対距離や相対速度等に基づいて障害物との接触可能性を判断し、ドライバに警報や回避操作を促したり、自動でブレーキを作動させたりする装置に適用される。   Various vehicle object detection devices have been developed. Scanning radar is equipped with electromagnetic wave radar, laser radar, etc. on the vehicle, irradiates a predetermined angle range in front of the vehicle with a scanning mechanism, such as light waves and millimeter waves, and detects reflected waves from the object, It recognizes an object in front of the vehicle. This type of device is applied, for example, to a device that controls the vehicle speed so as to maintain a predetermined inter-vehicle distance from the preceding vehicle. It also recognizes obstacles in front of the vehicle, determines the possibility of contact with obstacles based on the relative distance and relative speed between the obstacle and the vehicle, prompts the driver for warnings and avoidance operations, and automatically brakes. It is applied to the device which operates.

上述した技術では、衝突の判定等を行うため、前方車両と自車両との相対速度を高精度に推定する必要がある。相対速度は、レーザレーダにより時系列に検出した前方車両につき同一物体判定(トラッキング)を行い、単位時間当たりの自車両との相対位置の変化によって求めている。この相対速度を精度よく求めるためには、レーザレーダによる時系列で検出した前方車両を正しくトラッキングする必要がある。前方車両を正確にトラッキングするためには、前方車両の位置座標を正しく検出する必要がある。車両等の物体はある程度の大きさを有しているので、車両の特定部分の位置座標を継続的に検出する必要がある。以下には、この車両の特定部分を代表点という。   In the above-described technique, it is necessary to estimate the relative speed between the preceding vehicle and the host vehicle with high accuracy in order to determine a collision or the like. The relative speed is obtained by performing the same object determination (tracking) on the preceding vehicle detected in time series by the laser radar and changing the relative position with the own vehicle per unit time. In order to obtain the relative speed with high accuracy, it is necessary to correctly track the preceding vehicle detected in time series by the laser radar. In order to accurately track the vehicle ahead, it is necessary to correctly detect the position coordinates of the vehicle ahead. Since an object such as a vehicle has a certain size, it is necessary to continuously detect the position coordinates of a specific portion of the vehicle. Below, this specific part of the vehicle is referred to as a representative point.

図7は、従来技術に係る物体検知方法の説明図である。この物体検知方法では、前方車両60の手前面の重心点64を、前方車両60の代表点として認識している。この場合、前方車両60の手前面の全部がレーダ走査範囲13に入り、手前面の全体について反射点62が認識できていれば、重心点64として手前面の中心点を算出することができる。しかしながら、自車両5の斜め前方に存在する車両60が自車両5に接近すると、前方車両60の手前面の一部がレーダ走査範囲13から外れる。この場合、レーダ走査範囲13内に存在する手前面の残部の反射点から重心点64を算出すると、重心点64の位置が幅方向にずれることになる。結果として、前方車両60は直進しているにもかかわらず、その進路軌跡が自車両5に向かって曲がっていると誤認することになる。   FIG. 7 is an explanatory diagram of an object detection method according to the prior art. In this object detection method, the center-of-gravity point 64 on the front surface of the front vehicle 60 is recognized as a representative point of the front vehicle 60. In this case, if the entire front surface of the front vehicle 60 enters the radar scanning range 13 and the reflection point 62 is recognized for the entire front surface, the center point of the front surface of the hand can be calculated as the barycentric point 64. However, when the vehicle 60 existing diagonally forward of the host vehicle 5 approaches the host vehicle 5, a part of the front surface of the front vehicle 60 is out of the radar scanning range 13. In this case, if the barycentric point 64 is calculated from the remaining reflection points on the front of the hand existing in the radar scanning range 13, the position of the barycentric point 64 is shifted in the width direction. As a result, although the forward vehicle 60 is traveling straight, it is mistaken that the course of the vehicle is turning toward the host vehicle 5.

前方車両の一部がレーダ走査範囲から外れた場合に、走査範囲外の部分の位置を補間計算する方法として、特許文献1に記載された物体位置検出方法が挙げられる。この物体位置検出方法は、検知角度内に存在する物体までの距離と方位および物体の横幅を計測し、計測中の物体までの距離および方位から物体の横位置の動きベクトルを計測し、計測中の物体の横幅を記憶しておき、計測中の物体の一部が検知角度外に出たと判断したる場合には、記憶しておいたその物体の横幅と、検知角度内で計測した物体の横位置の動きベクトルに基づいて、検知角度外の部分の位置を補間計算する。これにより、物体の位置や横幅、その物体の存在する範囲や物体の中心位置の軌跡を正しく求めることができるとされている。
特開2002−122669号公報
As a method for performing interpolation calculation of the position of the portion outside the scanning range when a part of the preceding vehicle deviates from the radar scanning range, an object position detection method described in Patent Document 1 can be cited. This object position detection method measures the distance and direction to the object existing within the detection angle and the horizontal width of the object, and measures the motion vector of the horizontal position of the object from the distance and direction to the object being measured. If the width of the object is memorized and it is determined that a part of the object being measured is out of the detection angle, the memorized width of the object and the object measured within the detection angle are stored. Based on the lateral position motion vector, the position of the portion outside the detection angle is interpolated. Thus, the position and width of the object, the range where the object exists, and the locus of the center position of the object can be correctly obtained.
JP 2002-122669 A

しかしながら、特許文献1に記載された技術では、前方車両が自車両に接近してレーザ走査範囲外にかかった場合には、前方車両が遠方に存在していたときに算出した横幅を用いて、走査範囲外の部分の位置を補間することになる。特に、前方車両が対向車両の場合には、リフレクタが存在しないフロント部分で算出した横幅を用いることになる。この幅寸法の誤差により、前方車両の補間精度が低下し、重心点の算出精度が低下する。これにより、相対位置および相対速度を精度よく求めることができないという問題がある。   However, in the technique described in Patent Document 1, when the preceding vehicle approaches the host vehicle and falls outside the laser scanning range, the lateral width calculated when the preceding vehicle exists far away is used. The position of the portion outside the scanning range is interpolated. In particular, when the preceding vehicle is an oncoming vehicle, the lateral width calculated at the front portion where there is no reflector is used. Due to the error in the width dimension, the interpolation accuracy of the vehicle ahead decreases and the calculation accuracy of the center of gravity decreases. Accordingly, there is a problem that the relative position and the relative speed cannot be obtained with high accuracy.

そこで本発明は、検知対象となる物体の相対位置および相対速度を精度よく求めることが可能な車両用物体検知装置の提供を課題とする。   Accordingly, an object of the present invention is to provide a vehicle object detection device capable of accurately obtaining the relative position and relative speed of an object to be detected.

