JP2008514937A - Vehicle start-up support system - Google Patents

Vehicle start-up support system Download PDF

Info

Publication number
JP2008514937A
JP2008514937A JP2007533970A JP2007533970A JP2008514937A JP 2008514937 A JP2008514937 A JP 2008514937A JP 2007533970 A JP2007533970 A JP 2007533970A JP 2007533970 A JP2007533970 A JP 2007533970A JP 2008514937 A JP2008514937 A JP 2008514937A
Authority
JP
Japan
Prior art keywords
vehicle
position measurement
short
distance
range position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007533970A
Other languages
Japanese (ja)
Inventor
ベッカー,ユルゲン
ヘッツァー,ディーター
シテリ,シルヴィア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2008514937A publication Critical patent/JP2008514937A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/17Control of distance between vehicles, e.g. keeping a distance to preceding vehicle with provision for special action when the preceding vehicle comes to a halt, e.g. stop and go
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18027Drive off, accelerating from standstill
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/862Combination of radar systems with sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9315Monitoring blind spots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/93185Controlling the brakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9321Velocity regulation, e.g. cruise control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9324Alternative operation using ultrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9325Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles for inter-vehicle distance regulation, e.g. navigating in platoons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S367/00Communications, electrical: acoustic wave systems and devices
    • Y10S367/909Collision avoidance

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

前方を走行する車両(36)を位置測定するための長距離位置測定システム(10)と、始動プロセスを起動および制御するための始動制御器(24、26)と、を備える車両用始動支援システムにおいて、長距離位置測定システムが自己の車両(34)のすぐ前方の対象(46)を位置測定するための短距離位置測定システム(12)と組合されており、近距離位置測定システム(12)の信号に応じて始動プロセスを阻止するように決定装置(22)が形成されている。
【選択図】図1
A start support system for a vehicle comprising a long distance position measurement system (10) for positioning a vehicle (36) traveling in front and a start controller (24, 26) for starting and controlling a start process. A long-range position measuring system is combined with a short-range position measuring system (12) for positioning an object (46) immediately in front of its own vehicle (34). A decision device (22) is formed to block the starting process in response to the signal.
[Selection] Figure 1

Description

本発明は、前方を走行する車両を位置測定するための長距離位置測定システムと、始動プロセスを起動および制御するための始動制御器と、を備える車両用始動支援システムに関する。   The present invention relates to a vehicle start support system comprising a long distance position measurement system for measuring the position of a vehicle traveling ahead and a start controller for starting and controlling a start process.

車両には、車両の運転に際して運転手を支援し、かつ運転手から所定のタスクを引き受ける、支援システムがますます搭載されている。この種の支援システムの一例がACCシステム(Adaptive Cruise Control)であって、同システムは、自動速度制御および前方走行車両との自動間隔制御を可能にする。この種の進歩したシステムが開発されており、同システムは、例えば渋滞後尾への到達に際して自己の車両の自動的な制動停止も可能にし、前方車両の走行の再開に際して自動的な始動も可能にする。この種のシステムは、市街地交通用としても提案されている。始動支援システムとは、この種のシステムにおいて、停止状態の後に車両の自動的な再始動を制御する部分である。   Vehicles are increasingly equipped with support systems that assist the driver in driving the vehicle and take on certain tasks from the driver. An example of this type of support system is an ACC system (Adaptive Cruise Control), which enables automatic speed control and automatic distance control with a forward vehicle. An advanced system of this kind has been developed, which allows the vehicle to automatically stop braking when it reaches the tail of a traffic jam, for example, and to automatically start when the vehicle ahead resumes. To do. This type of system has also been proposed for urban traffic. The start support system is a part that controls automatic restart of the vehicle after a stop state in this type of system.

検出距離の長い位置測定システムとして、通常、レーダーシステム(LRR;Long Range Radar)が、場合によってはビデオ処理システムおよび画像処理システムと組合わされて使用される。   As a position measurement system having a long detection distance, a radar system (LRR) is usually used in some cases in combination with a video processing system and an image processing system.

さらに、多くの車両には駐車補助システムが搭載されており、その場合には超音波センサが近距離センサとして使用される。   Furthermore, many vehicles are equipped with a parking assist system, in which case an ultrasonic sensor is used as a short-range sensor.

(発明の利点)
請求項1に記載される特徴を有する発明が交通安全性を向上する始動支援システムを提供する。
(Advantages of the invention)
The invention having the features described in claim 1 provides a start-up support system that improves traffic safety.

本発明によれば、検出距離の長い位置測定システムとともに近距離位置測定システムが設けられており、対象が検出距離の長い位置測定システムの死角内に存在する場合でも、自己の車両のすぐ前方に存在する対象、例えば歩行者、自転車に乗る人等が位置測定可能となる。決定装置は、近距離位置測定システムの測定データを評価し、近距離位置測定システムにより自己の車両の前方に対象が位置測定されれば、始動プロセスを中止しまたは初めから起動しない。このようにして、車両のすぐ前方の対象が検出距離の長い位置測定システムの死角内に存在するという状況において、事故の危険性が著しく低下する。   According to the present invention, a short-range position measuring system is provided together with a position measuring system having a long detection distance, and even when the target is in the blind spot of the position measuring system having a long detection distance, it is located immediately in front of the own vehicle. An existing object such as a pedestrian or a person riding a bicycle can measure the position. The determination device evaluates the measurement data of the short-range position measurement system, and if the object is located in front of its own vehicle by the short-range position measurement system, it stops the starting process or does not start from the beginning. In this way, the risk of an accident is significantly reduced in situations where the object immediately in front of the vehicle is within the blind spot of a position measuring system with a long detection distance.

本発明の望ましい形態と展開が従属請求項から明らかにされる。   Desirable forms and developments of the invention emerge from the dependent claims.

近距離位置測定システムは、少なくとも1つの超音波センサを備えるようにしてもよい。特に、超音波センサは、駐車補助システムの構成部として予め車両に設けられている超音波センサであるようにしてもよい。このようにして、複雑なセンサを付加せずに交通安全性の著しい向上が図られる。   The short-range position measurement system may include at least one ultrasonic sensor. In particular, the ultrasonic sensor may be an ultrasonic sensor provided in advance in the vehicle as a component of the parking assist system. In this way, traffic safety can be significantly improved without adding complicated sensors.

