JP2009009798A - Multidirectional input device - Google Patents

Multidirectional input device Download PDF

Info

Publication number
JP2009009798A
JP2009009798A JP2007169337A JP2007169337A JP2009009798A JP 2009009798 A JP2009009798 A JP 2009009798A JP 2007169337 A JP2007169337 A JP 2007169337A JP 2007169337 A JP2007169337 A JP 2007169337A JP 2009009798 A JP2009009798 A JP 2009009798A
Authority
JP
Japan
Prior art keywords
coil spring
input device
lever portion
lever
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007169337A
Other languages
Japanese (ja)
Other versions
JP4772755B2 (en
Inventor
Kazuhiko Sasaki
和彦 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2007169337A priority Critical patent/JP4772755B2/en
Publication of JP2009009798A publication Critical patent/JP2009009798A/en
Application granted granted Critical
Publication of JP4772755B2 publication Critical patent/JP4772755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Input From Keyboards Or The Like (AREA)
  • Switches With Compound Operations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multidirectional input device capable of easily grabbing an operation volume by a change of action force at tilting operation, and easily enhancing detection accuracy. <P>SOLUTION: The multidirectional input device is provided with: a housing composed of a frame body 1 and a bottom plate member 2; an operating member 3 having a lever 3a and capable of performing tilting operation; a pair of driving members 4, 5 driven to rotate by the operating member 3 at the tilting operation with axis directions crossing each other; an action member 6 loaded on the bottom plate member 2 and inserted into the operating member for free engagement; and a pair of rotary variable resistors (rotary detection means) 10, 11 detecting rotating positions of each driving member 4, 5. A first coil spring 8 for biasing both the driving members 4, 5 at all times is assembled between both the driving members 4, 5 and the bottom plate member 2, and a second coil spring 9 in an unloaded state at non-operation is assembled between the operating member 3 and the action member 6, so that the action member 6 is compressed when the lever 3a is tilted exceeding a given angle. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ゲーム機等の電子機器に使用され、操作部材のレバー部を傾倒させることによって傾倒方向や傾倒角度に応じた信号が得られる多方向入力装置に関する。   The present invention relates to a multidirectional input device that is used in an electronic device such as a game machine and that can obtain a signal corresponding to a tilt direction or a tilt angle by tilting a lever portion of an operation member.

この種の多方向入力装置の従来例を図34および図35を用いて説明すると、これらの図に示す多方向入力装置は、ハウジングをなす枠体51および底板部材52と、レバー部53aや柱状部53bを有して傾動操作可能な操作部材53と、枠体51に回動可能に軸支されて軸線方向を互いに直交させている第1駆動部材54および第2駆動部材55と、操作部材53の柱状部53bに係合可能に挿通されて底板部材52上に摺動可能に搭載された作動部材56と、操作部材53と作動部材56間に弾接状態で介設されたコイルばね57と、第1駆動部材54の回転位置を検出する回転型可変抵抗器58と、第2駆動部材55の回転位置を検出する図示せぬ回転型可変抵抗器とによって主に構成されている(例えば、特許文献1参照)。   A conventional example of this type of multidirectional input device will be described with reference to FIGS. 34 and 35. The multidirectional input device shown in these drawings includes a frame body 51 and a bottom plate member 52 that form a housing, a lever portion 53a and a columnar shape. An operation member 53 having a portion 53b that can be tilted, a first drive member 54 and a second drive member 55 that are pivotally supported by the frame 51 and orthogonal to each other, and an operation member 53, an operating member 56 that is slidably mounted on the bottom plate member 52, and a coil spring 57 that is interposed between the operating member 53 and the operating member 56 in a resilient contact state. And a rotary variable resistor 58 that detects the rotational position of the first drive member 54 and a rotary variable resistor (not shown) that detects the rotational position of the second drive member 55 (for example, , See Patent Document 1).

枠体51は上部に開口51aを有して下部を開放した方形箱状の金属板からなり、この枠体51の下端部に底板部材52を組み付けることによって内部が空洞のハウジング(筐体)が形成されている。操作部材53は互いに逆向きに延びるレバー部53aと柱状部53bを有しており、レバー部53aは枠体51の開口51aを貫通して上方へ突出している。柱状部53bはハウジングの空洞内で作動部材56の係合穴56aに進出後退可能に挿入されており、レバー部53aが傾倒すると作動部材56が底板部材52上を摺動しながら傾いて、柱状部53bが係合穴56a内へ深く挿入されるようになっている。操作部材53には柱状部53bを包囲する筒状部53cが形成されており、柱状部53bと筒状部53cとの間の環状空間にコイルばね57が組み込まれている。   The frame 51 is made of a rectangular box-shaped metal plate having an opening 51a at the top and the bottom is opened. By attaching a bottom plate member 52 to the lower end of the frame 51, a hollow housing (housing) is formed. Is formed. The operation member 53 has a lever portion 53a and a columnar portion 53b extending in opposite directions, and the lever portion 53a protrudes upward through the opening 51a of the frame body 51. The columnar portion 53b is inserted into the engagement hole 56a of the operating member 56 in the cavity of the housing so as to be able to advance and retract. When the lever portion 53a is tilted, the operating member 56 is tilted while sliding on the bottom plate member 52, thereby forming a columnar shape. The portion 53b is inserted deeply into the engagement hole 56a. The operation member 53 is formed with a cylindrical portion 53c surrounding the columnar portion 53b, and a coil spring 57 is incorporated in an annular space between the columnar portion 53b and the cylindrical portion 53c.

第1駆動部材54は中央部に長孔54aを有するアーチ状に成形されており、長孔54aには操作部材53のレバー部53aが挿通されている。この第1駆動部材54は、長手方向の一端部が枠体51に軸支されて他端部が回転型可変抵抗器58の摺動子受け59に係止されており、この長手方向を軸線方向として第1駆動部材54は回動可能である。つまり、レバー部53aを図34の紙面と直交する方向へ傾倒させることによって、第1駆動部材54がレバー部53aに駆動されて回転し、それに伴い摺動子受け59も回転するようになっている。摺動子受け59には摺動子60が保持されており、回転型可変抵抗器58内の基板61に設けられた抵抗体パターンに摺動子60が摺接しているため、第1駆動部材54に連動して摺動子受け59が回転すると、抵抗体パターンに対する摺動子60の接触位置が変化する。それゆえ、回転型可変抵抗器58の出力抵抗値に基づいて第1駆動部材54の回転方向および回転量を検出することができる。ただし、レバー部53aを長孔54aに沿って傾倒させても第1駆動部材54が連動することはない。   The first drive member 54 is formed in an arch shape having a long hole 54a at the center, and the lever portion 53a of the operation member 53 is inserted into the long hole 54a. The first drive member 54 has one end portion in the longitudinal direction pivotally supported by the frame body 51 and the other end portion engaged with a slider receiver 59 of the rotary variable resistor 58. As a direction, the first drive member 54 is rotatable. That is, by tilting the lever portion 53a in the direction orthogonal to the paper surface of FIG. 34, the first drive member 54 is driven and rotated by the lever portion 53a, and the slider receiver 59 is also rotated accordingly. Yes. Since the slider 60 is held by the slider receiver 59 and the slider 60 is in sliding contact with the resistor pattern provided on the substrate 61 in the rotary variable resistor 58, the first drive member When the slider receiver 59 rotates in conjunction with 54, the contact position of the slider 60 with respect to the resistor pattern changes. Therefore, the rotation direction and the rotation amount of the first drive member 54 can be detected based on the output resistance value of the rotary variable resistor 58. However, even if the lever portion 53a is tilted along the long hole 54a, the first drive member 54 is not interlocked.

第2駆動部材55の長手方向両端部には図示せぬ軸部が突設されており、これら両軸部が枠体51に軸支されているため、この長手方向を軸線方向として第2駆動部材55は回動可能である。また、一方の軸部が図示せぬ回転型可変抵抗器の摺動子受けに係止されており、この回転型可変抵抗器の構成は上記の回転型可変抵抗器58と同様である。第2駆動部材55の中央部にはハウジング内で操作部材53を挿通させる貫通孔が形成されており、この貫通孔を挟んで対向する箇所にそれぞれ受け部55aが形成されている。受け部55aには操作部材53の支軸53dが回動自在に支承されており、レバー部53aを図34の紙面と直交する方向へ傾倒させても第2駆動部材55が連動することはない。そして、レバー部53aを図34の矢印A−A方向へ傾倒させることによって、図35に示すように第2駆動部材55が支軸53dに駆動されて回転し、それに伴い図示せぬ摺動子受けも回転するようになっている。したがって、図示せぬ回転型可変抵抗器の出力抵抗値に基づいて第2駆動部材55の回転方向および回転量を検出することができる。   Since shaft portions (not shown) protrude from both ends of the second drive member 55 in the longitudinal direction and both the shaft portions are pivotally supported by the frame 51, the second drive is performed with the longitudinal direction as the axial direction. The member 55 is rotatable. Further, one shaft portion is engaged with a slider receiver of a rotary variable resistor (not shown), and the configuration of the rotary variable resistor is the same as that of the rotary variable resistor 58 described above. A through hole through which the operation member 53 is inserted in the housing is formed at the center of the second drive member 55, and receiving portions 55a are formed at locations facing each other across the through hole. A support shaft 53d of the operation member 53 is rotatably supported on the receiving portion 55a. Even if the lever portion 53a is tilted in a direction perpendicular to the paper surface of FIG. 34, the second drive member 55 is not interlocked. . Then, by tilting the lever portion 53a in the direction of the arrow AA in FIG. 34, the second drive member 55 is driven and rotated by the support shaft 53d as shown in FIG. The receiver also rotates. Therefore, the rotation direction and the rotation amount of the second drive member 55 can be detected based on the output resistance value of a rotary variable resistor (not shown).

つまり、この多方向入力装置は、操作部材53のレバー部53aを傾倒させると第1駆動部材54や第2駆動部材55が回転駆動されて、その回転方向および回転量が回転型可変抵抗器58等によって検出可能なため、レバー部53aの傾倒方向や傾倒角度に応じた信号が得られるようになっている。また、操作部材53と作動部材56が図34に示す中立位置で起立している非操作時に、レバー部53aに操作力を付与して傾倒させていくと、例えば図35に示すように柱状部53bが作動部材56の係合穴56a内へ深く進入していくため、コイルばね57が圧縮されて弾性反発力を生起する。そのため、レバー部53aに対する操作力が除去されると、コイルばね57の弾性反発力によって操作部材53と作動部材56が図34に示す中立位置まで押し戻されると共に、操作部材53を介して第1駆動部材54や第2駆動部材55が回転前の中立位置まで押し戻され、それに伴い回転型可変抵抗器58等の摺動子受けがその基準位置(非操作時の回転位置)へと復帰するようになっている。   That is, in this multidirectional input device, when the lever portion 53a of the operation member 53 is tilted, the first drive member 54 and the second drive member 55 are rotationally driven, and the rotational direction and the rotational amount thereof are the rotary variable resistor 58. Therefore, a signal corresponding to the tilt direction and tilt angle of the lever portion 53a can be obtained. Further, when the operating member 53 and the actuating member 56 are not operated at the neutral position shown in FIG. 34, when the operating force is applied to the lever portion 53a and tilted, for example, as shown in FIG. Since 53b enters deeply into the engagement hole 56a of the operating member 56, the coil spring 57 is compressed to generate an elastic repulsive force. Therefore, when the operating force on the lever portion 53 a is removed, the operating member 53 and the operating member 56 are pushed back to the neutral position shown in FIG. 34 by the elastic repulsive force of the coil spring 57, and the first drive is performed via the operating member 53. The member 54 and the second drive member 55 are pushed back to the neutral position before the rotation, and accordingly, the slider receiver such as the rotary variable resistor 58 is returned to the reference position (the rotation position when not operated). It has become.