上記課題を解決するために、請求項1に係る発明は、自車両(例えば、実施形態における自車両5)周辺の所定範囲に電磁波を送信するとともに、前記自車両周辺に存在する物体(例えば、実施形態における前方車両70,80)からの反射波を受信する送受信手段(例えば、実施形態におけるレーダ12)と、前記物体上における前記電磁波の反射点の位置を算出する反射点算出手段(例えば、実施形態における反射点算出手段14)と、前記反射点に基づいて前記物体の位置を表す代表点の位置を算出する代表点算出手段(例えば、実施形態における代表点算出手段18)と、前記代表点に基づいて前記自車両と前記物体との相対位置および相対距離からなる相対関係を算出する相対関係算出手段(例えば、実施形態における相対関係算出手段20)と、前記相対位置に基づいて前記自車両と前記物体との相対速度を算出する相対速度算出手段(例えば、実施形態における相対速度算出手段21)と、を備えた車両用物体検知装置(例えば、実施形態における車両用物体検知装置10)であって、前記反射点の配列に基づいて前記物体の輪郭を構成する線分を認識する線分認識手段(例えば、実施形態における線分認識手段16)と、前記相対距離に基づいて前記代表点の位置を補正する代表点補正手段(例えば、実施形態における代表点補正手段26)と、を備え、前記代表点算出手段は、前記線分認識手段により前記線分が2つ認識された場合には該線分の交点として算出される前記物体の端点(例えば、実施形態における端点84)を、前記線分が1つ認識された場合には該線分の重心点(例えば、実施形態における重心点74)を前記代表点として算出し、前記代表点補正手段は、前記相対距離が所定距離(例えば、実施形態における所定距離d)以上の場合に、前記代表点を前記端点から前記重心点に補正することを特徴とする。   In order to solve the above-mentioned problem, the invention according to claim 1 transmits an electromagnetic wave to a predetermined range around the host vehicle (for example, the host vehicle 5 in the embodiment), and an object (e.g., an object existing around the host vehicle). Transmission / reception means (for example, the radar 12 in the embodiment) that receives reflected waves from the forward vehicles 70 and 80 in the embodiment, and reflection point calculation means (for example, the position of the reflection point of the electromagnetic wave on the object) Reflection point calculation means 14) in the embodiment, representative point calculation means (for example, representative point calculation means 18 in the embodiment) for calculating the position of a representative point representing the position of the object based on the reflection point, and the representative Relative relationship calculating means for calculating a relative relationship consisting of a relative position and a relative distance between the host vehicle and the object based on a point (for example, relative relationship calculation in the embodiment) Means 20) and relative speed calculation means (for example, relative speed calculation means 21 in the embodiment) for calculating a relative speed between the host vehicle and the object based on the relative position. (For example, the vehicle object detection device 10 in the embodiment), and line segment recognition means for recognizing a line segment constituting the contour of the object based on the arrangement of the reflection points (for example, line segment recognition in the embodiment) Means 16) and representative point correcting means (for example, representative point correcting means 26 in the embodiment) for correcting the position of the representative point based on the relative distance, and the representative point calculating means includes the line segment. When two line segments are recognized by the recognition means, the end point of the object (for example, the end point 84 in the embodiment) calculated as the intersection of the line segments is recognized when one line segment is recognized. A centroid point of the line segment (for example, the centroid point 74 in the embodiment) is calculated as the representative point, and the representative point correction unit is configured such that the relative distance is equal to or greater than a predetermined distance (for example, the predetermined distance d in the embodiment). Further, the representative point is corrected from the end point to the barycentric point.

請求項2に係る発明は、前記反射点に基づいて前記自車両の幅方向における前記物体の幅を算出する幅算出手段(例えば、実施形態における幅算出手段22)と、時系列で算出した前記物体の幅を比較し、前記物体の幅が減少している場合に、前記物体の一部が前記所定範囲外に逸脱したと判断する逸脱判断手段(例えば、実施形態における逸脱判断手段24)と、を備え、前記代表点補正手段は、前記相対速度が自車両に向かう方向であり、且つ前記逸脱判断手段により前記物体の一部が前記所定範囲外に逸脱したと判断された場合に、前記代表点を前記重心点から前記端点に補正することを特徴とする。   According to a second aspect of the present invention, there is provided width calculation means (for example, width calculation means 22 in the embodiment) for calculating the width of the object in the width direction of the host vehicle based on the reflection point, and the time calculation in the time series. Deviation judging means (for example, deviation judging means 24 in the embodiment) that compares the width of the object and judges that a part of the object has deviated out of the predetermined range when the width of the object has decreased. And the representative point correcting means is the direction in which the relative speed is toward the host vehicle, and the deviation determining means determines that a part of the object has deviated from the predetermined range. The representative point is corrected from the barycentric point to the end point.

請求項3に係る発明は、前記相対速度算出手段は、前回の前記相対位置の算出時から今回の前記相対位置の算出時にかけて前記代表点が前記重心点および前記端点の一方から他方に変更された場合に、前記自車両の幅方向における前記相対速度の算出を行わないことを特徴とする。   According to a third aspect of the present invention, the relative speed calculating means is configured to change the representative point from one of the center of gravity point and the end point to the other from the previous calculation of the relative position to the current calculation of the relative position. In this case, the relative speed in the width direction of the host vehicle is not calculated.

請求項4に係る発明は、前記反射点に基づいて前記自車両の幅方向における前記物体の幅を算出する幅算出手段を備え、前記相対速度算出手段は、前回の前記相対位置の算出時から今回の前記相対位置の算出時にかけて前記代表点が前記重心点および前記端点の一方から他方に変更された場合に、前記幅算出手段により算出された前記物体の幅に基づいて前回算出した前記相対位置を補正しつつ、前記自車両の幅方向における前記相対速度を算出することを特徴とする。   According to a fourth aspect of the present invention, there is provided width calculation means for calculating the width of the object in the width direction of the host vehicle based on the reflection point, and the relative speed calculation means is determined from the previous calculation of the relative position. When the representative point is changed from one of the centroid point and the end point to the other during the calculation of the relative position this time, the relative position previously calculated based on the width of the object calculated by the width calculation unit The relative speed in the width direction of the host vehicle is calculated while correcting the position.

請求項1に係る発明によれば、物体が送受信手段の斜め前方に存在する場合に、手前面および自車両側の側面に沿った線分が2つ認識されるので、物体の自車両側の端点が代表点として算出される。そのため、物体の反対側の端点近傍が自車両周辺の所定範囲外に逸脱した場合でも、代表点を設定し直す必要がなく、また所定範囲外に逸脱した物体の一部を補間して代表点を算出し直す必要もない。したがって、物体の相対位置および相対速度を精度良く算出することができる。
また、物体との相対距離が所定距離以上の場合に代表点を端点から重心点に補正する構成としたので、物体が遠方にあるため反射点の個数が少なく位置精度が低い場合でも、平均化処理して求めた重心点を代表点とすることが可能になり、代表点の位置精度を確保することができる。したがって、物体の相対位置および相対速度を精度良く算出することができる。
According to the first aspect of the present invention, when the object is present obliquely forward of the transmission / reception means, two line segments are recognized along the front side of the hand and the side surface on the own vehicle side. An end point is calculated as a representative point. Therefore, even when the vicinity of the end point on the opposite side of the object deviates outside the predetermined range around the host vehicle, there is no need to reset the representative point, and a part of the object deviating outside the predetermined range is interpolated. There is no need to recalculate. Therefore, the relative position and relative speed of the object can be calculated with high accuracy.
In addition, since the representative point is corrected from the end point to the center of gravity when the relative distance to the object is greater than or equal to the predetermined distance, averaging is performed even when the position accuracy is low because the object is far away and the number of reflection points is small. The center of gravity obtained by processing can be used as the representative point, and the position accuracy of the representative point can be ensured. Therefore, the relative position and relative speed of the object can be calculated with high accuracy.

請求項2に係る発明によれば、物体の一部が所定範囲内から範囲外に逸脱した場合でも、代表点を重心点から端点に設定し直すことにより、前方車両の追跡を継続することができる。   According to the invention of claim 2, even when a part of an object deviates from the predetermined range to the outside of the range, the tracking of the forward vehicle can be continued by resetting the representative point from the center of gravity to the end point. it can.

なお、前回の相対位置の算出時から今回の相対位置の算出時にかけて代表点が重心点および端点の一方から他方に変更された場合には、実態とは異なり幅方向の相対速度が算出されることになる。
これに対して、請求項3に係る発明によれば、その場合に自車両の幅方向における相対速度の算出を行わないので、算出された相対位置および相対速度の信頼性を向上させることができる。
Note that when the representative point is changed from one of the center of gravity and the end point to the other from the time of the previous calculation of the relative position to the time of the calculation of the current relative position, the relative speed in the width direction is calculated unlike the actual situation. It will be.
On the other hand, according to the invention according to claim 3, since the relative speed in the width direction of the host vehicle is not calculated in that case, the reliability of the calculated relative position and relative speed can be improved. .