近距離位置測定システムが、特に超音波センサであって、極めて小さな検出距離のみを有する場合には、検出距離の長い位置測定システムと近距離位置測定システムとが組合されていても、死角を完全に除去できない場合が生じる。この場合、最も望ましくないケースでは、衝突の危険性を伴う対象がレーダーセンサの死角内に存在し、かつ近距離位置測定システムにより位置測定不能な距離で車両から離れている場合がある。このような場合のために、本発明の展開によれば、初期始動制御器が設けられており、それは特に、車両が所定の始動区間を移動するまで始動プロセスの初期段階を制御する。初期始動制御器内では、速度の直接的な制限または始動加速度の制限によって、制限された最大速度のみを許容するアルゴリズムが使用される。この場合に最大速度は、この速度による停止距離が近距離測定システムの検出距離よりも小さくなるように選択される。残された死角内に対象が存在する場合に、この対象が遅かれ早かれ近距離位置測定システムの位置測定領域内に到達し、よって、その対象と衝突する前の遅すぎない時点で車両が再び停止状態に移行される。最大速度は、近距離位置測定システムの検出距離よりも所定の安全距離だけ小さくなるように停止距離が選択されるようにしてもよい。   If the short-range position measurement system is an ultrasonic sensor and has only a very small detection distance, even if the long-range position measurement system and the short-range position measurement system are combined, the blind spot is completely In some cases, it cannot be removed. In this case, in the most undesirable case, there is a case where an object having a risk of collision exists within the blind spot of the radar sensor and is separated from the vehicle by a distance that cannot be measured by the short-range position measurement system. For such cases, according to the development of the invention, an initial start controller is provided, which in particular controls the initial stage of the start process until the vehicle moves through a predetermined start section. Within the initial start controller, an algorithm is used that allows only a limited maximum speed by direct speed limitation or by starting acceleration limitation. In this case, the maximum speed is selected such that the stopping distance due to this speed is smaller than the detection distance of the short-range measuring system. If there is an object within the remaining blind spot, this object will sooner or later reach the position measurement area of the short-range position measurement system, so that the vehicle will stop again at a time that is not too late before colliding with the object. Transition to state. The stop distance may be selected so that the maximum speed is smaller than the detection distance of the short-range position measurement system by a predetermined safety distance.

初期始動制御器は、始動プロセスの初期段階の間に対象が近距離位置測定システムの位置測定領域内に達した場合に、車両の制動システムに介入して自動的に制動プロセスを作動可能なように構成されるようにしてもよい。   The initial start controller is able to automatically activate the braking process by intervening in the vehicle braking system when the object reaches the position measurement area of the short range position measuring system during the initial stage of the starting process. You may make it comprise.

車両が前述した始動区間を移動すれば、より大きな加速度および速度を許容する通常の始動制御器に切り替えられるので、始動プロセスを速やかに続行可能であり、自己の車両が前方走行車両に後続する。   If the vehicle moves in the above-mentioned start section, it can be switched to a normal start controller that allows greater acceleration and speed, so that the start process can be continued quickly, and its own vehicle follows the forward running vehicle.

本発明に基づく始動支援システムにより制御可能な典型的な状況は、例えば、市街地交通において、赤信号の前方に車両の長い列がある時に歩行者が道路を横断しようとしている状況、または例えば、渋滞した高速道路において、渋滞が解消された時に前方車両から降車した搭乗者が自己の車両の走行車線内に存在している状況等である。この種の状況は、始動プロセスの初期段階に最も頻繁に発生し、車両の長い列が移動し始めると発生頻度が著しく低下する。よって、初期始動制御器が能動状態となる始動区間を適切に選択することによって、事故の危険性が著しく低下する。   Typical situations that can be controlled by the start-up assistance system according to the present invention are, for example, in urban traffic, where a pedestrian is trying to cross a road when there is a long line of vehicles in front of a red light, or for example a traffic jam In such a highway, there is a situation in which a passenger who gets off from the preceding vehicle when the congestion is resolved is present in the traveling lane of the own vehicle. This type of situation occurs most frequently in the early stages of the start-up process, and the frequency of occurrence decreases significantly as long trains of vehicles begin to move. Therefore, the risk of an accident is remarkably reduced by appropriately selecting a start section in which the initial start controller is in an active state.

特に望ましい実施形態では、近距離位置測定システムの位置測定領域の前方境界から始動区間の距離だけ離れている対象が検出距離の長い位置測定システムのレーダーローブ(間隔の増大とともに広くなる)により位置測定可能となるように、始動区間が選択される。このようにして、近距離位置測定システムの検出距離が制限されるにもかかわらず、死角が事実上完全に除去される。   In a particularly preferred embodiment, an object that is separated from the front boundary of the position measurement area of the short-range position measurement system by the distance of the starting section is determined by the radar lobe of the position measurement system with a long detection distance (which becomes wider as the interval increases). The starting section is selected so that it is possible. In this way, the blind spot is virtually completely eliminated despite the limited detection distance of the short range position measurement system.

近距離位置測定システムには、位置測定結果の蓋然性を評価する蓋然性モジュールが対応づけられるようにしてもよい。蓋然性は、例えば、位置測定信号の強度、信号の継続期間、ならびに複数の超音波センサによる信号の場合には、複数の信号の一貫性および位置測定された対象の三角測量によって決定可能な横位置に依存する。始動プロセスの初期段階での制動プロセスの自動的な起動は、所定の蓋然性水準を上回る場合にのみ行われるようにしてもよく、よって、誤作動によって快適性を喪失したり、後続車両を戸惑わせたりすることが回避される。信号の蓋然性が低ければ、加速プロセスのみが一時的に中止され、および/または警告指示が、例えば音響信号の形式で運転者に出力される。   The short-range position measurement system may be associated with a probability module for evaluating the probability of the position measurement result. Probability is the lateral position that can be determined, for example, by the strength of the position measurement signal, the duration of the signal, and in the case of signals from multiple ultrasonic sensors, the consistency of the multiple signals and the triangulation of the position-measured object. Depends on. The automatic activation of the braking process at an early stage of the start-up process may only take place when a certain probability level is exceeded, thus causing a loss of comfort due to a malfunction or confusing the following vehicle. Is avoided. If the probability of the signal is low, only the acceleration process is temporarily stopped and / or a warning indication is output to the driver, for example in the form of an acoustic signal.

(実施例の説明)
本発明の実施例を、図面に示し、以下で詳細に説明する。
(Description of Examples)
Embodiments of the invention are shown in the drawings and are described in detail below.