上記の従来例ではレバー部53aの傾倒角度を大きくしていくと、操作部材53と作動部材56との間に組み込まれたコイルばね57が次第に圧縮して弾性反発力を増大させるが、作動部材56が底板部材52上を摺動するため、レバー部53aの傾倒に必要な作動力はさほど変化しない。しかしながら、例えばゲーム機のコントローラ等においては、操作者がレバー部の傾倒角度の大小を把握しやすくするために、レバー部を所定角度傾倒させたときに作動力が明確に変化するような構造を要望されることがある。   In the above conventional example, when the tilt angle of the lever portion 53a is increased, the coil spring 57 incorporated between the operation member 53 and the operation member 56 is gradually compressed to increase the elastic repulsion force. Since 56 slides on the bottom plate member 52, the operating force required to tilt the lever portion 53a does not change much. However, for example, a controller of a game machine has a structure in which the operating force clearly changes when the lever portion is tilted by a predetermined angle so that the operator can easily grasp the magnitude of the tilt angle of the lever portion. Sometimes requested.

そこで従来より、図36に示すように、操作部材53と作動部材56との間に2個のコイルばね62,63を組み込むことによって、レバー部53aの傾倒に必要な作動力が所定の傾倒角度で明確に変化するように構成した多方向入力装置が提案されている(例えば、特許文献2参照)。図36の要部断面図に示すように、操作部材53と作動部材56との間には、弾接状態で組み込まれた第1コイルばね62と、無負荷状態で組み込まれた第2コイルばね63とが、図示上下方向にずらして配置されている。かかる構成において、傾動操作開始時には第1コイルばね62の付勢力に抗する操作力を付与することによってレバー部53aを傾倒させることができるが、レバー部53aが所定角度傾倒して第2コイルばね63が作動部材56と操作部材53とに挟圧された状態になると、このレバー部53aをさらに傾倒させるためには第1および第2コイルばね62,63の付勢力に抗する操作力が必要となる。つまり、レバー部53aを所定角度傾倒させると作動力が明確に変化して操作感触が異なるように設計されており、これによってレバー部53aの傾倒角度の大小を操作者が手指で感得しやすくなっている。
特開2000−112552号公報(第3−6頁、図8) 特開2007−59160号公報(第10頁、図32)
Therefore, conventionally, as shown in FIG. 36, by incorporating two coil springs 62 and 63 between the operating member 53 and the operating member 56, the operating force required for tilting the lever portion 53a is set at a predetermined tilt angle. Has been proposed (see, for example, Patent Document 2). As shown in the cross-sectional view of the main part of FIG. 36, between the operating member 53 and the actuating member 56, a first coil spring 62 incorporated in an elastic contact state and a second coil spring incorporated in an unloaded state. 63 are arranged shifted in the vertical direction in the figure. In such a configuration, the lever portion 53a can be tilted by applying an operating force against the biasing force of the first coil spring 62 at the start of the tilting operation. However, the lever portion 53a tilts by a predetermined angle to cause the second coil spring to tilt. When 63 is sandwiched between the operating member 56 and the operating member 53, an operating force that resists the biasing force of the first and second coil springs 62 and 63 is required to further tilt the lever portion 53a. It becomes. That is, the lever 53a is designed such that when the lever 53a is tilted by a predetermined angle, the operating force is clearly changed to make the operation feel different, thereby making it easier for the operator to feel the tilt angle of the lever 53a with fingers. It has become.
Japanese Unexamined Patent Publication No. 2000-112552 (page 3-6, FIG. 8) JP 2007-59160 A (page 10, FIG. 32)

図36に示す従来例のように、操作部材53と作動部材56との間に2個のコイルばね62,63を組み込むことによって、傾動操作の途中で作動力を明確に変化させることはできるが、作動部材56はハウジングの内底面上(底板部材52上)で円滑に摺動させる必要があるので、両コイルばね62,63の生起する弾性反発力をレバー部53aの傾倒角度に応じて大きく変化させることは好ましくない。そのため、この従来例では、レバー部53aを所定角度傾倒させた時点で作動力を明確に変化させることはできても、それ以外の傾倒角度のときには作動力がさほど変化せず、よって傾動操作時に操作量(レバー部53aの傾倒角度)を容易に把握できるというわけではなかった。   As in the conventional example shown in FIG. 36, by incorporating two coil springs 62 and 63 between the operating member 53 and the operating member 56, the operating force can be clearly changed during the tilting operation. Since the operating member 56 needs to slide smoothly on the inner bottom surface (on the bottom plate member 52) of the housing, the elastic repulsive force generated by the coil springs 62 and 63 is increased according to the tilt angle of the lever portion 53a. It is not preferable to change it. Therefore, in this conventional example, the operating force can be clearly changed when the lever portion 53a is tilted by a predetermined angle, but at other tilt angles, the operating force does not change so much. The amount of operation (the tilt angle of the lever portion 53a) cannot be easily grasped.

また、前述した各従来例では、傾動操作後に操作力を除去すると、操作部材53と作動部材56との間で圧縮されていたコイルばね57やコイルばね62,63の弾性反発力によって各部材がそれぞれの中立位置へ自動復帰するようになっているが、操作部材53によって回転駆動された駆動部材54,55が必ず元の位置へ復帰するというわけではない。すなわち、この種の多方向入力装置においては、非操作時の操作部材と各駆動部材との間に所要のクリアランスが必要なので、傾動操作後に操作部材に追動して駆動部材が中立位置へ復帰しても、この駆動部材の中立位置にはクリアランスに相当するばらつきがある。換言するなら、各駆動部材は非操作時にクリアランスの範囲内でガタを有している。しかしながら、駆動部材の中立位置にばらつきがあると、駆動部材に連動して回転する回転検出手段のロータ部(例えば回転型可変抵抗器の摺動子受け)の非操作時の回転位置もばらついてしまうため、高精度な検出を行うことができず、その改善が望まれていた。   In each of the conventional examples described above, when the operation force is removed after the tilting operation, each member is caused by the elastic repulsion force of the coil spring 57 and the coil springs 62 and 63 compressed between the operation member 53 and the operation member 56. Although the automatic return to each neutral position is made, the drive members 54 and 55 that are rotationally driven by the operation member 53 do not necessarily return to their original positions. That is, in this type of multi-directional input device, since a required clearance is required between the operation member and each drive member when not operated, the drive member is moved back to the neutral position after being tilted. Even so, the neutral position of the drive member has a variation corresponding to the clearance. In other words, each drive member has a backlash within a clearance range when not operated. However, if there are variations in the neutral position of the drive member, the rotational position when the rotor portion of the rotation detection means that rotates in conjunction with the drive member (for example, the slider receiver of the rotary variable resistor) is not operated varies. Therefore, highly accurate detection cannot be performed, and an improvement thereof has been desired.

本発明は、このような従来技術の実情に鑑みてなされたもので、その目的は、傾動操作時の作動力の変化によって操作量が把握しやすく、かつ検出精度も高めやすい多方向入力装置を提供することにある。   The present invention has been made in view of the situation of the prior art as described above, and an object of the present invention is to provide a multidirectional input device in which an operation amount can be easily grasped by a change in operating force during tilting operation and detection accuracy can be easily improved. It is to provide.

上記の目的を達成するために、本発明の多方向入力装置では、ハウジングと、このハウジングから外方へ突出するレバー部を有して傾動操作可能な操作部材と、前記ハウジングに軸線方向を互いに直交した状態で軸支されていると共に、傾動操作時の前記操作部材によって回転駆動される第1駆動部材および第2駆動部材と、前記ハウジングの内底面に摺動可能に搭載されていると共に、前記操作部材の前記レバー部側とは反対側の端部に係合可能に挿通された作動部材と、この作動部材と前記操作部材との間に組み込まれて非操作時には無負荷状態の弾性部材と、前記ハウジングと前記第1および第2駆動部材との間に組み込まれて両駆動部材を常時弾性付勢する復帰ばねと、前記第1および第2駆動部材の回転位置を個別に検出する一対の回転検出手段とを備え、前記復帰ばねの付勢力に抗して前記レバー部を所定角度以上傾倒させることによって、前記弾性部材が前記操作部材と前記作動部材とに挟圧されて弾性反発力を生起するように構成した。   In order to achieve the above object, in the multidirectional input device of the present invention, a housing, an operating member having a lever portion protruding outward from the housing and capable of being tilted, and an axial direction of the housing are mutually connected. The shaft is supported in an orthogonal state, and is slidably mounted on the inner bottom surface of the housing, and a first drive member and a second drive member that are rotationally driven by the operation member during tilting operation, An operating member inserted through the end of the operating member opposite to the lever portion so as to be engageable, and an elastic member incorporated between the operating member and the operating member and in a non-loaded state when not operated A return spring incorporated between the housing and the first and second drive members to constantly elastically urge both drive members, and a pair for individually detecting the rotational positions of the first and second drive members Rotation detecting means, and by tilting the lever portion by a predetermined angle or more against the urging force of the return spring, the elastic member is pinched by the operating member and the operating member to generate an elastic repulsive force. Configured to occur.

このように第1および第2駆動部材を常時弾性付勢する復帰ばねが両駆動部材とハウジングとの間に組み込んであると、この復帰ばねの付勢力に抗してレバー部を傾倒させることになるので、作動部材をハウジングの内底面上で円滑に摺動させながら、レバー部の傾倒角度に応じて作動力を増大させることができる。また、操作部材と作動部材との間には非操作時に無負荷状態となる弾性部材が組み込んであり、レバー部を所定角度以上傾倒させると、この弾性部材が圧縮されて弾性反発力を生起するため、作動力が明確に変化する所定の傾倒角度が手指で感得しやすくなる。したがって、この多方向入力装置は、傾動操作時の作動力の変化によって操作量(レバー部の傾倒角度)を容易に把握することができる。   If the return springs that always elastically bias the first and second drive members are incorporated between the drive members and the housing, the lever portion is tilted against the biasing force of the return springs. Therefore, the operating force can be increased according to the tilt angle of the lever portion while smoothly sliding the operating member on the inner bottom surface of the housing. Further, an elastic member that is in a no-load state when not operated is incorporated between the operation member and the operation member, and when the lever portion is tilted by a predetermined angle or more, the elastic member is compressed to generate an elastic repulsion force. Therefore, a predetermined tilt angle at which the operating force clearly changes can be easily sensed with fingers. Therefore, this multidirectional input device can easily grasp the operation amount (the tilt angle of the lever portion) by the change in the operating force during the tilt operation.

