JP2008311629A - Ultrashort light pulse amplifying method, ultrashort light pulse amplifying device, and broadband comb generator - Google Patents

Ultrashort light pulse amplifying method, ultrashort light pulse amplifying device, and broadband comb generator Download PDF

Info

Publication number
JP2008311629A
JP2008311629A JP2008112013A JP2008112013A JP2008311629A JP 2008311629 A JP2008311629 A JP 2008311629A JP 2008112013 A JP2008112013 A JP 2008112013A JP 2008112013 A JP2008112013 A JP 2008112013A JP 2008311629 A JP2008311629 A JP 2008311629A
Authority
JP
Japan
Prior art keywords
fiber
optical
mode
output
light pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008112013A
Other languages
Japanese (ja)
Other versions
JP5182867B2 (en
Inventor
Hajime Inaba
肇 稲場
Yoshiaki Nakajima
善晶 中嶋
Feng-Lei Hong
鋒雷 洪
Atsushi Oonae
敦 大苗
Kaoru Minojima
薫 美濃島
Koichi Matsumoto
弘一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008112013A priority Critical patent/JP5182867B2/en
Publication of JP2008311629A publication Critical patent/JP2008311629A/en
Application granted granted Critical
Publication of JP5182867B2 publication Critical patent/JP5182867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrashort light pulse amplifying method and an ultrashort light pulse amplifying device capable of surely providing high output by eliminating a phenomenon wherein output is varied on a device basis by using both a mode synchronization fiber laser and an optical fiber amplifier; and a broadband comb generator. <P>SOLUTION: This ultrashort light pulse amplifying method and this ultrashort light pulse amplifying device are characterized in that an optical fiber amplifier having a mode synchronization fiber laser, a single mode fiber and an amplification medium fiber is used, and the fiber length of the single mode fiber or the amplification medium fiber is selected to maximize the average output of ultrashort pulses from the optical fiber amplifier. The broadband comb generator includes the high-output ultrashort light pulse amplifying device, and a high nonlinear fiber connected to the output side of the high-output ultrashort light pulse amplifying device, and converting wavelength to broadband. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、モード同期ファイバレーザの出力を光ファイバ増幅器で増幅する超短光パルスの増幅方法及び超短光パルス増幅装置、並びに光周波数計測に適した光コムを発生させる広帯域コム発生装置に関する。   The present invention relates to an ultrashort optical pulse amplification method and an ultrashort optical pulse amplifier that amplify the output of a mode-locked fiber laser with an optical fiber amplifier, and a broadband comb generator that generates an optical comb suitable for optical frequency measurement.

エルビウム添加光ファイバ増幅器(以下、EDFAという)の研究は、1987年に光高速通信の長距離光伝送システム実現のために始められ、1989年にLD励起によるEDFAが実現されたことにより本格化した。1990年にはEDFAによる超短光パルス増幅が報告され、1992年頃にはEDFAを用いたモード同期ファイバレーザ(Mode−locked fiber laser)について報告がなされた。一方、2000年頃になると、モード同期ファイバレーザとフォトニック結晶ファイバ(以下、PCFという)を用いた広帯域光周波数コムによる光周波数計測が注目されるようになり、2003年にはモード同期ファイバレーザによる光コムがEDFAと高非線形ファイバ(以下、HNLFという)やPCFによって広帯域化され、続いて光周波数計測も実現した。モード同期ファイバレーザの出力は一般に数mWに制限され、そのままでは広帯域化できないため、これらの研究ではEDFAによる超短光パルスの増幅が行われている。   Research on erbium-doped optical fiber amplifiers (hereinafter referred to as EDFAs) was started in 1987 to realize a long-distance optical transmission system for optical high-speed communication, and in 1989, the realization of EDFA by LD pumping was in full swing. . In 1990, ultrashort optical pulse amplification by EDFA was reported, and about 1992, a mode-locked fiber laser using EDFA was reported. On the other hand, around 2000, optical frequency measurement using a broadband optical frequency comb using a mode-locked fiber laser and a photonic crystal fiber (hereinafter referred to as PCF) began to attract attention. The optical comb was broadened by EDFA, highly nonlinear fiber (hereinafter referred to as HNLF) and PCF, and optical frequency measurement was also realized. Since the output of a mode-locked fiber laser is generally limited to several mW and cannot be widened as it is, in these studies, an ultrashort optical pulse is amplified by EDFA.

