JP2009002677A - Surface acoustic wave device biosensor - Google Patents

Surface acoustic wave device biosensor Download PDF

Info

Publication number
JP2009002677A
JP2009002677A JP2007161312A JP2007161312A JP2009002677A JP 2009002677 A JP2009002677 A JP 2009002677A JP 2007161312 A JP2007161312 A JP 2007161312A JP 2007161312 A JP2007161312 A JP 2007161312A JP 2009002677 A JP2009002677 A JP 2009002677A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
cell
cells
saw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007161312A
Other languages
Japanese (ja)
Inventor
Katsumi Mochidate
克身 持立
Yasubumi Furuya
泰文 古屋
Naohiro Hosokawa
直裕 細川
Yoshiyuki Hayashi
芳幸 林
Yasutaka Saegusa
康孝 三枝
Hirotake Kon
大健 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirosaki University NUC
River Eletec Corp
Original Assignee
Hirosaki University NUC
River Eletec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirosaki University NUC, River Eletec Corp filed Critical Hirosaki University NUC
Priority to JP2007161312A priority Critical patent/JP2009002677A/en
Publication of JP2009002677A publication Critical patent/JP2009002677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface acoustic wave device biosensor capable of detecting a process of propagation-growth-injury repairing of a cell, which is observed conventionally only by an optical microscope, by measuring it as a surface acoustic wave (SAW) propagation characteristic due to physical and chemical changes of the cell formed on an SAW propagation route, using an SAW generated on a piezoelectric substrate. <P>SOLUTION: A high-frequency current or voltage is applied/impressed to an IDT 23 joined to the piezoelectric substrate 22, the SAW 25 is generated in the vicinity of a surface of the piezoelectric substrate 22, and the physical and chemical changes of the cell of the SAW are detected based on the propagation characteristic of the SAW 25, in this SAW device biosensor 21 of the present invention. In this SAW device biosensor 21, SiO<SB>2</SB>is film-formed onto the IDT 23, a pseudo-matrix 27 is coating-treated thereafter on the piezoelectric substrate 22, the SAW propagation route 24 comprising a culture cell 28 is formed to be constituted into dual channels, a change caused by a temperature and a solution mass is corrected in one of the channels, and the physical and chemical changes of the cell are detected in the other one channel. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、表面弾性波の伝搬経路上に擬似マトリックス処理を施した後、細胞を播種・培養し、前記伝搬経路上に構築した人工組織に対して様々な要素を負荷させることにより発生する生体影響や健康影響に関連する種々の物理的・化学的変化を表面弾性波の伝搬特性の変化に着目して、高感度で測定できる無給電方式かつワイヤレスに特徴を有する表面弾性波デバイスバイオセンサに関する。   The present invention provides a living body generated by performing pseudo-matrix processing on a propagation path of a surface acoustic wave, seeding and culturing cells, and loading various elements on an artificial tissue constructed on the propagation path. Focusing on surface acoustic wave propagation characteristics, various physical and chemical changes related to health effects and health effects are related to surface acoustic wave device biosensors with a non-powered and wireless characteristic that can be measured with high sensitivity .

現在、工学および医学分野において利用されている超音波は、水中あるいは固体中を伝わる弾性波動(バルク波)が主体である。これに対し、弾性体の表面付近にエネルギーを集中させて伝搬する表面弾性波(SAW)も近年、電子・通信機器用素子として活用され、この方面の進展に重要な役割を受け持つに至っている。   The ultrasonic waves currently used in the engineering and medical fields are mainly elastic waves (bulk waves) that propagate in water or solids. On the other hand, surface acoustic waves (SAW) that propagate by concentrating energy near the surface of an elastic body have recently been utilized as elements for electronic / communication equipment and have played an important role in the progress of this direction.

このようなSAWを利用したデバイスの機能発現の基本となっている関連技術の一つに圧電効果がある。この圧電効果は、ひずみまたは応力を加えると電荷が誘起され(順効果)、逆に電圧を加えると歪または応力が生ずる(逆効果)現象を総称して圧電効果(piezoelectric effect)といい、歴史的には電気石について順効果がキュリー兄弟(J.Curie,P.Curie,1880)により発見され、翌年リップマン(G.Lippmann)によって逆効果が見出されている。結晶が圧電効果を示すか否かは、結晶の点群対称性によって決まり、32晶族のうち圧電効果を示すものは20晶族である。   One of the related technologies that are the basis for the development of functions of devices using such SAW is the piezoelectric effect. This piezoelectric effect is generally referred to as a piezoelectric effect, where a charge or a stress is induced when a strain or stress is applied (forward effect), and a strain or stress is generated when a voltage is applied (reverse effect). In particular, the forward effect was discovered by Curie brothers (J. Curie, P. Curie, 1880) for tourmaline, and the reverse effect was found the following year by G. Lippmann. Whether or not the crystal exhibits a piezoelectric effect is determined by the point group symmetry of the crystal, and among the 32 crystal groups, the crystal effect is the 20 crystal group.

上記圧電効果を利用した電気機械変換素子は、現在の超音波応用部品の主流となっている。圧電素子には単結晶として水晶,ロッシェル塩(酒石酸カリソーダ),LiTaO3,LiNbO3など、また、多結晶体としてチタン酸バリウム(BaTiO3),ジルコチタン酸鉛(PbZrO3,PbTiO3),ニオブ酸塩などが代表的なものである。圧電振動子は、電極を有する圧電体をその全体または一部分に用いて構成された一つの弾性振動体であり、それ自体の弾性振動を圧電変換により電気的に励振、検出する機能をもっている。 Electromechanical transducers using the piezoelectric effect are the mainstream of current ultrasonic application parts. Piezoelectric elements include single crystals such as quartz, Rochelle salt (calcium sodium tartrate), LiTaO 3 , LiNbO 3, etc., and polycrystals such as barium titanate (BaTiO 3 ), lead zirconate titanate (PbZrO 3 , PbTiO 3 ), niobic acid Typical examples are salt. The piezoelectric vibrator is one elastic vibration body configured by using a piezoelectric body having electrodes as a whole or a part thereof, and has a function of electrically exciting and detecting its own elastic vibration by piezoelectric conversion.

表1に前述した圧電基本式を示す。圧電は、電気系と機械系の線形相互作用であり、エネルギー変換の一種である。その形式の分類で、物理的変数の変化を通じて行われる変換のうち、変化がゆっくりと(熱平衡に近い形で)行われる準静的変換に入る。その物理的変数は、電気系では電界Eと電束密度D(または分極P)、機械系(力学系)では応力TとひずみSである。この相互作用を扱うにあたっては、示強(内包的)変数と示量(外包的)変数とを区別することが必要である。ここでは、EとTが前者、D(またはP)とSが後者である。   Table 1 shows the piezoelectric basic formula described above. Piezoelectricity is a linear interaction between electrical and mechanical systems, and is a type of energy conversion. In that type of classification, of the transformations that occur through changes in physical variables, it enters a quasi-static transformation in which the changes occur slowly (in a form close to thermal equilibrium). The physical variables are an electric field E and an electric flux density D (or polarization P) in an electrical system, and a stress T and a strain S in a mechanical system (dynamic system). In dealing with this interaction, it is necessary to distinguish between strong (inclusive) variables and explanatory (external) variables. Here, E and T are the former, and D (or P) and S are the latter.

表面弾性波とは、媒質の表面付近のみにエネルギーが集中して伝搬する音波であり、その波動現象は、1885年にイギリスのLord Rayleighが半無限の固体表面を伝わる波として理論的に導いた。表面弾性波には様々な種類があるがここでは、代表的なレイリー波とSH波(BGS波)について記述する。   A surface acoustic wave is a sound wave in which energy concentrates and propagates only near the surface of a medium, and its wave phenomenon was theoretically derived in 1885 by Lord Rayleigh in the United Kingdom as a wave traveling on a semi-infinite solid surface. . There are various types of surface acoustic waves, but here we describe typical Rayleigh waves and SH waves (BGS waves).

レイリー波は1885年にLord Rayleighによって発見された表面弾性波である。この表面弾性波は、半無限弾性体の自由表面(十分に厚い板の表面)に沿って伝搬する。波のエネルギーは表面近くに集中しており、表面から深さ1波長以内に90%以上が含まれている。また非圧電媒質の場合、変位部分は波の進行方向と深さ方向だけを持ち、両者の成分の位相差は90°であるため、各点は楕円軌道を描く。レイリー波においては周波数に無関係にいつも一定である。このように速度が一定であることを、速度分散性がない(nondispersive)というが、これはレイリー波の大きな特徴である。また、等方体の場合と同じように、異方性媒質である圧電媒質の表面にもレイリー波が伝搬するが、一般にはすべての変位成分を持つ。ただし、速度が周波数特性を持たないのは同じである。   Rayleigh waves are surface acoustic waves discovered by Lord Rayleigh in 1885. This surface acoustic wave propagates along the free surface of the semi-infinite elastic body (the surface of a sufficiently thick plate). Wave energy is concentrated near the surface, and more than 90% is contained within one wavelength from the surface. In the case of a non-piezoelectric medium, the displacement part has only the wave traveling direction and the depth direction, and the phase difference between the two components is 90 °, so each point draws an elliptical orbit. The Rayleigh wave is always constant regardless of the frequency. Such constant velocity is said to be nondispersive, which is a major feature of Rayleigh waves. As in the case of an isotropic body, a Rayleigh wave propagates to the surface of a piezoelectric medium that is an anisotropic medium, but generally has all displacement components. However, it is the same that speed does not have frequency characteristics.

SH波(BGS波)は1969年にBleustein-Gulyaev-Shimizuによって発見された表面弾性波である。非圧電媒質では、進行方向に垂直な方向には表面弾性波(SH波)は存在しないが、圧電媒質は異方性であるために、その表面にエネルギーを集中して伝搬する純粋な横波が存在する。この波の特徴として、レイリー波同様速度分散性がなく、電気機械結合係数が大きいほど表面へのエネルギー集中度は高くなる等が挙げられる。SH波は六方晶系6mm圧電結晶や圧電セラミックスの、c軸または分極軸に平行な面を有する基板などに存在する。また粒子の変位方向が基板表面に対して平行(完全せん断型表面波)のため水分・粘性液体中でも、表面弾性波の減衰が比較的少なく、液体識別、水計測、2種混合溶液の評価、液体自動計測装置等の液中での応用等が考えられる。図13に深さ方向に回転成分の分布を有したレイリー波の表面部での伝搬様式、図14にSH波(Shear-Horizontal)の変位分布の状態を模式的に示す。このSH波では水平・せん断成分のみの変形モードとなり、水分湿潤物質内でも伝播可能であるので、生体液や細胞体の状態を検知できることになる。   SH waves (BGS waves) are surface acoustic waves discovered by Bleustein-Gulyaev-Shimizu in 1969. In non-piezoelectric media, surface acoustic waves (SH waves) do not exist in the direction perpendicular to the traveling direction, but since piezoelectric media are anisotropic, pure transverse waves that propagate energy concentrated on the surface are not present. Exists. As a feature of this wave, there is no speed dispersion like the Rayleigh wave, and the higher the electromechanical coupling coefficient, the higher the energy concentration on the surface. The SH wave exists on a substrate having a plane parallel to the c-axis or the polarization axis of hexagonal 6 mm piezoelectric crystal or piezoelectric ceramic. Also, since the particle displacement direction is parallel to the substrate surface (complete shear surface wave), the surface acoustic wave attenuation is relatively small even in moisture / viscous liquids, liquid identification, water measurement, evaluation of two mixed solutions, Application in liquid such as an automatic liquid measuring device is conceivable. FIG. 13 schematically shows the propagation pattern of the Rayleigh wave having the rotational component distribution in the depth direction on the surface, and FIG. 14 schematically shows the state of the SH wave (Shear-Horizontal) displacement distribution. This SH wave becomes a deformation mode with only horizontal and shear components, and can be propagated even in a moisture-humidity substance, so that the state of biological fluid and cell body can be detected.