図1に示す始動支援システムは、レーダーセンサ10、複数の超音波センサ12およびデータ処理システム14を備えている。レーダーセンサ10は、車両の前面に搭載されており、到達距離の長い位置測定システムとして、前方走行車両および自己の車両から遠く離れたその他の対象を位置測定するために用いられる。   The start support system shown in FIG. 1 includes a radar sensor 10, a plurality of ultrasonic sensors 12, and a data processing system 14. The radar sensor 10 is mounted on the front surface of the vehicle, and is used as a position measurement system having a long reach distance to position a forward traveling vehicle and other objects far away from the own vehicle.

複数の超音波センサ12は、全体として近距離位置測定システムを形成しており、車両のすぐ前方の対象を位置測定するために、例えば車両の前面バンパーに搭載されている。超音波センサ12は、同時に、不図示の駐車補助システムの一部であるようにしてもよい。   The plurality of ultrasonic sensors 12 form a short-range position measurement system as a whole, and are mounted, for example, on a front bumper of the vehicle in order to position an object immediately in front of the vehicle. The ultrasonic sensor 12 may be a part of a parking assistance system (not shown) at the same time.

データ処理システム14は、例えば、少なくとも1つのマイクロコンピュータ、付属ソフトウェアおよび周辺システムによって形成されており、ここで説明する機能以外にも、ACCシステムの枠内で他の機能を実行可能である。ここでは、本発明の説明において重要な、データ処理システム14のシステムコンポーネントのみが図示されて説明される。これらのコンポーネントは、専用のハードウェアまたはソフトウェアモジュールとしても実装可能である。詳細には、データ処理システム14は、レーダーセンサ10のためのデータ準備ユニット(Datenaufbereitungseinheit)16、超音波センサ12のためのデータ準備ユニット18、蓋然性モジュール20、決定装置(Entscheidungseinrichtung)22および2つの始動制御器24、26を備えている。   The data processing system 14 is formed by, for example, at least one microcomputer, attached software, and a peripheral system. In addition to the functions described here, other functions can be executed within the framework of the ACC system. Only the system components of the data processing system 14 that are important in the description of the invention are illustrated and described herein. These components can also be implemented as dedicated hardware or software modules. Specifically, the data processing system 14 includes a data preparation unit 16 for the radar sensor 10, a data preparation unit 18 for the ultrasonic sensor 12, a probability module 20, a determination device 22 and two startups. Controllers 24 and 26 are provided.

データ準備ユニット16は、レーダーセンサ10のデータを評価し、それに基づいて、位置測定された対象、特に前方走行車両との間隔、相対速度およびアジマス角を計算する。データ準備ユニット18は、超音波センサ12のデータを評価し、それに基づいて、超音波センサによって位置測定された対象との間隔と、例えば三角測量によって相対的な横位置とを計算する。蓋然性モジュール20は、衝突の危険性を伴う現実かつ重要性の高い対象と見せ掛けかつ重要性の低い対象とを区別するために、データ準備ユニット18から入力されたデータの蓋然性および重要性を評価する。蓋然性評価の基準は、例えば、超音波センサ12により受信された信号の振幅、信号が所定の対象に留まる期間、および異なる(車両の同一側面側の)超音波センサにより受信された信号と対象の横位置との間の一貫性である。このようにして、例えば、道路上に存在する空き缶等のような極めて小さな対象、または近接して飛行する鳥のような一時的にのみ存在する対象が見せ掛けの対象として除外可能であり、車両から十分に離れた側方の対象が重要性の低い対象として除外可能である。位置測定された対象の蓋然性および重要性は、蓋然性パラメータPによって表されて決定装置22に報告される。   The data preparation unit 16 evaluates the data of the radar sensor 10 and calculates the distance, the relative speed and the azimuth angle with respect to the position-measured object, in particular the forward traveling vehicle. The data preparation unit 18 evaluates the data of the ultrasonic sensor 12 and calculates the distance from the object position-measured by the ultrasonic sensor and the relative lateral position by, for example, triangulation based on the data. The probability module 20 evaluates the probability and importance of the data input from the data preparation unit 18 in order to distinguish between a real and important object with a risk of collision from a sham and less important object. . The criteria for probability evaluation are, for example, the amplitude of the signal received by the ultrasonic sensor 12, the period during which the signal stays on a predetermined target, and the signal received by a different ultrasonic sensor (on the same side of the vehicle) and the target Consistency between lateral positions. In this way, for example, very small objects such as empty cans present on the road, or objects that exist only temporarily, such as birds flying in close proximity, can be excluded from the sham A sufficiently distant lateral subject can be excluded as a less important subject. The probability and importance of the located object is represented by the probability parameter P and reported to the decision device 22.

決定装置22は、入力信号として蓋然性パラメータP以外に、レーダーセンサ10により位置測定された対象についてデータ準備ユニット16により計算された位置測定データと、始動プロセスの開始からの車両による移動距離を表す距離信号Dとを取得する。これらのデータに基づいて、決定装置22が2つの始動制御器24、26の能動化および非能動化を決定し、レーダーセンサ10により位置測定された対象の位置測定データの各々が起動された始動制御器に伝達される。   In addition to the probability parameter P as an input signal, the determination device 22 uses the position measurement data calculated by the data preparation unit 16 for the object position-measured by the radar sensor 10 and the distance representing the distance traveled by the vehicle from the start of the starting process. Signal D is acquired. Based on these data, the determination device 22 determines the activation and deactivation of the two start controllers 24, 26, and each start of the position measurement data of the object measured by the radar sensor 10 is activated. Is transmitted to the controller.

始動制御器24は、既知の始動支援システムでも使用されるような「通常」の始動制御器であって、レーダーセンサ10の位置測定データに応じて始動プロセスを開ループ制御(steuert)ないし閉ループ制御(regelt)する。このために、始動制御器24が車両の駆動システム28に介入する。   The start controller 24 is a “normal” start controller as used in known start assist systems, and the start process is controlled by open loop control or closed loop control according to the position measurement data of the radar sensor 10. (Regelt). For this purpose, the start controller 24 intervenes in the vehicle drive system 28.

必要な場合、例えば前方走行車両が再停止した場合に、始動制御器24が車両の制動システム30にも介入する。自動変速装置を伴う車両では、車両ブレーキは、停止状態、従って始動プロセス前でも、車両がローリングを開始しないように起動されている必要がある。   If necessary, the start controller 24 also intervenes in the braking system 30 of the vehicle, for example when the forward traveling vehicle is stopped again. In a vehicle with an automatic transmission, the vehicle brake needs to be activated so that the vehicle does not start rolling even in a stopped state, and thus even before the starting process.