R. J. Mears, et al., Electron. Lett. 23, 1026 (1987)R. J. Mears, et al., Electron. Lett. 23, 1026 (1987) E. Desurvire, et al., Opt. Lett. 12, 888 (1987)E. Desurvire, et al., Opt. Lett. 12, 888 (1987) M. Nakazawa, et al., Electron. Lett. 25 199 (1989)M. Nakazawa, et al., Electron. Lett. 25 199 (1989) Y. Kimura, et al., Electron. Lett. 25 1656 (1989)Y. Kimura, et al., Electron. Lett. 25 1656 (1989) K. Suzuki, et al., “Subpicosecond soliton amplification and transmission using Er3+-doped fibers pumped by InGaAsP laser diodes,” Opt. Lett. 15,865-867 (1989).K. Suzuki, et al., “Subpicosecond soliton amplification and transmission using Er3 + -doped fibers pumped by InGaAsP laser diodes,” Opt. Lett. 15,865-867 (1989). M. Nakazawa, et al., “Femtosecond erbium-doped optical fiber amplifier,” Appl. Phys. Lett. 57, 653-655 (1990).M. Nakazawa, et al., “Femtosecond erbium-doped optical fiber amplifier,” Appl. Phys. Lett. 57, 653-655 (1990). K. Tamura, et al., “Self-starting additive pulse mode-locked erbium fiber laser,” Electron. Lett. 28, 2226-2228 (1992).K. Tamura, et al., “Self-starting additive pulse mode-locked erbium fiber laser,” Electron. Lett. 28, 2226-2228 (1992). N. Nakazawa, et al., “Continuum suppressed, uniformly repetitive 136 fs pulse generation from an erbium-doped fibre laser with nonlinear polarisation rotation,” Electron. Lett. 29, 1327-1329 (1993).N. Nakazawa, et al., “Continuum suppressed, uniformly repetitive 136 fs pulse generation from an erbium-doped fiber laser with nonlinear polarisation rotation,” Electron. Lett. 29, 1327-1329 (1993). D. J. Jones, et al., “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science vol. 288, 635 (2000).D. J. Jones, et al., “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science vol. 288, 635 (2000). F. Tauser, et al., “Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and self-referencing detection of the carrier-envelope phase evolution,” Optics Express 11, 594 (2003).F. Tauser, et al., “Amplified femtosecond pulses from an Er: fiber system: Nonlinear pulse shortening and self-referencing detection of the carrier-envelope phase evolution,” Optics Express 11, 594 (2003). F.-L. Hong, et al.,”Broad-spectrum frequency comb generation and Carrier envelope offset frequency measurement by second-harmonic generation of a mode-locked fiber laser,” Opt. Lett 28, 1516-1518 (2003).F.-L. Hong, et al., “Broad-spectrum frequency comb generation and Carrier envelope offset frequency measurement by second-harmonic generation of a mode-locked fiber laser,” Opt. Lett 28, 1516-1518 (2003). T. R. Schibli, et al., “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29, 2467-2469 (2004).T. R. Schibli, et al., “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29, 2467-2469 (2004). H. Inaba, et al., ”Long-term measurements of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14,5223-5231 (2006),H. Inaba, et al., “Long-term measurements of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14,5223-5231 (2006), J. W. Nicholson, et al., ”High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation,” Opt. Express 12,3025-3033 (2004).J. W. Nicholson, et al., “High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation,” Opt. Express 12,3025-3033 (2004).

本件発明者等は、モード同期ファイバレーザ及び光ファイバ増幅器を多数作製し、様々な高非線形ファイバにより1オクターブを超える広帯域光コムを発生させてきた。そうした中、励起パワーや入力パワーが同じであるにもかかわらず、光ファイバ増幅器からの出力が装置ごとに一定しない現象に悩まされてきた。また、たまたま低い出力しか得られない装置では、高非線形ファイバによるスペクトル拡大が十分に得られない場合があった。本件発明者等の知見によれば、光ファイバ増幅器からの出力が装置ごとに一定しない現象の原因は、光ファイバ増幅器への入射パルスのチャープ量が一定していないことによるものであることが明らかになった。   The present inventors have produced many mode-locked fiber lasers and optical fiber amplifiers, and have generated broadband optical combs exceeding one octave with various highly nonlinear fibers. Under such circumstances, even though the pumping power and input power are the same, the output from the optical fiber amplifier has been plagued by a phenomenon that is not constant for each device. In addition, in a device that happens to have only a low output, spectrum expansion by a highly nonlinear fiber may not be sufficiently obtained. According to the knowledge of the present inventors, it is clear that the cause of the phenomenon that the output from the optical fiber amplifier is not constant for each device is that the chirp amount of the incident pulse to the optical fiber amplifier is not constant. Became.

本発明の目的は、モード同期ファイバレーザと光ファイバ増幅器を併用し、装置ごとに出力が一定しない現象をなくし、高い出力が確実に得られる超短光パルスの増幅方法及び超短光パルス増幅装置、並びに広帯域光コム発生装置を提供することにある。   An object of the present invention is to use a mode-locked fiber laser and an optical fiber amplifier in combination, eliminate the phenomenon that the output is not constant for each device, and an ultrashort optical pulse amplifying method and an ultrashort optical pulse amplifying device that can reliably obtain a high output And a broadband optical comb generator.