なお、代表点が重心点および端点の一方から他方に変更された場合には、代表点の位置が物体の幅の半分程度ずれることになる。
請求項4に係る発明によれば、物体の幅に基づいて前回算出した相対位置を補正しつつ、自車両の幅方向における相対速度を算出するので、物体の相対位置および相対速度を精度よく算出することができる。
When the representative point is changed from one of the center of gravity point and the end point to the other, the position of the representative point is shifted by about half of the width of the object.
According to the fourth aspect of the invention, the relative position in the width direction of the host vehicle is calculated while correcting the relative position calculated last time based on the width of the object, so that the relative position and the relative speed of the object are accurately calculated. can do.

以下、本発明の実施形態につき図面を参照して説明する。
(車両用物体検知装置)
図1は、本実施形態に係る車両用物体検知装置のブロック図である。本実施形態に係る車両用物体検知装置10は、車両5に搭載されたものであって、電磁波を送受信するレーダ12と、電磁波の反射点算出手段14と、複数の反射点から前方車両の代表点を算出する代表点算出手段18と、代表点に基づいて自車両5と前方車両との相対関係を算出する相対関係算出手段20および相対速度を算出する相対速度算出手段21とを備えている。なお、レーダ12以外の反射点算出手段14や代表点算出手段18、相対関係算出手段20、相対速度算出手段21等は、車両5に搭載されたコンピュータ8に構築されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Vehicle object detection device)
FIG. 1 is a block diagram of the vehicle object detection device according to the present embodiment. The vehicle object detection device 10 according to the present embodiment is mounted on a vehicle 5, and is a representative of a preceding vehicle from a radar 12 that transmits and receives electromagnetic waves, an electromagnetic wave reflection point calculation means 14, and a plurality of reflection points. Representative point calculating means 18 for calculating points, relative relationship calculating means 20 for calculating the relative relationship between the host vehicle 5 and the preceding vehicle based on the representative points, and relative speed calculating means 21 for calculating the relative speed. . The reflection point calculation means 14, the representative point calculation means 18, the relative relationship calculation means 20, the relative speed calculation means 21, etc. other than the radar 12 are constructed in the computer 8 mounted on the vehicle 5.

車両5の前部には、レーザレーダやミリ波レーダ等のレーダ12が搭載されている。レーダ12は、電磁波を送信する送信部および反射波を受信する受信部を備えている。送信部は、前方に向かって電磁波を送信しつつ、所定の角度範囲13を走査しうるようになっている。受信部は、送信部から送信され前方車両で反射された反射波を受信するようになっている。   A radar 12 such as a laser radar or a millimeter wave radar is mounted on the front of the vehicle 5. The radar 12 includes a transmission unit that transmits electromagnetic waves and a reception unit that receives reflected waves. The transmission unit can scan the predetermined angle range 13 while transmitting electromagnetic waves forward. The receiving unit receives the reflected wave transmitted from the transmitting unit and reflected by the vehicle ahead.

また、レーダ12によって送信された電磁波が前方車両で反射する点を算出する反射点算出手段14が設けられている。一般に自車両に対する反射波の入射方向から、反射点が存在する方向を検知することができる。また電磁波の伝播速度は一定であるから、送受信に要した時間により反射点までの距離を算出することができる。そして、自車両に対する反射点の方向および距離に基づいて、自車両に対する反射点の相対位置(座標)を算出することができる。   Further, there is provided a reflection point calculation means 14 for calculating a point at which the electromagnetic wave transmitted by the radar 12 is reflected by the vehicle ahead. In general, the direction in which the reflection point exists can be detected from the incident direction of the reflected wave to the host vehicle. Since the propagation speed of the electromagnetic wave is constant, the distance to the reflection point can be calculated from the time required for transmission / reception. Then, based on the direction and distance of the reflection point with respect to the host vehicle, the relative position (coordinates) of the reflection point with respect to the host vehicle can be calculated.

また、前方車両の位置を表す代表点の位置を算出する代表点算出手段18が設けられている。代表点算出手段18は、原則として以下の方法で代表点を算出する。
図2は、原則的な代表点算出方法の説明図である。前方車両70が自車両5の正面に存在する場合には、自車両5から照射された電磁波は、前方車両70の手前面のみで反射される。そのため、前方車両70の手前面のみに複数の反射点72が検出される。この場合には、複数の反射点72の重心点74を、前方車両70の代表点として算出する。なお前方車両が自車両と同方向に進行する先行車両である場合には、その手前面は背面であり、前方車両が自車両と逆方向に進行する対向車両である場合には、その手前面は前面である。
Further, representative point calculation means 18 for calculating the position of the representative point representing the position of the preceding vehicle is provided. The representative point calculation means 18 calculates a representative point by the following method in principle.
FIG. 2 is an explanatory diagram of a principle representative point calculation method. When the front vehicle 70 is present in front of the host vehicle 5, the electromagnetic waves emitted from the host vehicle 5 are reflected only on the front surface of the front vehicle 70. Therefore, a plurality of reflection points 72 are detected only on the front surface of the front vehicle 70. In this case, the barycentric points 74 of the plurality of reflection points 72 are calculated as representative points of the forward vehicle 70. When the preceding vehicle is a preceding vehicle that travels in the same direction as the host vehicle, the front side of the hand is the rear side. When the preceding vehicle is an oncoming vehicle that travels in the opposite direction to the host vehicle, the front side of the hand Is the front.

一方、前方車両80が自車両5の斜め前方に存在する場合には、自車両5から照射された電磁波は、前方車両80の手前面に加えて、自車両5側の側面でも反射する。そのため、手前面に複数の反射点82が検出されるとともに、側面にも複数の反射点83が検出される。この場合には、複数の反射点82から手前面の輪郭を構成する線分を求めるとともに、複数の反射点83から側面の輪郭を構成する線分を求める。そして、手前面の輪郭線と側面の輪郭線との交点(すなわち、前方車両の自車両側の角部端点)を、前方車両の代表点として算出する。
なお代表点算出手段18は、算出した代表点の種類(重心点または端点)をメモリ28に記録する。
On the other hand, when the front vehicle 80 exists diagonally forward of the host vehicle 5, the electromagnetic waves emitted from the host vehicle 5 are reflected on the side surface of the host vehicle 5 in addition to the front surface of the front vehicle 80. Therefore, a plurality of reflection points 82 are detected on the front surface of the hand, and a plurality of reflection points 83 are also detected on the side surface. In this case, a line segment constituting the contour of the front surface of the hand is obtained from the plurality of reflection points 82, and a line segment constituting the outline of the side surface is obtained from the plurality of reflection points 83. Then, an intersection point between the contour line on the front side of the hand and the contour line on the side surface (that is, the corner end point on the own vehicle side of the forward vehicle) is calculated as a representative point of the forward vehicle.
The representative point calculating means 18 records the calculated representative point type (centroid point or end point) in the memory 28.

なお、手前面の輪郭線および側面の輪郭線を求めるため、図1に示すように線分認識手段16が設けられている。線分認識手段16は、反射点の配列に基づいて前方車両の輪郭を構成する線分を認識するものである。各輪郭線の算出には、最小二乗法等を利用ことができる。   In addition, in order to obtain | require the outline of a hand front, and the outline of a side, as shown in FIG. 1, the line segment recognition means 16 is provided. The line segment recognition means 16 is for recognizing a line segment constituting the contour of the preceding vehicle based on the arrangement of the reflection points. For calculation of each contour line, a least square method or the like can be used.