しかも、この多方向入力装置では、傾動操作後に操作力が除去されると、操作部材によって回転駆動された第1駆動部材や第2駆動部材が復帰ばねに弾性付勢されて中立位置へ復帰するので、これら第1および第2駆動部材を非操作時にガタのない状態、つまり中立位置にばらつきのない状態に保持することができる。それゆえ、駆動部材に連動して回転する回転検出手段のロータ部(例えば回転型可変抵抗器の摺動子受け)を、その基準位置(非操作時の回転位置)へ精度よく復帰させることができ、高精度な検出が可能となる。   In addition, in this multidirectional input device, when the operating force is removed after the tilting operation, the first driving member and the second driving member that are rotationally driven by the operating member are elastically urged by the return spring to return to the neutral position. Therefore, the first and second drive members can be held in a state free from backlash when not operated, that is, in a state where there is no variation in the neutral position. Therefore, the rotor portion of the rotation detecting means that rotates in conjunction with the drive member (for example, the slider receiver of the rotary variable resistor) can be accurately returned to its reference position (rotation position when not operated). And high-precision detection is possible.

上記の構成において、復帰ばねが操作部材よりも大径なコイルばねであり、このコイルばねと第1および第2駆動部材との間に円環状のばね受け部材が介設されていると、傾動操作時にコイルばね(復帰ばね)の生起する弾性反発力がレバー部の傾倒方向によってばらつかなくなるため、良好な操作感触を期待でき、組立作業性も良好となる。この場合において、ハウジングの内底面の周囲に円環状の溝部を設け、コイルばねのばね受け部材側とは反対側の端部をこの溝部内に配置させれば、コイルばねの位置ずれを確実に防止できる。   In the above configuration, when the return spring is a coil spring having a diameter larger than that of the operation member, and an annular spring receiving member is interposed between the coil spring and the first and second driving members, the return spring is tilted. Since the elastic repulsion force generated by the coil spring (return spring) during operation does not vary depending on the tilting direction of the lever portion, a good operation feeling can be expected and the assembly workability can be improved. In this case, if an annular groove is provided around the inner bottom surface of the housing, and the end of the coil spring opposite to the spring receiving member is disposed in this groove, the positional deviation of the coil spring can be ensured. Can be prevented.

また、上記の構成において、操作部材に、レバー部とは逆向きに突出する柱状部と、この柱状部を包囲する筒状部とを設けると共に、作動部材に前記柱状部が進出後退可能に挿入される係合穴を設けておけば、レバー部の傾倒角度に応じて柱状部を係合穴内で進出後退させることによって傾動操作が確実に行えるのみならず、操作部材の柱状部と筒状部との間に弾性部材を収納するスペースが無理なく確保できる。この場合において、弾性部材が操作部材の柱状部と筒状部との間の環状空間に配置されるコイルばねであって、このコイルばねの一端部が作動部材または操作部材に固定されていると、非操作時には無負荷状態のコイルばねをガタつきの虞なく支持できると共に、レバー部を所定角度以上傾倒させたときに、操作部材と作動部材とでこのコイルばねを確実に挟圧して弾性反発力を生起させることができるため好ましい。   Further, in the above configuration, the operation member is provided with a columnar portion protruding in the direction opposite to the lever portion and a cylindrical portion surrounding the columnar portion, and the columnar portion is inserted into the operating member so as to be able to advance and retract. If the engagement hole to be provided is provided, not only can the columnar part be moved forward and backward in the engagement hole according to the tilt angle of the lever part, but the tilting operation can be reliably performed, and the columnar part and the cylindrical part of the operation member A space for accommodating the elastic member can be secured without difficulty. In this case, the elastic member is a coil spring disposed in an annular space between the columnar portion and the cylindrical portion of the operation member, and one end portion of the coil spring is fixed to the operation member or the operation member. When not in operation, the coil spring in an unloaded state can be supported without the risk of rattling, and when the lever part is tilted more than a predetermined angle, the coil spring is securely clamped between the operating member and the actuating member and elastic repulsive force Is preferable because it can be caused.

本発明の多方向入力装置によれば、第1および第2駆動部材を常時弾性付勢する復帰ばねが両駆動部材とハウジングとの間に組み込んであると共に、非操作時に無負荷状態となる弾性部材が操作部材と作動部材との間に組み込んであるため、作動部材をハウジングの内底面上で円滑に摺動させながら、レバー部の傾倒角度に応じて作動力を増大させることができると共に、レバー部を所定角度以上傾倒させたときに弾性部材が圧縮されて弾性反発力を生起することから、作動力が明確に変化する所定の傾倒角度を手指で感得しやすくなっている。したがって、この多方向入力装置は、傾動操作時の作動力の変化によって操作量(レバー部の傾倒角度)を容易に把握することができる。また、傾動操作後に操作力が除去されると、操作部材によって回転駆動された第1駆動部材や第2駆動部材が復帰ばねに弾性付勢されて中立位置へ復帰するので、これら第1および第2駆動部材を非操作時にガタのない状態に保持することができ、それゆえ駆動部材に連動して回転する回転検出手段のロータ部を基準位置へ精度よく復帰させることができて、高精度な検出が可能となる。   According to the multidirectional input device of the present invention, the return spring that always elastically biases the first and second drive members is incorporated between both the drive members and the housing, and is in an unloaded state when not operated. Since the member is incorporated between the operating member and the operating member, the operating force can be increased according to the tilt angle of the lever portion while smoothly sliding the operating member on the inner bottom surface of the housing, When the lever portion is tilted by a predetermined angle or more, the elastic member is compressed to generate an elastic repulsion force, so that it is easy to sense a predetermined tilt angle at which the operating force clearly changes with fingers. Therefore, this multidirectional input device can easily grasp the operation amount (the tilt angle of the lever portion) by the change in the operating force during the tilt operation. Further, when the operating force is removed after the tilting operation, the first driving member and the second driving member that are rotationally driven by the operating member are elastically biased by the return spring and return to the neutral position. 2 The driving member can be held in a state free from play when not operated, and therefore the rotor portion of the rotation detecting means that rotates in conjunction with the driving member can be returned to the reference position with high accuracy, Detection is possible.

発明の実施の形態を図面を参照して説明すると、図1は本発明の実施形態例に係る多方向入力装置の外観図、図2は該多方向入力装置のハウジング内の構造を示す分解斜視図、図3は該多方向入力装置の回転型可変抵抗器の構造を示す分解斜視図、図4は該多方向入力装置の非操作時の平面図、図5は図4のA−A線に沿う断面図、図6は図4のB−B線に沿う断面図、図7は該多方向入力装置のレバー部を傾倒させて操作感触が変化する直前の状態を示す平面図、図8は図7のC−C線に沿う断面図、図9は該多方向入力装置のレバー部を図7とは逆向きに傾倒させた状態を示す平面図、図10は図9のD−D線に沿う断面図、図11は該多方向入力装置に用いられた第1駆動部材の斜視図、図12は該第1駆動部材の平面図、図13は該第1駆動部材を短手方向一端側から見た側面図、図14は該第1駆動部材を長手方向一端側から見た側面図、図15は該第1駆動部材を長手方向他端側から見た側面図、図16は該多方向入力装置に用いられる第2駆動部材の斜視図、図17は該第2駆動部材の平面図、図18は該第2駆動部材を短手方向一端側から見た側面図、図19は該第2駆動部材を長手方向一端側から見た側面図、図20は該第2駆動部材を長手方向他端側から見た側面図、図21は該多方向入力装置に用いられる操作部材の斜視図、図22は該操作部材の平面図、図23は図22のE−E線に沿う断面図、図24は該操作部材の側面図、図25は該操作部材の底面図、図26は該多方向入力装置に用いられる板ばねの斜視図、図27は該板ばねの正面図、図28は該板ばねの側面図、図29は該多方向入力装置に用いられる摺動子受けの斜視図、図30は該摺動子受けの正面図、図31は該摺動子受けの側面図、図32は該摺動子受けの非操作時の回転位置を示す説明図、図33は図32のF−F線に沿う断面図である。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an external view of a multidirectional input device according to an embodiment of the present invention, and FIG. 2 is an exploded perspective view showing a structure inside the housing of the multidirectional input device. 3 is an exploded perspective view showing the structure of the rotary variable resistor of the multidirectional input device, FIG. 4 is a plan view when the multidirectional input device is not operated, and FIG. 5 is a line AA in FIG. FIG. 6 is a cross-sectional view taken along line BB in FIG. 4, FIG. 7 is a plan view showing a state immediately before the operation feeling is changed by tilting the lever portion of the multidirectional input device, and FIG. Is a cross-sectional view taken along the line CC of FIG. 7, FIG. 9 is a plan view showing a state in which the lever portion of the multidirectional input device is tilted in the opposite direction to FIG. 7, and FIG. FIG. 11 is a perspective view of a first drive member used in the multidirectional input device, FIG. 12 is a plan view of the first drive member, and FIG. FIG. 14 is a side view of the first drive member viewed from one end in the longitudinal direction, and FIG. 15 is a side view of the first drive member viewed from one end in the longitudinal direction. FIG. 16 is a perspective view of a second drive member used in the multidirectional input device, FIG. 17 is a plan view of the second drive member, and FIG. 18 shows the second drive member from one end in the short direction. FIG. 19 is a side view of the second driving member viewed from one end in the longitudinal direction, FIG. 20 is a side view of the second driving member viewed from the other end in the longitudinal direction, and FIG. FIG. 22 is a plan view of the operation member used in the input device, FIG. 23 is a cross-sectional view taken along line EE of FIG. 22, FIG. 24 is a side view of the operation member, and FIG. FIG. 26 is a perspective view of a leaf spring used in the multidirectional input device, FIG. 27 is a front view of the leaf spring, and FIG. FIG. 29 is a perspective view of a slider receiver used in the multidirectional input device, FIG. 30 is a front view of the slider receiver, and FIG. 31 is a side view of the slider receiver. 32 is an explanatory view showing a rotational position when the slider receiver is not operated, and FIG. 33 is a cross-sectional view taken along the line FF of FIG.