圧電型基板を伝搬する表面弾性波の伝搬特性には、伝搬速度v,電気機械結合係数K2,遅延時間温度係数TCD,パワーフロー角PFAなどの値がある。表面弾性波を利用したSAWデバイスの特性は、用いる圧電型基板に大きく依存する。そこで、より優れた圧電型基板に要求される特性を列挙すると次のようになる。
(1)電気機械結合係数(K2)が大きいこと。
(2)温度特性(TCD)が良いこと。
(3)スプリアス応答が小さいこと。
(4)パワーフロー角(PFA)が零であること。
(5)伝搬損失が小さいこと。
The propagation characteristics of surface acoustic waves propagating through a piezoelectric substrate include values such as propagation velocity v, electromechanical coupling coefficient K 2 , delay time temperature coefficient TCD, and power flow angle PFA. The characteristics of a SAW device using surface acoustic waves largely depend on the piezoelectric substrate used. Therefore, the characteristics required for a better piezoelectric substrate are listed as follows.
(1) The electromechanical coupling coefficient (K 2 ) is large.
(2) Good temperature characteristics (TCD).
(3) The spurious response is small.
(4) The power flow angle (PFA) is zero.
(5) The propagation loss is small.

電気機械結合係数は、電気エネルギーから表面波エネルギーへの変換効率を示す値である。TCDは表面波の速度あるいは遅延時間の温度による変動係数を示す。スプリアス応答は、不用振動モードにより、減衰量が劣化してしまう現象のことである。パワーフロー角は櫛型電極に表面弾性波が励振されたときに、伝搬する位相速度の方向と群速度の方向の違いを表す角度である。なお、伝搬速度vが速ければ高周波用に有利であり、遅ければ遅延線用に有利である。   The electromechanical coupling coefficient is a value indicating the conversion efficiency from electric energy to surface wave energy. TCD indicates the coefficient of variation of surface wave velocity or delay time with temperature. The spurious response is a phenomenon in which the attenuation amount deteriorates due to the unnecessary vibration mode. The power flow angle is an angle representing the difference between the direction of the phase velocity that propagates and the direction of the group velocity when surface acoustic waves are excited in the comb-shaped electrode. If the propagation velocity v is high, it is advantageous for high frequencies, and if it is slow, it is advantageous for delay lines.

上記圧電効果及び表面弾性波を応用したデバイス(SAWデバイス)は、近年の携帯電話に代表される移動体通信市場の急速な拡大と共に、それら移動体通信端末に用いられるデバイスの技術的革新に寄与している。このようなSAWデバイスは、移動体通信端末の小型化、高機能化を実現するためのキーパーツの1つと目され、主にRF及びIF段の帯域通過フィルタとして用いられ、フォトリソグラフィプロセスによって作製されるために、微細加工が可能であり、現在では数GHz帯でも実用化されている。   Devices that apply the piezoelectric effect and surface acoustic wave (SAW devices) contribute to technological innovation of devices used in mobile communication terminals, along with the rapid expansion of the mobile communication market represented by recent mobile phones. is doing. Such a SAW device is regarded as one of key parts for realizing miniaturization and high functionality of mobile communication terminals, and is mainly used as a band pass filter for RF and IF stages, and is manufactured by a photolithography process. Therefore, microfabrication is possible, and now it is put into practical use even in the several GHz band.

図15(a)に上記SAWデバイス1の模式図を示す。このSAWデバイス1では、表面弾性波4を励振し、且つ、受信するために圧電型基板3が用いられる。この圧電型基板3としては、弾性波の波長であるμmオーダーの平滑性と、数100ppm以下の周波数の再現性を要求されることから、材料定数のばらつきが小さい圧電性単結晶や単結晶上に形成した圧電性薄膜などが使用される。表面弾性波4を励振する手段としては、図15(b)に示すようなプラス(+)とマイナス(−)が交差し、所定のピッチ5を有して形成される櫛型電極(IDT)2が用いられる。このIDT2に特有な周波数特性を用いることで、フィルタや共振子を構成することができる。   FIG. 15A shows a schematic diagram of the SAW device 1. In this SAW device 1, a piezoelectric substrate 3 is used to excite and receive the surface acoustic wave 4. The piezoelectric substrate 3 is required to have a smoothness of the order of μm, which is the wavelength of the elastic wave, and a reproducibility of a frequency of several hundred ppm or less. A piezoelectric thin film formed in the above is used. As a means for exciting the surface acoustic wave 4, a comb-shaped electrode (IDT) formed with a predetermined pitch 5 intersecting plus (+) and minus (−) as shown in FIG. 2 is used. By using the frequency characteristic peculiar to this IDT2, a filter or a resonator can be configured.

前記SAWデバイス1によって構成されるSAWフィルタは、一般的に前記圧電型基板3と送受信用としてのIDT2によって構成されており、中心周波数fは表面弾性波の音速をv,IDT2のピッチ5によって決まる波長をλとすると、f = v/λで表せる。したがって、この中心周波数帯が最もよく励振されるように設計することにより、任意の周波数帯を取り出すことが可能となる。このとき、さらに精度よく任意の周波数を得るためには、フィルタを数段使用する。図16は、前記SAWフィルタを用いた携帯電話機の受信ブロックの一構成例を示す。アンテナ6から取り込まれた電波は、初段のSAWフィルタ7aを通過した後に、アンプ8、初段のミキサ9aを通して周波数を落とし、さらに、次段のSAWフィルタ7bから最終段のミキサ9b、セラミックフィルタ10を介してベースバンド部11へ送られる。なお、符号14はVCO、12はPLLシンセサイザ、15はTCXO、13は局部発信器である。前記SAWフィルタ7a,7bは、カバーする周波数範囲が数10MHz〜数GHzであるため、例えば、1.5GHzのデジタル携帯電話では、RFの1.5GHz及び130MHzの初段IFフィルタとして利用されている。   The SAW filter constituted by the SAW device 1 is generally constituted by the piezoelectric substrate 3 and an IDT 2 for transmission / reception, and the center frequency f is determined by the acoustic velocity of the surface acoustic wave v and the pitch 5 of the IDT 2. If the wavelength is λ, it can be expressed as f = v / λ. Therefore, an arbitrary frequency band can be taken out by designing so that this center frequency band is excited most. At this time, in order to obtain an arbitrary frequency with higher accuracy, several stages of filters are used. FIG. 16 shows a configuration example of a reception block of a mobile phone using the SAW filter. The radio wave taken in from the antenna 6 passes through the first-stage SAW filter 7a, and then drops the frequency through the amplifier 8 and the first-stage mixer 9a. To the baseband unit 11. Reference numeral 14 is a VCO, 12 is a PLL synthesizer, 15 is a TCXO, and 13 is a local oscillator. Since the SAW filters 7a and 7b cover a frequency range of several tens of MHz to several GHz, for example, 1.5 GHz digital mobile phones are used as first-stage IF filters of RF 1.5 GHz and 130 MHz.

図17は、前記SAWデバイス上にて細胞が伸展・移動する際に、SAW伝搬経路に及ぶ応力を示した概念図である。ここで、(a)は細胞運動の直前の伸展・収縮力、(b)は細胞運動後において、細胞16の伸展・収縮力が細胞−基質間結合を介してSAW伝搬経路に応力17を生じさせる様子を示した概念図である。前記細胞16の基底面(細胞膜の培養基質に面する側を指す)上の接着受容体18を経由して、接着斑19(微小な接着領域を指す)のSAW伝搬経路基板面に応力17が生じる。その際の伸展・収縮力20を利用して細胞16が伸展・移動するようになっている。
Multi-functionalSurface Acoustic Wave Sensor for Monitoring Environmental and StructuralCondition 、Y.Furuya, T. Kon T. Okazaki, Y. Saigusa and T.Nomura,On-line Proc. SPIE.vol.6170, 61700Q(2006) Q1-Q11 古屋、岡崎、野村、今、三枝、金属76-12(2006)pp.1286-1291 T.Nomura,A.Saitoh,Wireless acoustic wave sensor system,2002 Marc D.Schlensog,Thomas M.A. Gronewold, Michael Tewes,Michael Famulok, Eckhard Quandt:BIOSENSOR(2003) 持立克身、独立行政法人国立環境研究所、WO2004/085606 今大健、弘前大学大学院前期課程(修士)論文(2006) 柴山乾夫、弾性波素子技術ハンドブック、1991
FIG. 17 is a conceptual diagram showing stress on the SAW propagation path when cells extend and move on the SAW device. Here, (a) is an extension / contraction force immediately before cell movement, and (b) is a cell 17 extension / contraction force that generates a stress 17 in the SAW propagation path via cell-matrix bond after cell movement. It is the conceptual diagram which showed a mode to make it do. A stress 17 is applied to the surface of the SAW propagation path substrate of the adhesion spot 19 (pointing to a minute adhesion region) via the adhesion receptor 18 on the basal plane of the cell 16 (pointing to the side of the cell membrane facing the culture substrate). Arise. The cells 16 are extended and moved using the extension / contraction force 20 at that time.
Multi-functional Surface Acoustic Wave Sensor for Monitoring Environmental and Structural Condition, Y.Furuya, T. Kon T. Okazaki, Y. Saigusa and T.Nomura, On-line Proc.SPIE.vol.6170, 61700Q (2006) Q1-Q11 Furuya, Okazaki, Nomura, Ima, Saegusa, Metal 76-12 (2006) pp.1286-1291 T.Nomura, A.Saitoh, Wireless acoustic wave sensor system, 2002 Marc D. Schlensog, Thomas MA Gronewold, Michael Tewes, Michael Famulok, Eckhard Quandt: BIOSENSOR (2003) Katsuri Mochi, National Institute for Environmental Studies, WO2004 / 085606 Ken Imadai, Hirosaki University Graduate School Master's thesis (2006) Shibayama Inui, Acoustic Wave Element Technology Handbook, 1991