第2の始動制御器26は、特に、始動プロセスの初期段階のために設けられており、従って初期始動制御器と称される。この制御器は、通常の始動制御器と同様にして始動プロセスを制御するが、さらに詳しく後述するように、より小さな始動加速度および始動速度のみを許容する。さらに、初期始動制御器26は、始動プロセスの初期段階の間に超音波センサ12により近距離内の対象が位置測定された場合に、車両が比較的大きな減速率で制動されて停止状態になるように、従ってある種の非常制動を行うように形成されている。   The second start controller 26 is provided specifically for the initial stage of the start process and is therefore referred to as the initial start controller. This controller controls the starting process in the same way as a normal starting controller, but allows only smaller starting accelerations and starting speeds, as described in more detail below. Furthermore, the initial start controller 26 brakes the vehicle at a relatively large deceleration rate and enters a stopped state when an object within a short distance is measured by the ultrasonic sensor 12 during the initial stage of the start process. Thus, it is configured to provide some kind of emergency braking.

対象が近距離内で位置測定された場合に、決定装置22の指令に応じて運転者のために警告信号を発生させる、例えば音響的な警告信号発生器12が設けられている。   For example, an acoustic warning signal generator 12 is provided that generates a warning signal for the driver in response to a command from the determination device 22 when the position of the target is measured within a short distance.

図2は、前述の始動支援システムを搭載した車両34と、同一の走行車線内ですぐ前方を走行またはすぐ前方に停止している、レーダーセンサ10によって位置測定された他の車両36とを示す。ここで、レーダーセンサ10の位置測定領域38が斜線で示される。高速走行に際して通常のACC機能のためにも利用される、このレーダーセンサの到達距離は、実際には100m以上である。位置測定領域38は、「棍棒」の形状を有しており、通常の車間距離に相当する間隔に際しては、車両34の走行車線40の全幅を覆う。走行車線40の境界は、図2の破線で示される。走行車線は、安全上の理由から、車両34の幅よりも幾分広く想定される。位置測定領域38は、車両34に近接するほど細くなり、もはや走行車線の全幅を覆わないので、レーダーローブの左右に死角42が生じる。   FIG. 2 shows a vehicle 34 equipped with the above-mentioned start assist system and another vehicle 36 that has been positioned in front of the same traveling lane and that has been measured in front by the radar sensor 10 and has just stopped in front. . Here, the position measurement region 38 of the radar sensor 10 is indicated by hatching. The reach of this radar sensor, which is also used for the normal ACC function during high-speed traveling, is actually 100 m or more. The position measurement region 38 has a “stick” shape and covers the entire width of the travel lane 40 of the vehicle 34 at an interval corresponding to a normal inter-vehicle distance. The boundary of the traveling lane 40 is indicated by a broken line in FIG. The travel lane is assumed to be somewhat wider than the width of the vehicle 34 for safety reasons. The position measurement area 38 becomes narrower as it gets closer to the vehicle 34 and no longer covers the entire width of the traveling lane, so that blind spots 42 are formed on the left and right sides of the radar lobe.

図2には、さらに、超音波センサ12の位置測定領域44が示される。この位置測定領域は、走行車線40の全幅を覆うが、例えば4mと比較的小さな到達距離を有する。死角42は、図2に示すように、超音波センサ12によって限定されるが、完全には除去されない。   FIG. 2 further shows a position measurement region 44 of the ultrasonic sensor 12. This position measurement region covers the entire width of the traveling lane 40, but has a relatively small reach, for example 4m. The blind spot 42 is limited by the ultrasonic sensor 12 as shown in FIG. 2, but is not completely removed.

始動支援システムの動作方法を説明するために、図2を用いて始動プロセスを説明する。ここで、まず2台の車両34、36が停止しており、その後に車両36が始動したと仮定する。これがレーダーセンサ10により確認されて決定装置22に報告される。決定装置は、超音波センサ12が対象を近距離内で、従って位置測定領域44内で位置測定したかを検査する。該当する場合には、決定装置22が2つの始動制御器24、26を非能動化するので、車両34が停止状態を保つ。選択的に、光学的または音響的信号によってこの状況が運転者に示唆される。   In order to describe the operation method of the start support system, the start process will be described with reference to FIG. Here, it is assumed that the two vehicles 34 and 36 are stopped first, and then the vehicle 36 is started. This is confirmed by the radar sensor 10 and reported to the determination device 22. The determination device checks whether the ultrasonic sensor 12 has positioned the object within a short distance and thus within the position measurement area 44. If applicable, the decision device 22 deactivates the two start controllers 24, 26 so that the vehicle 34 remains stationary. Optionally, this situation is indicated to the driver by an optical or acoustic signal.

近距離内に対象が存在しない場合には、決定装置22が初期始動制御器26を能動化し、車両34が始動する。しかし、この状況で、対象46、例えば歩行者が死角42内かつ位置測定領域44の外側に存在する可能性がある。よって、対象46は、車両34が始動後に図2にILSDで示す所定の距離を移動した後に初めて超音波センサによって位置測定される。   If there is no target within the short distance, the determination device 22 activates the initial start controller 26 and the vehicle 34 is started. However, in this situation, the object 46, for example, a pedestrian, may exist in the blind spot 42 and outside the position measurement region 44. Therefore, the position of the object 46 is measured by the ultrasonic sensor only after the vehicle 34 has moved a predetermined distance indicated by ILSD in FIG.

よって、初期始動制御器26は、始動時に車両34が所定の最大速度Vimaxを上回らないように設計されており、その最大速度は、超音波センサ12が対象46を初めて位置測定し、それに応じて初期始動制御器26が前述した「非常制動」を起動した場合に、遅過ぎない時点で車両34を再停止可能なように選択される。このようにして、残された死角にもかかわらず、対象46との衝突が確実に回避される。   Therefore, the initial start controller 26 is designed so that the vehicle 34 does not exceed a predetermined maximum speed Vimax at the start, and the maximum speed is measured by the ultrasonic sensor 12 for the first time on the object 46 and accordingly. When the initial start controller 26 activates the above-mentioned “emergency braking”, the vehicle 34 is selected so that it can be stopped again at a time that is not too late. In this way, collision with the object 46 is reliably avoided despite the remaining blind spot.