図1〜図10に示す多方向入力装置は、ハウジングをなす枠体1および底板部材2と、レバー部3aや柱状部3bを有して傾動操作可能な操作部材3と、枠体1に回動可能に軸支されて軸線方向を互いに直交させている第1駆動部材4および第2駆動部材5と、操作部材3の柱状部3bに係合可能に挿通されて底板部材2上に摺動可能に搭載された作動部材6と、円環状のばね受け部材7と底板部材2間に組み込まれて第1および第2駆動部材4,5を常時弾性付勢する第1コイルばね8と、操作部材3と作動部材6間に組み込まれて非操作時には無負荷状態の第2コイルばね9と、第1駆動部材4の回転位置を検出する回転型可変抵抗器10と、第2駆動部材5の回転位置を検出する回転型可変抵抗器11と、第2駆動部材5を介して押圧操作可能な押釦スイッチ12とによって概略構成されている。   The multidirectional input device shown in FIGS. 1 to 10 includes a frame body 1 and a bottom plate member 2 that form a housing, an operation member 3 that has a lever portion 3a and a columnar portion 3b and can be tilted, and a frame body 1. The first drive member 4 and the second drive member 5 that are pivotally supported so that their axial directions are orthogonal to each other, and the columnar portion 3b of the operation member 3 are slidably inserted into the bottom plate member 2. An actuating member 6 that is mounted as possible, a first coil spring 8 that is incorporated between the annular spring receiving member 7 and the bottom plate member 2 and elastically biases the first and second drive members 4 and 5 at all times; The second coil spring 9 which is incorporated between the member 3 and the actuating member 6 and is in an unloaded state when not operated, the rotary variable resistor 10 which detects the rotational position of the first drive member 4, and the second drive member 5 Rotation type variable resistor 11 for detecting the rotation position and pressing through the second drive member 5 Is schematically configured by a work can push button switch 12.

枠体1は上部に開口1aを有して下部を開放した方形箱状の金属板からなり、この枠体1の下端部に樹脂モールド品の底板部材2を組み付けることによって、内部が空洞のハウジング(筐体)が形成されている。このハウジングには回転型可変抵抗器10,11のステータ部が固定される。具体的には、枠体1の一側面に回転型可変抵抗器10のケース20が固定され、他側面に回転型可変抵抗器11のケース30が固定される。底板部材2のうち枠体1に覆われる部分には、ハウジングの内底面となる円形の受け面2aと、受け面2aの周囲に沿って円環状に延びる溝部2bとが形成されている。後述するように、受け面2aには作動部材6が摺動可能に搭載され、溝部2bには第1コイルばね8が搭載される。なお、受け面2aは略平坦状に形成されており、その中央部には、非操作時の操作部材3の柱状部3bと対向するドーム状の隆起部2dが僅かに突出して設けられている。また、底板部材2のうち枠体1に覆われない延出部2cには、押釦スイッチ12が取り付けられる。   The frame body 1 is made of a rectangular box-shaped metal plate having an opening 1a in the upper part and the lower part being opened, and by attaching a bottom plate member 2 of a resin molded product to the lower end part of the frame body 1, the inside of the housing is hollow. (Housing) is formed. The stator of the rotary variable resistors 10 and 11 is fixed to the housing. Specifically, the case 20 of the rotary variable resistor 10 is fixed to one side surface of the frame 1, and the case 30 of the rotary variable resistor 11 is fixed to the other side surface. A portion of the bottom plate member 2 covered with the frame 1 is formed with a circular receiving surface 2a serving as an inner bottom surface of the housing and a groove 2b extending in an annular shape along the periphery of the receiving surface 2a. As will be described later, the operating member 6 is slidably mounted on the receiving surface 2a, and the first coil spring 8 is mounted on the groove 2b. In addition, the receiving surface 2a is formed in a substantially flat shape, and a dome-shaped raised portion 2d facing the columnar portion 3b of the operation member 3 when not operated is slightly protruded at the center thereof. . A push button switch 12 is attached to the extended portion 2 c of the bottom plate member 2 that is not covered by the frame body 1.

操作部材3のレバー部3aは枠体1の開口1aを貫通して上方へ突出している。レバー部3aとは逆向きに延びる柱状部3bは、ハウジングの空洞内で作動部材6の係合穴6aに進出後退可能に挿入されている。この作動部材6は底板部材2の受け面2a上に摺動可能に搭載されて柱状部3bと係合しており、レバー部3aが傾倒すると作動部材6の下部に設けられたリング状の摺接部6bが受け面2a上を摺動しながら傾いて、柱状部3bが係合穴6a内へ深く挿入されるようになっている。操作部材3には柱状部3bを包囲する筒状部3cが形成されており、柱状部3bと筒状部3cとの間の環状空間3dに第2コイルばね9が配置されている。この第2コイルばね9の一端部は作動部材6に圧入されることにより固定されているが、他端部は少なくとも非操作時には拘束されておらず、よって非操作時に第2コイルばね9は無負荷状態に保たれている(図5,6参照)。そして、レバー部3aが所定角度傾倒すると、柱状部3bが係合穴6a内へ深く挿入されて環状空間3dの天井面が第2コイルばね9に当接するため、レバー部3aをさらに傾倒させると、第2コイルばね9が該天井面と作動部材6とに挟圧される圧縮状態となって弾性反発力を生起するようになっている(図7,8参照)。また、この操作部材3には、第2駆動部材5の後述する受け部5dに支持される一対の支軸3eが設けられている。   The lever portion 3a of the operating member 3 passes through the opening 1a of the frame body 1 and protrudes upward. The columnar portion 3b extending in the direction opposite to the lever portion 3a is inserted into the engagement hole 6a of the operating member 6 so as to advance and retract within the cavity of the housing. The operating member 6 is slidably mounted on the receiving surface 2a of the bottom plate member 2 and is engaged with the columnar portion 3b. When the lever portion 3a is tilted, a ring-shaped slide provided at the lower portion of the operating member 6 is provided. The contact portion 6b is inclined while sliding on the receiving surface 2a, so that the columnar portion 3b is inserted deeply into the engagement hole 6a. The operation member 3 is formed with a cylindrical portion 3c surrounding the columnar portion 3b, and a second coil spring 9 is disposed in an annular space 3d between the columnar portion 3b and the cylindrical portion 3c. One end of the second coil spring 9 is fixed by being press-fitted into the actuating member 6, but the other end is not restrained at least when not operated, and therefore the second coil spring 9 is not used when not operated. The load is maintained (see FIGS. 5 and 6). When the lever portion 3a is tilted by a predetermined angle, the columnar portion 3b is inserted deeply into the engagement hole 6a and the ceiling surface of the annular space 3d comes into contact with the second coil spring 9, so that the lever portion 3a is further tilted. The second coil spring 9 is compressed between the ceiling surface and the actuating member 6 to generate an elastic repulsive force (see FIGS. 7 and 8). Further, the operation member 3 is provided with a pair of support shafts 3e supported by a receiving portion 5d described later of the second drive member 5.

第1駆動部材4はアーチ状に成形された樹脂モールド品で、中央部に長孔4aを有して長手方向両端部に軸部4b,4cを突設している。長孔4aには操作部材3のレバー部3aが挿通されており、このレバー部3aを長孔4aに沿って傾倒させても第1駆動部材4が連動することはない。この第1駆動部材4は、一方の軸部4bが枠体1の軸孔1bに軸支され、他方の軸部4cが回転型可変抵抗器10の摺動子受け21に係止されているため、両軸部4b,4cを回転軸として第1駆動部材4は回動可能である。つまり、レバー部3aを図5の矢印P−P方向へ傾倒させることによって、第1駆動部材4がレバー部3aに駆動されて回転し、それに伴い摺動子受け21も回転するようになっている。後述するように摺動子受け21には摺動子22がかしめや接着等により固定されて保持されており、回転型可変抵抗器10内の基板23に設けられた抵抗体パターン(図示せず)に摺動子22が摺接しているため、第1駆動部材4に連動して摺動子受け21が回転すると、円弧状の抵抗体パターンに対する摺動子22の接触位置が変化する。それゆえ、回転型可変抵抗器10の出力抵抗値に基づいて第1駆動部材4の回転方向および回転量を検出できるようになっている。   The first drive member 4 is a resin molded product formed in an arch shape. The first drive member 4 has a long hole 4a at the center and has shafts 4b and 4c projecting at both ends in the longitudinal direction. The lever portion 3a of the operation member 3 is inserted into the long hole 4a. Even if the lever portion 3a is tilted along the long hole 4a, the first drive member 4 is not interlocked. In the first drive member 4, one shaft portion 4 b is pivotally supported in the shaft hole 1 b of the frame body 1, and the other shaft portion 4 c is locked to the slider receiver 21 of the rotary variable resistor 10. Therefore, the first drive member 4 is rotatable with both shaft portions 4b and 4c as the rotation shaft. That is, by tilting the lever portion 3a in the direction of the arrow PP in FIG. 5, the first drive member 4 is driven and rotated by the lever portion 3a, and the slider receiver 21 is also rotated accordingly. Yes. As will be described later, a slider 22 is fixed and held on the slider receiver 21 by caulking, bonding or the like, and a resistor pattern (not shown) provided on the substrate 23 in the rotary variable resistor 10. ), The contact position of the slider 22 with respect to the arc-shaped resistor pattern changes when the slider receiver 21 rotates in conjunction with the first drive member 4. Therefore, the rotation direction and the rotation amount of the first drive member 4 can be detected based on the output resistance value of the rotary variable resistor 10.

第2駆動部材5は樹脂モールド品で、中央部に角孔5aを有して長手方向両端部に軸部5b,5cを突設していると共に、環状に形成されて角孔5aを短手方向に挟んで対向する一対の受け部5dを有している。各受け部5dには操作部材3の支軸3eが回動自在に支承されており、レバー部3aを図6の紙面と直交する方向(図5の矢印P−P方向)へ傾倒させても第2駆動部材5が連動することはない。第2駆動部材5の一方の軸部5bは枠体1の半円形状の軸受部1cに軸支されており、他方の軸部5cは枠体1の軸孔1dを貫通して回転型可変抵抗器11の摺動子受け31に係止されているため、両軸部5b,5cを回転軸として第2駆動部材5は回動可能である。つまり、レバー部3aを図6の矢印Q−Q方向へ傾倒させることによって、第2駆動部材5がレバー部3aに駆動されて回転し、それに伴い摺動子受け31も回転するようになっている。後述するように摺動子受け31には摺動子32がかしめや接着等により固定されて保持されており、回転型可変抵抗器11内の基板33に設けられた抵抗体パターンに摺動子32が摺接しているため、第2駆動部材5に連動して摺動子受け31が回転すると、円弧状の抵抗体パターンに対する摺動子32の接触位置が変化する。それゆえ、回転型可変抵抗器11の出力抵抗値に基づいて第2駆動部材5の回転方向および回転量を検出できるようになっている。   The second drive member 5 is a resin molded product, and has a square hole 5a at the center and projecting shafts 5b and 5c at both ends in the longitudinal direction, and is formed in an annular shape so that the square hole 5a is short. It has a pair of receiving portions 5d facing each other across the direction. A support shaft 3e of the operation member 3 is rotatably supported on each receiving portion 5d, and the lever portion 3a can be tilted in a direction perpendicular to the paper surface of FIG. 6 (arrow P-P direction in FIG. 5). The second drive member 5 is not interlocked. One shaft portion 5b of the second drive member 5 is pivotally supported by a semicircular bearing portion 1c of the frame body 1, and the other shaft portion 5c passes through the shaft hole 1d of the frame body 1 so as to be rotatable. Since it is latched by the slider receiver 31 of the resistor 11, the 2nd drive member 5 can be rotated centering | focusing on both shaft parts 5b and 5c. That is, by tilting the lever portion 3a in the direction of the arrow QQ in FIG. 6, the second drive member 5 is driven and rotated by the lever portion 3a, and the slider receiver 31 is also rotated accordingly. Yes. As will be described later, a slider 32 is secured to the slider receiver 31 by caulking, bonding, or the like, and the slider is formed on the resistor pattern provided on the substrate 33 in the rotary variable resistor 11. Since 32 is in sliding contact, when the slider receiver 31 rotates in conjunction with the second drive member 5, the contact position of the slider 32 with respect to the arc-shaped resistor pattern changes. Therefore, the rotation direction and the rotation amount of the second drive member 5 can be detected based on the output resistance value of the rotary variable resistor 11.