従来のバイオ細胞センシング・評価技法としては、多くの場合、位相差または蛍光顕微鏡などの光学的観察や透過型または走査型電子顕微鏡による観察、生化学的・分子生物学的手法などを用いて、薬剤や毒性物質、環境因子等に対する細胞の増殖や壊死、形態、及び生化学的特徴などの変化を観察し、その変化から影響を検出・評価してきた。しかし、これらの手法は、観察用サンプル作製から結論を得るまでに時間を要するばかりでなく、人的労力や費用が増大する傾向にある。また、多サンプルを迅速・廉価に評価するには効率的ではない。さらに、細胞の増殖や移動における伸展や収縮に伴って基質に生ずる応力や、細胞−細胞間ないし細胞−基質間結合力、及び細胞内小器官を支える力学的構造などを、物理的観点から測定を試みた研究例はほとんどないのが現状である。   As conventional biocell sensing / evaluation techniques, in many cases, using optical observation such as phase difference or fluorescence microscope, observation with transmission or scanning electron microscope, biochemical and molecular biological techniques, We have observed changes in cell growth, necrosis, morphology, biochemical characteristics, etc., against drugs, toxic substances, and environmental factors, and have detected and evaluated the effects from these changes. However, these techniques not only require time to obtain a conclusion from the preparation of the observation sample, but also tend to increase human labor and cost. In addition, it is not efficient to evaluate a large number of samples quickly and inexpensively. In addition, physical stresses are measured from the physical point of view, such as stress that occurs in the substrate as cells expand and contract during cell growth and migration, cell-cell or cell-substrate binding force, and the internal structure of organelles. At present, there are almost no research examples that have attempted.

細胞センシング・評価技法は、細胞を培地(細胞が生育に必要な栄養液)中で培養しながら行われる事が多い、しかし、表面弾性波にレイリー波を選択した場合、変位は深さ方向(縦波)成分を持っているので溶液中で表面弾性波が大きく減衰する事が考えられる。よって、表面弾性波の減衰量がすくない表面波を選択する必要がある。   Cell sensing / evaluation techniques are often performed while culturing cells in a medium (a nutrient solution necessary for cell growth). However, when Rayleigh waves are selected as surface acoustic waves, the displacement is in the depth direction ( It is considered that the surface acoustic wave is greatly attenuated in the solution because it has a (longitudinal wave) component. Therefore, it is necessary to select a surface wave that does not attenuate the surface acoustic wave.

圧電型基板の材料は、圧電材料自体の温度係数によって、温度変化に対して敏感に反応してしまう傾向がある。しかし、表面弾性波の伝搬経路上に細胞を播種・培養し、表面弾性波を計測するに当たって、計測中の温度を一定に保っていても、僅かではあっても表面弾性波に影響を与える温度変化が起こることが想定される。この温度変化による信号変化を考慮する必要がある。   The material of the piezoelectric substrate tends to react sensitively to changes in temperature due to the temperature coefficient of the piezoelectric material itself. However, when seeding and culturing cells on the surface acoustic wave propagation path and measuring the surface acoustic wave, the temperature that affects the surface acoustic wave, even if it is kept constant, is kept constant. It is assumed that changes will occur. It is necessary to consider the signal change due to this temperature change.

このような表面弾性波の伝搬経路上で細胞を培養するに当たって、デバイスの表面に直接細胞を播種・培養すると、細胞にとって圧電型基板が本来の接着基質でないことに起因する細胞と圧電型基板間の接着の不安定性や、細胞にとって毒性が危惧される圧電型基板の汚れなどによって、細胞が安定して培養できずに、表面弾性波の測定精度が確保できない可能性がある。そのため、信頼性を以して高感度に測定するためには、細胞−圧電型基板間の接着性を安定して高める技術を確立させる必要がある。   In culturing cells on the propagation path of such surface acoustic waves, when cells are seeded and cultured directly on the surface of the device, between the cells and the piezoelectric substrate due to the piezoelectric substrate not being the original adhesion substrate for the cells. Due to instability of adhesion and contamination of the piezoelectric substrate, which may be toxic to the cells, the cells cannot be stably cultured, and the surface acoustic wave measurement accuracy may not be ensured. Therefore, in order to measure with high sensitivity with reliability, it is necessary to establish a technique for stably improving the adhesion between the cell and the piezoelectric substrate.

本発明では、圧電材料の表面付近にエネルギーを集中させて伝搬する表面弾性波デバイスにおいて、表面弾性波の伝搬経路上に細胞を播種・培養して構築した人工組織が、薬剤、毒性物質あるいは環境化学物質等の添加や機械的損傷によって、細胞伸展や収縮による応力、細胞−細胞間ないし細胞−基質間結合力、及び細胞内小器官を支える力学的構造に生ずる変化を、表面弾性波の伝搬特性の変化に着目して、高感度で計測できる表面弾性波デバイスバイオセンサを提供するものである。   According to the present invention, in a surface acoustic wave device that propagates energy concentrated near the surface of a piezoelectric material, an artificial tissue constructed by seeding and culturing cells on the propagation path of the surface acoustic wave is a drug, a toxic substance, or an environment. Surface acoustic wave propagation is caused by the addition of chemical substances and mechanical damage, and changes caused by stress due to cell expansion and contraction, cell-cell or cell-substrate binding force, and mechanical structures that support organelles. The present invention provides a surface acoustic wave device biosensor that can be measured with high sensitivity by paying attention to a change in characteristics.

上記課題を解決するために、本発明の表面弾性波デバイスバイオセンサは、圧電型基板3に接合させたIDT2に高周波電流を流し、その圧電型基板3にSAW4を発生させ、そのSAW4の伝搬特性により、細胞伸展や収縮による応力、細胞−細胞間ないし細胞−基質間結合力、及び細胞内小器官を支える力学的構造、活動状態など細胞の物理的、化学的変化を検出することを特徴とする。   In order to solve the above-described problems, the surface acoustic wave device biosensor of the present invention causes a high-frequency current to flow through the IDT 2 bonded to the piezoelectric substrate 3 to generate SAW 4 on the piezoelectric substrate 3, and the propagation characteristics of the SAW 4 It is characterized by detecting physical and chemical changes in cells such as stress due to cell expansion and contraction, cell-cell or cell-substrate binding force, mechanical structure supporting intracellular organelles, and activity state. To do.

本発明の表面弾性波デバイスバイオセンサは、伝搬する表面弾性波成分が、水溶液中の伝搬損失の少ない完全水平せん断成分(shear-horizontal
)からなり、圧電型基板上に作製された人工組織に対して与えた損傷や生体影響が修復または回復する過程において、細胞が示す増殖や移動における伸展や収縮による応力、細胞−細胞間ないし細胞−基質間結合力、及び細胞内小器官を支える力学的構造、活動状態などの形質変化から検出すべく、表面弾性波伝搬特性の検出感度を向上させたことを特徴とする。
In the surface acoustic wave device biosensor of the present invention, the propagating surface acoustic wave component is a completely horizontal shear component (shear-horizontal) with low propagation loss in an aqueous solution.
In the process of repairing or recovering damage or biological effects caused to the artificial tissue fabricated on the piezoelectric substrate, stress caused by extension or contraction in the growth or movement of cells, cell-cell or cell -It is characterized in that the detection sensitivity of the surface acoustic wave propagation characteristics is improved so as to detect from the phenotypic changes such as the binding force between substrates, the mechanical structure supporting the organelles, and the activity state.

圧電型基板に接合させたIDTからなる素子(デバイス)を2チャンネル化することで、1チャンネルを温度や溶液質量による受信信号変化を補正し、もう1チャンネルの細胞による物理的、化学的変化の信号受信を同時に抽出することによって、検出感度を向上させたことを特徴とする。   By making the element (device) made of IDT bonded to the piezoelectric substrate into two channels, the change in the received signal due to temperature and solution mass is corrected for one channel, and the physical and chemical changes caused by cells in the other channel are corrected. The detection sensitivity is improved by extracting the signal reception simultaneously.

また、本発明の表面弾性波デバイスバイオセンサの伝搬経路上に細胞を定着・生育させるために、擬似マトリックス処理(持立克身、独立行政法人国立環境研究所、WO2004/085606)を行った後に細胞を播種・培養することで、細胞と圧電型基板との接着性を高め、細胞に対する測定感度を向上させ、検出することを特徴とする。   In addition, after performing pseudo-matrix treatment (Katsumi Mochiri, National Institute for Environmental Studies, WO2004 / 085606) to fix and grow cells on the propagation path of the surface acoustic wave device biosensor of the present invention. By seeding and culturing the cells, the adhesion between the cells and the piezoelectric substrate is enhanced, the measurement sensitivity to the cells is improved, and the detection is performed.

表面弾性波の伝搬経路を1つのデバイス内に平面状のX座標軸用にIDTを対向して単数もしくは多チャンネル配置させ、表面弾性波の伝搬経路上に細胞を播種・培養し、薬剤、毒性物質あるいは環境化学物質等による細胞の活性度、傷害修復や形質の変化を検出し、各チャンネルの信号変化を検出するせん断水平型表面弾性波デバイスからなる細胞活性度合いをリアルタイムで評価できることを特徴とする。   The surface acoustic wave propagation path is placed in a single device with single or multi-channel IDTs facing the planar X coordinate axis, and cells are seeded and cultured on the surface acoustic wave propagation path to create drugs and toxic substances. Alternatively, it is possible to evaluate in real time the degree of cellular activity comprising a shear horizontal surface acoustic wave device that detects changes in cell activity, damage repair and traits due to environmental chemicals, etc., and detects signal changes in each channel. .

さらに、デバイスを平面状のX−Y座標軸用に多チャンネル配置させ、X,Y座標での対向する各IDTチャンネル間での表面弾性波の信号変化から、細胞の活性度、傷害修復や形質の変化をX−Y画面上に画像処理により可視化を行い、環境因子の細胞活性度に及ぼす影響を視覚的にも迅速に診断評価ができることを特徴とする。   Furthermore, the device is arranged in multiple channels for a planar XY coordinate axis, and from the change in surface acoustic wave signal between the IDT channels facing each other in the X and Y coordinates, cell activity, injury repair, and trait Changes are visualized on an XY screen by image processing, and the influence of environmental factors on cell activity can be visually and quickly evaluated.