本発明は、上記の課題を解決するための手段は次のとおりである。
(1)モード同期ファイバレーザと、シングルモードファイバと、増幅媒体ファイバを有する光ファイバ増幅器とを用い、該光ファイバ増幅器からの超短光パルスの平均出力が最大となるように該シングルモードファイバ又は該増幅媒体ファイバのファイバ長を選定することを特徴とする超短光パルスの増幅方法。
(2)モード同期ファイバレーザと、該モード同期ファイバレーザの出力側に接続されたシングルモードファイバと、該シングルモードファイバの出力側に接続された増幅媒体ファイバを有する光ファイバ増幅器とを含み、該シングルモードファイバのファイバ長は、該光ファイバ増幅器からの超短光パルスの平均出力が最大となるように選定されていることを特徴とする超短光パルス増幅装置。
(3)モード同期ファイバレーザと、該モード同期ファイバレーザの出力側に接続されたシングルモードファイバと、該シングルモードファイバの出力側に接続された増幅媒体ファイバを有する光ファイバ増幅器とを含み、該増幅媒体ファイバのファイバ長は、該光ファイバ増幅器からの超短光パルスの平均出力が最大となるように選定されていることを特徴とする超短光パルス増幅装置。
(4)上記(2)又は(3)に記載の超短光パルス増幅装置と、該超短光パルス増幅装置の出力側に接続された波長を広帯域化する高非線形ファイバとを含む広帯域光コム発生装置。
In the present invention, means for solving the above-described problems are as follows.
(1) Using a mode-locked fiber laser, a single-mode fiber, and an optical fiber amplifier having an amplification medium fiber, the single-mode fiber or the single-mode fiber or the optical fiber amplifier so that the average output of ultrashort optical pulses from the optical fiber amplifier is maximized. A method for amplifying an ultrashort optical pulse, comprising selecting a fiber length of the amplification medium fiber.
(2) a mode-locked fiber laser, a single-mode fiber connected to the output side of the mode-locked fiber laser, and an optical fiber amplifier having an amplification medium fiber connected to the output side of the single-mode fiber, The ultrashort optical pulse amplifying apparatus, wherein the fiber length of the single mode fiber is selected so that the average output of the ultrashort optical pulse from the optical fiber amplifier is maximized.
(3) a mode-locked fiber laser, a single-mode fiber connected to the output side of the mode-locked fiber laser, and an optical fiber amplifier having an amplification medium fiber connected to the output side of the single-mode fiber, An ultrashort optical pulse amplifying apparatus characterized in that the fiber length of the amplification medium fiber is selected so that the average output of the ultrashort optical pulse from the optical fiber amplifier is maximized.
(4) A broadband optical comb including the ultrashort optical pulse amplifying device according to (2) or (3) above and a highly nonlinear fiber connected to the output side of the ultrashort optical pulse amplifying device to broaden the wavelength. Generator.

本発明の高出力超短光パルス増幅装置によれば、出力の高い超短光パルスが得られ、又は、同じ出力を低い励起パワーで得ることができる。また、本発明の広帯域光コム発生装置によれば、高出力超短光パルス増幅装置から出力される増幅された超短光パルスを高非線形ファイバで広帯域化することにより、波長1.5μm帯を中心とする1オクターブ以上の広帯域光コムを容易かつ最適に発生させることができる。   According to the high output ultrashort optical pulse amplifier of the present invention, an ultrashort optical pulse with a high output can be obtained, or the same output can be obtained with a low excitation power. In addition, according to the broadband optical comb generator of the present invention, the amplified ultrashort optical pulse output from the high output ultrashort optical pulse amplifier is widened with a highly nonlinear fiber, so that the wavelength of 1.5 μm band is increased. A broadband optical comb having one or more octaves as a center can be easily and optimally generated.