円環状のばね受け部材7は底板部材2の溝部2bに対向して配置され、これらばね受け部材7と溝部2b間に第1コイルばね8が弾接状態で介設されている。この第1コイルばね8は操作部材3よりも大径で、傾動操作後に第1および第2駆動部材4,5を元の中立位置へ押し戻す復帰ばねとして動作する。   The annular spring receiving member 7 is disposed to face the groove 2b of the bottom plate member 2, and a first coil spring 8 is interposed between the spring receiving member 7 and the groove 2b in an elastic contact state. The first coil spring 8 has a larger diameter than the operation member 3, and operates as a return spring that pushes the first and second drive members 4, 5 back to the original neutral position after the tilting operation.

回転型可変抵抗器10は、枠体1に取り付けられるケース20と、抵抗体パターンおよび端子24を有してケース20に固定された基板23と、該抵抗体パターンに摺接する摺動子22を保持して回動可能な摺動子受け21と、この摺動子受け21の基板23側とは反対側の面に対向して配置されケース20に固定された板ばね25とを具備している。弾性を有する金属板からなる板ばね25は円弧状の弾性片25aを有し、この弾性片25aの所定位置(中央位置)に凸部25bが形成されている。また、摺動子受け21には、非円形状(矩形状)の孔を有すると共に基板23に軸支される円筒部21aと、凸部25bが係脱自在な凹部21bとが形成されており、第1駆動部材4の軸部4c(正確には、軸部4cの先端側の非円形状突部)が円筒部21aの非円形状の孔内に係止されて摺動子受け21と一体的に回転するようになっている。   The rotary variable resistor 10 includes a case 20 attached to the frame 1, a substrate 23 having a resistor pattern and a terminal 24 and fixed to the case 20, and a slider 22 that is in sliding contact with the resistor pattern. A slider receiver 21 that can be held and rotated, and a leaf spring 25 that is disposed opposite to the surface of the slider receiver 21 opposite to the substrate 23 and is fixed to the case 20 are provided. Yes. The plate spring 25 made of an elastic metal plate has an arc-shaped elastic piece 25a, and a convex portion 25b is formed at a predetermined position (center position) of the elastic piece 25a. The slider receiver 21 has a non-circular (rectangular) hole, a cylindrical portion 21a that is pivotally supported by the substrate 23, and a concave portion 21b in which the convex portion 25b can be freely engaged and disengaged. The shaft portion 4c of the first drive member 4 (more precisely, the non-circular protrusion on the tip end side of the shaft portion 4c) is locked in the non-circular hole of the cylindrical portion 21a, and the slider receiver 21 and It is designed to rotate integrally.

凸部25bと凹部21bは、第1駆動部材4を介して回転する摺動子受け21の基準位置(非操作時の回転位置)を高精度に規定するための回転位置補正手段を構成している。すなわち、凸部25bと凹部21bは非操作時に略対向するように設定されており、図32,33に示すように、両者25b,21bが略対向すると、凸部25bが凹部21b内に嵌入して基板23に対する摺動子受け21の回転位置が補正されるようになっている。   The convex portion 25b and the concave portion 21b constitute rotational position correcting means for defining the reference position (rotational position at the time of non-operation) of the slider receiver 21 that rotates via the first drive member 4 with high accuracy. Yes. That is, the convex portion 25b and the concave portion 21b are set so as to be substantially opposed to each other when not operated. As shown in FIGS. 32 and 33, when both the portions 25b and 21b are substantially opposed, the convex portion 25b is fitted into the concave portion 21b. Thus, the rotational position of the slider receiver 21 relative to the substrate 23 is corrected.

回転型可変抵抗器11は、上記の回転型可変抵抗器10と同様に、枠体1に取り付けられるケース30と、抵抗体パターンおよび端子34を有してケース30に固定された基板33と、該抵抗体パターンに摺接する摺動子32を保持して回動可能な摺動子受け31と、この摺動子受け31の基板33側とは反対側の面に対向して配置されケース30に固定された板ばね35とを具備している。弾性を有する金属板からなる板ばね35は円弧状の弾性片35aを有し、この弾性片35aの所定位置(中央位置)に凸部35bが形成されている。また、摺動子受け31には、非円形状(矩形状)の孔を有すると共に基板33に軸支される円筒部31aと、凸部35bが係脱自在な凹部31bとが形成されており、第2駆動部材5の軸部5c(正確には、軸部5cの先端側の非円形状突部)が円筒部31aの非円形状の孔内に係止されて摺動子受け31と一体的に回転するようになっている。   As with the rotary variable resistor 10 described above, the rotary variable resistor 11 includes a case 30 attached to the frame 1, a substrate 33 having a resistor pattern and a terminal 34 and fixed to the case 30, A case 30 is disposed so as to face a surface of the slider receiver 31 opposite to the substrate 33 side, and a slider receiver 31 that can rotate while holding a slider 32 that is in sliding contact with the resistor pattern. And a leaf spring 35 fixed to the head. The leaf spring 35 made of an elastic metal plate has an arc-shaped elastic piece 35a, and a convex portion 35b is formed at a predetermined position (center position) of the elastic piece 35a. The slider receiver 31 has a non-circular (rectangular) hole, a cylindrical portion 31a that is pivotally supported by the substrate 33, and a concave portion 31b in which the convex portion 35b can be freely engaged and disengaged. The shaft portion 5c of the second drive member 5 (more precisely, the non-circular protrusion on the tip side of the shaft portion 5c) is locked in the non-circular hole of the cylindrical portion 31a, and the slider receiver 31 and It is designed to rotate integrally.

凸部35bと凹部31bは、第2駆動部材5を介して回転する摺動子受け31の基準位置(非操作時の回転位置)を高精度に規定するための回転位置補正手段を構成している。すなわち、凸部35bと凹部31bは非操作時に略対向するように設定されており、両者35b,31bが略対向すると、凸部35bが凹部31b内に嵌入して基板33に対する摺動子受け31の回転位置が補正されるようになっている。   The convex portion 35b and the concave portion 31b constitute rotational position correcting means for defining the reference position (rotational position at the time of non-operation) of the slider receiver 31 that rotates via the second drive member 5 with high accuracy. Yes. That is, the convex portion 35b and the concave portion 31b are set so as to be substantially opposed to each other when not operated. When both the portions 35b and 31b are substantially opposed, the convex portion 35b is fitted into the concave portion 31b and the slider receiver 31 for the substrate 33 is provided. The rotation position is corrected.

押釦スイッチ12は昇降可能なステム部12aを有し、スナップ係合等によって底板部材2の延出部2cに取り付けられている。ステム部12a上には第2駆動部材5の軸部5bが搭載されており、後述するようにレバー部3aがプッシュ操作されると、軸部5bがステム部12aを押下して押釦スイッチ12の接点切替が行えるようになっている。   The push button switch 12 has a stem portion 12a that can be raised and lowered, and is attached to the extending portion 2c of the bottom plate member 2 by snap engagement or the like. A shaft portion 5b of the second drive member 5 is mounted on the stem portion 12a. When the lever portion 3a is pushed as will be described later, the shaft portion 5b pushes the stem portion 12a and pushes the push button switch 12. The contact can be switched.

次に、本実施形態例に係る多方向入力装置の動作について説明する。まず、レバー部3aに操作力が加わっていない非操作時には、図5,6に示すように、第1コイルばね8がばね受け部材7を介して第1および第2駆動部材4,5を図示上方へ弾性付勢しているため、両駆動部材4,5がそれぞれ中立位置に保持されていると共に、両駆動部材4,5に位置規制されて操作部材3が起立姿勢(中立位置)に保持されており、よって受け面2a上の作動部材6も起立姿勢に保持されている。また、第1および第2駆動部材4,5が中立位置に保持されているため、各軸部4c,5cに連結されている回転型可変抵抗器10,11の摺動子受け21,31もそれぞれ基準位置(非操作時の回転位置)に保持されている。しかも、本実施形態例では、この基準位置の精度が板ばね25,35を用いた前記回転位置補正手段によって極めて高くなっている。   Next, the operation of the multidirectional input device according to this embodiment will be described. First, when the operating force is not applied to the lever portion 3a, the first coil spring 8 shows the first and second drive members 4 and 5 via the spring receiving member 7 as shown in FIGS. Since both the drive members 4 and 5 are held in the neutral position because they are elastically biased upward, the operation member 3 is held in the standing posture (neutral position) while being regulated by the drive members 4 and 5. Therefore, the operating member 6 on the receiving surface 2a is also held in the standing posture. Further, since the first and second drive members 4 and 5 are held at the neutral positions, the slider receivers 21 and 31 of the rotary variable resistors 10 and 11 connected to the shaft portions 4c and 5c are also provided. Each is held at a reference position (rotational position when not operated). In addition, in this embodiment, the accuracy of the reference position is extremely high by the rotational position correcting means using the leaf springs 25 and 35.