図2に示す状況では、対象46は、走行車線40の内側に存在し、かつ同時にレーダーセンサの位置測定領域38の外側に存在するという条件下で、車両34に対して確保可能な最大間隔を有する。すなわち、対象46は、車両34からさらに遠ざかれば、レーダーセンサ10により位置測定されて車両36の代りに始動制御のための目標対象を形成するので、車両34が通常の始動制御器の機能に基づいて始動されることはない。   In the situation shown in FIG. 2, the target 46 has a maximum distance that can be secured for the vehicle 34 under the condition that the object 46 exists inside the traveling lane 40 and at the same time outside the radar sensor position measurement region 38. Have. That is, if the object 46 is further away from the vehicle 34, the position of the object 46 is measured by the radar sensor 10 to form a target object for start control instead of the vehicle 36, so that the vehicle 34 functions as a normal start controller. It is not triggered on the basis of.

次に、対象46が存在しないと仮定する。ここで、車両34が距離ILSDを移動したが超音波センサ12により対象が位置測定されなかった場合は、死角内に対象が存在せず、従って走行車線が空いていることを意味する。この理由から、決定装置22は、車両が距離ILSD(初期低速走行安全距離:Initiale Langsamfahrt-Sicherheitsdestanz)を移動した時点を距離信号Dを用いて検査し、移動した場合には即座に、初期始動制御器26から、より大きな加速度を許容する通常の始動制御器24に切り替えるので、始動プロセスが速やかに続行される。   Next, it is assumed that the object 46 does not exist. Here, when the vehicle 34 has moved the distance ILSD but the position of the object has not been measured by the ultrasonic sensor 12, it means that the object does not exist within the blind spot, and therefore the travel lane is free. For this reason, the determination device 22 uses the distance signal D to inspect the time point when the vehicle has moved the distance ILSD (Initiale Langsamfahrt-Sicherheitsdestanz), and if it has moved, the initial start control is immediately performed. Switching from the generator 26 to the normal start controller 24 that allows greater acceleration, the start process continues rapidly.

超音波センサ12の到達距離Rおよび距離ILSDの合計が、レーダーセンサ10のレーダーローブの配置および走行車線40の幅によって与えられ、図2に示す例では7mとなる。この場合に初期走行制御器26のための最大速度Vimaxは、超音波センサの到達距離Rおよび以下の他のパラメータに依存する:初期始動制御器によって制御される制動プロセスの間で達成可能な最大の制動加速度、始動プロセスの初期段階の間における始動加速度(より正確には:対象46が初めて位置測定された瞬間の加速度)、「制動衝撃」、すなわち加速度もしくは制動加減速の許容される最大変化、対象46が位置測定された時点と制動プロセスが実際に能動化される時点との間の回避不能な遅延時間、および停止状態に達した後に車両34と対象46との間で確保されるべき所望の安全距離。   The total of the reach distance R and the distance ILSD of the ultrasonic sensor 12 is given by the radar lobe arrangement of the radar sensor 10 and the width of the travel lane 40, and is 7 m in the example shown in FIG. The maximum speed Vimax for the initial travel controller 26 in this case depends on the ultrasonic sensor reach R and the following other parameters: the maximum achievable during the braking process controlled by the initial start controller Braking acceleration, starting acceleration during the initial stage of the starting process (more precisely: acceleration at the moment the object 46 is first located), “braking impact”, ie the maximum allowed change in acceleration or braking acceleration / deceleration An unavoidable delay time between when the object 46 is located and when the braking process is actually activated, and should be ensured between the vehicle 34 and the object 46 after reaching a stop Desired safety distance.

図3は、このようにして得られた、最大速度Vimaxと超音波センサの到達距離Rとの関係の一例を示す。この場合に前述のパラメータは、以下の値に基づく:
・制動加減速:−2.0m/s
・始動加速度: 1.5m/s
・制動衝撃 :−7.0m/s
・遅延時間 : 0.3s
・安全距離 : 0.2m
FIG. 3 shows an example of the relationship between the maximum velocity Vimax and the reach distance R of the ultrasonic sensor obtained in this way. In this case, the aforementioned parameters are based on the following values:
・ Brake acceleration / deceleration: -2.0 m / s 2
・ Starting acceleration: 1.5 m / s 2
-Braking impact: -7.0 m / s 3
・ Delay time: 0.3s
・ Safety distance: 0.2m

図3の曲線48は、前述した安全距離0.2mの場合の関係を示す。曲線50は、安全距離0.0mの場合の関係を示す。よって、図3の領域IIIでは、車両が対象46の前方0.2m以上の距離で停止する。領域IIでは、いまだ衝突が回避可能であるが、車両が対象46の前方0.2m未満の距離で停止する。領域Iでは、衝突が生じる。   A curve 48 in FIG. 3 shows the relationship when the safety distance is 0.2 m described above. A curve 50 shows the relationship when the safety distance is 0.0 m. Therefore, in the area III of FIG. 3, the vehicle stops at a distance of 0.2 m or more ahead of the object 46. In region II, collisions can still be avoided, but the vehicle stops at a distance of less than 0.2 m ahead of the object 46. In region I, a collision occurs.

レーダーセンサ12の到達距離Rが4mであると、図3からは約1.8m/sの最大速度Vimaxが読取られる。始動プロセスの初期段階の間の始動加速度は、車両が距離ILSDを移動した時点で最大速度が達成されるように選択されてもよい。   When the reach distance R of the radar sensor 12 is 4 m, the maximum speed Vimax of about 1.8 m / s is read from FIG. The starting acceleration during the initial phase of the starting process may be selected such that maximum speed is achieved when the vehicle travels a distance ILSD.

実際には、最大速度および初期の始動加速度を任意に小さく選択することはできない。これらの変量について所定の現実的な設定を行う場合には、超音波センサ12または他の適切な近距離位置測定システムが有するべき到達距離Rが図3から逆に読取られる。   In practice, the maximum speed and initial starting acceleration cannot be chosen arbitrarily small. When predetermined realistic settings are made for these variables, the range R that the ultrasonic sensor 12 or other suitable short-range position measurement system should have is read in reverse from FIG.

図4には、前述したプロセスがフロー図として再び示される。   FIG. 4 again shows the process described above as a flow diagram.