一方、自車両5と前方車両との相対位置および相対距離からなる相対関係を算出する相対関係算出手段20が設けられている。上述した代表点算出手段18では、自車両に対する前方車両の代表点の相対座標が算出される。相対関係算出手段20では、この相対座標に基づいて、自車両5と前方車両との相対位置および相対距離を算出するようになっている。算出した相対位置は、時間情報とともにメモリ28に記録される。   On the other hand, a relative relationship calculating means 20 is provided for calculating a relative relationship consisting of a relative position and a relative distance between the host vehicle 5 and the preceding vehicle. The representative point calculation means 18 described above calculates the relative coordinates of the representative point of the preceding vehicle with respect to the host vehicle. The relative relationship calculation means 20 calculates a relative position and a relative distance between the host vehicle 5 and the preceding vehicle based on the relative coordinates. The calculated relative position is recorded in the memory 28 together with time information.

また、自車両と先行車両との相対速度を算出する相対速度算出手段21が設けられている。相対速度算出手段21は、相対関係算出手段20から現在の相対位置を受信するとともに、メモリ28に記録された前回の相対位置を読み出す。そして、単位時間あたりの相対位置の差を求めることにより、自車両5と先行車両との相対速度を算出する。なお相対速度は、水平2方向(自車両の前後方向および幅方向)のそれぞれについて算出する。   Further, a relative speed calculation means 21 for calculating the relative speed between the host vehicle and the preceding vehicle is provided. The relative speed calculation unit 21 receives the current relative position from the relative relationship calculation unit 20 and reads the previous relative position recorded in the memory 28. And the relative speed of the own vehicle 5 and a preceding vehicle is calculated by calculating | requiring the difference of the relative position per unit time. The relative speed is calculated for each of two horizontal directions (the front-rear direction and the width direction of the host vehicle).

(代表点補正手段)
本実施形態に係る車両用物体検知装置10は、相対関係算出手段20により算出された相対距離に基づいて、代表点算出手段18により算出された代表点を補正する代表点補正手段26を備えている。
図3は、代表点補正方法の説明図である。自車両5の斜め前方に存在する前方車両87は、手前面および側面に複数の反射点が検出されるため、代表点算出手段18は代表点を端点87aに設定する。自車両5の斜め前方に存在する前方車両86についても、同様に代表点を端点に設定する。これに対して代表点補正手段は、前方車両86と自車両5との相対距離が所定距離d以上である前方車両86について、代表点を端点から手前面の重心点86aに補正する処理を行う。
(Representative point correction means)
The vehicle object detection device 10 according to the present embodiment includes a representative point correction unit 26 that corrects the representative point calculated by the representative point calculation unit 18 based on the relative distance calculated by the relative relationship calculation unit 20. Yes.
FIG. 3 is an explanatory diagram of a representative point correction method. Since the front vehicle 87 existing diagonally forward of the host vehicle 5 has a plurality of reflection points detected on the front and side surfaces of the hand, the representative point calculation means 18 sets the representative point as the end point 87a. For the forward vehicle 86 existing obliquely forward of the host vehicle 5, the representative point is similarly set as the end point. On the other hand, the representative point correction means performs a process of correcting the representative point from the end point to the center of gravity 86a on the front surface of the forward vehicle 86 in which the relative distance between the forward vehicle 86 and the host vehicle 5 is equal to or greater than the predetermined distance d. .

図1に戻り、自車両の幅方向における前方車両の幅を算出する幅算出手段22が設けられている。幅算出手段22は、反射点算出手段14により検出された前方車両の複数の反射点のうち、自車両の幅方向と略平行な(手前面の)反射点群を抽出する。そして、その両端部に位置する反射点間の距離を、前方車両の幅として算出する。なお図2に示すように、前方車両90の手前面の一部がレーダ走査範囲13外に逸脱した場合でも、手前面の残部の反射点のうち両端部の反射点間の距離を前方車両90の幅とすればよい。算出した前方車両の幅は、時間情報とともにメモリ28に記録する。   Returning to FIG. 1, width calculation means 22 for calculating the width of the preceding vehicle in the width direction of the host vehicle is provided. The width calculation unit 22 extracts a reflection point group (in front of the hand) that is substantially parallel to the width direction of the host vehicle from the plurality of reflection points of the preceding vehicle detected by the reflection point calculation unit 14. And the distance between the reflective points located in the both ends is calculated as the width of the preceding vehicle. As shown in FIG. 2, even when a part of the front surface of the front vehicle 90 deviates outside the radar scanning range 13, the distance between the reflection points at both ends of the remaining reflection points on the front surface of the front vehicle 90 is determined. The width should be The calculated width of the preceding vehicle is recorded in the memory 28 together with the time information.

図1に戻り、前方車両の一部がレーダの走査範囲外に逸脱したことを判断する逸脱判断手段24が設けられている。図3において、前方車両95は手前面の全部がレーダ走査範囲13の内側に存在しているので、手前面の全体から反射点が検出される。これに対して、前方車両96は手前面の一部がレーダ走査範囲13の外側に逸脱しているので、手前面の残部のみから反射点が検出される。そのため、前方車両95が前方車両96の位置まで移動すると、両端部の反射点間の距離が小さくなり、幅算出手段22によって算出される前方車両の幅が減少することになる。そこで、図1に示す逸脱判断手段24は、幅算出手段22から今回算出した前方車両の幅を受信するとともに、メモリ28から前回算出した前方車両の幅を読み出す。そして、今回算出した前方車両の幅が前回より減少している場合には、前方車両の一部がレーダ走査範囲外に逸脱したと判断する。   Returning to FIG. 1, departure determination means 24 is provided for determining that a part of the preceding vehicle has deviated outside the scanning range of the radar. In FIG. 3, the front vehicle 95 has the entire front face inside the radar scanning range 13, so that the reflection point is detected from the entire front face. On the other hand, since a part of the front surface of the front vehicle 96 deviates outside the radar scanning range 13, the reflection point is detected only from the remaining portion of the front surface of the hand. Therefore, when the forward vehicle 95 moves to the position of the forward vehicle 96, the distance between the reflection points at both ends is reduced, and the width of the forward vehicle calculated by the width calculation means 22 is reduced. Therefore, the departure determination means 24 shown in FIG. 1 receives the width of the preceding vehicle calculated this time from the width calculation means 22 and reads the width of the preceding vehicle calculated last time from the memory 28. Then, when the width of the preceding vehicle calculated this time has decreased from the previous time, it is determined that a part of the preceding vehicle has deviated out of the radar scanning range.

ところで、図3に示す前方車両96のように、手前面の一部がレーダ走査範囲13の外側に逸脱している場合において、手前面の残部の反射点から重心点を算出すると、レーダ走査範囲13からの逸脱量によって重心点の位置が変動することになる。重心点の位置が幅方向にずれると、幅方向の相対速度が算出されることになる。その結果、前方車両が直進しているにもかかわらず、斜行していると誤認されることになる。   When the center of gravity is calculated from the remaining reflection points on the front of the hand when a part of the front of the hand deviates outside the radar scanning range 13 as in the forward vehicle 96 shown in FIG. The position of the barycentric point varies depending on the amount of deviation from 13. When the position of the center of gravity is shifted in the width direction, the relative speed in the width direction is calculated. As a result, it is mistaken that the vehicle ahead is skewed even though the vehicle ahead is traveling straight.