すなわち、各駆動部材4,5の軸部4c,5cと摺動子受け21,31との間には組立性に配慮して僅かなガタが見込まれており、このガタ分だけ摺動子受け21,31の基準位置がばらつく可能性があるため、本実施形態例では、板ばね25,35の凸部25b,35bが非操作時に摺動子受け21,31の凹部21b,31bと略対向するように設定しておき、これら凸部25b,35bを略対向する凹部21b,31b内へ自動的に嵌入させることで摺動子受け21,31の回転位置が補正できるようにしてある。具体的には、図33に示す凹部21b(31b)の幅寸法wを、摺動子受け21(31)の基準位置のばらつきが吸収できる大きさに設定し、この凹部21b(31b)に対して係脱自在となるように凸部25b(35b)を滑らかな湾曲形状とする。これにより、図33に鎖線で示すように、凸部25b(35b)と凹部21b(31b)が互いの中心を若干ずらして対向したとしても、図示下向きに弾性付勢される凸部25b(35b)が摺動子受け21(31)を僅かに回転させて自動的に凹部21b(31b)と嵌合し、図33に実線で示す安定した状態に移行する。したがって、非操作時に、基板23,33に対する摺動子受け21,31の回転位置を精度よく規定できるようになっている。なお、凸部25b(35b)が嵌合する凹部21b(31b)の対向する角部は湾曲形状をした案内面となっており、この案内面が凸部25b(35b)に案内されることにより、摺動子受け21(31)の回転位置補正がより確実に行われるようにしている(図33参照)。   That is, slight backlash is expected between the shaft portions 4c and 5c of the drive members 4 and 5 and the slider receivers 21 and 31 in consideration of assemblability. Since the reference positions of 21 and 31 may vary, in this embodiment, the convex portions 25b and 35b of the leaf springs 25 and 35 are substantially opposed to the concave portions 21b and 31b of the slider receivers 21 and 31 when not operated. The rotational positions of the slider receivers 21 and 31 can be corrected by automatically fitting these convex portions 25b and 35b into the substantially opposed concave portions 21b and 31b. Specifically, the width w of the recess 21b (31b) shown in FIG. 33 is set to a size that can absorb the variation in the reference position of the slider receiver 21 (31), and the recess 21b (31b) Thus, the convex portion 25b (35b) is formed into a smooth curved shape so that it can be freely engaged and disengaged. Accordingly, as shown by a chain line in FIG. 33, even if the convex portion 25b (35b) and the concave portion 21b (31b) face each other with their centers slightly shifted from each other, the convex portion 25b (35b) that is elastically biased downward in the drawing. ) Slightly rotates the slider receiver 21 (31) and automatically engages with the recess 21b (31b), and shifts to a stable state shown by a solid line in FIG. Therefore, the rotational positions of the slider receivers 21 and 31 with respect to the substrates 23 and 33 can be accurately defined when not operated. In addition, the corner | angular part which the recessed part 21b (31b) into which the convex part 25b (35b) fits becomes a curved guide surface, and this guide surface is guided by the convex part 25b (35b). The rotational position of the slider receiver 21 (31) is corrected more reliably (see FIG. 33).

次に、中立位置に起立しているレバー部3aを図6の矢印Q−Q方向(図4の上下方向)へ傾倒させた場合の動作について説明する。かかる傾動操作において、レバー部3aを中立位置から傾倒させていくと第1コイルばね8が次第に圧縮されていくので、レバー部3aの傾倒に必要な作動力は次第に増大していき、かつレバー部3aの傾倒に伴い作動部材6が受け面2a上を摺動しながら一体的に傾倒していく。ただし、レバー部3aが図8に示す所定の傾倒角度に到達するまでは、環状空間3d内の第2コイルばね9が無負荷状態に保たれており、作動力は第1コイルばね8の圧縮量に応じて変化していくため、操作感触が急に変わるということはない。そして、レバー部3aの傾倒角度がこの所定角度を越えると、第2コイルばね9が環状空間3dの天井面と作動部材6とに挟圧される圧縮状態となって弾性反発力を生起するため、作動力が明確に変化する。つまり、レバー部3aを図8に示す所定角度以上傾倒させると、作動力は第1および第2コイルばね8,9の圧縮量に応じて変化するようになるため、それまでとは操作感触が異なる。よって操作者は、レバー部3aを所定角度傾倒させたか否かを操作感触の相違によって感得することができる。   Next, the operation when the lever portion 3a standing at the neutral position is tilted in the direction of arrows QQ in FIG. 6 (vertical direction in FIG. 4) will be described. In this tilting operation, when the lever portion 3a is tilted from the neutral position, the first coil spring 8 is gradually compressed, so that the operating force necessary for tilting the lever portion 3a gradually increases, and the lever portion. With the tilt of 3a, the actuating member 6 tilts integrally while sliding on the receiving surface 2a. However, until the lever portion 3a reaches the predetermined tilt angle shown in FIG. 8, the second coil spring 9 in the annular space 3d is kept in an unloaded state, and the operating force is compressed by the first coil spring 8. Since it changes according to the amount, the operation feeling does not change suddenly. When the tilt angle of the lever portion 3a exceeds the predetermined angle, the second coil spring 9 enters a compressed state sandwiched between the ceiling surface of the annular space 3d and the operating member 6 to generate an elastic repulsion force. The operating force changes clearly. That is, if the lever portion 3a is tilted by a predetermined angle or more shown in FIG. 8, the operating force changes according to the compression amount of the first and second coil springs 8 and 9, so that the operation feeling is not until then. Different. Therefore, the operator can feel whether or not the lever portion 3a is tilted by a predetermined angle based on the difference in operation feeling.

また、図9,10に示すようにレバー部3aを大きく傾倒させると、第1コイルばね8が大きく圧縮されるため、作動力は顕著に増大するが、作動部材6が受け面2a上を摺動するため、第2コイルばね9が大きく圧縮されることはない。したがって、レバー部3aを作動力が明確に変化する所定角度以上傾倒させた後も、傾倒角度に応じて作動力を漸次増大させることができると共に、傾動操作時に作動部材6を受け面2a上で円滑に摺動させることができる。なお、レバー部3aを傾倒末端近傍まで傾倒させると、作動部材6の摺接部6bが受け面2aの隆起部2dに乗り上げるようになっており、その際には、第2コイルばね9がそれまでより(乗り上げる前より)大きく圧縮される。   Also, as shown in FIGS. 9 and 10, when the lever portion 3a is tilted greatly, the first coil spring 8 is greatly compressed, so that the operating force increases remarkably, but the operating member 6 slides on the receiving surface 2a. Therefore, the second coil spring 9 is not greatly compressed. Therefore, even after the lever portion 3a is tilted more than a predetermined angle at which the operating force clearly changes, the operating force can be gradually increased according to the tilt angle, and the operating member 6 is received on the receiving surface 2a during the tilting operation. Smooth sliding is possible. When the lever portion 3a is tilted to the vicinity of the tilted end, the sliding contact portion 6b of the actuating member 6 rides on the raised portion 2d of the receiving surface 2a. In this case, the second coil spring 9 It is compressed more than before (before getting on).

こうしてレバー部3aを図6の矢印Q−Q方向へ傾倒させると、操作部材3の支軸3eに駆動される第2駆動部材5が軸部5b,5cを回転軸として回転するため、軸部5cに連結されている摺動子受け31が一体的に回転し、基板33の抵抗体パターンに対する摺動子32の接触位置が変化する。そのため、回転型可変抵抗器11の出力抵抗値に基づいて第2駆動部材5の回転方向および回転量を検出することができる。   When the lever portion 3a is tilted in the direction of the arrow QQ in FIG. 6, the second drive member 5 driven by the support shaft 3e of the operation member 3 rotates about the shaft portions 5b and 5c. The slider receiver 31 connected to 5c rotates integrally, and the contact position of the slider 32 with respect to the resistor pattern of the board | substrate 33 changes. Therefore, the rotation direction and the rotation amount of the second drive member 5 can be detected based on the output resistance value of the rotary variable resistor 11.

また、中立位置に起立しているレバー部3aを図5の矢印P−P方向(図4の左右方向)へ傾倒させた場合には、長孔4a内のレバー部3aに駆動されて第1駆動部材4が軸部4b,4cを回転軸として回転するが、この場合も、レバー部3aを傾倒させていくと第1コイルばね8が次第に圧縮されていき、かつレバー部3aを所定角度以上傾倒させると第2コイルばね9が圧縮状態となるため、作動力の変化の仕方は前記傾動操作時(レバー部3aを図6の矢印Q−Q方向へ傾倒させる操作時)と同様である。そして、レバー部3aに駆動されて第1駆動部材4が回転すると、軸部4cに連結されている摺動子受け21が一体的に回転し、基板23の抵抗体パターンに対する摺動子22の接触位置が変化するため、回転型可変抵抗器10の出力抵抗値に基づいて第1駆動部材4の回転方向および回転量を検出することができる。つまり、この多方向入力装置は、レバー部3aを傾倒させると第1駆動部材4や第2駆動部材5が回転駆動され、それに伴い回転型可変抵抗器10,11の摺動子受け21,31が連動して回転するようになっているため、レバー部3aの傾倒方向や傾倒角度に応じた信号が得られるようになっている。   Further, when the lever portion 3a standing at the neutral position is tilted in the direction of the arrow PP in FIG. 5 (the left-right direction in FIG. 4), the first lever is driven by the lever portion 3a in the long hole 4a. The drive member 4 rotates about the shafts 4b and 4c as the rotation shafts. In this case as well, when the lever 3a is tilted, the first coil spring 8 is gradually compressed and the lever 3a is moved beyond a predetermined angle. Since the second coil spring 9 is compressed when tilted, the operating force is changed in the same manner as in the tilting operation (when the lever 3a is tilted in the direction of arrows QQ in FIG. 6). When the first drive member 4 is rotated by being driven by the lever portion 3a, the slider receiver 21 connected to the shaft portion 4c is rotated integrally, and the slider 22 with respect to the resistor pattern of the substrate 23 is rotated. Since the contact position changes, the rotation direction and the rotation amount of the first drive member 4 can be detected based on the output resistance value of the rotary variable resistor 10. That is, in this multidirectional input device, when the lever portion 3a is tilted, the first drive member 4 and the second drive member 5 are rotationally driven, and accordingly the slider receivers 21 and 31 of the rotary variable resistors 10 and 11 are driven. Are rotated in conjunction with each other, so that a signal corresponding to the tilt direction and tilt angle of the lever portion 3a can be obtained.

また、この多方向入力装置は、傾動操作後に操作力を除去すると圧縮状態の第1コイルばね8の弾性反発力によって第1駆動部材4や第2駆動部材5がその中立位置まで押し戻されるため、これら駆動部材4,5や圧縮状態の第2コイルばね9に駆動されて操作部材3も中立位置へ復帰し、図4〜図6に示す非操作時の状態に戻る。ただし、第2コイルばね9はレバー部3aが起立姿勢に戻る前に無負荷状態に復元するため、第2コイルばね9に操作部材3を中立位置まで戻す働きはない。そして、かかる駆動部材4,5の復帰動作に伴い、軸部4c,5cに連結されている摺動子受け21,31が操作時とは逆向きに回転駆動されて基準位置(非操作時の回転位置)へ復帰するため、回転型可変抵抗器10,11の出力抵抗値は非操作時に設定されているレベルに戻る。   Further, in this multidirectional input device, when the operation force is removed after the tilting operation, the first drive member 4 and the second drive member 5 are pushed back to the neutral position by the elastic repulsive force of the compressed first coil spring 8. Driven by these driving members 4 and 5 and the compressed second coil spring 9, the operating member 3 also returns to the neutral position, and returns to the non-operating state shown in FIGS. However, since the second coil spring 9 is restored to the no-load state before the lever portion 3a returns to the standing posture, the second coil spring 9 does not return the operating member 3 to the neutral position. As the driving members 4 and 5 return, the slider receivers 21 and 31 connected to the shafts 4c and 5c are rotated in the opposite direction to those at the time of operation, and the reference position (when not operated) is reached. In order to return to the rotational position, the output resistance values of the rotary variable resistors 10 and 11 return to the level set during non-operation.