本発明の第1の実施形態を図1及び図2を用いて説明する。
図1は、入射パルスのチャープ量を変化させたときの光ファイバ増幅器の出力とパルス幅の関係を示す図である。同図において、白い四角と黒い四角は、それぞれ光ファイバ増幅器の出力及び入射光パルスの幅であり、最短パルスの時をゼロとしている。
シングルモードファイバ(SMF)は波長1.5μm帯では異常分散を持っているので、ファイバレーザと光ファイバ増幅器との間のSMF長を変化させることにより入射パルスのチャープ量を変化させることができる。波長1.5μm帯で正常分散を持つEDFAからの出力を観察すると、入射パルスが僅かに異常分散側にチャープした領域に、パワーが最大となる入射チャープ量が存在する。パワー増大にはスペクトル拡大を伴っている。このように入射光パルスのチャープ量を調整することにより、高出力の超短光パルス増幅装置が得られる。又は、同じ出力を低い励起パワーで得ることができる。
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram showing the relationship between the output of the optical fiber amplifier and the pulse width when the chirp amount of the incident pulse is changed. In the figure, white squares and black squares are the output of the optical fiber amplifier and the width of the incident light pulse, respectively, and the time of the shortest pulse is zero.
Since the single mode fiber (SMF) has anomalous dispersion in the 1.5 μm wavelength band, the chirp amount of the incident pulse can be changed by changing the SMF length between the fiber laser and the optical fiber amplifier. When the output from an EDFA having normal dispersion in the wavelength 1.5 μm band is observed, there is an incident chirp amount at which the power is maximum in a region where the incident pulse is slightly chirped to the anomalous dispersion side. The increase in power is accompanied by a spectrum expansion. By adjusting the chirp amount of the incident light pulse in this way, a high output ultrashort light pulse amplifier can be obtained. Alternatively, the same output can be obtained with low excitation power.

図2は、本実施形態の発明に係る高出力超短光パルス増幅装置の構成を示す図である。
同図において、WDMカプラ(Wavelength Division Multiplexing coupler)は波長分割多重カプラ、EDF(Erbium Doped Fiber)はエルビウム添加ファイバ、SMF(Single Mode Fiber)はシングルモードファイバである。
FIG. 2 is a diagram showing the configuration of the high-power ultrashort optical pulse amplifier according to the invention of this embodiment.
In the figure, a WDM coupler (Wavelength Division Multiplexing coupler) is a wavelength division multiplex coupler, an EDF (Erbium Doped Fiber) is an erbium-doped fiber, and an SMF (Single Mode Fiber) is a single mode fiber.

図2において、図示左側のリングがモード同期ファイバレーザ1、図示右側のWDMカプラ〜WDMカプラ間が光ファイバ増幅器3を構成し、モード同期ファイバレーザ1と光ファイバ増幅器3間(図示A〜B)はシングルモードファイバ2を基本としたいくつかの光学素子で接続されている。ここで、図示Bの左隣のWDMカプラは光ファイバ増幅器3のために存在するが、実際に増幅が起こるエルビウムファイバより手前にあるため、増幅される光パルスにとってはシングルモードファイバ2の一部となっている。モード同期ファイバレーザ1により波長1.5μm帯の超短光パルス列が出力される。このレーザは非線形偏波回転を利用したモード同期機構を用いており、これに関する詳細は非特許文献6及び非特許文献7に記載されている。ここでは、これらの文献に記載されたものを改良し、偏波コントローラを加えることによりモード同期動作の最適化のための調整を可能としている。
また、光ファイバ増幅器3は、光ファイバ増幅器3を構成するはEDF(エルビウム添加ファイバ)の両方向(どちらか片方向でも可)から半導体レーザによりWDMカプラ(波長分割多重カプラ)を経て励起されている。ここで用いたEDF(エルビウム添加ファイバ)は1530nmにおいて20dB/m程度の吸収係数を持ち、−30ps/m/km程度の分散値を持っている。また、半導体レーザ(励起レーザ)は波長980nm(1480nmでも可)、出力200−500mWのものを用いた。
モード同期ファイバレーザ1と光ファイバ増幅器3間に接続されるSMF(シングルモードファイバ)2の長さを調整し、入射パルスのチャープ量を光ファイバ増幅器3からの出力が最大になるように選定することにより、高出力の超短光パルスを発生させることができる。
In FIG. 2, the ring on the left side of the figure constitutes the mode-locked fiber laser 1, the optical fiber amplifier 3 is constituted between the WDM coupler and the WDM coupler on the right side of the figure, and the mode-locked fiber laser 1 and the optical fiber amplifier 3 are shown (AB) Are connected by several optical elements based on the single mode fiber 2. Here, although the WDM coupler on the left side of the figure B exists for the optical fiber amplifier 3, it is in front of the erbium fiber where the amplification actually occurs, and therefore a part of the single mode fiber 2 for the amplified optical pulse. It has become. The mode-locked fiber laser 1 outputs an ultrashort optical pulse train having a wavelength of 1.5 μm. This laser uses a mode-locking mechanism that utilizes nonlinear polarization rotation, and details regarding this are described in Non-Patent Document 6 and Non-Patent Document 7. Here, what is described in these documents is improved, and adjustment for optimizing the mode-locking operation is made possible by adding a polarization controller.
Further, the optical fiber amplifier 3 is pumped by a semiconductor laser through a WDM coupler (wavelength division multiplexing coupler) from both directions (either one direction is acceptable) of the EDF (erbium-doped fiber) constituting the optical fiber amplifier 3. . The EDF (erbium-doped fiber) used here has an absorption coefficient of about 20 dB / m at 1530 nm and a dispersion value of about −30 ps / m / km. A semiconductor laser (excitation laser) having a wavelength of 980 nm (1480 nm is acceptable) and an output of 200 to 500 mW was used.
The length of the SMF (single mode fiber) 2 connected between the mode-locked fiber laser 1 and the optical fiber amplifier 3 is adjusted, and the chirp amount of the incident pulse is selected so that the output from the optical fiber amplifier 3 is maximized. As a result, a high-output ultrashort light pulse can be generated.