そこで、図1に示す代表点補正手段26は、自車両に接近する前方車両の一部がレーダ走査範囲外に逸脱した場合に、代表点を重心点から端点に補正する処理を行う。すなわち、相対速度算出手段21により算出された相対速度が自車に向かう方向であり、かつ逸脱判断手段24により前方車両の一部がレーダ走査範囲外に逸脱したと判断された場合に、前方車両の代表点を重心点から端点に補正する。具体的には、図3に示す前方車両95の代表点は重心点95aであるが、これが前方車両96の位置まで移動した場合に、代表点を端点96aに補正する。このように、前方車両の一部がレーダ走査範囲内から範囲外に逸脱した場合でも、代表点を重心点から端点に設定し直すことにより、前方車両の追跡を継続することができる。   Therefore, the representative point correcting means 26 shown in FIG. 1 performs processing for correcting the representative point from the center of gravity point to the end point when a part of the preceding vehicle approaching the host vehicle deviates from the radar scanning range. That is, when the relative speed calculated by the relative speed calculating means 21 is in the direction toward the host vehicle and the departure determining means 24 determines that a part of the preceding vehicle has deviated outside the radar scanning range, the preceding vehicle The representative point is corrected from the center of gravity to the end point. Specifically, the representative point of the forward vehicle 95 shown in FIG. 3 is the center of gravity point 95a, but when this moves to the position of the forward vehicle 96, the representative point is corrected to the end point 96a. As described above, even when a part of the preceding vehicle deviates from the radar scanning range to the outside, the tracking of the preceding vehicle can be continued by resetting the representative point from the center of gravity to the end point.

なお、前方車両95が前方車両96の位置まで移動してレーダ走査範囲外に逸脱した場合だけでなく、前方車両86が所定距離dを跨いで前方車両87の位置まで移動した場合にも、代表点が重心点から端点に変更されることになる。このように代表点が重心点および端点の一方から他方に変更された場合には、幅方向の相対速度が算出されることになり、前方車両が直進しているにもかかわらず、斜行していると誤認されることになる。   In addition, not only when the forward vehicle 95 moves to the position of the forward vehicle 96 and deviates outside the radar scanning range, but also when the forward vehicle 86 moves over the predetermined distance d to the position of the forward vehicle 87. The point is changed from the center of gravity to the end point. In this way, when the representative point is changed from one of the center of gravity point and the end point to the other, the relative speed in the width direction is calculated, and the vehicle is skewed even though the preceding vehicle is traveling straight ahead. It will be mistaken for.

そこで、図1に示す相対速度算出手段21は、代表点が重心点および端点の一方から他方に変更された場合に、幅方向の相対速度の算出を行わないようになっている。具体的には、相対速度算出手段21は、代表点算出手段から今回の代表点の種類(重心点または端点)を受信するとともに、メモリ28から前回の代表点の種類を読み出す。そして、今回の代表点の種類が前回と異なっている場合には、幅方向の相対速度の算出を行わない。この場合でも、自車両の前後方向における相対速度の算出は行うようにする。これにより、算出された相対位置および相対速度の信頼性を向上させることができる。   Therefore, the relative speed calculation means 21 shown in FIG. 1 does not calculate the relative speed in the width direction when the representative point is changed from one of the center of gravity and the end point to the other. Specifically, the relative speed calculation means 21 receives the current representative point type (centroid or end point) from the representative point calculation means and reads the previous representative point type from the memory 28. Then, when the type of the representative point this time is different from the previous time, the relative speed in the width direction is not calculated. Even in this case, the relative speed in the longitudinal direction of the host vehicle is calculated. Thereby, the reliability of the calculated relative position and relative speed can be improved.

なお代表点が変更された場合に、幅方向の相対速度を補正するようにしてもよい。代表点が重心点および端点の一方から他方に変更された場合には、代表点の位置が前方車両の幅の半分程度ずれることになる。そこで、前回の前方車両の相対位置を前方車両の幅の半分程度ずらしつつ、相対速度を算出することが望ましい。これにより、前方車両の相対位置および相対速度を精度よく算出することができる。   When the representative point is changed, the relative speed in the width direction may be corrected. When the representative point is changed from one of the center of gravity point and the end point to the other, the position of the representative point is shifted by about half of the width of the preceding vehicle. Therefore, it is desirable to calculate the relative speed while shifting the relative position of the preceding vehicle ahead by about half of the width of the preceding vehicle. Thereby, the relative position and relative speed of the vehicle ahead can be calculated with high accuracy.

そして、本実施形態に係る車両用物体検知装置10は、車間制御手段32や衝突回避手段34に接続されている。車間制御手段32は、前方車両と所定の車間距離を維持するように自車両の車速を制御するものである。具体的には、上記により算出された相対関係や相対速度等に基づいて、自車両のアクセル開度の上限を調整するようになっている。一方の衝突回避手段34は、上記により算出された相対距離や相対速度等に基づいて、前方車両との接触可能性を判断する。そして、ドライバに警報や回避操作を促したり、自動でブレーキを作動させたりするようになっている。   The vehicle object detection device 10 according to the present embodiment is connected to the inter-vehicle distance control means 32 and the collision avoidance means 34. The inter-vehicle distance control means 32 controls the vehicle speed of the host vehicle so as to maintain a predetermined inter-vehicle distance from the preceding vehicle. Specifically, the upper limit of the accelerator opening of the host vehicle is adjusted based on the relative relationship and the relative speed calculated as described above. One collision avoidance unit 34 determines the possibility of contact with the preceding vehicle based on the relative distance, the relative speed, and the like calculated as described above. Then, the driver is prompted to perform an alarm or avoidance operation, or the brake is automatically activated.

(車両用物体検知方法)
次に、本実施形態に係る車両用物体検知方法について説明する。
図4は、本実施形態に係る車両用物体検知方法のフローチャートである。まずS10において、レーダ12により、自車両周辺の所定範囲に電磁波を送信するとともに、前方車両からの反射波を受信する。次にS12において、反射点算出手段14により、前方車両における電磁波の反射点の位置を算出する。すなわち、図2に示すように、自車両5の正面に存在する前方車両70の場合には、手前面の反射点72の位置を算出する。一方、自車両5の斜め前方に存在する車両80の場合には、手前面の反射点82に加えて側面の反射点83の位置を算出する。
(Vehicle object detection method)
Next, the vehicle object detection method according to the present embodiment will be described.
FIG. 4 is a flowchart of the vehicle object detection method according to the present embodiment. First, in S10, the radar 12 transmits an electromagnetic wave to a predetermined range around the host vehicle and receives a reflected wave from a preceding vehicle. Next, in S12, the reflection point calculation means 14 calculates the position of the reflection point of the electromagnetic wave in the vehicle ahead. That is, as shown in FIG. 2, in the case of a forward vehicle 70 existing in front of the host vehicle 5, the position of the reflection point 72 on the front side of the hand is calculated. On the other hand, in the case of the vehicle 80 existing obliquely forward of the host vehicle 5, the position of the side reflection point 83 is calculated in addition to the reflection point 82 on the front surface of the hand.

次にS30において、代表点算出手段18により、前方車両の位置を表す代表点の位置を算出する。
図5は、代表点算出サブルーチンのフローチャートである。まずS32において、線分認識手段16により、反射点の配列から前方車両の輪郭を構成する線分を認識する。次にS34において、代表点算出手段18により、認識された線分が1つであるか判断する。判断がYes(線分が1つ)の場合にはS36に進み、代表点を重心点に設定する。一方、判断がNo(線分が2つ)の場合にはS38に進み、代表点を端点に設定する。すなわち、図2に示す前方車両70の場合には、手前面に1つの線分のみが認識されるので、代表点を重心点74に設定する。一方、前方車両80の場合には、手前面および側面に2つの線分が認識されるので、代表点を両者の交点である端点84に設定する。
Next, in S30, the representative point calculation means 18 calculates the position of the representative point representing the position of the preceding vehicle.
FIG. 5 is a flowchart of a representative point calculation subroutine. First, in S32, the line segment recognition means 16 recognizes the line segment that forms the contour of the preceding vehicle from the array of reflection points. Next, in S34, the representative point calculation means 18 determines whether there is one recognized line segment. If the determination is Yes (one line segment), the process proceeds to S36, and the representative point is set as the barycentric point. On the other hand, if the determination is No (two line segments), the process proceeds to S38, and the representative point is set as an end point. In other words, in the case of the forward vehicle 70 shown in FIG. 2, only one line segment is recognized on the front surface of the hand, so the representative point is set to the center of gravity point 74. On the other hand, in the case of the forward vehicle 80, since two line segments are recognized on the front and side surfaces of the hand, the representative point is set to the end point 84 that is the intersection of the two.