ステップS1では、レーダーセンサ(LRR)により検出された目標対象が始動したか検査される。このステップは、対象が始動するまで周期的に繰返される。その後ステップS2では、超音波センサ(USS)が対象を検出したか検査される。この場合に対象の蓋然性は、まだ考慮されないか、または極めて低い蓋然性閾値が用いられる。対象が検出されていれば、ステップS3では、運転者に警告が出力されてステップS1に復帰され、すなわち車両が始動しない。ステップS2で対象が検出されなければ、ステップS4では、始動プロセスが初期始動制御器26によって制御される。しかし、この始動プロセスの初期段階の間に超音波センサにより対象が検出されれば(ステップS5)、ステップS6では、始動プロセスが即座に中止され、すなわちそれ以上の加速が行われず、制動プロセスも起動されない。その後ステップS7では、位置測定された対象の蓋然性が検査される。蓋然性が低ければ、ステップS3に分岐され、運転者に警告信号が出力される。始動プロセスは、対象が消滅するかまたは運転者が介入するまで中止状態に維持される。ステップS7で蓋然性が高ければ、ステップS8では、初期始動制御器26によって非常制動プロセスが起動される。その後ステップS1に復帰されるので、走行車線が空いていれば、車両が新たに始動可能となる。   In step S1, it is inspected whether the target object detected by the radar sensor (LRR) has started. This step is repeated periodically until the subject is started. Thereafter, in step S2, it is inspected whether the ultrasonic sensor (USS) has detected an object. In this case the probability of the object is not yet taken into account or a very low probability threshold is used. If the target is detected, in step S3, a warning is output to the driver and the process returns to step S1, that is, the vehicle does not start. If no object is detected in step S2, the starting process is controlled by the initial starting controller 26 in step S4. However, if the object is detected by the ultrasonic sensor during the initial stage of this starting process (step S5), in step S6, the starting process is immediately stopped, i.e. no further acceleration is performed, and the braking process is not performed. Does not start. Thereafter, in step S7, the probability of the object whose position has been measured is examined. If the probability is low, the process branches to step S3, and a warning signal is output to the driver. The starting process is maintained in a suspended state until the subject disappears or the driver intervenes. If the probability is high in step S7, the emergency braking process is started by the initial start controller 26 in step S8. Thereafter, the process returns to step S1, so that the vehicle can be newly started if the travel lane is free.

始動プロセスの初期段階の間に近距離内で対象が検出されなければ(ステップS5)、ステップS9では、始動プロセスの開始からの車両34による移動距離Dが距離ILSDよりも大きいか検査される。該当しない場合には、ステップS5に復帰される。該当する場合には、ステップS10で通常の始動制御器24に始動プロセスの制御が委ねられる。   If no object is detected within a short distance during the initial stage of the starting process (step S5), in step S9 it is checked whether the travel distance D by the vehicle 34 from the start of the starting process is greater than the distance ILSD. If not, the process returns to step S5. If this is the case, control of the starting process is entrusted to the normal starting controller 24 in step S10.

本発明に基づく始動支援システムを示すブロック図である。It is a block diagram which shows the starting assistance system based on this invention. 始動支援システムの動作方法を示す説明図である。It is explanatory drawing which shows the operating method of a starting assistance system. 近距離位置測定システムの到達距離と始動プロセスの初期段階で許容可能な最大速度との関係を示すグラフ図である。It is a graph which shows the relationship between the reach | attainment distance of a short-distance position measurement system, and the maximum speed allowable in the initial stage of a starting process. 始動支援システム内における決定装置の動作方法を説明するフロー図である。It is a flowchart explaining the operation | movement method of the determination apparatus in a starting assistance system.

符号の説明Explanation of symbols

10 長距離位置測定システム(レーダーセンサ)
12 短距離位置測定システム(超音波センサ)
14 データ処理装置
16、18 データ準備ユニット
20 蓋然性モジュール
22 決定装置
24 通常の始動制御器
26 初期始動制御器
28 車両駆動システム
30 制動システム
32 警告信号発生器
10 Long distance position measurement system (radar sensor)
12 Short-range position measurement system (ultrasonic sensor)
DESCRIPTION OF SYMBOLS 14 Data processor 16, 18 Data preparation unit 20 Probability module 22 Determination apparatus 24 Normal start-up controller 26 Initial start-up controller 28 Vehicle drive system 30 Braking system 32 Warning signal generator

Claims (10)