次に、本発明の第2の実施形態を図2及び図3を用いて説明する。
図3は本実施形態の発明に係る広帯域光コム発生装置の構成を示す図である。
同図に示すように、本発明の広帯域光コム発生装置は、モード同期ファイバレーザ1、SMF(シングルモードファイバ)2、光ファイバ増幅器3(1)、3(2)及び高非線形ファイバ4(1)、4(2)から構成される。広帯域光コム発生装置を光周波数計測などに用いる場合、「オフセット信号」及び「被測定レーザとのビート信号」の検出が必要である。そのため、それらの信号をそれぞれ最適に得るためには、モード同期ファイバレーザ1の出力を2つに分けて、独立に光ファイバ増幅器3(1)、3(2)で増幅することが望ましい。また、高非線形ファイバ4(1)、4(2)にピーク強度の大きな光パルスが入射すると、強い非線形光学効果によりスペクトルが拡がり、広帯域光コムが出力される。
本発明の広帯域光コム発生装置は、図2に示した、モード同期ファイバレーザ1と、SMF(シングルモードファイバ)2と、光ファイバ増幅器3(1)、3(2)とからなる高出力超短光パルス増幅装置の出力を、広帯域光コム発生装置の構成の一部として使用するものである。なお、図3において、SMF(シングルモードファイバ)2のシングルモードファイバ長を変化させることにより入射パルスのチャープ量を変化させる。2つの光ファイバ増幅器3(1)、3(2)からの出力は、それぞれオフセット信号及びビート信号を得るために用いる。これに関する詳細は、例えば、非特許文献13に記載されている。
Next, a second embodiment of the present invention will be described with reference to FIGS.
FIG. 3 is a diagram showing the configuration of the broadband optical comb generator according to the invention of this embodiment.
As shown in the figure, the broadband optical comb generator of the present invention includes a mode-locked fiber laser 1, an SMF (single mode fiber) 2, optical fiber amplifiers 3 (1), 3 (2), and a highly nonlinear fiber 4 (1 ) And 4 (2). When the broadband optical comb generator is used for optical frequency measurement or the like, it is necessary to detect an “offset signal” and a “beat signal with the laser to be measured”. Therefore, in order to obtain these signals optimally, it is desirable to divide the output of the mode-locked fiber laser 1 into two and independently amplify them by the optical fiber amplifiers 3 (1) and 3 (2). Further, when an optical pulse having a large peak intensity is incident on the highly nonlinear fibers 4 (1) and 4 (2), the spectrum is expanded by a strong nonlinear optical effect, and a broadband optical comb is output.
The broadband optical comb generator of the present invention includes a high-power supercombination comprising a mode-locked fiber laser 1, an SMF (single mode fiber) 2, and optical fiber amplifiers 3 (1) and 3 (2) shown in FIG. The output of the short optical pulse amplifier is used as part of the configuration of the broadband optical comb generator. In FIG. 3, the chirp amount of the incident pulse is changed by changing the single mode fiber length of the SMF (single mode fiber) 2. Outputs from the two optical fiber amplifiers 3 (1) and 3 (2) are used to obtain an offset signal and a beat signal, respectively. Details regarding this are described in Non-Patent Document 13, for example.