図4に戻り、S14において、相対関係算出手段20により、自車両と前方車両との相対位置および相対距離からなる相対関係を算出する。次にS16において、幅算出手段22により、自車両の幅方向における前方車両の幅を算出する。   Returning to FIG. 4, in S <b> 14, the relative relationship calculation means 20 calculates a relative relationship including the relative position and the relative distance between the host vehicle and the preceding vehicle. Next, in S16, the width calculation means 22 calculates the width of the preceding vehicle in the width direction of the host vehicle.

次に、前方車両の相対距離が所定距離d以上の場合に、代表点を端点から重心点に補正する処理を行う。具体的には、まずS18において、代表点が重心点であるか判断する。判断がNo(代表点が端点)の場合にはS20に進み、自車両と前方車両との相対距離が所定距離d以上であるか判断する。判断がYes(相対距離がd以上)の場合には、代表点補正手段26により、代表点を端点から重心点に補正する。なお、S18の判断がYes(代表点が重心点)の場合、およびS20の判断がNo(相対距離がd未満)の場合には、代表点の補正を行わない。   Next, when the relative distance of the preceding vehicle is greater than or equal to the predetermined distance d, a process of correcting the representative point from the end point to the center of gravity is performed. Specifically, first, in S18, it is determined whether the representative point is a barycentric point. If the determination is No (representative point is an end point), the process proceeds to S20, and it is determined whether the relative distance between the host vehicle and the preceding vehicle is a predetermined distance d or more. If the determination is Yes (relative distance is d or more), the representative point correction unit 26 corrects the representative point from the end point to the center of gravity. If the determination in S18 is Yes (the representative point is the center of gravity), and the determination in S20 is No (relative distance is less than d), the representative point is not corrected.

次に、前方車両の相対速度が自車に向かう方向であり且つ前方車両がレーダ走査範囲外に逸脱した場合に、代表点を重心点から端点に補正する処理を行う。具体的には、まずS24において、前回検知した前方車両の幅データがメモリ28に記録されているか判断する。判断がNo(初回検知)の場合にはS26に進み、S14で算出した前方車両との相対関係およびS16で算出した前方車両の幅をメモリ28に記録する。S24の判断がYes(2回目以降の検知)の場合にはS40に進み、逸脱判断手段24により逸脱判断を行う。   Next, when the relative speed of the preceding vehicle is in the direction toward the host vehicle and the preceding vehicle deviates outside the radar scanning range, processing for correcting the representative point from the center of gravity point to the end point is performed. Specifically, first, in S24, it is determined whether or not the width data of the preceding vehicle detected last time is recorded in the memory 28. If the determination is No (initial detection), the process proceeds to S26, and the relative relationship with the preceding vehicle calculated in S14 and the width of the preceding vehicle calculated in S16 are recorded in the memory 28. If the determination in S24 is Yes (second and subsequent detections), the process proceeds to S40, and the departure determination unit 24 performs departure determination.

図6は、逸脱判断サブルーチンのフローチャートである。まずS42において、前回検知した前方車両の幅をメモリ28から読み出す。次にS44において、前回検知した前方車両の幅と、S16において今回検知した幅とを比較して、前方車両の幅が減少したか判断する。判断がNoの場合には代表点の補正を行わない。判断がYesの場合には、前方車両の相対速度が自車に向かう方向であり且つ前方車両がレーダ走査範囲外に逸脱した場合であるから、代表点を重心点から端点に補正する。なお、S30において代表点が既に端点に設定されている場合には、代表点の補正を行わなくてもよい。   FIG. 6 is a flowchart of the departure determination subroutine. First, in S42, the width of the preceding vehicle detected last time is read from the memory 28. Next, in S44, the width of the preceding vehicle detected last time is compared with the width detected in S16 this time to determine whether the width of the preceding vehicle has decreased. When the determination is No, the representative point is not corrected. If the determination is Yes, since the relative speed of the preceding vehicle is in the direction toward the host vehicle and the preceding vehicle has deviated outside the radar scanning range, the representative point is corrected from the center of gravity to the end point. If the representative point is already set as an end point in S30, the representative point need not be corrected.

図4に戻り、S28において、相対速度算出手段21により、自車両と前方車両との相対速度を算出する。具体的には、まず前回検知した前方車両と今回検知した前方車両との同一性判断(トラッキング処理)を行う。同一であると判断した場合には、前回算出した前方車両との相対位置と、S14において今回算出した相対位置とを用いて、相対速度を算出する。なお、前回算出時から今回算出時にかけて代表点が重心点および端点の一方から他方に変更された場合には、上述したように幅方向の相対速度の算出を行わないようにする。なお、前回算出した前方車両の相対位置を前方車両の幅の半分程度ずらしつつ、相対速度を算出してもよい。   Returning to FIG. 4, in S28, the relative speed calculation means 21 calculates the relative speed between the host vehicle and the preceding vehicle. Specifically, first, the identity determination (tracking process) between the preceding vehicle detected last time and the preceding vehicle detected this time is performed. When it is determined that they are the same, the relative speed is calculated using the relative position with the preceding vehicle calculated last time and the relative position calculated this time in S14. If the representative point is changed from one of the center of gravity and the end point to the other from the previous calculation to the current calculation, the relative speed in the width direction is not calculated as described above. The relative speed may be calculated while shifting the relative position of the preceding vehicle calculated last time by about half the width of the preceding vehicle.

以上に詳述したように、本実施形態に係る車両用物体検知装置は、前方車両の反射点の配列に基づいて線分が2つ認識された場合には該線分の交点として算出される前方車両の端点を、線分が1つ認識された場合には該線分の重心点を代表点として算出し、前方車両の相対距離が所定距離以上の場合には、代表点を端点から重心点に補正する構成とした。
この構成によれば、前方車両が自車両の斜め前方に存在する場合には、手前面および自車両側の側面に沿った線分が2つ認識されるので、前方車両の自車両側の端点が代表点として算出される。そのため、前方車両の反対側の端点近傍がレーダ走査範囲外に逸脱した場合でも、代表点を設定し直す必要がなく、またレーダ走査範囲外に逸脱した前方車両の一部を補間して代表点を算出し直す必要もない。したがって、前方車両の相対位置および相対速度を精度良く算出することができる。
また、前方車両の相対距離が所定距離以上の場合に代表点を端点から重心点に補正する構成としたので、前方車両が遠方にあるため反射点の個数が少なく位置精度が低い場合でも、平均化処理して求めた重心点を代表点とすることが可能になり、代表点の位置精度を確保することができる。したがって、前方車両の相対位置および相対速度を精度良く算出することができる。
As described above in detail, the vehicle object detection device according to the present embodiment is calculated as the intersection of line segments when two line segments are recognized based on the arrangement of the reflection points of the preceding vehicle. If one line segment is recognized as the end point of the preceding vehicle, the center point of the line segment is calculated as a representative point. If the relative distance of the front vehicle is greater than or equal to a predetermined distance, the representative point is calculated from the end point. It was set as the structure corrected to a point.
According to this configuration, when the forward vehicle is present obliquely in front of the host vehicle, two line segments along the front side of the hand and the side surface on the host vehicle side are recognized. Are calculated as representative points. Therefore, even if the vicinity of the end point on the opposite side of the preceding vehicle deviates outside the radar scanning range, there is no need to reset the representative point, and a part of the preceding vehicle that deviates outside the radar scanning range is interpolated to represent the representative point. There is no need to recalculate. Therefore, the relative position and relative speed of the preceding vehicle can be calculated with high accuracy.
In addition, since the representative point is corrected from the end point to the center of gravity when the relative distance of the front vehicle is equal to or greater than the predetermined distance, even if the front vehicle is far away, the number of reflection points is small and the position accuracy is low. It becomes possible to use the center of gravity obtained by the conversion processing as a representative point, and to ensure the position accuracy of the representative point. Therefore, the relative position and relative speed of the preceding vehicle can be calculated with high accuracy.