前方を走行する車両(36)を位置測定するための長距離位置測定システム(10)と、始動プロセスを起動および制御するための始動制御器(24、26)と、を備える車両用始動支援システムにおいて、
前記長距離位置測定システムが自己の車両(34)のすぐ前方の対象(46)を位置測定するための短距離位置測定システム(12)と組合されており、
前記近距離位置測定システム(12)の信号に応じて前記始動プロセスを阻止するように決定装置(22)が形成されていることを特徴とする車両用始動支援システム。
A start support system for a vehicle comprising a long distance position measurement system (10) for positioning a vehicle (36) traveling in front and a start controller (24, 26) for starting and controlling a start process. In
Said long-range position measurement system is combined with a short-range position measurement system (12) for positioning an object (46) immediately in front of its own vehicle (34)
A vehicle start support system, characterized in that a determination device (22) is formed to block the start process in response to a signal from the short range position measurement system (12).
前記近距離位置測定システムが少なくとも1つ以上の超音波センサ(12)によって形成されていることを特徴とする、請求項1に記載の車両用始動支援システム。   The vehicle start support system according to claim 1, wherein the short-range position measuring system is formed by at least one ultrasonic sensor (12). 前記超音波センサ(12)が駐車補助システムの一部であることを特徴とする、請求項2に記載の車両用始動支援システム。   The vehicle start support system according to claim 2, characterized in that the ultrasonic sensor (12) is part of a parking assistance system. 前記始動プロセスの初期段階のために初期始動制御器(26)が設けられており、前記初期始動制御器は、前記車両(34)の制動距離が前記近距離位置測定システムの検出距離(R)よりも小さくなるように、前記始動プロセスの前記初期段階のための最大速度(Vimax)を決定することを特徴とする、請求項1〜3のいずれかに記載の車両用始動支援システム。   An initial start controller (26) is provided for an initial stage of the start process, wherein the initial start controller is configured such that the braking distance of the vehicle (34) is a detection distance (R) of the short range position measurement system. The vehicle start support system according to any one of claims 1 to 3, wherein a maximum speed (Vimax) for the initial stage of the start process is determined to be smaller than the start speed. 前記初期始動制御器(26)は、前記近距離位置測定システム(12)により対象(46)が検出された場合に、前記車両(34)を制動して停止させるように形成されていることを特徴とする、請求項4に記載の車両用始動支援システム。   The initial start controller (26) is configured to brake and stop the vehicle (34) when the object (46) is detected by the short-range position measurement system (12). The start support system for a vehicle according to claim 4, wherein the start support system is for a vehicle. 前記決定装置(22)は、前記始動プロセスの開始からの前記車両(34)による移動距離(D)が所定の距離(ILSD)よりも大きい場合に、前記初期始動制御器(26)から、より高い速度を許容する通常の始動制御器(24)に前記始動プロセスの制御を委ねるように形成されていることを特徴とする、請求項4または5に記載の車両用始動支援システム。   When the moving distance (D) by the vehicle (34) from the start of the starting process is greater than a predetermined distance (ILSD), the determining device (22) is further controlled from the initial starting controller (26). 6. A start support system for a vehicle according to claim 4 or 5, characterized in that it is configured to delegate control of the start process to a normal start controller (24) which allows high speeds. 前記近距離位置測定システムの前記検出距離(R)および前記距離(ILSD)の合計は、前記車両の走行車線(40)の内側かつ前記長距離位置測定システム(10)の前記検出領域(38)の外側に前記対象(46)が存在する場合に、前記車両(34)と前記対象(46)との間で確保可能な最大間隔に相当することを特徴とする、請求項6に記載の車両用始動支援システム。   The total of the detection distance (R) and the distance (ILSD) of the short-range position measurement system is the inside of the travel lane (40) of the vehicle and the detection area (38) of the long-range position measurement system (10). The vehicle according to claim 6, which corresponds to a maximum distance that can be secured between the vehicle (34) and the target (46) when the target (46) exists outside the vehicle. Start support system. 前記近距離位置測定システム(12)の位置測定データを蓋然性評価するための蓋然性モジュール(20)が設けられており、
前記決定装置(22)は、前記位置測定データの前記蓋然性(P)が所定の閾値以上である場合にのみ、前記初期始動制御器(26)に制動プロセスを促すように形成されていることを特徴とする、請求項6または7に記載の車両用始動支援システム。
A probability module (20) is provided for evaluating the probability of the position measurement data of the short-range position measurement system (12);
The determination device (22) is configured to prompt the initial start controller (26) to perform a braking process only when the probability (P) of the position measurement data is equal to or greater than a predetermined threshold. The start support system for a vehicle according to claim 6 or 7, characterized in.
前記決定装置(22)は、前記近距離位置測定システム(12)が対象を位置測定し、かつ前記位置測定データの前記蓋然性(P)が前記閾値より低い場合に、前記初期段階の間に加速プロセスを中止するように形成されていることを特徴とする、請求項8に記載の車両用始動支援システム。   The determination device (22) accelerates during the initial stage when the short-range position measurement system (12) positions an object and the probability (P) of the position measurement data is lower than the threshold. 9. The vehicle start assistance system according to claim 8, wherein the vehicle start assistance system is configured to stop the process. 前記近距離位置測定システム(12)が対象を位置測定した場合に、運転者に警告信号を出力するための警告信号発生器(32)を特徴とする、請求項1〜9のいずれかに記載の車両用始動支援システム。   10. A warning signal generator (32) for outputting a warning signal to a driver when the short-range position measuring system (12) has positioned an object, wherein the warning signal generator (32) is used. Vehicle start-up support system.
JP2007533970A 2004-09-29 2005-07-20 Vehicle start-up support system Pending JP2008514937A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004047177A DE102004047177A1 (en) 2004-09-29 2004-09-29 Start-up assistant for motor vehicles
PCT/EP2005/053498 WO2006034893A1 (en) 2004-09-29 2005-07-20 Start-up assist system for a motor vehicle

Publications (1)

Publication Number Publication Date
JP2008514937A true JP2008514937A (en) 2008-05-08

Family

ID=35336308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007533970A Pending JP2008514937A (en) 2004-09-29 2005-07-20 Vehicle start-up support system

Country Status (6)