図3に示すように、モード同期ファイバレーザ1から波長1.5μm帯の光コムが出力され、出力された光コムは2つに分けられ、それぞれSMF(シングルモードファイバ)2のシングルモードファイバ長を変化させることにより入射パルスのチャープ量の調整を経た後、それぞれ光ファイバ増幅器3(1)、3(2)に入力される。光ファイバ増幅器3(1)、3(2)で増幅された光コムは、もう一度分散調整(これらの調整が必要なことは広く知られている)された後、高非線形ファイバ4(1)、4(2)により広帯域化(波長1−2μm)される。これは、モード同期ファイバレーザ及び光ファイバ増幅器を用いた一般的な光周波数計測の手法であり、詳細は、いくつかの論文に記載されている。本実施形態では、モード同期ファイバレーザ1からの約4mW の出力がそれぞれ光ファイバ増幅器3(1)、3(2)により約220mWに増幅され、光ファイバ増幅器3(1)、3(2)のそれぞれの出力は、それぞれ高非線形ファイバ4(1)、4(2)に入射している。上記の分散調整を行わない場合は、最低で150mWまで出力が低下することもあった。   As shown in FIG. 3, the mode-locked fiber laser 1 outputs an optical comb having a wavelength of 1.5 μm, and the output optical comb is divided into two, each of which is a single mode fiber length of an SMF (single mode fiber) 2. After the adjustment of the chirp amount of the incident pulse by changing, the signals are input to the optical fiber amplifiers 3 (1) and 3 (2), respectively. After the optical comb amplified by the optical fiber amplifiers 3 (1) and 3 (2) is once again subjected to dispersion adjustment (it is widely known that these adjustments are necessary), the highly nonlinear fiber 4 (1), 4 (2) is used to broaden the band (wavelength of 1-2 μm). This is a general optical frequency measurement technique using a mode-locked fiber laser and an optical fiber amplifier, and details are described in several papers. In this embodiment, the output of about 4 mW from the mode-locked fiber laser 1 is amplified to about 220 mW by the optical fiber amplifiers 3 (1) and 3 (2), respectively, and the optical fiber amplifiers 3 (1) and 3 (2) The respective outputs are incident on the highly nonlinear fibers 4 (1) and 4 (2), respectively. When the above dispersion adjustment is not performed, the output may be reduced to 150 mW at the minimum.

次に段落0010などで述べたように、モード同期ファイバレーザ1と光ファイバ増幅器3間に接続されるSMF(シングルモードファイバ)2の長さを調整し、入射パルスのチャープ量を光ファイバ増幅器3からの出力が最大になるように選定することにより、高出力の超短光パルスを発生させることができる。
ところで、一般的に波長1.5 μm帯においては、シングルモードファイバは波長が長くなると屈折率が上がる異常分散を持ち、光ファイバ増幅器に含まれる増幅媒体ファイバであるエルビウム添加光ファイバは、波長が長くなると屈折率が下がる正常分散を持つ。
最適なシングルモードファイバ長は、光増幅器中の増幅媒体ファイバ長とのバランスにより決まっており、その最適な組み合わせは多数ある。
したがって超短光パルスの増幅に当たって、光ファイバ増幅器からの超短光パルスの平均出力が最大となるようにするためには、増幅媒体ファイバ長を固定してシングルモードファイバ長を調整して選ぶ方法も採れるし、シングルモードファイバ長を固定して増幅媒体ファイバ長を調整して選ぶことも可能である。
Next, as described in paragraph 0010 and the like, the length of the SMF (single mode fiber) 2 connected between the mode-locked fiber laser 1 and the optical fiber amplifier 3 is adjusted, and the chirp amount of the incident pulse is changed to the optical fiber amplifier 3. By selecting so that the output from can be maximized, a high-power ultrashort light pulse can be generated.
By the way, generally, in the 1.5 μm wavelength band, the single mode fiber has anomalous dispersion in which the refractive index increases as the wavelength becomes longer, and the erbium-doped optical fiber that is an amplification medium fiber included in the optical fiber amplifier has a longer wavelength. Has normal dispersion with decreasing refractive index.
The optimum single mode fiber length is determined by the balance with the length of the amplifying medium fiber in the optical amplifier, and there are many optimum combinations.
Therefore, in order to maximize the average output of the ultrashort optical pulse from the optical fiber amplifier when amplifying the ultrashort optical pulse, a method of selecting by adjusting the single mode fiber length while fixing the length of the amplification medium fiber It is also possible to adjust the amplification medium fiber length while fixing the single mode fiber length.

入射パルスのチャープ量を変化させたときの光ファイバ増幅器の出力とパルス幅を示す図である。It is a figure which shows the output and pulse width of an optical fiber amplifier when changing the chirp amount of an incident pulse. 第1の実施形態の発明に係る高出力超短光パルス増幅装置の構成を示す図である。It is a figure which shows the structure of the high output ultrashort optical pulse amplifier based on invention of 1st Embodiment. 第2の実施形態の発明に係る広帯域光コム発生装置の構成を示す図である。It is a figure which shows the structure of the broadband optical comb generator based on invention of 2nd Embodiment.