なお、第1駆動部材4や第2駆動部材5がその中立位置へ復帰しても、回転型可変抵抗器10,11側において板ばね25,35の凸部25b,35bが摺動子受け21,31の凹部21b,31bと完全に対向するとは限らない。つまり、各駆動部材4,5と回転型可変抵抗器10,11との連結部分に存するガタ等の影響により、傾動操作後の復帰動作で摺動子受け21,31が元の回転位置から若干ずれてしまう可能性がある。しかし本実施形態例では、図33に示す凹部21b(31b)の幅寸法wが摺動子受け21(31)の基準位置のばらつきを吸収できる大きさに設定されており、非操作時に凸部25b(35b)の先端部が必ず凹部21b(31b)とオーバーラップする範囲内に配置されるように設定してあるため、凹部21b,31bと略対向した凸部25b,35bが摺動子受け21,31を僅かに回転させて自動的に該凹部21b,31b内へ嵌入し、それゆえ摺動子受け21,31が復帰する回転位置を常に高精度に規定できるようになっている。   Even when the first drive member 4 and the second drive member 5 return to their neutral positions, the convex portions 25b and 35b of the leaf springs 25 and 35 on the rotary variable resistor 10 and 11 side are the slider receiver 21. , 31 are not necessarily completely opposed to the recesses 21b, 31b. That is, the slider receivers 21 and 31 are slightly moved from the original rotational positions in the return operation after the tilting operation due to the influence of the play or the like existing in the connecting portion between the drive members 4 and 5 and the rotary variable resistors 10 and 11. There is a possibility of shifting. However, in this embodiment, the width w of the recess 21b (31b) shown in FIG. 33 is set to a size that can absorb the variation in the reference position of the slider receiver 21 (31). Since the tip of 25b (35b) is set so as to be surely disposed within the range overlapping with the recess 21b (31b), the protrusions 25b and 35b substantially opposed to the recesses 21b and 31b The rotary positions 21 and 31 are automatically inserted into the recesses 21b and 31b by slightly rotating them, so that the rotational position at which the slider receivers 21 and 31 are restored can always be defined with high accuracy.

次に、レバー部3aを押下させるプッシュ操作時の動作について説明する。例えば図5に示すようにレバー部3aが中立位置に起立しているとき、このレバー部3aを操作者が図示下方へ押し込むと、支軸3eを介して第2駆動部材5の受け部5dに押圧荷重が加わるため、軸孔1d内の軸部5cを支点として第2駆動部材5が図5の反時計回りに回転する。そのため、第2駆動部材5の軸部5bがステム部12aを押下して押釦スイッチ12の接点切替が行える。ただし、かかるプッシュ操作は、レバー部3aを傾倒させている傾動操作時にも行うことができる。   Next, an operation at the time of a push operation for pressing the lever portion 3a will be described. For example, as shown in FIG. 5, when the lever portion 3a stands in the neutral position, when the operator pushes the lever portion 3a downward in the figure, the lever portion 3a is moved to the receiving portion 5d of the second drive member 5 via the support shaft 3e. Since a pressing load is applied, the second drive member 5 rotates counterclockwise in FIG. 5 with the shaft portion 5c in the shaft hole 1d as a fulcrum. Therefore, the shaft portion 5b of the second driving member 5 can press the stem portion 12a to switch the contact point of the push button switch 12. However, such a push operation can also be performed during a tilting operation in which the lever portion 3a is tilted.

以上説明したように本実施形態例に係る多方向入力装置は、第1および第2駆動部材4,5を常時弾性付勢する第1コイルばね8が両駆動部材4,5と底板部材2との間に組み込んであると共に、非操作時に無負荷状態となる第2コイルばね9が操作部材3と作動部材6との間に組み込んであるため、作動部材6を底板部材2の受け面2a上で円滑に摺動させながら、レバー部3aの傾倒角度に応じて作動力を増大させることができると共に、レバー部3aを所定角度以上傾倒させたときに第2コイルばね9が圧縮されて弾性反発力を生起することから、作動力が明確に変化する所定の傾倒角度を手指で感得しやすくなっている。したがって、この多方向入力装置は、傾動操作時の作動力の変化によって操作量(レバー部3aの傾倒角度)を容易に把握することができる。また、傾動操作後に操作力が除去されると、操作部材3によって回転駆動された第1駆動部材4や第2駆動部材5が第1コイルばね8に弾性付勢されて中立位置へ復帰するので、これら第1および第2駆動部材4,5を非操作時にガタのない状態に保持することができ、それゆえ各駆動部材4,5に連動して回転する回転型可変抵抗器10,11の摺動子受け21,31を基準位置(非操作時の回転位置)へ精度よく復帰させることができて、高精度な検出が行えるようになっている。   As described above, in the multidirectional input device according to this embodiment, the first coil spring 8 that constantly elastically biases the first and second drive members 4, 5 includes the drive members 4, 5, the bottom plate member 2, and the like. Since the second coil spring 9 which is incorporated between the operating member 3 and the operating member 6 is incorporated between the operating member 3 and the operating member 6, the operating member 6 is mounted on the receiving surface 2 a of the bottom plate member 2. The operating force can be increased in accordance with the tilt angle of the lever portion 3a while sliding smoothly, and the second coil spring 9 is compressed and elastically repelled when the lever portion 3a is tilted over a predetermined angle. Since the force is generated, it is easy to sense a predetermined tilt angle at which the operating force clearly changes with fingers. Therefore, this multidirectional input device can easily grasp the operation amount (the tilt angle of the lever portion 3a) by the change in the operating force during the tilt operation. When the operating force is removed after the tilting operation, the first driving member 4 and the second driving member 5 that are rotationally driven by the operating member 3 are elastically biased by the first coil spring 8 and return to the neutral position. The first and second drive members 4 and 5 can be held in a non-playing state when not operated, and therefore the rotary variable resistors 10 and 11 that rotate in conjunction with the drive members 4 and 5 are provided. The slider receivers 21 and 31 can be accurately returned to the reference position (rotation position when not being operated) so that highly accurate detection can be performed.

また、この多方向入力装置では、各駆動部材4,5と回転型可変抵抗器10,11との連結部分、つまり軸部4c,5cと摺動子受け21,31との連結部分に存するガタ等の影響により、傾動操作後の復帰動作で摺動子受け21,31が元の回転位置から若干ずれたとしても、非操作時には板ばね25,35の凸部25b,35bと摺動子受け21,31の凹部21b,31bとが略対向するように設定してあり、かつ凸部25b,35bと凹部21b,31bは略対向すると自動的に嵌合状態へ移行して摺動子受け21,31の回転位置が補正されるようにしてある。したがって、傾動操作後に摺動子受け21,31が復帰する回転位置はほとんどばらつかず、こうして非操作時の摺動子受け21,31の回転位置を高精度に規定できることから、この多方向入力装置は極めて高精度な検出が可能である。   Further, in this multi-directional input device, there is a backlash that exists in the connecting portion between the drive members 4 and 5 and the rotary variable resistors 10 and 11, that is, in the connecting portion between the shaft portions 4c and 5c and the slider receivers 21 and 31. Even if the slider receivers 21 and 31 are slightly deviated from their original rotational positions in the return operation after the tilting operation due to the influences of the above, the convex portions 25b and 35b of the leaf springs 25 and 35 and the slider receivers are not operated. 21 and 31 are set so as to be substantially opposed to the concave portions 21b and 31b, and when the convex portions 25b and 35b and the concave portions 21b and 31b are substantially opposed to each other, the state is automatically shifted to the fitted state. , 31 are corrected. Accordingly, the rotational position at which the slider receivers 21 and 31 return after the tilting operation hardly varies, and thus the rotational position of the slider receivers 21 and 31 when not operated can be defined with high accuracy. The device can detect with extremely high accuracy.

なお、本実施形態例では板ばね25,35に設けた凸部25b,35bを摺動子受け21,31の凹部21b,31bに嵌入させるという回転位置補正手段を採用しているため、構造が複雑化せず部品点数も抑えられている。ただし、他の構造の回転位置補正手段を採用してもよく、例えば、摺動子22,32の一部に設けた凸部を基板23,33の一部に設けた凹部に嵌入させることによって摺動子受け21,31の基準位置を補正することも可能である。   In the present embodiment, the rotational position correcting means is used in which the convex portions 25b and 35b provided on the leaf springs 25 and 35 are fitted into the concave portions 21b and 31b of the slider receivers 21 and 31, respectively. It is not complicated and the number of parts is reduced. However, rotational position correction means having other structures may be employed, for example, by inserting a convex portion provided in a part of the sliders 22 and 32 into a concave portion provided in a part of the substrates 23 and 33. It is also possible to correct the reference positions of the slider receivers 21 and 31.

また、本実施形態例では、操作部材3よりも大径な第1コイルばね8と第1および第2駆動部材4,5との間に円環状のばね受け部材7が介設してあるため、傾動操作時に第1コイルばね8の生起する弾性反発力がレバー部3aの傾倒方向によってばらつかず、良好な操作感触を期待できるとともに、組立作業性が良好となる。しかも、作動部材6を搭載している底板部材2の受け面2aの周囲に円環状の溝部2bを設け、この溝部2bとばね受け部材7とによって第1コイルばね8の両端部を保持しているため、第1コイルばね8の位置ずれを確実に防止できる。   In this embodiment, an annular spring receiving member 7 is interposed between the first coil spring 8 having a larger diameter than the operation member 3 and the first and second drive members 4 and 5. The elastic repulsive force generated by the first coil spring 8 during the tilting operation does not vary depending on the tilting direction of the lever portion 3a, so that a good operation feeling can be expected and the assembling workability is improved. In addition, an annular groove 2b is provided around the receiving surface 2a of the bottom plate member 2 on which the operating member 6 is mounted, and both ends of the first coil spring 8 are held by the groove 2b and the spring receiving member 7. Therefore, it is possible to reliably prevent displacement of the first coil spring 8.

また、本実施形態例では、作動力を明確に変化させるための第2コイルばね9を、操作部材3の柱状部3bと筒状部3cとの間の環状空間3dを利用して無理なく組み込むことができると共に、この第2コイルばね9の一端部を作動部材6側(操作部材3側であってもよい)に固定しているため、非操作時に無負荷状態となる第2コイルばね9をガタつきの虞なく支持することができる。ただし、第2コイルばね9と同様に機能する例えばエラストマー等の弾性部材を、操作部材3と作動部材6との間に組み込んでもよい。   Further, in the present embodiment, the second coil spring 9 for clearly changing the operating force is incorporated without difficulty using the annular space 3d between the columnar portion 3b and the cylindrical portion 3c of the operation member 3. In addition, since the one end portion of the second coil spring 9 is fixed to the operating member 6 side (may be the operating member 3 side), the second coil spring 9 that is in a no-load state when not operated. Can be supported without the risk of rattling. However, an elastic member such as an elastomer that functions similarly to the second coil spring 9 may be incorporated between the operation member 3 and the operation member 6.