実施形態に係る車両用物体検知装置のブロック図である。It is a block diagram of the object detection device for vehicles concerning an embodiment. 代表点算出方法の説明図である。It is explanatory drawing of a representative point calculation method. 代表点補正方法の説明図である。It is explanatory drawing of a representative point correction method. 実施形態に係る車両用物体検知方法のフローチャートである。It is a flowchart of the object detection method for vehicles concerning an embodiment. 代表点算出サブルーチンのフローチャートである。It is a flowchart of a representative point calculation subroutine. 逸脱判断サブルーチンのフローチャートである。It is a flowchart of a departure judgment subroutine. 従来技術に係る物体検知方法の説明図である。It is explanatory drawing of the object detection method which concerns on a prior art.

符号の説明Explanation of symbols

d…所定距離 5…自車両 10…車両用物体検知装置 12…レーダ(送受信手段) 13…レーダ走査範囲(所定範囲) 14…反射点算出手段 16…線分認識手段 18…代表点算出手段 20…相対関係算出手段 21…相対速度算出手段 22…幅算出手段 24…逸脱判断手段 26…代表点補正手段 77,86,87…前方車両(物体) 77a,86a…重心点 87a…端点   d ... Predetermined distance 5 ... Own vehicle 10 ... Vehicle object detection device 12 ... Radar (transmission / reception means) 13 ... Radar scanning range (predetermined range) 14 ... Reflection point calculation means 16 ... Line segment recognition means 18 ... Representative point calculation means 20 ... Relative relation calculating means 21 ... Relative speed calculating means 22 ... Width calculating means 24 ... Deviation judging means 26 ... Representative point correcting means 77, 86, 87 ... Forward vehicles (objects) 77a, 86a ... Center of gravity 87a ... End points

Claims (4)

自車両周辺の所定範囲に電磁波を送信するとともに、前記自車両周辺に存在する物体からの反射波を受信する送受信手段と、
前記物体上における前記電磁波の反射点の位置を算出する反射点算出手段と、
前記反射点に基づいて前記物体の位置を表す代表点の位置を算出する代表点算出手段と、
前記代表点に基づいて前記自車両と前記物体との相対位置および相対距離からなる相対関係を算出する相対関係算出手段と、
前記相対位置に基づいて前記自車両と前記物体との相対速度を算出する相対速度算出手段と、を備えた車両用物体検知装置であって、
前記反射点の配列に基づいて前記物体の輪郭を構成する線分を認識する線分認識手段と、
前記相対距離に基づいて前記代表点の位置を補正する代表点補正手段と、を備え、
前記代表点算出手段は、前記線分認識手段により前記線分が2つ認識された場合には該線分の交点として算出される前記物体の端点を、前記線分が1つ認識された場合には該線分の重心点を前記代表点として算出し、
前記代表点補正手段は、前記相対距離が所定距離以上の場合に、前記代表点を前記端点から前記重心点に補正することを特徴とする車両用物体検知装置。
Transmitting and receiving means for transmitting electromagnetic waves to a predetermined range around the host vehicle and receiving reflected waves from objects existing around the host vehicle;
Reflection point calculating means for calculating the position of the reflection point of the electromagnetic wave on the object;
Representative point calculation means for calculating the position of a representative point representing the position of the object based on the reflection point;
A relative relationship calculating means for calculating a relative relationship consisting of a relative position and a relative distance between the host vehicle and the object based on the representative point;
Relative speed calculation means for calculating a relative speed between the host vehicle and the object based on the relative position, a vehicle object detection device comprising:
Line segment recognition means for recognizing a line segment constituting the contour of the object based on the arrangement of the reflection points;
Representative point correction means for correcting the position of the representative point based on the relative distance,
The representative point calculating means, when the two line segments are recognized by the line segment recognizing means, when the end point of the object calculated as an intersection of the line segments is recognized as one line segment The center of gravity of the line segment is calculated as the representative point,
The vehicle object detection device, wherein the representative point correction means corrects the representative point from the end point to the barycentric point when the relative distance is a predetermined distance or more.
前記反射点に基づいて前記自車両の幅方向における前記物体の幅を算出する幅算出手段と、
時系列で算出した前記物体の幅を比較し、前記物体の幅が減少している場合に、前記物体の一部が前記所定範囲外に逸脱したと判断する逸脱判断手段と、を備え、
前記代表点補正手段は、前記相対速度が自車両に向かう方向であり、且つ前記逸脱判断手段により前記物体の一部が前記所定範囲外に逸脱したと判断された場合に、前記代表点を前記重心点から前記端点に補正することを特徴とする請求項1に記載の車両用物体検知装置。
Width calculating means for calculating the width of the object in the width direction of the host vehicle based on the reflection point;
Comparing the width of the object calculated in time series, and when the width of the object is reduced, a deviation determination means for determining that a part of the object has deviated outside the predetermined range,
The representative point correcting means determines the representative point when the relative speed is in a direction toward the host vehicle and the deviation determining means determines that a part of the object has deviated from the predetermined range. The vehicle object detection device according to claim 1, wherein a correction is made from the center of gravity to the end point.
前記相対速度算出手段は、前回の前記相対位置の算出時から今回の前記相対位置の算出時にかけて前記代表点が前記重心点および前記端点の一方から他方に変更された場合に、前記自車両の幅方向における前記相対速度の算出を行わないことを特徴とする請求項1または2に記載の車両用物体検知装置。   The relative speed calculation means is configured to change the representative speed of the host vehicle when the representative point is changed from one of the center of gravity point and the end point to the other during the calculation of the relative position from the previous calculation of the relative position. The vehicle object detection device according to claim 1, wherein the relative speed in the width direction is not calculated. 前記反射点に基づいて前記自車両の幅方向における前記物体の幅を算出する幅算出手段を備え、
前記相対速度算出手段は、前回の前記相対位置の算出時から今回の前記相対位置の算出時にかけて前記代表点が前記重心点および前記端点の一方から他方に変更された場合に、前記幅算出手段により算出された前記物体の幅に基づいて前回算出した前記相対位置を補正しつつ、前記自車両の幅方向における前記相対速度を算出することを特徴とする請求項1または2に記載の車両用物体検知装置。
Width calculating means for calculating the width of the object in the width direction of the host vehicle based on the reflection point;
The relative speed calculation means is configured to calculate the width calculation means when the representative point is changed from one of the center of gravity point and the end point to the other from the previous calculation of the relative position to the current calculation of the relative position. 3. The vehicle according to claim 1, wherein the relative speed in the width direction of the host vehicle is calculated while correcting the relative position calculated last time based on the width of the object calculated by the step. Object detection device.
JP2007176094A 2007-07-04 2007-07-04 Vehicle object detection device Expired - Fee Related JP4843571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007176094A JP4843571B2 (en) 2007-07-04 2007-07-04 Vehicle object detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007176094A JP4843571B2 (en) 2007-07-04 2007-07-04 Vehicle object detection device

Publications (2)