符号の説明Explanation of symbols

1 モード同期ファイバレーザ
2 シングルモードファイバ
3、3(1)、3(2) 光ファイバ増幅器
4(1)、4(2) 高非線形ファイバ
WDMカプラ 波長分割多重カプラ
EDF エルビウム添加ファイバ
SMF シングルモードファイバ
1 Mode-locked fiber laser 2 Single mode fiber 3, 3 (1), 3 (2) Optical fiber amplifier 4 (1), 4 (2) Highly nonlinear fiber WDM coupler Wavelength division multiplexing coupler EDF Erbium-doped fiber SMF Single mode fiber

Claims (4)

モード同期ファイバレーザと、シングルモードファイバと、増幅媒体ファイバを有する光ファイバ増幅器とを用い、該光ファイバ増幅器からの超短光パルスの平均出力が最大となるように該シングルモードファイバ又は該増幅媒体ファイバのファイバ長を選定することを特徴とする超短光パルスの増幅方法。   Using a mode-locked fiber laser, a single-mode fiber, and an optical fiber amplifier having an amplification medium fiber, the single-mode fiber or the amplification medium so that the average output of ultrashort optical pulses from the optical fiber amplifier is maximized A method for amplifying an ultrashort optical pulse, wherein the fiber length of the fiber is selected. モード同期ファイバレーザと、該モード同期ファイバレーザの出力側に接続されたシングルモードファイバと、該シングルモードファイバの出力側に接続された増幅媒体ファイバを有する光ファイバ増幅器とを含み、該シングルモードファイバのファイバ長は、該光ファイバ増幅器からの超短光パルスの平均出力が最大となるように選定されていることを特徴とする超短光パルス増幅装置。   A mode-locked fiber laser; a single-mode fiber connected to the output side of the mode-locked fiber laser; and an optical fiber amplifier having an amplification medium fiber connected to the output side of the single-mode fiber. The fiber length is selected so that the average output of the ultrashort optical pulse from the optical fiber amplifier is maximized. モード同期ファイバレーザと、該モード同期ファイバレーザの出力側に接続されたシングルモードファイバと、該シングルモードファイバの出力側に接続された増幅媒体ファイバを有する光ファイバ増幅器とを含み、該増幅媒体ファイバのファイバ長は、該光ファイバ増幅器からの超短光パルスの平均出力が最大となるように選定されていることを特徴とする超短光パルス増幅装置。   A mode-locked fiber laser; a single-mode fiber connected to the output side of the mode-locked fiber laser; and an optical fiber amplifier having an amplifying medium fiber connected to the output side of the single-mode fiber; The fiber length is selected so that the average output of the ultrashort optical pulse from the optical fiber amplifier is maximized. 請求項2又は3に記載の超短光パルス増幅装置と、該超短光パルス増幅装置の出力側に接続された波長を広帯域化する高非線形ファイバとを含む広帯域光コム発生装置。   4. A broadband optical comb generator comprising: the ultrashort optical pulse amplifier according to claim 2; and a highly nonlinear fiber connected to the output side of the ultrashort optical pulse amplifier for widening the wavelength.
JP2008112013A 2007-05-11 2008-04-23 Ultrashort optical pulse amplification method, ultrashort optical pulse amplifier, and broadband comb generator Active JP5182867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008112013A JP5182867B2 (en) 2007-05-11 2008-04-23 Ultrashort optical pulse amplification method, ultrashort optical pulse amplifier, and broadband comb generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007127008 2007-05-11
JP2007127008 2007-05-11
JP2008112013A JP5182867B2 (en) 2007-05-11 2008-04-23 Ultrashort optical pulse amplification method, ultrashort optical pulse amplifier, and broadband comb generator

Publications (2)

Publication Number Publication Date
JP2008311629A true JP2008311629A (en) 2008-12-25
JP5182867B2 JP5182867B2 (en) 2013-04-17

Family

ID=40238922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008112013A Active JP5182867B2 (en) 2007-05-11 2008-04-23 Ultrashort optical pulse amplification method, ultrashort optical pulse amplifier, and broadband comb generator

Country Status (1)

Country Link
JP (1) JP5182867B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011106752A2 (en) * 2010-02-26 2011-09-01 Massachusetts Institute Of Technology Cavity-enhanced optical parametric amplification at full repetition rate
JP2012519879A (en) * 2009-03-06 2012-08-30 イムラ アメリカ インコーポレイテッド Optical scanning and imaging system with dual pulse laser system
WO2019123719A1 (en) * 2017-12-22 2019-06-27 国立大学法人電気通信大学 Dual optical frequency comb generation optical system, laser device, and measurement device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270842A (en) * 1994-03-27 1995-10-20 Anritsu Corp Optical com generator
WO2002071142A1 (en) * 2001-03-02 2002-09-12 Nagoya Industrial Science Research Institute Wideband light spectrum generator and pulse light generator
JP2005229119A (en) * 2004-02-11 2005-08-25 Furukawa Electric North America Inc Optical fiber amplifier for generating femtosecond pulse inside single-mode optical fiber
JP2006128408A (en) * 2004-10-28 2006-05-18 Nippon Telegr & Teleph Corp <Ntt> Broad-band light source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270842A (en) * 1994-03-27 1995-10-20 Anritsu Corp Optical com generator
WO2002071142A1 (en) * 2001-03-02 2002-09-12 Nagoya Industrial Science Research Institute Wideband light spectrum generator and pulse light generator
JP2005229119A (en) * 2004-02-11 2005-08-25 Furukawa Electric North America Inc Optical fiber amplifier for generating femtosecond pulse inside single-mode optical fiber
JP2006128408A (en) * 2004-10-28 2006-05-18 Nippon Telegr & Teleph Corp <Ntt> Broad-band light source