表面弾性波の伝搬経路に細胞を定着・生育させるために擬似マトリックス処理(持立克身、独立行政法人国立環境研究所、WO2004/085606)を施し、且つ完全水平せん断成分からなるSH−SAWを用いることで培養液中での測定が可能となり、生きた状態で細胞の移動や増殖における伸展や収縮による応力、細胞−細胞間ないし細胞−基質間結合力、及び細胞内小器官を支える力学的構造、活動状態などの変化を、表面弾性波を用いて計測・評価することができる。   In order to establish and grow cells in the propagation path of the surface acoustic wave, a pseudo-matrix process (Katsu Tatechi, National Institute for Environmental Studies, WO2004 / 085606) is applied, and SH-SAW made of a complete horizontal shear component is applied. It can be used for measurement in culture medium, and can be stressed by stretching and contraction in cell migration and proliferation in the living state, cell-cell or cell-substrate binding force, and mechanical support for organelles. Changes in structure, activity state, etc. can be measured and evaluated using surface acoustic waves.

デバイス上に設置した複数のIDTのパラメータセンシングを可能するように設計する。また、擬似マトリックス処理をした測定用チャンネルで表面弾性波の伝搬経路上に細胞を播種・培養して人工組織を構築した後、その人工組織に対して機械的損傷や薬剤による生体影響または健康影響を与える。その際にSH-SAWの変化を捉えることで、同時に複数の要因による圧電型基板上で培養した細胞ないし形成した人工組織への影響を計測することが可能になる。   Designed to enable parameter sensing of multiple IDTs installed on the device. In addition, after constructing an artificial tissue by seeding and culturing cells on the propagation path of surface acoustic waves in a measurement channel that has been processed with a pseudo matrix, mechanical damage, biological effects or health effects due to drugs on the artificial tissue give. By capturing the change in SH-SAW at that time, it becomes possible to simultaneously measure the influence on the cells cultured on the piezoelectric substrate or the formed artificial tissue due to a plurality of factors.

ワイヤレス且つ無給電方式を採用することで、デバイスを培養装置に入れた状態で薬剤、化学物質や環境因子による細胞/組織への変化を測定するなど、測定の自動化や簡易化を行うことが出来る。また、装置全体の小型化にも寄与する。これによって、生体影響や健康影響、広くは毒性学及び薬理学の分野での細胞や組織への影響を、高感度でリモートセンシングでき、ワイヤレス化を行うことでよりコンパクトで軽量なバイオセンサシステムの基盤技術を研究開発し、将来の先端分析・計測機器に組み込むシステムに発展させることで技術的寄与度が実現できる。   By adopting a wireless and non-powered system, measurement can be automated and simplified, such as measuring changes to cells / tissues caused by drugs, chemicals, and environmental factors while the device is in the culture device. . It also contributes to downsizing of the entire device. As a result, biological effects and health effects, and in general, effects on cells and tissues in the fields of toxicology and pharmacology can be remotely sensed with high sensitivity. Technical contributions can be realized by researching and developing fundamental technologies and developing them into systems that will be incorporated into future advanced analysis and measurement equipment.

圧電型基板と櫛形電極から構成されたSAWデバイスは、フォトリソグラフィによって小型化が可能になり、共振現象を用いた増幅器としてテレビ受信機や携帯電話などの通信用のデバイスへの製品開発がなされてきた。さらに、最近になってセンサ技術分野への適用性に関する研究がなされ、バイオ関係の研究も行われている。しかし、細胞生物学分野での研究例はほとんどないのが現状である。   SAW devices composed of piezoelectric substrates and comb electrodes can be miniaturized by photolithography, and products have been developed as communication devices such as television receivers and mobile phones as amplifiers using resonance phenomena. It was. Recently, research on applicability to the field of sensor technology has been conducted, and bio-related research has also been conducted. However, there are almost no research examples in the field of cell biology.

本発明では、表面弾性波(SAW)伝搬特性の変化に着目し、このSAWによる伝搬経路上に細胞を培養し、薬理学的・毒性学的・健康影響等様々な要因による細胞や組織に対する影響を、主として機械的な観点から測定できる小型人工組織SAWセンシングシステムへの基盤技術に発展させることができる。図1は本発明の人工組織によるSAWデバイスバイオセンサ(以下、SAWデバイスセンサという)の概略構成図を示したものである。   In the present invention, paying attention to changes in the surface acoustic wave (SAW) propagation characteristics, cells are cultured on the propagation path by the SAW, and the influence on cells and tissues due to various factors such as pharmacological, toxicological and health effects. Can be developed as a basic technology for a small artificial tissue SAW sensing system that can be measured mainly from a mechanical point of view. FIG. 1 is a schematic configuration diagram of a SAW device biosensor (hereinafter referred to as a SAW device sensor) using an artificial tissue of the present invention.

このSAWデバイスセンサ21は、圧電型基板22上に櫛型電極(IDT)23を形成し、このIDT23に外部から高周波電流または高周波電圧を印加させることによって、圧電型基板22上に表面弾性波(SAW)25を生じさせる。また、このSAW25による伝搬経路(以下、SAW伝播経路)24上には、擬似マトリックス27の処理を行った後に細胞を培養する。この擬似マトリックス27は、培養細胞28と圧電型基板22の接着性を高める役割を果たし、薬物、環境化学物質(重金属、酸化性物質、塩素有機化合物、環境ホルモンなどの毒性物質)などによる生化学的変化や機械的損傷による傷害とその修復過程における圧電型基板22に及ぼす応力の変化など、複数の外部要因による影響を検知(センシング)を行うことが可能となる。なお、符号26はIDT23上を被うSiO2薄膜である。 The SAW device sensor 21 includes a comb-shaped electrode (IDT) 23 formed on a piezoelectric substrate 22, and a high-frequency current or a high-frequency voltage is applied to the IDT 23 from the outside, whereby surface acoustic waves ( SAW) 25. Further, on the propagation path (hereinafter referred to as SAW propagation path) 24 by the SAW 25, the cells are cultured after the pseudo matrix 27 is processed. The pseudo-matrix 27 plays a role of enhancing the adhesion between the cultured cells 28 and the piezoelectric substrate 22 and is biochemical by drugs, environmental chemical substances (toxic substances such as heavy metals, oxidizing substances, chlorinated organic compounds, and environmental hormones). It is possible to detect (sensing) the influence of a plurality of external factors, such as an injury caused by a mechanical change or mechanical damage and a change in stress applied to the piezoelectric substrate 22 in the repair process. Reference numeral 26 denotes a SiO 2 thin film covering the IDT 23.

また、1チャンネルを参照用に用いることで、培養中の微小な温度変化による測定誤差を減少させることができる。本実施形態のSAWデバイスセンサ21は、SAW伝搬経路24を2チャンネル備えているが、これには限定されず、さらにチャンネル数を増やすことによって、1チップで高精度の測定を実現することが可能である。   Also, by using one channel for reference, measurement errors due to minute temperature changes during culture can be reduced. The SAW device sensor 21 according to the present embodiment includes two channels of the SAW propagation path 24. However, the SAW device sensor 21 is not limited to this. By increasing the number of channels, it is possible to realize high-precision measurement with one chip. It is.

前記SAWデバイスセンサ21は、フォトリソグラフィ工程によって作製されるため、小型化が容易で安価であり、その周波数特性はIDT23の線状電極の間隔によって決定される。このため、微細加工技術の発達とともに高周波化され、バイオセンサ等でのより高度なセンシングが可能となる。   Since the SAW device sensor 21 is manufactured by a photolithography process, the SAW device sensor 21 is easily reduced in size and is inexpensive, and the frequency characteristic thereof is determined by the interval between the linear electrodes of the IDT 23. For this reason, the frequency becomes higher with the development of microfabrication technology, and more advanced sensing with a biosensor or the like becomes possible.

前記SAWデバイスセンサ21の設計・試作では、寸法8mm×10mmのLiTaO3(42°Y-Xカット)の圧電型基板22を用いた。溶液中で測定する必要があるため、水中での伝搬損失の少ないSHモードを有する圧電型基板22を選択した。表2に示すように、前記圧電型基板22に形成されるIDT23にはAuを用い、P(ピッチ)10μm、交差幅3mm、伝搬距離4mmとなるようにフォトリソグラフィにより製作した。中心周波数をオシロスコープで測定したところ、108MHzであった。図2(a)は実際に設計をおこなったSAWデバイスセンサ21の形状及び各部の寸法を示したものであり、図2(b)は前記SAWデバイスセンサ21を2チャンネル搭載した2ch型SAWデバイスセンサの概観を示したものである。 In the design and trial manufacture of the SAW device sensor 21, a LiTaO 3 (42 ° YX cut) piezoelectric substrate 22 having dimensions of 8 mm × 10 mm was used. Since it is necessary to measure in solution, the piezoelectric substrate 22 having the SH mode with little propagation loss in water was selected. As shown in Table 2, Au was used for the IDT 23 formed on the piezoelectric substrate 22 and was manufactured by photolithography so that P (pitch) was 10 μm, the crossing width was 3 mm, and the propagation distance was 4 mm. When the center frequency was measured with an oscilloscope, it was 108 MHz. FIG. 2A shows the shape of the SAW device sensor 21 actually designed and the dimensions of each part. FIG. 2B shows a 2-channel SAW device sensor in which the SAW device sensor 21 is mounted on two channels. This is an overview of

測定の際、SAWデバイスセンサ21全体を溶液に浸して行うことになるため、IDT23と配線部に絶縁処理を施した。前記IDT23上をSiO2薄膜で被い、それ以外の部分はシリコーン系樹脂であるPDMSを用いて絶縁を行った。また、IDT23上にSiO2薄膜を成膜する方法として、マグネトロンスパッタ法を用い、基板温度40℃,真空度1.5×10−4Pa,アルゴン圧4.0Pa中で行った。薄膜の厚さは400nmとなるようにした。図3はマグネトロンスパッタ法による装置構成示したものである。このマグネトロンスパッタ法では、最初に真空ポンプ37によってチャンバ38内を真空状態にする。次に、ターゲット35の中心と外周を結ぶ漏れ磁界を発生させ、アルゴンガス31のような不活性ガスに高周波電源36を用いて高電圧を印加し、グロー放電を発生させることで、イオン化したアルゴンガス31をターゲット35に衝突させてその一部を弾き飛ばす。その際、チャンバ38内のシャッタ34を操作することにより、基盤33にターゲット35を組成とする薄膜を得ることができる。この時、ヒータ32を使用することで任意の温度にて薄膜を形成することができる。また、前記PDMSは、伝搬部以外の全体にコーティングをし、80℃に設定した高温槽で約1時間保温することで硬化させた。PDMSは、細胞に対しての毒性がないことを確認し用いた。 Since the entire SAW device sensor 21 was immersed in the solution at the time of measurement, the IDT 23 and the wiring part were insulated. The IDT 23 was covered with a SiO 2 thin film, and the other portions were insulated using PDMS, which is a silicone resin. Further, as a method of forming a SiO 2 thin film on the IDT 23, a magnetron sputtering method was used, and the substrate temperature was 40 ° C., the degree of vacuum was 1.5 × 10 −4 Pa, and the argon pressure was 4.0 Pa. The thickness of the thin film was set to 400 nm. FIG. 3 shows an apparatus configuration by the magnetron sputtering method. In this magnetron sputtering method, the chamber 38 is first evacuated by the vacuum pump 37. Next, a leakage magnetic field connecting the center and the outer periphery of the target 35 is generated, a high voltage is applied to an inert gas such as the argon gas 31 using a high frequency power source 36, and glow discharge is generated, whereby ionized argon is generated. The gas 31 is made to collide with the target 35 and a part thereof is blown off. At that time, by operating the shutter 34 in the chamber 38, a thin film having the composition of the target 35 can be obtained on the substrate 33. At this time, the thin film can be formed at an arbitrary temperature by using the heater 32. The PDMS was coated by coating the entire area other than the propagation part, and was cured by keeping the temperature for about 1 hour in a high-temperature bath set at 80 ° C. PDMS was used after confirming that it was not toxic to cells.