Country Link
US (1) US7715275B2 (en)
EP (1) EP1797452B1 (en)
JP (1) JP2008514937A (en)
CN (1) CN101031815B (en)
DE (2) DE102004047177A1 (en)
WO (1) WO2006034893A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038888A (en) * 2008-08-08 2010-02-18 Toyota Motor Corp Object detecting device
JP2014089077A (en) * 2012-10-29 2014-05-15 Denso Corp Obstacle detecting device
JP2018025880A (en) * 2016-08-08 2018-02-15 シャープ株式会社 Autonomous travel device and autonomous travel control method and control program
CN110300690A (en) * 2017-02-15 2019-10-01 罗伯特·博世有限公司 For determining the method and apparatus and automation control loop of the maximum speed of vehicle
JPWO2019142357A1 (en) * 2018-01-22 2020-10-22 日産自動車株式会社 Vehicle control method and vehicle control device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005038489A1 (en) * 2005-08-13 2007-02-15 Bayerische Motoren Werke Ag A method of disabling an automatic start-up function of a distance-related cruise control system
DE102006056629A1 (en) * 2006-11-30 2008-06-05 Bayerische Motoren Werke Ag Method for speed and / or distance control in motor vehicles
DE102007036787A1 (en) * 2007-08-03 2009-02-05 Robert Bosch Gmbh Distance controller with automatic stop function
DE102009034963B4 (en) * 2009-07-28 2017-02-02 Audi Ag Method for operating a motor vehicle with a longitudinal guidance system comprising a remote area sensor system and a proximity sensor system
DE102009057836B4 (en) * 2009-12-10 2013-02-21 Continental Teves Ag & Co. Ohg Emergency braking assistance system to assist a driver of a vehicle when starting
DE102009054663A1 (en) * 2009-12-15 2011-06-16 Robert Bosch Gmbh Method for object detection and transducer arrangement therefor
JP5454695B2 (en) * 2010-09-08 2014-03-26 トヨタ自動車株式会社 Risk calculation device
JP6528382B2 (en) * 2014-10-22 2019-06-12 株式会社Soken Vehicle Obstacle Detection Device
DE102015224553A1 (en) * 2015-12-08 2017-06-08 Robert Bosch Gmbh Method, computer program, storage medium and electronic control unit for operating a vehicle
RU2767214C1 (en) * 2018-09-25 2022-03-16 Ниссан Мотор Ко., Лтд. Vehicle control method and vehicle control device
DE102018009434A1 (en) * 2018-11-30 2020-06-04 Zf Active Safety Gmbh Control system and method for a motor vehicle for processing multi-reflected signals
JP7380894B2 (en) * 2020-08-28 2023-11-15 日産自動車株式会社 Driving support method and driving support device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271278A (en) * 1989-04-13 1990-11-06 Mitsubishi Electric Corp Collision preventing apparatus of automobile
JPH05187283A (en) * 1992-01-13 1993-07-27 Jatco Corp Engine speed control device
JPH05256170A (en) * 1992-03-12 1993-10-05 Toyota Motor Corp Throttle valve control device for internal combustion engine
JPH11291790A (en) * 1998-04-08 1999-10-26 Nissan Motor Co Ltd Automatic speed controller
JP2000043618A (en) * 1998-07-28 2000-02-15 Aisin Seiki Co Ltd Traveling control device
JP2000339595A (en) * 1999-05-26 2000-12-08 Matsushita Electric Works Ltd Obstacle monitoring device for vehicle
JP2003337996A (en) * 2002-05-20 2003-11-28 Mitsubishi Electric Corp Driving supporting apparatus
JP2004017710A (en) * 2002-06-13 2004-01-22 Nissan Motor Co Ltd Brake control device for vehicle
JP2004224093A (en) * 2003-01-21 2004-08-12 Hitachi Ltd Automatic speed control device for vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3400484B2 (en) * 1993-03-23 2003-04-28 マツダ株式会社 Vehicle safety devices
GB9601691D0 (en) * 1996-01-27 1996-03-27 Rover Group A cruise control system for a motor vehicle
US20030111902A1 (en) * 2001-12-17 2003-06-19 David Thiede Intelligent braking system and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271278A (en) * 1989-04-13 1990-11-06 Mitsubishi Electric Corp Collision preventing apparatus of automobile
JPH05187283A (en) * 1992-01-13 1993-07-27 Jatco Corp Engine speed control device
JPH05256170A (en) * 1992-03-12 1993-10-05 Toyota Motor Corp Throttle valve control device for internal combustion engine
JPH11291790A (en) * 1998-04-08 1999-10-26 Nissan Motor Co Ltd Automatic speed controller
JP2000043618A (en) * 1998-07-28 2000-02-15 Aisin Seiki Co Ltd Traveling control device
JP2000339595A (en) * 1999-05-26 2000-12-08 Matsushita Electric Works Ltd Obstacle monitoring device for vehicle
JP2003337996A (en) * 2002-05-20 2003-11-28 Mitsubishi Electric Corp Driving supporting apparatus
JP2004017710A (en) * 2002-06-13 2004-01-22 Nissan Motor Co Ltd Brake control device for vehicle
JP2004224093A (en) * 2003-01-21 2004-08-12 Hitachi Ltd Automatic speed control device for vehicle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038888A (en) * 2008-08-08 2010-02-18 Toyota Motor Corp Object detecting device
JP2014089077A (en) * 2012-10-29 2014-05-15 Denso Corp Obstacle detecting device
JP2018025880A (en) * 2016-08-08 2018-02-15 シャープ株式会社 Autonomous travel device and autonomous travel control method and control program
CN110300690A (en) * 2017-02-15 2019-10-01 罗伯特·博世有限公司 For determining the method and apparatus and automation control loop of the maximum speed of vehicle
JP2020507518A (en) * 2017-02-15 2020-03-12 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Method and apparatus for setting the maximum speed of a vehicle and an automatic driving system
JP7021262B2 (en) 2017-02-15 2022-02-16 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Methods and equipment for setting the maximum speed of the vehicle and autonomous driving system
US11305758B2 (en) 2017-02-15 2022-04-19 Robert Bosch Gmbh Method and device for determining a maximum speed for a vehicle and automatic drive system
CN110300690B (en) * 2017-02-15 2023-03-14 罗伯特·博世有限公司 Method and device for determining the maximum speed of a vehicle and automated driving system
JPWO2019142357A1 (en) * 2018-01-22 2020-10-22 日産自動車株式会社 Vehicle control method and vehicle control device
US11046311B2 (en) 2018-01-22 2021-06-29 Nissan Motor Co., Ltd. Vehicle control method and vehicle control device
JP7006707B2 (en) 2018-01-22 2022-01-24 日産自動車株式会社 Vehicle control method and vehicle control device

Also Published As

Publication number Publication date
US20070297288A1 (en) 2007-12-27
WO2006034893A1 (en) 2006-04-06
EP1797452A1 (en) 2007-06-20
DE102004047177A1 (en) 2006-04-13
EP1797452B1 (en) 2011-04-06
DE502005011225D1 (en) 2011-05-19
US7715275B2 (en) 2010-05-11
CN101031815A (en) 2007-09-05
CN101031815B (en) 2010-05-05

Similar Documents

Publication Publication Date Title
JP2008514937A (en) Vehicle start-up support system
US7363140B2 (en) Lane changing assistant for motor vehicles
JP6593607B2 (en) Vehicle control device
JP5163991B2 (en) Vehicle speed control method in complex traffic situations
EP3196089B1 (en) Vehicle safety assist system, vehicle comprising a vehicle safety assist system and a method for providing driver warning or performing autonomous braking
EP3470285B1 (en) Driving support device
US10689005B2 (en) Traveling assist device
JP6380920B2 (en) Vehicle control device
EP2878507A1 (en) Drive assist device
EP2802496B1 (en) Method and control unit for monitoring traffic
JP2007186141A (en) Running control device for vehicle
JPH06255391A (en) Traveling controller for vehicle
KR102360633B1 (en) Drive assistance device
US20190172355A1 (en) Control system and control method for driving a motor vehicle and for avoiding a collision with another motor vehicle
US10351130B2 (en) Vehicle control system
US11524700B2 (en) Vehicle control system, vehicle control method, and non-transitory computer-readable storage medium
JP4692077B2 (en) Leading vehicle detection device
JP2020097346A (en) Travel control device for vehicle
JP7001393B2 (en) Vehicle driving control device
JP7222343B2 (en) Driving support device
JP3649052B2 (en) Preceding vehicle start detection device
JP2006524603A (en) Speed and spacing control equipment in automobiles.
JP7151185B2 (en) vehicle controller
KR101301907B1 (en) Adaptive Cruise Control system and control method thereof
JP6365141B2 (en) Vehicle control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111026

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130226