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CSNC200759070309; 中嶋 善晶 Y. Nakajima: 'ファイバレーザによる広帯域光コムの発生とその最適化 Generation of broad-band optical comb by a fiber' 2006年(平成18年)秋季 第67回応用物理学会学術講演会講演予稿集 第3分冊 Extended Abstracts 第3巻, (社)応用物理学会 *
JPN6012067839; 中嶋 善晶 Y. Nakajima: 'ファイバレーザによる広帯域光コムの発生とその最適化 Generation of broad-band optical comb by a fiber' 2006年(平成18年)秋季 第67回応用物理学会学術講演会講演予稿集 第3分冊 Extended Abstracts 第3巻, (社)応用物理学会 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519879A (en) * 2009-03-06 2012-08-30 イムラ アメリカ インコーポレイテッド Optical scanning and imaging system with dual pulse laser system
WO2011106752A2 (en) * 2010-02-26 2011-09-01 Massachusetts Institute Of Technology Cavity-enhanced optical parametric amplification at full repetition rate
WO2011106752A3 (en) * 2010-02-26 2011-12-29 Massachusetts Institute Of Technology Cavity-enhanced optical parametric amplification at full repetition rate
WO2019123719A1 (en) * 2017-12-22 2019-06-27 国立大学法人電気通信大学 Dual optical frequency comb generation optical system, laser device, and measurement device
JPWO2019123719A1 (en) * 2017-12-22 2020-10-22 国立大学法人電気通信大学 Dual optical frequency comb generation optical system, laser device, measuring device
JP7210025B2 (en) 2017-12-22 2023-01-23 国立大学法人電気通信大学 Dual optical frequency comb generation optics, laser device, measurement device

Also Published As

Publication number Publication date
JP5182867B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
CN101840125B (en) Negative dispersion pulse widening optical fiber amplifying device
US9246296B2 (en) Laser or amplifier optical device seeded with nonlinearly generated light
DK2789059T3 (en) HIGH-ENERGY, ULTRA-SHORT HIGH-FIDELITY IMPULS FROM A YB FIBER LASER WITH NET NORMAL DISPERSION WITH A FIBER OF HIGHER ORDER FASHION WITH AN ATYPICAL DISPERSION
US20100296527A1 (en) Passively modelocked fiber laser using carbon nanotubes
US7505489B2 (en) Ultrahigh energy short pulse lasers
JP2004227011A (en) Apparatus and method for generating high output optical pulse
JP2008517460A (en) All-fiber type chirped pulse amplification system
JP2009177641A (en) Optical signal processing apparatus, optical receiving apparatus, and optical relay apparatus
US20120195330A1 (en) Methods and systems for fiber delivery of high peak power optical pulses
CN102801095A (en) Generating laser pulses of narrow spectral linewidth based on chirping and stretching of laser pulses and subsequent power amplification
CN101826696A (en) High-energy low-repetition-frequency fiber laser
JP2006332666A (en) Short pulse amplification in 1 micron based on all fibers
Takayanagi et al. Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system
Wang et al. Harmonic dissipative soliton resonance in an Yb doped fiber laser with 110 W all fiber polarization-maintaining amplifier
Zhao et al. Wavelength switchable and tunable noise-like pulses from a 2 μm figure-eight all-fiber laser
JP5182867B2 (en) Ultrashort optical pulse amplification method, ultrashort optical pulse amplifier, and broadband comb generator
Yu et al. High-average-power polarization maintaining all-fiber-integrated nonlinear chirped pulse amplification system delivering sub-400 fs pulses
Haxsen et al. Tm-doped mode-locked fiber lasers
JP2004287074A (en) Wavelength variable optical pulse generating device
JP4865657B2 (en) Pulsed light generator
JP5400282B2 (en) Pulse amplifier and pulse light source using the same
Li et al. 50 μJ femtosecond laser system based on strictly all-fiber CPA structure
Al-Alimi et al. Simple multiwavelength Brillouin–Erbium-doped fiber laser structure based on short SSMF
Al-Alimi et al. Nonlinear fiber loop mirror optimization to enhance the performance of multiwavelength Brillouin/erbium-doped fiber laser
JP7346564B2 (en) Fiber-based supercontinuum light source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

R150 Certificate of patent or registration of utility model

Ref document number: 5182867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250