本発明の実施形態例に係る多方向入力装置の外観図である。1 is an external view of a multidirectional input device according to an embodiment of the present invention. 該多方向入力装置のハウジング内の構造を示す分解斜視図である。It is a disassembled perspective view which shows the structure in the housing of this multidirectional input device. 該多方向入力装置の回転型可変抵抗器の構造を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the rotation type variable resistor of this multidirectional input device. 該多方向入力装置の非操作時の平面図である。It is a top view at the time of non-operation of this multidirectional input device. 図4のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 図4のB−B線に沿う断面図である。It is sectional drawing which follows the BB line of FIG. 該多方向入力装置のレバー部を傾倒させて操作感触が変化する直前の状態を示す平面図である。It is a top view which shows the state immediately before tilting the lever part of this multidirectional input device, and an operation feeling changes. 図7のC−C線に沿う断面図である。It is sectional drawing which follows the CC line of FIG. 該多方向入力装置のレバー部を図7とは逆向きに傾倒させた状態を示す平面図である。It is a top view which shows the state which inclined the lever part of this multidirectional input device in the reverse direction to FIG. 図9のD−D線に沿う断面図である。It is sectional drawing which follows the DD line | wire of FIG. 該多方向入力装置に用いられた第1駆動部材の斜視図である。It is a perspective view of the 1st drive member used for this multidirectional input device. 該第1駆動部材の平面図である。It is a top view of this 1st drive member. 該第1駆動部材を短手方向一端側から見た側面図である。It is the side view which looked at this 1st drive member from the transversal direction one end side. 該第1駆動部材を長手方向一端側から見た側面図である。It is the side view which looked at this 1st drive member from the longitudinal direction one end side. 該第1駆動部材を長手方向他端側から見た側面図である。It is the side view which looked at this 1st drive member from the longitudinal direction other end side. 該多方向入力装置に用いられる第2駆動部材の斜視図である。It is a perspective view of the 2nd drive member used for this multidirectional input device. 該第2駆動部材の平面図である。It is a top view of this 2nd drive member. 該第2駆動部材を短手方向一端側から見た側面図である。It is the side view which looked at this 2nd drive member from the transversal direction one end side. 該第2駆動部材を長手方向一端側から見た側面図である。It is the side view which looked at this 2nd drive member from the longitudinal direction one end side. 該第2駆動部材を長手方向他端側から見た側面図である。It is the side view which looked at this 2nd drive member from the longitudinal direction other end side. 該多方向入力装置に用いられる操作部材の斜視図である。It is a perspective view of the operation member used for this multidirectional input device. 該操作部材の平面図である。It is a top view of this operation member. 図22のE−E線に沿う断面図である。It is sectional drawing which follows the EE line | wire of FIG. 該操作部材の側面図である。It is a side view of this operation member. 該操作部材の底面図である。It is a bottom view of the operation member. 該多方向入力装置に用いられる板ばねの斜視図である。It is a perspective view of the leaf | plate spring used for this multidirectional input device. 該板ばねの正面図である。It is a front view of this leaf | plate spring. 該板ばねの側面図である。It is a side view of this leaf | plate spring. 該多方向入力装置に用いられる摺動子受けの斜視図である。It is a perspective view of the slider receiver used for this multidirectional input device. 該摺動子受けの正面図である。It is a front view of this slider receiver. 該摺動子受けの側面図である。It is a side view of this slider receiver. 該摺動子受けの非操作時の回転位置を示す説明図である。It is explanatory drawing which shows the rotational position at the time of this non-operation of this slider receiver. 図32のF−F線に沿う断面図である。It is sectional drawing which follows the FF line | wire of FIG. 従来例に係る多方向入力装置の非操作時の断面図である。It is sectional drawing at the time of the non-operation of the multidirectional input device which concerns on a prior art example. 図34に示す従来例の傾動操作時の断面図である。It is sectional drawing at the time of tilting operation of the prior art example shown in FIG. 他の従来例に係る多方向入力装置の要部断面図である。It is principal part sectional drawing of the multidirectional input device which concerns on another prior art example.

符号の説明Explanation of symbols

1 枠体(ハウジング)
2 底板部材(ハウジング)
2a 受け面
3 操作部材
3a レバー部
3b 柱状部
3c 筒状部
3d 環状空間
4 第1駆動部材
5 第2駆動部材
6 作動部材
6a 係合穴
7 ばね受け部材
8 第1コイルばね(復帰ばね)
9 第2コイルばね(弾性部材)
10,11 回転型可変抵抗器(回転検出手段)
21,31 摺動子受け
23,33 基板
1 Frame (housing)
2 Bottom plate member (housing)
2a receiving surface 3 operation member 3a lever portion 3b columnar portion 3c cylindrical portion 3d annular space 4 first drive member 5 second drive member 6 actuating member 6a engagement hole 7 spring receiving member 8 first coil spring (return spring)
9 Second coil spring (elastic member)
10,11 Rotation type variable resistor (rotation detection means)
21, 31 Slider receiver 23, 33 Substrate

Claims (5)

ハウジングと、このハウジングから外方へ突出するレバー部を有して傾動操作可能な操作部材と、前記ハウジングに軸線方向を互いに直交した状態で軸支されていると共に、傾動操作時の前記操作部材によって回転駆動される第1駆動部材および第2駆動部材と、前記ハウジングの内底面に摺動可能に搭載されていると共に、前記操作部材の前記レバー部側とは反対側の端部に係合可能に挿通された作動部材と、この作動部材と前記操作部材との間に組み込まれて非操作時には無負荷状態の弾性部材と、前記ハウジングと前記第1および第2駆動部材との間に組み込まれて両駆動部材を常時弾性付勢する復帰ばねと、前記第1および第2駆動部材の回転位置を個別に検出する一対の回転検出手段とを備え、
前記復帰ばねの付勢力に抗して前記レバー部を所定角度以上傾倒させることによって、前記弾性部材が前記操作部材と前記作動部材とに挟圧されて弾性反発力を生起するように構成したことを特徴とする多方向入力装置。
A housing, an operation member that has a lever portion that protrudes outward from the housing and can be tilted, and is supported by the housing in an axial direction orthogonal to each other, and the operation member at the time of tilting operation The first drive member and the second drive member that are rotationally driven by the actuator, and are slidably mounted on the inner bottom surface of the housing, and are engaged with the end portion of the operation member opposite to the lever portion side. An actuating member inserted in a possible manner, an elastic member which is incorporated between the actuating member and the operating member and is not loaded when not operated, and is incorporated between the housing and the first and second driving members. A return spring that constantly elastically biases both drive members, and a pair of rotation detection means that individually detect the rotation positions of the first and second drive members,
The elastic member is sandwiched between the operating member and the actuating member to generate an elastic repulsive force by tilting the lever portion over a predetermined angle against the urging force of the return spring. A multi-directional input device.
請求項1の記載において、前記復帰ばねが前記操作部材よりも大径なコイルばねであり、このコイルばねと前記第1および第2駆動部材との間に円環状のばね受け部材が介設されていることを特徴とする多方向入力装置。   2. The return spring according to claim 1, wherein the return spring is a coil spring having a larger diameter than the operation member, and an annular spring receiving member is interposed between the coil spring and the first and second drive members. A multi-directional input device. 請求項2の記載において、前記ハウジングの内底面の周囲に円環状の溝部を設け、前記コイルばねの前記ばね受け部材側とは反対側の端部を前記溝部内に配置させたことを特徴とする多方向入力装置。   The annular groove portion is provided around the inner bottom surface of the housing according to claim 2, and an end portion of the coil spring opposite to the spring receiving member side is disposed in the groove portion. Multidirectional input device. 請求項1〜3のいずれか1項の記載において、前記操作部材に、前記レバー部とは逆向きに突出する柱状部と、この柱状部を包囲する筒状部とを設けると共に、前記作動部材に前記柱状部が進出後退可能に挿入される係合穴を設けたことを特徴とする多方向入力装置。   The operation member according to any one of claims 1 to 3, wherein the operating member is provided with a columnar portion protruding in a direction opposite to the lever portion and a cylindrical portion surrounding the columnar portion. The multi-directional input device is provided with an engagement hole into which the columnar portion is inserted so as to be able to advance and retract. 請求項4の記載において、前記弾性部材が前記柱状部と前記筒状部との間の環状空間に配置されるコイルばねであって、このコイルばねの一端部が前記作動部材または前記操作部材に固定されていることを特徴とする多方向入力装置。   5. The coil spring according to claim 4, wherein the elastic member is disposed in an annular space between the columnar portion and the cylindrical portion, and one end portion of the coil spring is connected to the operation member or the operation member. A multidirectional input device characterized by being fixed.
JP2007169337A 2007-06-27 2007-06-27 Multi-directional input device Active JP4772755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007169337A JP4772755B2 (en) 2007-06-27 2007-06-27 Multi-directional input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007169337A JP4772755B2 (en) 2007-06-27 2007-06-27 Multi-directional input device

Publications (2)

Publication Number Publication Date
JP2009009798A true JP2009009798A (en) 2009-01-15
JP4772755B2 JP4772755B2 (en) 2011-09-14

Family

ID=40324689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007169337A Active JP4772755B2 (en) 2007-06-27 2007-06-27 Multi-directional input device

Country Status (1)

Country Link
JP (1) JP4772755B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103000434A (en) * 2011-09-15 2013-03-27 阿尔卑斯电气株式会社 Multi-directional input device
JP2013242972A (en) * 2012-05-17 2013-12-05 Alps Electric Co Ltd Multidirectional input device
JP2016027577A (en) * 2015-09-18 2016-02-18 アルプス電気株式会社 Multidirectional input device
US10513183B2 (en) 2016-12-16 2019-12-24 Denso International America, Inc. Tilt and turn dial

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103000434A (en) * 2011-09-15 2013-03-27 阿尔卑斯电气株式会社 Multi-directional input device
JP2013242972A (en) * 2012-05-17 2013-12-05 Alps Electric Co Ltd Multidirectional input device
JP2016027577A (en) * 2015-09-18 2016-02-18 アルプス電気株式会社 Multidirectional input device
US10513183B2 (en) 2016-12-16 2019-12-24 Denso International America, Inc. Tilt and turn dial

Also Published As

Publication number Publication date
JP4772755B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
US8039767B2 (en) Compound operation input device
JP6410358B2 (en) Rotating switch device
KR101149805B1 (en) Multidirectional input device
JP4772755B2 (en) Multi-directional input device
JP5219988B2 (en) Combined operation type input device
JP3925219B2 (en) Joystick
JP2006260949A (en) Rotary switch
JP7138191B2 (en) Operating device
JP2009009799A (en) Multidirectional input device
WO2007119323A1 (en) Angle detection device
JP2017168305A (en) Multidirectional input device
JP5611742B2 (en) Multi-directional input device
JP4590432B2 (en) Operating device and operating system
JP7077428B2 (en) Input device
JP2007059159A (en) Multi-directional input device
JP2005319840A (en) Shift lever
JP5155725B2 (en) Multi-directional input device
JP2009152036A (en) Complex operation input device
JP2006286334A (en) Multiple direction input device
JP5878427B2 (en) Multi-directional input device
JP6731302B2 (en) Operating device
JP2007173098A (en) Multidirectional switch device
JP4022364B2 (en) Multi-directional input device
JP5039661B2 (en) Multi-directional input device
WO2008044419A1 (en) Operation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4772755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350