結線方法は、ポリマー基板上に銅箔を貼り付けたものにエッチングを行い、銅箔を任意の形にした。次に、試作したSAWデバイスセンサ21をポリマー基板中央に固定し、銅テープにてポリマー基板上の銅箔とSAWデバイスセンサ21の配線を行い、それぞれの結合部に電気の流れを良くするために導電性接着剤(ドウタイト)を塗った。   In the connection method, etching was performed on a polymer substrate on which a copper foil was attached, and the copper foil was formed into an arbitrary shape. Next, the prototype SAW device sensor 21 is fixed to the center of the polymer substrate, and the copper foil on the polymer substrate and the SAW device sensor 21 are wired with a copper tape so as to improve the flow of electricity at each joint. A conductive adhesive (doutite) was applied.

本発明では、圧電型基板22上で細胞を直接培養するのではなく、細胞接着性を向上させるために擬似マトリックスコーティング処理をした。このSAWデバイスセンサの表面に細胞を培養する技術は、国立環境研究所の持立博士が開発した技術を利用した(持立克身、独立行政法人国立環境研究所、WO2004/085606)。この技術を用いることで、SAW伝搬経路における細胞の接着性が高まり、細胞による変化をSAWの変化として高感度に捉えることができる。   In the present invention, instead of directly culturing cells on the piezoelectric substrate 22, a pseudo-matrix coating treatment was performed to improve cell adhesion. As a technique for culturing cells on the surface of this SAW device sensor, a technique developed by Dr. Kurichi of the National Institute for Environmental Studies was used (Katsumi Tatechi, National Institute for Environmental Studies, WO2004 / 085606). By using this technique, the adhesiveness of cells in the SAW propagation path is enhanced, and changes due to cells can be captured with high sensitivity as changes in SAW.

測定に利用した回路を図4に示す。入力信号であるトーンバースト波44は、基準信号発生器42からの連続波をパルスジェネレータ41からの信号とミキサ43を用いて乗算することにより得る。この時、基準信号発生器42からの連続波の周波数は中心周波数である108MHzである。この基準信号発生器42からの連続波の一部をデジタルオシロスコープ48に参照波47として入力した。受信部ではセンサデバイス45からアンプ46を通した出力信号と参照波との位相差を計測していくことにより、SAWの伝搬速度の変化として計測を行った。   The circuit used for the measurement is shown in FIG. A tone burst wave 44 as an input signal is obtained by multiplying the continuous wave from the reference signal generator 42 by the signal from the pulse generator 41 using the mixer 43. At this time, the frequency of the continuous wave from the reference signal generator 42 is 108 MHz which is the center frequency. A part of the continuous wave from the reference signal generator 42 was input to the digital oscilloscope 48 as a reference wave 47. The reception unit measures the phase difference between the output signal from the sensor device 45 that has passed through the amplifier 46 and the reference wave, thereby measuring the change in the propagation speed of the SAW.

図5は、図1に示したSAWデバイスセンサ21上の培養細胞28に欠損部29が生じた場合の概念図であり、図6は、前記培養細胞28の進展を測定するための手順を示す説明図である。図6に示されるように、前記培養細胞28は、時間軸と強度軸とによる測定波形51によって進展状態が測定される。次に、データ解析・画像表示部52によって前記測定波形51が画像化53される。この画像化53によれば、培養細胞28のおける傷30の位置や大きさとともに、矢線で示すような収縮力54がどのように作用しているかがイメージとして確認することができる。   FIG. 5 is a conceptual diagram when a defective portion 29 is generated in the cultured cell 28 on the SAW device sensor 21 shown in FIG. 1, and FIG. 6 shows a procedure for measuring the progress of the cultured cell 28. It is explanatory drawing. As shown in FIG. 6, the progress state of the cultured cell 28 is measured by a measurement waveform 51 based on a time axis and an intensity axis. Next, the measurement waveform 51 is imaged 53 by the data analysis / image display unit 52. According to this imaging 53, it is possible to confirm as an image how the contraction force 54 as shown by the arrow acts as well as the position and size of the wound 30 in the cultured cell 28.

以下、前記SAWデバイスセンサ21による細胞の培養状態を測定するための条件について説明する。2型肺胞上皮細胞(以下、T2細胞と略す。)(文献:Clement et al.
SV40T-immortalized lung alveolar epithelial cells. Exp. Cell Res.
196: 198-205, 1991)の有無によりどのような変化が起こるかを測定するため、培養前、培養1日後(24時間後)、培養2日後(48時間後)で測定した。また、細胞の培養状態の違いによるSAWの変化を見るため、SAWの伝搬面上に培養したT2細胞に対して、機械的損傷又は化学的損傷を与えて測定した。
Hereinafter, conditions for measuring the cell culture state by the SAW device sensor 21 will be described. Type 2 alveolar epithelial cells (hereinafter abbreviated as T2 cells) (Reference: Clement et al.
SV40T-immortalized lung alveolar epithelial cells. Exp. Cell Res.
196: 198-205, 1991), in order to determine what kind of change occurs depending on the presence or absence, it was measured before culturing, after 1 day of culturing (after 24 hours), and after 2 days of culturing (after 48 hours). Further, in order to see the change in SAW due to the difference in cell culture state, T2 cells cultured on the SAW propagation surface were subjected to mechanical damage or chemical damage and measured.

機械的損傷として、先端が細く絞られたプラスチック製の棒を用いて、SAWの伝搬方向と垂直に、500μm程度の幅で直線状に傷をつけ、SAWの変化を測定した。化学的損傷として、カルシウムキレート剤EDTAによる処理をおこない、T2細胞間の結合を低下させることによるSAWの変化を測定した。   As a mechanical damage, using a plastic rod with a narrowed tip, a scratch was linearly formed with a width of about 500 μm perpendicular to the SAW propagation direction, and the change in SAW was measured. As chemical damage, treatment with the calcium chelating agent EDTA was performed, and changes in SAW due to reduction of binding between T2 cells were measured.

(細胞培養による細胞有無の測定)
細胞培養前後におけるSAWの遅延時間変化を図7に示す。このグラフでは、細胞培養前の遅延時間を基準とし、基準からの変化を表している。その結果は、培養後は遅延時間が減少しており、伝搬速度が速くなっていることを示す。音波の弾性率と密度との関係式(数1)から、水と細胞のEとρを比較した場合に、Eは水より細胞が高いのに対してρは水:1、細胞:1.01でほとんど差がない。これにより、細胞を培養したことによる弾性率の変化のみが作用したと考えられる。
(Measurement of cell presence by cell culture)
FIG. 7 shows changes in SAW delay time before and after cell culture. In this graph, the change from the reference is shown with reference to the delay time before cell culture. The result shows that the delay time is decreased after the culture and the propagation speed is increased. From the relational expression (Equation 1) between the elastic modulus and density of sound waves, when E and ρ of water and cells are compared, E is higher in cells than water, whereas ρ is water: 1, cells: 1. There is almost no difference at 01. Thereby, it is considered that only the change in elastic modulus due to the culture of the cells acted.

また、培養1日と2日では細胞の平面密度や結合の程度が上がったため、Eが増加し変化が大きくなったと考えられる。細胞が培養されていることを確認するため、反射型微分干渉顕微鏡で撮影した。図8にSAW上での細胞の培養前(a)と培養後(b)の写真を示す。培養前の圧電型基板には何もないのに対して、培養後は圧電型基板全体に細胞が生育しているのが確認できた。   In addition, it was considered that E increased and the change increased because the planar density of cells and the degree of binding increased on the first and second days of culture. Images were taken with a reflection differential interference microscope to confirm that the cells were cultured. FIG. 8 shows photographs before (a) and after (b) culturing of cells on SAW. While there was nothing on the piezoelectric substrate before culture, it was confirmed that cells were growing on the entire piezoelectric substrate after culture.

擬似マトリックス処理を施した圧電型基板上でT2細胞を培養し、全面に亘って細胞が進展・生育した後に、細胞を500μm程度の幅で直線状に機械的に剥離した。この処理前後のSAWの変化を図9に示す。細胞培養2日目において、細胞を剥離する直前のSAWの変化量100%とし、細胞を剥離した直後のSAW変化量と比較した。この結果から、SAW伝搬経路と直角に細胞を一定の幅で剥離することで、SAWの変化量が減少し、細胞が無い状態でのSAWの速度に近づいている。SAW伝搬経路に対して細胞の占有する面積が減少したことで、SAWの変化率が減少し、細胞の無い場合に近づいたと考えられる。   T2 cells were cultured on a piezoelectric substrate that had been subjected to a pseudo-matrix treatment. After the cells developed and grew over the entire surface, the cells were mechanically detached in a straight line with a width of about 500 μm. The change in SAW before and after this processing is shown in FIG. On the second day of cell culture, the SAW change immediately before cell detachment was taken as 100%, and compared with the SAW change immediately after cell detachment. From this result, the amount of change in SAW is reduced by peeling cells with a constant width perpendicular to the SAW propagation path, approaching the speed of SAW in the absence of cells. As the area occupied by the cells with respect to the SAW propagation path is reduced, the rate of change of the SAW is reduced, and it is considered that the cell approached.

即ち、溶媒よりも高い剛性(弾性率)を有する細胞が一部除去されることで、SAW伝搬経路上での全体の弾性率が低下した。このことにより、SAWの音速が遅くなり細胞が無い場合に近づいたことで、変化率が減少したと考えられる。図10(a)に、T2細胞を直線的に剥離した状態の反射型微分干渉顕微鏡写真を示す。   That is, the entire elastic modulus on the SAW propagation path was reduced by removing a part of cells having higher rigidity (elastic modulus) than the solvent. As a result, it is considered that the rate of change is reduced by approaching the case where the sound speed of the SAW becomes slow and there are no cells. FIG. 10 (a) shows a reflection differential interference micrograph in a state where T2 cells are linearly detached.

図11に、カルシウムキレート剤EDTAによる処理時間とSAW信号の変化をグラフで示す。培養2日目におけるEDTA処理前のT2細胞によるSAW遅延の変化量を100%とし、10mM EDTA添加後のSAWの変化量を時間経過とともに測定した。このグラフから、EDTA処理を行うことにより、SAW伝搬経路上で培養したT2細胞によるSAWの変化量が減少していることが示されている。処理開始からほぼ10分で変化が収束しているのは、カルシウムキレート剤による効果が収まったためと考えられる。   FIG. 11 is a graph showing changes in the processing time with the calcium chelating agent EDTA and the SAW signal. The amount of change in SAW delay by T2 cells before EDTA treatment on the second day of culture was taken as 100%, and the amount of change in SAW after addition of 10 mM EDTA was measured over time. From this graph, it is shown that the amount of change in SAW by T2 cells cultured on the SAW propagation path is reduced by performing EDTA treatment. The change converged in about 10 minutes from the start of the treatment because the effect of the calcium chelating agent has subsided.

図10(b)に、EDTA処理をしたT2細胞の反射型微分干渉顕微鏡写真を示す。この写真からも、細胞−細胞間結合が切れ、全体のT2細胞培養量が低下していることが確認できた。化学的処理の場合、前出の機械的損傷と較べて、細胞の培養面積の減少に加え、細胞−細胞間結合力の低下による影響も協奏し合って、SAW信号が変化したと考えられる。   FIG. 10 (b) shows a reflection differential interference micrograph of T2 cells treated with EDTA. Also from this photograph, it was confirmed that the cell-cell bond was broken and the total amount of T2 cell culture was reduced. In the case of chemical treatment, it is considered that the SAW signal was changed by cooperating with the influence of the decrease in the cell-cell binding force in addition to the decrease in the cell culture area as compared with the mechanical damage described above.

上記より、今回の実験では、
(1)SAW伝搬経路表面上の細胞の有無(培養時間の違い)によってSAWの伝搬速度が変化したことより、細胞の培養状態を観測しながら測定することが可能である。
(2)SAW伝搬経路表面全体に亘って培養した細胞に、機械的損傷として伝搬経路と直角に直線状の傷をつける、細胞−細胞間結合を化学的処理で弱める(切り離す)などの処理による細胞状態の変化を、処理前の信号と比較することで影響の度合いを測定することができた。このことから、人工組織によるSAWデバイスセンサの有効性を確認できた。
From the above, in this experiment,
(1) Since the propagation speed of SAW changes depending on the presence or absence of cells on the surface of the SAW propagation path (difference in culture time), measurement can be performed while observing the culture state of the cells.
(2) By culturing the cells cultured over the entire surface of the SAW propagation path as a mechanical damage in a straight line perpendicular to the propagation path, or by weakening (separating) the cell-cell bond by chemical treatment. The degree of influence could be measured by comparing the change in cell state with the signal before treatment. From this, the effectiveness of the SAW device sensor by the artificial tissue was confirmed.

本発明のSAWデバイスセンサによるシステムを一層発展させ、センサデバイスとしての信頼性、汎用性を高めるには、圧電型基板となる高感度で低温度係数の圧電材料の選択、IDT高密度化による細胞個々の変化を高感度に測定し、測定チャンネルを増やすことによる高精度化を計り、無線技術を適用することによるシステムの簡素化などを行う必要がある。また、センサとしての価値を高めるために、細胞−細胞間結合力と細胞全体の弾性率の変化、密度因子、弾性率と密度以外の因子である細胞形態や内部構造の影響の測定、細胞の活動状態の可視化などがあげられる。   In order to further develop the system using the SAW device sensor of the present invention and to improve the reliability and versatility of the sensor device, the selection of a piezoelectric material having a high sensitivity and a low temperature coefficient as a piezoelectric substrate, and the cells by increasing the density of the IDT It is necessary to measure individual changes with high sensitivity, to improve the accuracy by increasing the number of measurement channels, and to simplify the system by applying wireless technology. In addition, in order to increase the value as a sensor, cell-cell binding force and change in the elastic modulus of the whole cell, density factor, measurement of the influence of cell morphology and internal structure, which are factors other than elastic modulus and density, For example, visualization of activity status.

表面弾性波の伝搬経路を1つのデバイス内に平面状のX座標軸用にIDTを対向して単数もしくは多チャンネル配置させ、表面弾性波の伝搬経路上に細胞を播種・培養し、薬剤や毒性物質、環境因子等による細胞の活性度、傷害修復や形質の変化を検出し、各チャンネルの信号変化を検出するせん断水平型表面弾性波デバイスからなる細胞活性度合いをリアルタイムで評価できる。   The surface acoustic wave propagation path is placed in a single device with a single channel or multiple channels facing the flat X-coordinate axis, and cells are seeded and cultured on the surface acoustic wave propagation path for drugs and toxic substances. It is possible to evaluate in real time the degree of cell activity comprising a shear horizontal surface acoustic wave device that detects changes in cell activity, damage repair, and traits due to environmental factors, etc., and detects signal changes in each channel.

さらに、図12に示されるように、デバイスをX発信子62からなるX側SAW反射アレイ64及びY発信子63からなるY側SAW反射アレイによって構成される平面状のX−Y座標軸用に多チャンネル配置させ、X,Y座標での対向する各IDTチャンネル間でのX側伝播経路66及びY側伝播経路67を伝播するSAWの信号変化から、細胞61の活性度、傷害修復や形質の変化をX−Y画面上に画像処理により可視化を行い、薬剤や毒性物質、環境因子等の細胞活性度に及ぼす影響を視覚的にも迅速に診断評価ができる。   Furthermore, as shown in FIG. 12, the device is used for a planar XY coordinate axis constituted by an X-side SAW reflection array 64 made up of X transmitters 62 and a Y-side SAW reflection array made up of Y transmitters 63. Changes in activity, injury repair, and traits of cells 61 from SAW signal changes that propagate through the X-side propagation path 66 and Y-side propagation path 67 between the IDT channels facing each other in the X and Y coordinates. Can be visualized by image processing on an XY screen, and the effects of drugs, toxic substances, environmental factors, etc. on cell activity can be visually and quickly evaluated.

これらの技術課題を改善することで、薬理学・毒性学的研究分野、環境問題に関連する生体影響研究分野におけるモデル実験やフィールド調査等での細胞又は人工組織への影響を、高感度でリモートセンシングでき、ワイヤレス化によってコンパクトで軽量なSAWデバイスセンサシステムの基盤技術を研究開発し、将来の先端分析・計測機器に組み込むシステムに発展させることで、技術的貢献ができる。   By improving these technical issues, the effects on cells or artificial tissues in model experiments and field surveys in the fields of pharmacology / toxicology research and biological effects research related to environmental problems can be remotely controlled with high sensitivity. Research and development of the basic technology of a compact and lightweight SAW device sensor system that can be sensed and wirelessly developed and developed into a system that will be incorporated into future advanced analysis / measurement equipment can contribute technically.

本発明の技術的および社会的意義、活用分野は以下の通りである。
本発明は、細胞や組織に与える薬理学的、毒性学的影響や環境因子による生体影響をリアルタイムで検出(センシング)・評価する新技術開発に関する。計測の近距離無線(ワイヤレス)化が可能で、多数サンプルを迅速に計測可能で、本発明の人工組織によるSAWデバイスセンサの社会的意義や活用分野は、薬理学的、毒性学的研究において従来にはなかった新たな指標からの影響評価、ウイルス性疾患による感染の流行を早い段階で感知・警報するシステム、アレルギー性疾患(花粉症など)さらには、超高感受性細胞を利用したバイオテロ警報システムなどへの応用も期待できる。以下にその意義と分野を列記する。
(1)生体センシング技術の発展
(2)表面弾性波デバイスバイオセンサの提案
(3)細胞の力学的構造解析技術の発展
(4)細胞培養・固定技術
(5)安全対策における、バイオテロ対策技術の発展
(6)生体センシング関連における評価工程の簡易化・低コスト化
(7)医療分野開発における検査および評価技術の発展
(8)健康管理システム技術
(9)安心・安全社会への寄与
そして、国際的に独自で優位な先端計測分析技術・手段として発展・確立させる事ができる。
The technical and social significance and application fields of the present invention are as follows.
The present invention relates to development of a new technology for detecting (sensing) and evaluating in real time pharmacological and toxicological effects on cells and tissues and biological effects due to environmental factors. It is possible to make the measurement short-range wireless (wireless), it is possible to measure a large number of samples quickly, and the social significance and application field of the SAW device sensor using the artificial tissue of the present invention has been used in pharmacological and toxicological research. Impact assessment from new indicators that were not present, systems that detect and warn of infections caused by viral diseases at an early stage, allergic diseases (eg, hay fever), and bioterrorism warning systems that use ultra-sensitive cells Application to such as can be expected. The significance and fields are listed below.
(1) Development of biological sensing technology (2) Proposal of surface acoustic wave device biosensor (3) Development of cell mechanical structure analysis technology (4) Cell culture and fixation technology (5) Bioterrorism countermeasure technology in safety measures Development (6) Simplification and cost reduction of evaluation processes related to biological sensing (7) Development of testing and evaluation technology in medical field development (8) Health management system technology (9) Contribution to a safe and secure society and international It can be developed and established as a unique and superior advanced measurement analysis technique and means.

本発明の人工組織によるSAWデバイスセンサの具体的適用分野としては、以下に示すようなものが考えられる。
(1)細胞の機械的要素(細胞−細胞間または細胞−基質間結合力、弾性率、密度因子、細胞内部の応力)の測定。
(2)多チャンネル応用(X−Y)による、細胞形態変化の画像描画システム。
(3)画像描画システムによる、細胞や組織の傷害修復過程などでの機械的要素(細胞−細胞間または細胞−基質間結合力、弾性率、密度因子、細胞内部の応力)の分布状態の計測。
(4)細胞や組織の活動度レベルを検知することで、環境因子に対するリアルタイム検出・評価。
(5)多チャンネル化により各種化学反応膜を複合利用し、イオン分極化、粘性変化、減衰性変化を組み合わせた、生体酵素反応、細菌、各種ウイルスの総合反応検知。
(6)細菌管理システムでのバイオハザード対策検知。
(7)細胞を利用した微量成分センシングによるバイオテロ対策検知。
(8)小型化による生体影響や健康影響のリアルタイム計測。
(9)新薬剤開発におけるリアルタイムでの薬理効果や副作用の検知および評価。
The following can be considered as specific application fields of the SAW device sensor using the artificial tissue of the present invention.
(1) Measurement of cell mechanical elements (cell-cell or cell-substrate binding force, elastic modulus, density factor, cell internal stress).
(2) An image drawing system for cell shape change by multi-channel application (XY).
(3) Measurement of the distribution of mechanical elements (cell-cell or cell-substrate or cell-substrate binding force, elastic modulus, density factor, cell internal stress) in the process of repairing cell or tissue injury using an image drawing system .
(4) Real-time detection and evaluation of environmental factors by detecting the activity level of cells and tissues.
(5) Comprehensive detection of biological enzyme reactions, bacteria, and various viruses by combining various chemical reaction membranes with multiple channels and combining ion polarization, viscosity changes, and attenuation changes.
(6) Biohazard countermeasure detection in the bacteria management system.
(7) Bioterrorism detection detection using trace component sensing using cells.
(8) Real-time measurement of biological effects and health effects due to miniaturization.
(9) Detection and evaluation of pharmacological effects and side effects in real time in new drug development.

本発明のSAWデバイスセンサの構成図である。It is a block diagram of the SAW device sensor of this invention. 試作したSAWデバイスセンサと2チャンネル型SAWデバイスセンサの写真である。It is a photograph of a prototype SAW device sensor and a two-channel SAW device sensor. マグネトロンスパッタの基本構成図である。It is a basic lineblock diagram of magnetron sputtering. 本発明で使用した実験システムの構成図である。It is a block diagram of the experimental system used by this invention. 人工組織に機械的損傷を与えることでSAW伝搬経路上に欠損部が生じたことを示す概念図である。It is a conceptual diagram which shows that the defect | deletion part produced on the SAW propagation path | route by giving mechanical damage to an artificial tissue. 機械的損傷により欠損を生じた人工組織において、傷害修復のために周辺の細胞が伸展、移動、増殖する様子を計測する方法を示した概念図である。It is the conceptual diagram which showed the method of measuring a mode that the surrounding cell stretches, moves, and proliferates for the injury repair in the artificial tissue which produced the defect | deletion by mechanical damage. SAW伝搬経路上に細胞を播種・培養したことによるSAW伝搬特性の時間変化を示した図である。It is the figure which showed the time change of the SAW propagation characteristic by seed | inoculating and culture | cultivating the cell on a SAW propagation path. SAW伝搬経路上に細胞を播種・培養する前後を比較した反射型微分干渉顕微鏡写真である。It is a reflection type differential interference microscopic photograph comparing before and after seeding and culturing cells on a SAW propagation path. SAW伝搬経路上に播種・培養した細胞に対して機械的損傷を与えたことによるSAW伝搬特性の変化を示した図である。It is the figure which showed the change of the SAW propagation characteristic by giving the mechanical damage with respect to the cell seed | inoculated and cultured on the SAW propagation path. 細胞に機械的損傷又は化学的損傷を与えた場合の反射型微分干渉顕微鏡写真である。It is a reflection type differential interference micrograph at the time of giving mechanical damage or chemical damage to a cell. SAW伝搬経路上に播種・培養した細胞に対して化学的損傷を与えたことによるSAW伝搬特性の変化を示した図である。It is the figure which showed the change of the SAW propagation characteristic by giving the chemical damage with respect to the cell seed | inoculated and cultured on the SAW propagation path. 多チャンネル画像化の概念図である。It is a conceptual diagram of multi-channel imaging. レイリー波の変位分布模式図である。It is a displacement distribution schematic diagram of a Rayleigh wave. SH波の変位分布模式図である。It is a displacement distribution schematic diagram of SH wave. IDTの概略図である。It is the schematic of IDT. SAWデバイスセンサを利用したSAWフィルタの原理である。This is the principle of a SAW filter using a SAW device sensor. 細胞の移動・増殖時の細胞−基質間結合力の様子を示した概念図である。It is the conceptual diagram which showed the mode of the cell-substrate binding force at the time of a movement and proliferation of a cell.

符号の説明Explanation of symbols

1 SAWデバイス
2,23 IDT(櫛形電極)
3 圧電型基板
4 SAW(表面弾性波)
5 ピッチ
6 アンテナ
7a,7b SAWフィルタ
8 アンプ
9a,9b ミキサ
10 セラミックフィルタ
11 ベースバンド部
12 PLLシンセサイザ
13 局部発信器
14 VCO
15 TCXO
16 細胞
17 応力
18 接着受容体
19 接着斑
20 伸展・収縮力
21 SAWデバイスセンサ(表面弾性波デバイスバイオセンサ)
22 圧電型基板
24 SAW伝搬経路
25 SAW(表面弾性波)
26 SiO2(二酸化ケイ素)
27 擬似マトリックス
28 培養細胞
29 欠損部
30 傷
31 アルゴンガス
32 ヒータ
33 基盤
34 シャッタ
35 ターゲット
36 高周波電源
37 真空ポンプ
38 チャンバ
41 パルスジェネレータ
42 基準信号発生器
43 ミキサ
44 トーンバースト波
45 センサデバイス
46 アンプ
47 参照波
48 デジタルオシロスコープ
51 測定波形
52 データ解析・画像表示部
53 画像化
54 収縮力
61 細胞
62 X発信子
63 Y発信子
64 X側SAW反射アレイ
65 Y側SAW反射アレイ
66 X側伝播経路
67 Y側伝播経路
1 SAW device 2,23 IDT (comb electrode)
3 Piezoelectric substrate 4 SAW (surface acoustic wave)
5 Pitch 6 Antenna 7a, 7b SAW filter 8 Amplifier 9a, 9b Mixer 10 Ceramic filter 11 Baseband part 12 PLL synthesizer 13 Local transmitter 14 VCO
15 TCXO
16 cells 17 stress 18 adhesion receptor 19 adhesion spots 20 stretching / contraction force 21 SAW device sensor (surface acoustic wave device biosensor)
22 Piezoelectric substrate 24 SAW propagation path 25 SAW (surface acoustic wave)
26 SiO 2 (silicon dioxide)
27 Pseudo Matrix 28 Cultured Cells 29 Defects 30 Scratches 31 Argon Gas 32 Heater 33 Base 34 Shutter 35 Target 36 High Frequency Power Supply 37 Vacuum Pump 38 Chamber 41 Pulse Generator 42 Reference Signal Generator 43 Mixer 44 Tone Burst Wave 45 Sensor Device 46 Amplifier 47 Reference wave 48 Digital oscilloscope 51 Measurement waveform 52 Data analysis / image display section 53 Imaging 54 Contraction force 61 Cell 62 X transmitter 63 Y transmitter 64 X side SAW reflection array 65 Y side SAW reflection array 66 X side propagation path 67 Y Side propagation path

Claims (9)

圧電型基板に接合させた櫛型電極からなる素子に高周波電流又は電圧を印加し、その圧電材表面近傍に表面弾性波を発生させ、その表面弾性波の伝搬経路に細胞を播種・培養することで形成した人工組織又は細胞に対する物理的、化学的変化を検出することを特徴とした表面弾性波デバイスバイオセンサ。 Applying high-frequency current or voltage to an element composed of comb-shaped electrodes joined to a piezoelectric substrate, generating surface acoustic waves near the surface of the piezoelectric material, and seeding and culturing cells in the propagation path of the surface acoustic waves A surface acoustic wave device biosensor that detects physical and chemical changes to an artificial tissue or cell formed by the method described above. 前記圧電型基板に接合させた櫛型電極からなる素子からなり、伝搬する表面弾性波の成分が、完全水平せん断成分からなり、湿潤状態の生きた細胞又は人工組織からの表面弾性波の信号変化の検出感度を向上させた請求項1記載の表面弾性波デバイスバイオセンサ。 It consists of an element composed of comb-shaped electrodes bonded to the piezoelectric substrate, and the surface acoustic wave component that propagates consists of a completely horizontal shear component, and the signal change of the surface acoustic wave from a living cell or artificial tissue in a wet state The surface acoustic wave device biosensor according to claim 1, wherein the detection sensitivity is improved. 前記圧電型基板に接合させた櫛型電極からなる素子を多チャンネル化して、そのうちの一つもしくは複数のチャンネルを、温度、溶液質量、溶質濃度のゆらぎ等の測定環境変化に起因する表面弾性波の信号への外乱因子の除去や補正用参照チャンネルとして使用し、人工組織又は細胞に起因する因子のみによる物理的、化学的変化の表面弾性波の検出感度を向上させた請求項1又は2記載の表面弾性波デバイスバイオセンサ。 An element composed of comb-shaped electrodes bonded to the piezoelectric substrate is multi-channeled, and one or more of the elements are subjected to surface acoustic waves caused by changes in the measurement environment such as temperature, solution mass, solute concentration fluctuations, etc. 3. The detection sensitivity of the surface acoustic wave of the physical and chemical change only by the factor derived from the artificial tissue or the cell is improved by using as a reference channel for removing or correcting the disturbance factor in the signal of claim 1 or 2. Surface acoustic wave device biosensor. 前記圧電型基板に接合させた櫛型電極からなる表面弾性波の伝搬経路上に、細胞を定着・生育させるための擬似マトリックスコーティング処理をしたのち細胞を播種・培養し接着性を高め、細胞の成長過程を検出する請求項1乃至3のいずれかに記載の表面弾性波デバイスバイオセンサ。 On the surface acoustic wave propagation path consisting of comb-shaped electrodes joined to the piezoelectric substrate, the cells are seeded and cultured after pseudo-matrix coating treatment for fixing and growing the cells, and the adhesion of the cells is increased. The surface acoustic wave device biosensor according to any one of claims 1 to 3, which detects a growth process. 前記圧電型基板に接合させた櫛型電極からなる表面弾性波の伝搬経路上に、擬似マトリックスコーティング処理したのち細胞を播種・培養して人工組織を形成し、機械的損傷又は剥離に対する細胞又は人工組織の傷害修復の過程を検出する請求項1乃至4のいずれかに記載の表面弾性波デバイスバイオセンサ。 The artificial elastic tissue is formed by seeding and culturing the cells on the propagation path of the surface acoustic wave composed of the comb-shaped electrodes bonded to the piezoelectric substrate, and then artificially forming cells by artificial seeding or culturing. The surface acoustic wave device biosensor according to any one of claims 1 to 4, which detects a process of tissue injury repair. 前記表面弾性波の伝搬経路上に、擬似マトリックスコーティング処理したのち細胞を播種・培養し、環境因子の負荷又は薬剤や化学物質の投与による細胞又は人工組織の活性度変化を検出する請求項1乃至3のいずれかに記載の表面弾性波デバイスバイオセンサ。 The cells are seeded and cultured on the surface acoustic wave propagation path after being subjected to a pseudo-matrix coating, and a change in the activity of a cell or an artificial tissue due to an environmental factor load or administration of a drug or chemical substance is detected. 4. The surface acoustic wave device biosensor according to any one of 3 above. 前記表面弾性波の伝搬経路上に、擬似マトリックスコーティング処理したのち細胞を播種・培養し、音弾性効果を利用して細胞又は人工組織の形質、特に細胞−細胞間ないし細胞−基質間結合力、及び内部応力の変化を検出する請求項1乃至4のいずれかに記載の表面弾性波デバイスバイオセンサ。 Cells are seeded and cultured on the surface acoustic wave propagation path after being subjected to a pseudo-matrix coating treatment, and using the acoustoelastic effect, traits of cells or artificial tissues, particularly cell-cell or cell-substrate binding force, 5. The surface acoustic wave device biosensor according to claim 1, wherein a change in internal stress is detected. 前記表面弾性波の伝搬経路を1つの素子内に平面状のX軸もしくはX−Y軸座標軸用に多チャンネル配置させ、表面弾性波の伝搬経路上に細胞を播種・培養し、環境因子の負荷又は薬剤や化学物質の投与による細胞又は人工組織の活性度、傷害修復や形質の変化を検出し、各チャンネルの信号変化を検出する請求項1乃至7のいずれかに記載の表面弾性波デバイスバイオセンサ。 The surface acoustic wave propagation path is arranged in a multi-channel for a flat X-axis or XY axis coordinate axis in one element, and cells are seeded and cultured on the surface acoustic wave propagation path to load environmental factors. Alternatively, the surface acoustic wave device bio according to any one of claims 1 to 7, wherein a change in signal of each channel is detected by detecting a change in a cell or artificial tissue activity, injury repair, or a trait due to administration of a drug or a chemical substance. Sensor. 前記表面弾性波の伝搬経路を1つの素子内に平面状のX軸もしくはX−Y軸座標軸用に多チャンネル配置させ、細胞又は人工組織の活性度、傷害修復や形質の変化を信号変化から画像処理により可視化を行うことができる請求項1乃至8のいずれかに記載の表面弾性波デバイスバイオセンサ。 The surface acoustic wave propagation path is arranged in a single element in multiple channels for planar X-axis or XY-axis coordinate axes, and the activity of cells or artificial tissue, injury repair, and changes in traits are imaged from signal changes. The surface acoustic wave device biosensor according to claim 1, which can be visualized by processing.
JP2007161312A 2007-06-19 2007-06-19 Surface acoustic wave device biosensor Pending JP2009002677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007161312A JP2009002677A (en) 2007-06-19 2007-06-19 Surface acoustic wave device biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007161312A JP2009002677A (en) 2007-06-19 2007-06-19 Surface acoustic wave device biosensor

Publications (1)

Publication Number Publication Date
JP2009002677A true JP2009002677A (en) 2009-01-08

Family

ID=40319240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161312A Pending JP2009002677A (en) 2007-06-19 2007-06-19 Surface acoustic wave device biosensor

Country Status (1)

Country Link
JP (1) JP2009002677A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101244819B1 (en) 2010-10-27 2013-03-18 재단법인대구경북과학기술원 radiation detection sensor using of surface acoustic wave
CN103163217A (en) * 2013-03-07 2013-06-19 浙江工商大学 Sound surface wave resonator series detection and detection method
JP2017020937A (en) * 2015-07-13 2017-01-26 株式会社デンソー Sensing system
JP2017129411A (en) * 2016-01-19 2017-07-27 ファナック株式会社 Electrical apparatus having foreign matter detecting panel
US10350613B2 (en) 2013-08-14 2019-07-16 University Of Leeds Method and apparatus for manipulating particles
CN111530513A (en) * 2020-04-24 2020-08-14 南京师范大学 Novel acoustic tweezers based on artificial structure is dull and stereotyped
KR20200110891A (en) * 2019-03-18 2020-09-28 한양대학교 산학협력단 Measurement system for mechanical property based on ultrasonic-transducer of pzt array

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238357A (en) * 1989-03-13 1990-09-20 Igaku Seibutsugaku Kenkyusho:Kk Solution sensor utilizing surface elastic wave and method for measuring specified material
JPH03209157A (en) * 1990-01-10 1991-09-12 Sachiko Shiokawa Instrument for measuring solution by utilizing surface acoustic wave and method for measuring specific material in solution
JP3010669B2 (en) * 1990-02-15 2000-02-21 富士通株式会社 Touch input panel
JP3447055B2 (en) * 1992-04-23 2003-09-16 マサチューセッツ・インスティチュート・オブ・テクノロジー Electrical method and apparatus for molecule detection
WO2004085606A1 (en) * 2003-03-24 2004-10-07 National Institute For Environmental Studies Cell culture medium and solidified preparation of cell adhesion protein or peptide
JP2005351798A (en) * 2004-06-11 2005-12-22 Ulvac Japan Ltd Measuring method by surface elastic wave element
JP2005351799A (en) * 2004-06-11 2005-12-22 Ulvac Japan Ltd Surface elastic wave element, biosensor device, and measuring method by surface elastic wave element
JP2006275798A (en) * 2005-03-29 2006-10-12 Ulvac Japan Ltd Method of immobilizing cell onto electrode of piezoelectric element, method of measuring cell volume, and measuring instrument for cell volume
JP2007010378A (en) * 2005-06-28 2007-01-18 Seiko Epson Corp Surface acoustic wave element, its manufacturing method, surface acoustic wave sensor and surface acoustic wave sensor system
JP2007517227A (en) * 2003-12-30 2007-06-28 スリーエム イノベイティブ プロパティズ カンパニー Detection of Staphylococcus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238357A (en) * 1989-03-13 1990-09-20 Igaku Seibutsugaku Kenkyusho:Kk Solution sensor utilizing surface elastic wave and method for measuring specified material
JPH03209157A (en) * 1990-01-10 1991-09-12 Sachiko Shiokawa Instrument for measuring solution by utilizing surface acoustic wave and method for measuring specific material in solution
JP3010669B2 (en) * 1990-02-15 2000-02-21 富士通株式会社 Touch input panel
JP3447055B2 (en) * 1992-04-23 2003-09-16 マサチューセッツ・インスティチュート・オブ・テクノロジー Electrical method and apparatus for molecule detection
WO2004085606A1 (en) * 2003-03-24 2004-10-07 National Institute For Environmental Studies Cell culture medium and solidified preparation of cell adhesion protein or peptide
JP2007517227A (en) * 2003-12-30 2007-06-28 スリーエム イノベイティブ プロパティズ カンパニー Detection of Staphylococcus
JP2005351798A (en) * 2004-06-11 2005-12-22 Ulvac Japan Ltd Measuring method by surface elastic wave element
JP2005351799A (en) * 2004-06-11 2005-12-22 Ulvac Japan Ltd Surface elastic wave element, biosensor device, and measuring method by surface elastic wave element
JP2006275798A (en) * 2005-03-29 2006-10-12 Ulvac Japan Ltd Method of immobilizing cell onto electrode of piezoelectric element, method of measuring cell volume, and measuring instrument for cell volume
JP2007010378A (en) * 2005-06-28 2007-01-18 Seiko Epson Corp Surface acoustic wave element, its manufacturing method, surface acoustic wave sensor and surface acoustic wave sensor system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011038495; 谷津田博美 他: '水晶基板上を伝搬する横波型弾性表面波を利用したセンサの検討' 圧電材料・デバイスシンポジウム2006 講演論文集 , 20060215, pp.131-134 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101244819B1 (en) 2010-10-27 2013-03-18 재단법인대구경북과학기술원 radiation detection sensor using of surface acoustic wave
CN103163217A (en) * 2013-03-07 2013-06-19 浙江工商大学 Sound surface wave resonator series detection and detection method
US10350613B2 (en) 2013-08-14 2019-07-16 University Of Leeds Method and apparatus for manipulating particles
JP2017020937A (en) * 2015-07-13 2017-01-26 株式会社デンソー Sensing system
JP2017129411A (en) * 2016-01-19 2017-07-27 ファナック株式会社 Electrical apparatus having foreign matter detecting panel
US10302762B2 (en) 2016-01-19 2019-05-28 Fanuc Corporation Electric apparatus with foreign matter detection panel
KR20200110891A (en) * 2019-03-18 2020-09-28 한양대학교 산학협력단 Measurement system for mechanical property based on ultrasonic-transducer of pzt array
KR102206704B1 (en) * 2019-03-18 2021-01-25 한양대학교 산학협력단 Measurement system for mechanical property based on ultrasonic-transducer of pzt array
CN111530513A (en) * 2020-04-24 2020-08-14 南京师范大学 Novel acoustic tweezers based on artificial structure is dull and stereotyped

Similar Documents

Publication Publication Date Title
JP2009002677A (en) Surface acoustic wave device biosensor
Kim et al. An ALD aluminum oxide passivated Surface Acoustic Wave sensor for early biofilm detection
Liu et al. Surface acoustic wave devices for sensor applications
Weber et al. Shear mode FBARs as highly sensitive liquid biosensors
Rana et al. Highly sensitive Love wave acoustic biosensor for uric acid
Johnson et al. A wireless biosensor using microfabricated phage-interfaced magnetoelastic particles
Ji et al. A high sensitive SH-SAW biosensor based 36 YX black LiTaO3 for label-free detection of Pseudomonas Aeruginosa
Penza et al. Thin-film bulk-acoustic-resonator gas sensor functionalized with a nanocomposite Langmuir–Blodgett layer of carbon nanotubes
CN102713589B (en) Bi-stable oscillator
KR102000774B1 (en) Measurement method using a sensor; sensor system and sensor
Cannatà et al. Nerve agent simulant detection by solidly mounted resonators (SMRs) polymer coated using laser induced forward transfer (LIFT) technique
CN102305827B (en) Love wave sensor testing system based on frequency sweeping technology, and a testing method thereof
US9417216B2 (en) Atomic layer deposition inverted passivated surface acoustic wave sensor for early detection of biofilm growth
CN106253875B (en) High-flux piezoelectric resonance chip and measuring system
Chen et al. Highly sensitive lateral field excited piezoelectric film acoustic enzyme biosensor
Mccann et al. A lateral-field-excited LiTaO 3 high-frequency bulk acoustic wave sensor
US20140087451A1 (en) Acoustic wave (aw) sensing devices using live cells
Bowen et al. Flexible piezoelectric transducer for ultrasonic inspection of non-planar components
Hartz et al. Lateral field excited quartz crystal microbalances for biosensing applications
Huang et al. LiNbO3 surface acoustic wave resonators with large effective electromechanical coupling
Pantazis et al. Characterization of a GaN lamb-wave sensor for liquid-based mass sensing applications
JP2006275798A (en) Method of immobilizing cell onto electrode of piezoelectric element, method of measuring cell volume, and measuring instrument for cell volume
WO2009145385A1 (en) Resonance characteristic measurement apparatus of cantilever structure and measurement method thereof
WO2016134308A1 (en) System and method of measuring cell viability and growth
Cai et al. A high sensitivity wireless mass-loading surface acoustic wave DNA biosensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130115