Publication Number Publication Date
JP2009014479A true JP2009014479A (en) 2009-01-22
JP4843571B2 JP4843571B2 (en) 2011-12-21

Family

ID=40355571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007176094A Expired - Fee Related JP4843571B2 (en) 2007-07-04 2007-07-04 Vehicle object detection device

Country Status (1)

Country Link
JP (1) JP4843571B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249690A (en) * 2009-04-16 2010-11-04 Honda Motor Co Ltd Object detecting device for vehicle
US8031107B2 (en) 2009-05-11 2011-10-04 Honda Motor Co., Ltd. Object detection device for vehicle and object detection method for vehicle
JP2011196943A (en) * 2010-03-23 2011-10-06 Denso Corp Recognition device
JP2012237579A (en) * 2011-05-10 2012-12-06 Honda Motor Co Ltd Object detection device for vehicle
JP2014089059A (en) * 2012-10-29 2014-05-15 Furuno Electric Co Ltd Echo signal processing apparatus, radar apparatus, echo signal processing method, and echo signal processing program
JP2015076003A (en) * 2013-10-10 2015-04-20 株式会社デンソー Preceding vehicle selection device
JP2016148514A (en) * 2015-02-10 2016-08-18 国立大学法人金沢大学 Mobile object tracking method and mobile object tracking device
JP2017096792A (en) * 2015-11-25 2017-06-01 株式会社デンソーウェーブ Traffic density measuring device
JP2018084546A (en) * 2016-11-25 2018-05-31 東日本旅客鉄道株式会社 Movable body speed detection system and wire fusion prevention system
JP2020085716A (en) * 2018-11-28 2020-06-04 日産自動車株式会社 Object recognition method and object recognition device
JP2020085713A (en) * 2018-11-28 2020-06-04 日産自動車株式会社 Object recognition method and object recognition device
WO2021106197A1 (en) * 2019-11-29 2021-06-03 三菱電機株式会社 Object recognition device and object recognition method
JPWO2021106196A1 (en) * 2019-11-29 2021-06-03

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000187071A (en) * 1998-12-21 2000-07-04 Honda Motor Co Ltd Radar apparatus
JP2000206241A (en) * 1999-01-13 2000-07-28 Honda Motor Co Ltd Radar apparatus
JP2004233275A (en) * 2003-01-31 2004-08-19 Denso Corp Vehicle-mounted radar apparatus
JP2006258545A (en) * 2005-03-16 2006-09-28 Honda Motor Co Ltd Preceding vehicle recognition apparatus
JP2008267826A (en) * 2007-04-16 2008-11-06 Toyota Motor Corp Object detection device
JP2008298543A (en) * 2007-05-30 2008-12-11 Toyota Motor Corp Object detection device and control device for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000187071A (en) * 1998-12-21 2000-07-04 Honda Motor Co Ltd Radar apparatus
JP2000206241A (en) * 1999-01-13 2000-07-28 Honda Motor Co Ltd Radar apparatus
JP2004233275A (en) * 2003-01-31 2004-08-19 Denso Corp Vehicle-mounted radar apparatus
JP2006258545A (en) * 2005-03-16 2006-09-28 Honda Motor Co Ltd Preceding vehicle recognition apparatus
JP2008267826A (en) * 2007-04-16 2008-11-06 Toyota Motor Corp Object detection device
JP2008298543A (en) * 2007-05-30 2008-12-11 Toyota Motor Corp Object detection device and control device for vehicle

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249690A (en) * 2009-04-16 2010-11-04 Honda Motor Co Ltd Object detecting device for vehicle
US8031107B2 (en) 2009-05-11 2011-10-04 Honda Motor Co., Ltd. Object detection device for vehicle and object detection method for vehicle
JP2011196943A (en) * 2010-03-23 2011-10-06 Denso Corp Recognition device
JP2012237579A (en) * 2011-05-10 2012-12-06 Honda Motor Co Ltd Object detection device for vehicle
JP2014089059A (en) * 2012-10-29 2014-05-15 Furuno Electric Co Ltd Echo signal processing apparatus, radar apparatus, echo signal processing method, and echo signal processing program
US9507016B2 (en) 2013-10-10 2016-11-29 Denso Corporation Preceding vehicle selection apparatus
KR20150042138A (en) * 2013-10-10 2015-04-20 가부시키가이샤 덴소 Preceding vehicle selection apparatus
CN104575101A (en) * 2013-10-10 2015-04-29 株式会社电装 Preceding vehicle selection apparatus
KR101651843B1 (en) * 2013-10-10 2016-08-30 가부시키가이샤 덴소 Preceding vehicle selection apparatus
JP2015076003A (en) * 2013-10-10 2015-04-20 株式会社デンソー Preceding vehicle selection device
JP2016148514A (en) * 2015-02-10 2016-08-18 国立大学法人金沢大学 Mobile object tracking method and mobile object tracking device
JP2017096792A (en) * 2015-11-25 2017-06-01 株式会社デンソーウェーブ Traffic density measuring device
JP2018084546A (en) * 2016-11-25 2018-05-31 東日本旅客鉄道株式会社 Movable body speed detection system and wire fusion prevention system
JP2020085713A (en) * 2018-11-28 2020-06-04 日産自動車株式会社 Object recognition method and object recognition device
JP2020085716A (en) * 2018-11-28 2020-06-04 日産自動車株式会社 Object recognition method and object recognition device
JP7149172B2 (en) 2018-11-28 2022-10-06 日産自動車株式会社 Object recognition method and object recognition device
JP7149171B2 (en) 2018-11-28 2022-10-06 日産自動車株式会社 Object recognition method and object recognition device
WO2021106197A1 (en) * 2019-11-29 2021-06-03 三菱電機株式会社 Object recognition device and object recognition method
JPWO2021106197A1 (en) * 2019-11-29 2021-06-03
JPWO2021106196A1 (en) * 2019-11-29 2021-06-03
WO2021106196A1 (en) * 2019-11-29 2021-06-03 三菱電機株式会社 Object recognition device and object recognition method
JP7134368B2 (en) 2019-11-29 2022-09-09 三菱電機株式会社 Object recognition device and object recognition method
JP7217817B2 (en) 2019-11-29 2023-02-03 三菱電機株式会社 Object recognition device and object recognition method

Also Published As

Publication number Publication date
JP4843571B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP4843571B2 (en) Vehicle object detection device
US7532109B2 (en) Vehicle obstacle verification system
JP3427815B2 (en) Method and apparatus for selecting preceding vehicle, recording medium
JP4343536B2 (en) Car sensing device
JP4244964B2 (en) Ranging device for vehicles
US9102329B2 (en) Tracking control apparatus
US20120271483A1 (en) Method and apparatus for recognizing shape of road for vehicles
JP2005233716A (en) Radar device
JPH036472B2 (en)
JP2005313780A (en) Preceding vehicle recognition device
JP5012270B2 (en) Object detection device
US20180149740A1 (en) Object detection apparatus and object detection method
JP5402968B2 (en) Vehicular road shape recognition method and apparatus, and recording medium
JP2004199511A (en) Obstacle recognition device for vehicle
JP2018206234A (en) Driving support system
WO2011036807A1 (en) Object detection device and object detection method
JP4719996B2 (en) Object detection device
EP4015331A1 (en) Method and system for target detection of vehicle
JP2002303671A (en) Object-classification discrimination apparatus
JP4082286B2 (en) Front object position detection device
JP5556317B2 (en) Object recognition device
JP2000002535A (en) Method for detecting curvature of curve road and detector used therefor
JP7485526B2 (en) Axis offset estimation device
KR20180000965A (en) System and method for Autonomous Emergency Braking
JPH10143797A (en) Preceding vehicle recognition device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111007

R150 Certificate of patent or registration of utility model

Ref document number: 4843571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees