JP2008309652A - Dimension measuring device and dimension measuring method - Google Patents

Dimension measuring device and dimension measuring method Download PDF

Info

Publication number
JP2008309652A
JP2008309652A JP2007157941A JP2007157941A JP2008309652A JP 2008309652 A JP2008309652 A JP 2008309652A JP 2007157941 A JP2007157941 A JP 2007157941A JP 2007157941 A JP2007157941 A JP 2007157941A JP 2008309652 A JP2008309652 A JP 2008309652A
Authority
JP
Japan
Prior art keywords
light
dimension
measured
measurement
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007157941A
Other languages
Japanese (ja)
Inventor
Koichi Matsumoto
弘一 松本
Akiko Hirai
亜紀子 平井
Kaoru Sasaki
薫 佐々木
Masatoshi Arai
正敏 荒井
Nobuyuki Osawa
信之 大澤
Toru Shimizu
徹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Tokyo Seimitsu Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2007157941A priority Critical patent/JP2008309652A/en
Publication of JP2008309652A publication Critical patent/JP2008309652A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dimension measuring device and dimension measuring method capable of accurately measuring the measuring object dimension of an object to be measured regardless of the surface roughness thereof. <P>SOLUTION: This dimension measuring device 1 comprises a first interferometer 3 for dividing the light from a white light source 2 into a first light flux and second light flux going to the object to be measured and causing the first optical path difference corresponding to the measuring object dimension of the object between the first light flux and the second light flux, a light receiving element 38 for detecting the light scattered by the object, a second interferometer 4 for dividing the light flux coming from the first interferometer 3 into a third light flux going to a reference mirror 43 and a fourth light flux going to a moving mirror 44 movable along the optical path, and causing the second optical path difference between the third light flux and the fourth light flux, a detector 5 for receiving the third and fourth light fluxes and detecting an interference signal occurring when the first optical path difference is substantially equal to the second optical path difference, and a controller 6 for measuring the measuring object dimension of the object and correcting the acquired measured value based on the light quantity of the scattered light received by the light receiving element 38. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、寸法測定装置及び寸法測定方法に関し、特に、白色干渉を用いた寸法測定装置及び寸法測定方法に関する。   The present invention relates to a dimension measuring apparatus and a dimension measuring method, and more particularly to a dimension measuring apparatus and a dimension measuring method using white interference.

従来より、加工部品の寸法又は表面粗さを、非接触で精密に測定する方法として、白色干渉の原理を用いた方法が提案されている。例えば、白色干渉を用いて、デジタルカメラのフランジバックを測定する測定装置が知られている(特許文献1参照)。特許文献1に記載された測定装置では、白色光源から放射された光を、ビームスプリッタで第1の光路と第2の光路に分割する。そして、第1の光路に向かった光は、第1の光路に沿って移動可能な長さ測定用の参照鏡で反射される。一方、第2の光路に向かった光は、カメラのフランジと接触可能な基準面に、固定的に取り付けられたカメラの撮像素子で反射される。参照鏡及び撮像素子で反射された光は、ビームスプリッタで一つに合わせられ、検出器で検出される。ここで、参照鏡を第1の光路に沿って移動させることにより、第1の光路を通った光と第2の光路を通った光の白色干渉縞の最大光量となる参照鏡の位置を検出する。そして、その参照鏡の位置に基づいて、フランジから撮像素子までの長さを検出する。   Conventionally, a method using the principle of white interference has been proposed as a method for accurately measuring the dimension or surface roughness of a processed part in a non-contact manner. For example, a measuring apparatus that measures the flange back of a digital camera using white light interference is known (see Patent Document 1). In the measuring apparatus described in Patent Document 1, light emitted from a white light source is divided into a first optical path and a second optical path by a beam splitter. And the light which went to the 1st optical path is reflected by the reference mirror for length measurement which can move along a 1st optical path. On the other hand, the light traveling toward the second optical path is reflected by an image sensor of the camera fixedly attached to a reference plane that can come into contact with the flange of the camera. The light reflected by the reference mirror and the image sensor is united by a beam splitter and detected by a detector. Here, by moving the reference mirror along the first optical path, the position of the reference mirror that detects the maximum amount of white interference fringes of the light passing through the first optical path and the light passing through the second optical path is detected. To do. Based on the position of the reference mirror, the length from the flange to the image sensor is detected.

また、被測定物からの弱い反射光を高感度で検出するために、干渉縞を走査する干渉計と計測用の干渉計とを別個に設ける測定方法も開発されている(特許文献2参照)。   In addition, in order to detect weak reflected light from the object to be measured with high sensitivity, a measurement method in which an interferometer that scans interference fringes and an interferometer for measurement are separately provided has been developed (see Patent Document 2). .

特開2005−115149号公報JP 2005-115149 A 特開2000−65530号公報JP 2000-65530 A

上記のような白色干渉を用いた測定方法では、正確な測定を行うために、白色干渉縞の最大光量となる位置、すなわち、白色干渉縞のピーク位置を高精度で検出することが必要となる。しかし、測定光を反射する被測定物の表面には、被測定物の加工時につけられる研磨傷などがあり、ある程度の表面粗さがある。そのため、実際の測定においては、測定光を反射する被測定物の表面粗さの程度により、そのピーク位置が変動する。具体的には、被測定物表面における測定光の反射スポットには、表面の凹凸の各部が含まれるために、被測定物の表面の凸部で反射された光と凹部で反射された光とで、参照光との間に生じる光路差が異なる。そのため、干渉縞のピークは、その凹凸の深さに依存して広がる。そして、ピークの中心位置は、表面高さの平均値にほぼ対応する。したがって、被測定物の表面粗さの程度によって、被測定物の測定対象寸法の測定値が異なってしまう。しかし、シリンダやリングゲージなどが被測定物であり、測定対象寸法がその内径である場合、シリンダ等の内部に挿入される部品との物理的な干渉が生じるか否かを正確に判断するために、内径の測定値は、表面の凸部の頂点を基準として求められることが望ましい。   In the measurement method using white interference as described above, in order to perform accurate measurement, it is necessary to detect the position of the white interference fringe with the maximum light amount, that is, the peak position of the white interference fringe with high accuracy. . However, the surface of the object to be measured that reflects the measurement light has polishing scratches or the like that are made during processing of the object to be measured, and has a certain degree of surface roughness. Therefore, in actual measurement, the peak position varies depending on the degree of surface roughness of the object to be measured that reflects the measurement light. Specifically, since the measurement light reflection spot on the surface of the object to be measured includes each part of the surface unevenness, the light reflected by the convex part of the surface of the object to be measured and the light reflected by the concave part Thus, the optical path difference generated between the reference light and the reference light is different. Therefore, the peak of the interference fringes spreads depending on the depth of the unevenness. The center position of the peak substantially corresponds to the average value of the surface height. Therefore, the measured value of the measurement target dimension of the object to be measured varies depending on the degree of surface roughness of the object to be measured. However, when a cylinder or ring gauge is an object to be measured and the measurement target dimension is its inner diameter, it is necessary to accurately determine whether or not physical interference with a component inserted into the cylinder or the like occurs. In addition, it is desirable that the measured value of the inner diameter is obtained based on the apex of the convex portion on the surface.

上記の問題点に鑑み、本発明の目的は、白色干渉を用いた寸法測定において、被測定物の表面粗さの程度によらず、測定対象寸法を正確に測定できる寸法測定装置及び寸法測定方法を提供することにある。   In view of the above problems, an object of the present invention is to provide a dimension measuring apparatus and a dimension measuring method capable of accurately measuring a dimension to be measured regardless of the degree of surface roughness of an object to be measured in dimension measurement using white interference. Is to provide.

本発明の一つの実施態様によれば、被測定物の寸法を測定する寸法測定装置が提供される。係る寸法測定装置は、白色光源と、白色光源から放射された光を、被測定物に向かう第1の光束と第2の光束に分岐し、第1の光束を被測定物で反射させて第2の光束との間に被測定物の測定対象寸法に対応する第1の光路差を生じさせ、第1の光束と第2の光束を一つの光束に合わせて出射させる第1の干渉計と、第1の干渉計に設けられ、被測定物で散乱された光を検出する受光素子と、位置が固定された参照鏡と、光路に沿って移動可能な移動鏡とを有する第2の干渉計であって、第1の干渉計を出射した光束を、参照鏡に向かう第3の光束と、移動鏡に向かう第4の光束に分岐して、第3の光束と第4の光束との間に第2の光路差を生じさせる第2の干渉計と、第3の光束と第4の光束を受光し、第1の光路差と第2の光路差とが略等しい場合に生じる干渉信号を検出し、干渉信号に対応する信号を出力する検出器と、干渉信号から被測定物の測定対象寸法を求めるコントローラを有する。
そのコントローラは、干渉信号の最大値に対応する移動鏡の位置を測定するピーク位置測定部と、ピーク位置測定部で測定された移動鏡の位置から、第2の光路差を計算することにより、被測定物の測定対象寸法の測定値を求める寸法測定部と、寸法測定部で求められた測定値を、受光素子で受光した散乱光の光量に基づいて補正することにより、その測定対象寸法の真値を求める寸法補正部とを有する。
According to one embodiment of the present invention, a dimension measuring device for measuring a dimension of an object to be measured is provided. Such a dimension measuring apparatus splits a white light source and light emitted from the white light source into a first light beam and a second light beam directed to the object to be measured, and reflects the first light beam on the object to be measured. A first interferometer that generates a first optical path difference corresponding to the measurement target dimension of the object to be measured between the two light beams and emits the first light beam and the second light beam according to one light beam; , A second interference provided in the first interferometer and having a light receiving element for detecting light scattered by the object to be measured, a reference mirror having a fixed position, and a movable mirror movable along the optical path The light beam emitted from the first interferometer is branched into a third light beam directed toward the reference mirror and a fourth light beam directed toward the movable mirror, and the third light beam and the fourth light beam A second interferometer that causes a second optical path difference between them, a third light flux and a fourth light flux are received, and the first optical path difference and the second optical path difference are approximately Detecting an interference signal which occurs when correct, having a detector for outputting a signal corresponding to the interference signal, the controller to determine the measured dimensions of the object to be measured from the interference signal.
The controller calculates the second optical path difference from the position of the moving mirror measured by the peak position measuring unit and the peak position measuring unit that measures the position of the moving mirror corresponding to the maximum value of the interference signal, The dimension measurement unit for obtaining the measurement value of the measurement target dimension of the object to be measured, and the measurement value obtained by the dimension measurement unit is corrected based on the amount of scattered light received by the light receiving element. A dimension correction unit for obtaining a true value.

また、本発明の他の実施態様によれば、被測定物の寸法を測定する寸法測定装置が提供される。係る寸法測定装置は、白色光源と、位置が固定された参照鏡と光路に沿って移動可能な移動鏡とを有する第1の干渉計であって、白色光源から放射された光を、参照鏡に向かう第1の光束と、移動鏡に向かう第2の光束に分岐して、第1の光束と第2の光束との間に第1の光路差を生じさせる第1の干渉計と、第1の干渉計から出射された第1の光束及び第2の光束を、被測定物に向かう第3の光束と第4の光束に分岐し、第3の光束を被測定物で反射させて第4の光束との間に被測定物の測定対象寸法に対応する第2の光路差を生じさせ、第3の光束と第4の光束を一つの光束に合わせて出射させる第2の干渉計と、第2の干渉計に設けられ、被測定物で散乱された光を検出する受光素子と、第3の光束と第4の光束を受光し、第1の光路差と第2の光路差とが略等しい場合に生じる干渉信号を検出し、その干渉信号に対応する信号を出力する検出器と、干渉信号から被測定物の測定対象寸法を求めるコントローラを有する。
そのコントローラは、干渉信号の最大値に対応する移動鏡の位置を測定するピーク位置測定部と、ピーク位置測定部で測定された移動鏡の位置から、第1の光路差を計算することにより、被測定物の測定対象寸法の測定値を求める寸法測定部と、寸法測定部で求められた測定値を、受光素子で受光した散乱光の光量に基づいて補正することにより、その測定対象寸法の真値を求める寸法補正部とを有する。
According to another embodiment of the present invention, a dimension measuring device for measuring a dimension of an object to be measured is provided. The dimension measuring apparatus is a first interferometer having a white light source, a reference mirror whose position is fixed, and a movable mirror movable along the optical path, and the light emitted from the white light source is converted into the reference mirror. A first interferometer for branching into a first light beam directed toward the second light beam and a second light beam directed toward the movable mirror to produce a first optical path difference between the first light beam and the second light beam; The first light beam and the second light beam emitted from one interferometer are branched into a third light beam and a fourth light beam that are directed to the object to be measured, and the third light beam is reflected by the object to be measured. A second interferometer that causes a second optical path difference corresponding to the measurement target dimension of the object to be measured between the four light beams and emits the third light beam and the fourth light beam according to one light beam. A light receiving element provided in the second interferometer for detecting light scattered by the object to be measured; a third light beam and a fourth light beam; and a first optical path When the second optical path difference detecting an interference signal which occurs when approximately equal, having a detector for outputting a signal corresponding to the interference signal, the controller to determine the measured dimensions of the object to be measured from the interference signal.
The controller calculates the first optical path difference from the position of the moving mirror measured by the peak position measuring unit and the peak position measuring unit that measures the position of the moving mirror corresponding to the maximum value of the interference signal, The dimension measurement unit for obtaining the measurement value of the measurement target dimension of the object to be measured, and the measurement value obtained by the dimension measurement unit is corrected based on the amount of scattered light received by the light receiving element. A dimension correction unit for obtaining a true value.

さらに、本発明の他の実施態様によれば、被測定物の寸法を測定する寸法測定装置が提供される。係る寸法測定装置は、白色光源と、光路に沿って移動可能な移動鏡とを有する第1の干渉計であって、白色光源から放射された光を、被測定物に向かう第1の光束と移動鏡に向かう第2の光束に分岐して、第1の光束を被測定物で反射させて第1の光束と第2の光束との間に光路差を生じさせる干渉計と、干渉計に設けられ、被測定物で散乱された光を検出する受光素子と、干渉計を出射した第1の光束と第2の光束を受光し、第1の光束についての光路長と第2の光束についての光路長とが略等しい場合に生じる干渉信号を検出し、干渉信号に対応する信号を出力する検出器と、その干渉信号から被測定物の測定対象寸法を求めるコントローラを有する。そのコントローラは、干渉信号の最大値に対応する移動鏡の位置を測定するピーク位置測定部と、ピーク位置測定部で測定された移動鏡の位置と、予め定められた移動鏡の基準位置との差を計算することにより、被測定物の測定対象寸法の測定値を求める寸法測定部と、寸法測定部で求められた測定値を、受光素子で受光した散乱光の光量に基づいて補正することにより、その測定対象寸法の真値を求める寸法補正部とを有する。   Furthermore, according to the other embodiment of this invention, the dimension measuring apparatus which measures the dimension of a to-be-measured object is provided. The dimension measuring apparatus is a first interferometer having a white light source and a movable mirror movable along the optical path, and the light emitted from the white light source is converted into a first light flux directed to the object to be measured. An interferometer for branching into a second light beam directed to the movable mirror and reflecting the first light beam by the object to be measured to generate an optical path difference between the first light beam and the second light beam; A light receiving element provided for detecting light scattered by the object to be measured; a first light beam and a second light beam emitted from the interferometer; and the optical path length and the second light beam for the first light beam. A detector that detects an interference signal that is generated when the optical path lengths of the two are substantially equal to each other and outputs a signal corresponding to the interference signal, and a controller that determines a measurement target dimension of the object to be measured from the interference signal. The controller includes a peak position measurement unit that measures the position of the movable mirror corresponding to the maximum value of the interference signal, a position of the movable mirror measured by the peak position measurement unit, and a predetermined reference position of the movable mirror. By calculating the difference, the dimension measurement unit for obtaining the measurement value of the measurement target dimension of the object to be measured, and the measurement value obtained by the dimension measurement unit are corrected based on the amount of scattered light received by the light receiving element. Thus, there is a dimension correction unit for obtaining a true value of the measurement target dimension.

また、本発明によれば、寸法補正部は、散乱光の光量が多いほど、測定値に対して測定対象寸法の真値が小さくなるように補正することが好ましい。   Further, according to the present invention, it is preferable that the dimension correction unit corrects so that the true value of the measurement target dimension becomes smaller than the measurement value as the amount of scattered light increases.

さらに、本発明によれば、コントローラは、被測定物として基準用被測定物を用い、基準用被測定物の測定対象寸法の真値と、第1の光束が反射する基準用被測定物の面の粗さを変えて測定した散乱光の光量と基準用被測定物の測定対象寸法の値との関係を表す参照テーブルとを記憶した記憶部をさらに有し、寸法補正部は、参照テーブルから受光素子で受光した散乱光の光量に対応する基準用被測定物の測定対象寸法の基準値を求め、寸法測定部で求められた測定値とその基準値との差を算出し、基準用被測定物の測定対象寸法の真値に、その差を加えた値を被測定物の測定対象寸法の真値とすることが好ましい。   Further, according to the present invention, the controller uses the reference measurement object as the measurement object, and calculates the true value of the measurement target dimension of the reference measurement object and the reference measurement object reflected by the first light flux. The storage unit further stores a reference table that represents the relationship between the amount of scattered light measured by changing the surface roughness and the value of the measurement target dimension of the reference object, and the dimension correction unit includes the reference table. The reference value of the measurement target dimension of the reference measurement object corresponding to the amount of scattered light received by the light receiving element is obtained, and the difference between the measurement value obtained by the dimension measurement unit and the reference value is calculated. It is preferable that a value obtained by adding the difference to the true value of the measurement object dimension of the object to be measured is the true value of the measurement object dimension of the object to be measured.

さらに、本発明によれば、コントローラは、散乱光の光量と測定値に対する補正量との関係を表す参照テーブルとを記憶した記憶部をさらに有し、寸法補正部は、参照テーブルから散乱光の光量に対応する補正量を求め、寸法測定部で求められた測定値に補正量を加えた値を被測定物の測定対象寸法の真値とすることが好ましい。   Further, according to the present invention, the controller further includes a storage unit that stores a reference table that represents a relationship between the amount of scattered light and a correction amount for the measurement value, and the dimension correction unit receives the scattered light from the reference table. It is preferable that a correction amount corresponding to the amount of light is obtained, and a value obtained by adding the correction amount to the measurement value obtained by the dimension measuring unit is set as a true value of the measurement target dimension of the object to be measured.

また、本発明のさらに他の実施態様によれば、白色光源から放射された光を、被測定物に向かう第1の光束と第2の光束に分岐し、第1の光束を被測定物で反射させて第2の光束との間に被測定物の測定対象寸法に対応する第1の光路差を生じさせ、第1の光束と第2の光束を一つの光束に合わせて出射させる第1の干渉計と、第1の干渉計に設けられ、被測定物で散乱された光を検出する受光素子と、位置が固定された参照鏡と、光路に沿って移動可能な移動鏡とを有する第2の干渉計であって、第1の干渉計を出射した光束を、参照鏡に向かう第3の光束と、移動鏡に向かう第4の光束に分岐して、第3の光束と第4の光束との間に第2の光路差を生じさせる第2の干渉計と、第3の光束と第4の光束を受光し、第1の光路差と第2の光路差とが略等しい場合に生じる干渉信号を検出し、干渉信号に対応する信号を出力する検出器とを有する測定システムにおける被測定物のが提供される。
係る寸法測定方法は、干渉信号の最大値に対応する移動鏡の位置を測定するステップと、ピーク位置測定部で測定された移動鏡の位置と、予め定められた移動鏡の基準位置との差を計算することにより、被測定物の測定対象寸法の測定値を求めるステップと、寸法測定部で求められた測定値を、受光素子で受光した散乱光の光量に基づいて補正することにより、その測定対象寸法の真値を求めるステップとを有することを特徴とする。
なお、上記の各実施態様において、白色光源とは、可視光域において広帯域発光する光源に限られず、所定の波長を中心波長とした一定の波長帯域の光を放射する光源をいう。
According to still another embodiment of the present invention, the light emitted from the white light source is branched into a first light beam and a second light beam that are directed toward the object to be measured, and the first light beam is divided by the object to be measured. A first optical path difference corresponding to the measurement target dimension of the object to be measured is generated between the reflected light and the second light flux, and the first light flux and the second light flux are emitted in accordance with one light flux. Interferometer, a light receiving element provided in the first interferometer for detecting light scattered by the object to be measured, a reference mirror whose position is fixed, and a movable mirror movable along the optical path A second interferometer, which splits the light beam emitted from the first interferometer into a third light beam directed to the reference mirror and a fourth light beam directed to the movable mirror, and the third light beam and the fourth light beam. A second interferometer that generates a second optical path difference between the first optical path difference and the third optical flux difference between the first optical path difference and the second light. Detecting an interference signal caused when the the difference substantially equal, the object to be measured is provided in the measurement system and a detector for outputting a signal corresponding to the interference signal.
According to the dimension measuring method, the difference between the step of measuring the position of the movable mirror corresponding to the maximum value of the interference signal, the position of the movable mirror measured by the peak position measurement unit, and the predetermined reference position of the movable mirror is provided. By calculating the measurement value of the measurement target dimension of the object to be measured, and correcting the measurement value obtained by the dimension measurement unit based on the amount of scattered light received by the light receiving element, And a step of obtaining a true value of the dimension to be measured.
In each of the above embodiments, the white light source is not limited to a light source that emits light in a broad band in the visible light range, but a light source that emits light in a certain wavelength band with a predetermined wavelength as a center wavelength.

本発明によれば、白色干渉を用いた寸法測定において、被測定物の表面粗さの程度によらず、測定対象寸法を正確に測定できる寸法測定装置及び寸法測定方法を提供することが可能となった。   According to the present invention, it is possible to provide a dimension measuring apparatus and a dimension measuring method capable of accurately measuring a dimension to be measured regardless of the degree of surface roughness of an object to be measured in dimension measurement using white interference. became.

以下、本発明を、リングゲージ、シリンダなど、円筒状の被測定物の内径を計測する内径測定装置に適用した実施の形態を、図を参照しつつ説明する。
本発明を適用した内径測定装置は、白色光源からの光を第1の干渉計に入射させ、第1の干渉計で、被測定物の内径に対応する光路差を有する二つの光束を生成する。その二つの光束を第2の干渉計に入射して、上記光路差とほぼ等しい光路差を生じる二つの光路に光束を分割して干渉させることにより、白色干渉縞を生じさせる。そして、検出器で白色干渉縞の最大信号値を検出して第2の干渉計の二つの光路間の光路差を測定することにより、被測定物の内径を求める。その際、内径測定装置は、第1の干渉計内に設けられ、被測定物の表面で散乱された光を受光素子で検出し、その散乱光の光量によって表面粗さの程度を推定する。そして、表面粗さの程度にしたがって、被測定物の内径の測定値を補正することにより、被測定物の内径の真値を推定する。
Hereinafter, embodiments in which the present invention is applied to an inner diameter measuring device that measures the inner diameter of a cylindrical object to be measured, such as a ring gauge and a cylinder, will be described with reference to the drawings.
An inner diameter measuring apparatus to which the present invention is applied causes light from a white light source to enter a first interferometer, and the first interferometer generates two light beams having an optical path difference corresponding to the inner diameter of the object to be measured. . The two light beams are incident on the second interferometer, and the light beams are divided and interfered with each other in two optical paths that generate an optical path difference substantially equal to the optical path difference, thereby generating white interference fringes. Then, the inner diameter of the object to be measured is obtained by detecting the maximum signal value of the white interference fringe with a detector and measuring the optical path difference between the two optical paths of the second interferometer. At that time, the inner diameter measuring device is provided in the first interferometer, detects light scattered on the surface of the object to be measured by the light receiving element, and estimates the degree of surface roughness from the amount of the scattered light. Then, the true value of the inner diameter of the measured object is estimated by correcting the measured value of the inner diameter of the measured object according to the degree of surface roughness.

図1は、本発明を適用した内径測定装置1の概略構成を示す図である。内径測定装置1は、白色光源2と、被測定物の内径の2倍に相当する光路差を生じさせる第1の干渉計3と、第1の干渉計3で生じた光路差と同程度の光路差を生じさせて白色干渉縞を発生させる第2の干渉計4と、第2の干渉計4で発生した干渉縞を検出する検出器5と、各部の制御及び検出された干渉縞から被測定物の内径を求めるコントローラ6を有する。さらに、内径測定装置1は、白色光源2からの光を第1の干渉計3に伝える光ファイバ7と、第1の干渉計3を出射した光を第2の干渉計へ伝える光ファイバ8を有する。   FIG. 1 is a diagram showing a schematic configuration of an inner diameter measuring apparatus 1 to which the present invention is applied. The inner diameter measuring device 1 includes a white light source 2, a first interferometer 3 that generates an optical path difference corresponding to twice the inner diameter of the object to be measured, and an optical path difference generated by the first interferometer 3. A second interferometer 4 that generates a white interference fringe by generating an optical path difference, a detector 5 that detects the interference fringe generated by the second interferometer 4, and a control method for each part and detection of the interference fringe. A controller 6 is provided for determining the inner diameter of the measurement object. Further, the inner diameter measuring device 1 includes an optical fiber 7 that transmits light from the white light source 2 to the first interferometer 3 and an optical fiber 8 that transmits light emitted from the first interferometer 3 to the second interferometer. Have.

白色光源2は、コヒーレンス長が短く、広帯域な波長の光を放射可能な光源である。白色光源2として、例えば、LED、SLD(スーパールミネッセントダイオード)、SOA(Semiconductor Optical Amplifier)光源、ASE(Amplified Spontaneous Emission)光源などを用いることができる。また、白色光源2から出射される光の中心波長は、例えば750nm、1300nm、1550nmなどに設定することができる。本実施形態では、白色光源2として、中心波長1550nmの赤外LEDを用いた。   The white light source 2 is a light source that has a short coherence length and can emit light having a broad wavelength. As the white light source 2, for example, an LED, an SLD (super luminescent diode), an SOA (Semiconductor Optical Amplifier) light source, an ASE (Amplified Spontaneous Emission) light source, or the like can be used. The center wavelength of the light emitted from the white light source 2 can be set to 750 nm, 1300 nm, 1550 nm, and the like, for example. In the present embodiment, an infrared LED having a center wavelength of 1550 nm is used as the white light source 2.

図2に、第1の干渉計3の概略構成図を示す。第1の干渉計3では、XYZステージ36の上に配置された被測定物10の内径の2倍に対応する光路差を有する二つの光束B1、B2を生成する。そのために、第1の干渉計3では、白色光源2から第1の光ファイバ7を経て入射した光をコリメータレンズ31で平行光とし、入射した平行光に対して出射する位置を調整する第1のウェッジプリズム32に入射させる。そして、ウェッジプリズム32を出射した光は、被測定物10の内径の略中心に配置されたビームスプリッタ33に入射する。その入射光は、ビームスプリッタ33で反射され、被測定物10の内面S1に向かう光束と、ビームスプリッタ33を透過して直進する光束B2に分岐される。被測定物10の内面S1に向かう光束は、被測定物10の内面S1で反射された後、ビームスプリッタ33に戻る。ビームスプリッタ33に戻った光束の一部は、ビームスプリッタ33を透過し、被測定物10の内面S1と反対側の内面S2へ向かう。そして、S2へ向かった光束は、内面S2で反射され、再びビームスプリッタ33に戻る。ビームスプリッタ33に戻った光束の一部は、ビームスプリッタ33で反射される。この光束をB1と呼ぶ。光束B1と光束B2とは、ビームスプリッタ33を出射する際に合わさって出射する。光束B1と光束B2は、ビームスプリッタ33を出射した後、位置調整用の第2のウェッジプリズム34に入射し、集光レンズ35に入射するように位置調整される。そして、光束B1と光束B2は、集光レンズ35を透過して集光されて第1の干渉計を出射し、光ファイバ8に入射する。   FIG. 2 shows a schematic configuration diagram of the first interferometer 3. In the first interferometer 3, two light beams B 1 and B 2 having an optical path difference corresponding to twice the inner diameter of the DUT 10 arranged on the XYZ stage 36 are generated. For this purpose, in the first interferometer 3, the light incident from the white light source 2 through the first optical fiber 7 is converted into parallel light by the collimator lens 31, and the first position for adjusting the output position with respect to the incident parallel light is adjusted. To the wedge prism 32. Then, the light emitted from the wedge prism 32 is incident on a beam splitter 33 disposed substantially at the center of the inner diameter of the DUT 10. The incident light is reflected by the beam splitter 33 and branched into a light beam traveling toward the inner surface S1 of the DUT 10 and a light beam B2 that passes through the beam splitter 33 and travels straight. The light beam traveling toward the inner surface S1 of the device under test 10 returns to the beam splitter 33 after being reflected by the inner surface S1 of the device under test 10. A part of the light beam returned to the beam splitter 33 passes through the beam splitter 33 and travels to the inner surface S2 opposite to the inner surface S1 of the DUT 10. Then, the light beam directed toward S2 is reflected by the inner surface S2 and returns to the beam splitter 33 again. A part of the light beam returned to the beam splitter 33 is reflected by the beam splitter 33. This light beam is called B1. The light beam B1 and the light beam B2 are emitted together when emitted from the beam splitter 33. The light beams B1 and B2 exit the beam splitter 33, enter the second wedge prism 34 for position adjustment, and are adjusted in position so as to enter the condenser lens 35. Then, the light beam B 1 and the light beam B 2 are collected through the condensing lens 35, exit from the first interferometer, and enter the optical fiber 8.

このとき、第1の干渉計3を出射する光束B1は、被測定物10の内面S1とS2の間を往復するので、被測定物10の内径をDとすれば、光束B1と光束B2との間に、2Dの光路差が生じる。そして、2Dの光路差を有する光束B1と光束B2は、光ファイバ8を通じて第2の干渉計4へ入射する。   At this time, since the light beam B1 emitted from the first interferometer 3 reciprocates between the inner surfaces S1 and S2 of the object to be measured 10, if the inner diameter of the object to be measured 10 is D, the light beam B1 and the light beam B2 2D, a 2D optical path difference occurs. Then, the light beam B 1 and the light beam B 2 having a 2D optical path difference are incident on the second interferometer 4 through the optical fiber 8.

また、ビームスプリッタ33に近接して、受光素子38が設置される。本実施形態では、受光素子38として、フォトダイオードを使用した。受光素子38は、光束B1及びB2の光路の外に配置され、かつその受光面が被測定物10の内面S1に対向するように配置される。そして、受光素子38は、白色光源2からの測定光が、被測定物10の内面S1で散乱された光を受光する。受光素子38は、その散乱光の光量に応じた電気信号を出力する。その電気信号は、増幅回路(図示せず)によって増幅され、受光素子38の制御などを行うPC(図示せず)に送信される。そのPCは、その電気信号を、通信回線などを通じてコントローラ6に送信する。なお、受光素子38を、その受光面が被測定物10の内面S2に対向するように配置し、内面S2による散乱光を受光するようにしてもよい。また、受光素子38は、一つに限られず、複数の受光素子で構成し、各受光素子で検出された光量の平均または合計に対応する電気信号をコントローラ6に送信するようにしてもよい。   Further, a light receiving element 38 is installed in the vicinity of the beam splitter 33. In the present embodiment, a photodiode is used as the light receiving element 38. The light receiving element 38 is disposed outside the optical path of the light beams B1 and B2, and the light receiving surface thereof is disposed so as to face the inner surface S1 of the DUT 10. The light receiving element 38 receives the light scattered by the measurement light from the white light source 2 on the inner surface S <b> 1 of the DUT 10. The light receiving element 38 outputs an electrical signal corresponding to the amount of the scattered light. The electric signal is amplified by an amplifier circuit (not shown) and transmitted to a PC (not shown) that controls the light receiving element 38 and the like. The PC transmits the electrical signal to the controller 6 through a communication line or the like. The light receiving element 38 may be arranged such that the light receiving surface thereof faces the inner surface S2 of the object to be measured 10 so as to receive light scattered by the inner surface S2. Further, the light receiving element 38 is not limited to one, and may be configured by a plurality of light receiving elements, and an electric signal corresponding to the average or total of the light amounts detected by the respective light receiving elements may be transmitted to the controller 6.

なお、XYZステージ36は、被測定物10の軸方向(すなわち、光束B2に平行な方向)、被測定物10の円筒面内で光束B1に平行な方向及び光束B1に垂直な方向の3方向に移動可能であり、ステージコントローラ37により駆動される。またステージコントローラ37は、コントローラ6と電気的に接続され、コントローラ6によって制御される。   The XYZ stage 36 has three directions: an axial direction of the device under test 10 (that is, a direction parallel to the light beam B2), a direction parallel to the light beam B1 and a direction perpendicular to the light beam B1 within the cylindrical surface of the device under test 10. And is driven by the stage controller 37. The stage controller 37 is electrically connected to the controller 6 and is controlled by the controller 6.

図3に、第2の干渉計4の概略構成図を示す。光ファイバ8を出射した光束B1及びB2は、第2の干渉計4のコリメータレンズ41を経て、平行光となる。そして、ビームスプリッタ42へ入射する。光束B1及びB2は、ビームスプリッタ42で反射されて第1の光路へ向かう光束B11、B21と、ビームスプリッタ42を透過して第2の光路へ向かう光束B12、B22に分岐する。なお、光束B11は、第1の干渉計3を出射した光束B1のうち、第2の干渉計4の第1の光路へ向かう光束を表し、光束B21は、第1の干渉計3を出射した光束B2のうち、第2の干渉計4の第1の光路へ向かう光束を表す。同様に、光束B12は、第1の干渉計3を出射した光束B1のうち、第2の干渉計4の第2の光路へ向かう光束を表し、光束B22は、第1の干渉計3を出射した光束B2のうち、第2の干渉計4の第2の光路へ向かう光束を表す。   FIG. 3 shows a schematic configuration diagram of the second interferometer 4. The light beams B1 and B2 emitted from the optical fiber 8 pass through the collimator lens 41 of the second interferometer 4 and become parallel light. Then, the light enters the beam splitter 42. The light beams B1 and B2 are reflected by the beam splitter 42 and branched into light beams B11 and B21 that travel toward the first optical path, and light beams B12 and B22 that pass through the beam splitter 42 and travel toward the second optical path. A light beam B11 represents a light beam that travels toward the first optical path of the second interferometer 4 among the light beams B1 emitted from the first interferometer 3, and a light beam B21 emitted from the first interferometer 3. Of the light beam B2, the light beam traveling toward the first optical path of the second interferometer 4 is represented. Similarly, a light beam B12 represents a light beam that travels to the second optical path of the second interferometer 4 out of the light beam B1 emitted from the first interferometer 3, and a light beam B22 exits the first interferometer 3. Of the measured light beams B2, the light beams traveling toward the second optical path of the second interferometer 4 are represented.

第1の光路には、位置が固定された参照鏡43が設置される。そして、第1の光路へ向かう光束B11、B21は、参照鏡43で反射されてビームスプリッタ42へ戻り、その一部はビームスプリッタ42を透過して検出器5へ向かう。一方、第2の光路には、その光路に沿って移動可能な移動鏡44が設けられる。そして、第2の光路へ向かう光束B12、B22は、移動鏡44で反射されてビームスプリッタ42へ戻り、その一部はビームスプリッタ42で反射されて、B11、B21とともに検出器5へ向かう。   A reference mirror 43 whose position is fixed is installed in the first optical path. The light beams B <b> 11 and B <b> 21 going to the first optical path are reflected by the reference mirror 43 and return to the beam splitter 42, and part of the light passes through the beam splitter 42 and goes to the detector 5. On the other hand, a movable mirror 44 that is movable along the optical path is provided in the second optical path. Then, the light beams B12 and B22 traveling toward the second optical path are reflected by the moving mirror 44 and returned to the beam splitter 42. A part of the light beams B12 and B22 are reflected by the beam splitter 42 and travel to the detector 5 together with B11 and B21.

移動鏡44は、支持部材45に取り付けられる。そして、移動鏡44及び支持部材45は、移動範囲が狭いものの、移動鏡44の位置の微調整が可能なピエゾ微動ステージ46の上に設置される。また、移動鏡44及び支持部材45は、ピエゾ微動ステージ46とともに、移動範囲が相対的に大きく、移動鏡44の位置を大まかに決定する粗動ステージ47上に設置される。ピエゾ微動ステージ46及び粗動ステージ47は、それぞれピエゾコントローラ51及びステージコントローラ52と電気的に接続される。そして、ピエゾ微動ステージ46及び粗動ステージ47は、ピエゾコントローラ51及びステージコントローラ52からの制御信号に基づいて、移動鏡44を第2の光路に沿って移動させる。
なお、移動鏡44を移動させつつ、その移動の間に連続的に干渉信号を測定する場合には、ピエゾ微動ステージ46及びピエゾコントローラ51を省略してもよい。
The movable mirror 44 is attached to the support member 45. The movable mirror 44 and the support member 45 are installed on a piezo fine movement stage 46 that can finely adjust the position of the movable mirror 44 although the movement range is narrow. The movable mirror 44 and the support member 45 are installed on a coarse movement stage 47 that, together with the piezo fine movement stage 46, has a relatively large movement range and roughly determines the position of the movement mirror 44. The piezo fine movement stage 46 and the coarse movement stage 47 are electrically connected to the piezo controller 51 and the stage controller 52, respectively. Then, the piezo fine movement stage 46 and the coarse movement stage 47 move the movable mirror 44 along the second optical path based on control signals from the piezo controller 51 and the stage controller 52.
If the interference signal is continuously measured during the movement while moving the movable mirror 44, the piezo fine movement stage 46 and the piezo controller 51 may be omitted.

また、支持部材45の背面には、コーナーキューブ48が取り付けられる。さらに、支持部材45よりも後方(すなわち、支持部材45を中心として、ビームスプリッタ42の反対側)には、移動鏡44の位置計測用干渉計49が設置される。そして、位置計測用干渉計49は、コーナーキューブ48へ向けて照射され、コーナーキューブ48で反射されて位置計測用干渉計49に戻ってきたコヒーレント光と、参照光との間で観測される干渉縞の移動本数を計数することにより、移動鏡44の移動量を計測することができる。   A corner cube 48 is attached to the back surface of the support member 45. Further, an interferometer 49 for measuring the position of the movable mirror 44 is installed behind the support member 45 (that is, on the opposite side of the beam splitter 42 with the support member 45 as the center). The position measurement interferometer 49 is irradiated to the corner cube 48, reflected by the corner cube 48 and returned to the position measurement interferometer 49, and interference observed between the reference light and the reference light. The amount of movement of the movable mirror 44 can be measured by counting the number of moving stripes.

検出器5は、検出した光量を電気信号として出力するものである。検出器5として、例えば、フォトダイオード、CCDまたはC−MOSなどの半導体検出素子を使用することができる。本実施形態では、検出器5として、CCD素子を2次元アレイ状に並べたものを用いた。
また、検出器5は、コントローラ6と電気的に接続され、検出した光量に対応する電気信号を、コントローラ6へ送信する。
The detector 5 outputs the detected light quantity as an electrical signal. As the detector 5, for example, a semiconductor detection element such as a photodiode, CCD, or C-MOS can be used. In this embodiment, a detector in which CCD elements are arranged in a two-dimensional array is used as the detector 5.
The detector 5 is electrically connected to the controller 6 and transmits an electrical signal corresponding to the detected light amount to the controller 6.

図4に、コントローラ6の機能ブロック図を示す。
コントローラ6は、いわゆるPCで構成され、電気的に書き換え可能な不揮発性メモリ、磁気ディスク、光ディスク及びそれらの読取装置等からなる記憶部61と、RS232C、イーサネット(登録商標)などの通信規格にしたがって構成された電子回路及びデバイスドライバなどのソフトウェアからなる通信部62を有する。
さらにコントローラ6は、図示していないCPU、ROM、RAM及びその周辺回路と、CPU上で実行されるコンピュータプログラムによって実現される機能モジュールとして、検出された光量及び移動鏡44の位置に基づいて、干渉信号の最大値に対応する移動鏡44の位置を測定するピーク位置測定部63と、測定された移動鏡44の位置から、被測定物10の内径Dの測定値を求める寸法測定部64と、その測定値を受光素子38で受光した散乱光の光量に基づいて補正し、内径Dの真値を求める寸法補正部65と、コントローラ6の各部、位置計測用干渉計49、ピエゾコントローラ51、ステージコントローラ52及び検出器5など、コントローラ6に接続された機器を制御する制御部66とを有する。
FIG. 4 shows a functional block diagram of the controller 6.
The controller 6 is configured by a so-called PC, and is in accordance with a storage unit 61 including an electrically rewritable nonvolatile memory, a magnetic disk, an optical disk, and a reading device thereof, and communication standards such as RS232C and Ethernet (registered trademark). The communication unit 62 includes software such as the configured electronic circuit and device driver.
Further, the controller 6 is a functional module realized by a CPU, ROM, RAM and its peripheral circuits (not shown) and a computer program executed on the CPU, based on the detected light amount and the position of the movable mirror 44. A peak position measuring unit 63 for measuring the position of the movable mirror 44 corresponding to the maximum value of the interference signal, and a dimension measuring unit 64 for obtaining a measured value of the inner diameter D of the DUT 10 from the measured position of the movable mirror 44; , The measurement value is corrected based on the amount of scattered light received by the light receiving element 38, and a dimension correction unit 65 for obtaining a true value of the inner diameter D, each part of the controller 6, a position measurement interferometer 49, a piezo controller 51, And a control unit 66 for controlling devices connected to the controller 6 such as the stage controller 52 and the detector 5.

以下、内径測定装置1による被測定物10の内径を測定する動作について説明する。
白色光源2からの光は、コヒーレンス長が短いため、光路差がほぼ等しい場合にのみ干渉縞を生じる。ここで、第2の干渉計4の第1の光路における、ビームスプリッタ42から参照鏡43までの距離がL1であり、第2の光路における、ビームスプリッタ42から移動鏡44までの距離がL2であるとすると、第3の光束と第4の光束との間に、2(L2−L1)の光路差が生じる(ただし、L2>L1とする)。このとき、(L2−L1)とDが等しければ、第1の干渉計3において、被測定物10の内面S1、S2で反射された光束B1のうち、第2の干渉計4において、第1の光路を通った光束B11と、第1の干渉計3においてビームスプリッタ33を素通りした光束B2のうち、第2の干渉計4において、第2の光路を通った光束B22との光路差が0となる。そのため、最大の干渉信号を観測することができる。そして、(L2−L1)とDとの差が大きくなるにつれて、干渉信号の大きさは急激に低下する。したがって、干渉信号が最大となるときの(L2−L1)を計測することにより、被測定物10の内径Dを求めることができる。
Hereinafter, an operation for measuring the inner diameter of the DUT 10 by the inner diameter measuring apparatus 1 will be described.
Since the light from the white light source 2 has a short coherence length, interference fringes are generated only when the optical path differences are substantially equal. Here, the distance from the beam splitter 42 to the reference mirror 43 in the first optical path of the second interferometer 4 is L1, and the distance from the beam splitter 42 to the moving mirror 44 in the second optical path is L2. If there is, an optical path difference of 2 (L2−L1) is generated between the third light flux and the fourth light flux (where L2> L1). At this time, if (L2−L1) and D are equal, the first interferometer 3 uses the first interferometer 4 out of the light beams B1 reflected by the inner surfaces S1 and S2 of the DUT 10. The optical path difference between the light beam B11 passing through the optical path and the light beam B2 passing through the beam splitter 33 in the first interferometer 3 and the light beam B22 passing through the second optical path in the second interferometer 4 is 0. It becomes. Therefore, the maximum interference signal can be observed. Then, as the difference between (L2−L1) and D increases, the magnitude of the interference signal decreases rapidly. Therefore, the inner diameter D of the DUT 10 can be obtained by measuring (L2-L1) when the interference signal is maximum.

また、移動鏡44をビームスプリッタ42に近づけていくと、第3の光束と第4の光束との間に生じる光路差2(L1−L2)が、被測定物10の内径Dの2倍と等しいところでも干渉縞を観測することができる(ただし、L1>L2である)。この場合、第1の干渉計3において、被測定物10の内面S1、S2で反射された光束B1のうち、第2の干渉計4において、第2の光路を通った光束B12と、第1の干渉計3においてビームスプリッタ33を素通りした光束B2のうち、第2の干渉計4において、第1の光路を通った光束B21との光路差が0となるためである。そこで、光束B11と光束B22との間で生じる干渉信号が最大となる移動鏡44の位置と、光束B12と光束B21との間で生じる干渉信号が最大となる移動鏡44の位置との差を2で割ることにより、被測定物10の内径Dを求めることができる。   Further, when the moving mirror 44 is brought closer to the beam splitter 42, the optical path difference 2 (L1-L2) generated between the third light flux and the fourth light flux is twice the inner diameter D of the DUT 10. Interference fringes can be observed even at equal points (however, L1> L2). In this case, among the light beams B1 reflected by the inner surfaces S1 and S2 of the object to be measured 10 in the first interferometer 3, the light beams B12 that have passed through the second optical path in the second interferometer 4 and the first This is because, in the second interferometer 4, the optical path difference between the light beam B 2 that has passed through the beam splitter 33 in the interferometer 3 and the light beam B 21 that has passed through the first optical path becomes zero. Therefore, the difference between the position of the moving mirror 44 at which the interference signal generated between the light beams B11 and B22 is maximized and the position of the moving mirror 44 at which the interference signal generated between the light beams B12 and B21 is maximized. By dividing by 2, the inner diameter D of the DUT 10 can be obtained.

ここで、被測定物10の内面S1の表面では、光束B1が反射する際、内面S1の表面粗さに応じた散乱光が生じる。
図5に示すグラフ501は、内径Dの測定値と、受光素子38で測定される散乱光の光量(若しくは表面粗さ)との関係の概要を表す。図5において、横軸は散乱光の光量を表し、縦軸は内径Dの測定値を表す。図5に示すように、散乱光の光量が大きくなるほど内面S1の表面粗さが大きいと考えられるので、内径Dの測定値も大きくなる。そして、散乱光が観測されない場合には、内面S1がほぼ理想的な鏡面となっていると考えられるので、そのときの内径Dの測定値が、内径Dの真値であると考えられる。なお、測定対象面の表面粗さが増加するにつれて、内径Dの測定値が大きくなることについては、松本他、「第4回光波センシング技術研究会 講演論文集 光波干渉法による加工表面の絶対値測定」、p.109に記載されている。
Here, on the surface of the inner surface S1 of the DUT 10, when the light beam B1 is reflected, scattered light corresponding to the surface roughness of the inner surface S1 is generated.
A graph 501 illustrated in FIG. 5 represents an outline of the relationship between the measured value of the inner diameter D and the amount of light (or surface roughness) of scattered light measured by the light receiving element 38. In FIG. 5, the horizontal axis represents the amount of scattered light, and the vertical axis represents the measured value of the inner diameter D. As shown in FIG. 5, since the surface roughness of the inner surface S1 is considered to increase as the amount of scattered light increases, the measured value of the inner diameter D also increases. When the scattered light is not observed, the inner surface S1 is considered to be a substantially ideal mirror surface, and the measured value of the inner diameter D at that time is considered to be the true value of the inner diameter D. Note that the measured value of the inner diameter D increases as the surface roughness of the surface to be measured increases. Matsumoto et al., “The 4th Lightwave Sensing Technology Study Group Lecture Collection” Measurement ", p.109.

そこで、このような表面粗さによる内径Dの測定誤差を補正するために、被測定物10の基準品として、内面S1、S2の表面粗さを様々に設定したマスタを準備する。そして、予めそれらのマスタの内径Dと、受光素子38で受光した光量とを測定する。そして、マスタの内径Dの測定値と受光素子38で受光した光量との関係を表した参照テーブル及びマスタの内径Dの真値を、記憶部61に記憶しておく。作成された参照テーブルでは、各マスタの内径Dの測定値と、その測定値に対応する受光素子38で受光した光量とが、例えば2次元配列を用いて一対のデータとして表現される。
参照テーブルを作成すると、受光素子38で受光した光量と、その光量に対応する内径の測定値との関係を、最小二乗法、スプライン補間などの方法を用いて外挿し、受光光量が0の場合の被測定物10のマスタの内径Dについての値を求める。そして、その収束値を、被測定物10のマスタの内径Dの真値として、参照テーブルに関連付けて記憶部61に記憶しておく。なお、被測定物10のマスタの内径Dの真値は、別の方法、例えば、接触式の寸法測定装置などを用いて求めてもよい。
Therefore, in order to correct the measurement error of the inner diameter D due to such surface roughness, a master having various surface roughnesses of the inner surfaces S1 and S2 is prepared as a reference product of the object to be measured 10. Then, the inner diameter D of the master and the amount of light received by the light receiving element 38 are measured in advance. Then, a reference table showing the relationship between the measured value of the inner diameter D of the master and the amount of light received by the light receiving element 38 and the true value of the inner diameter D of the master are stored in the storage unit 61. In the created reference table, the measured value of the inner diameter D of each master and the amount of light received by the light receiving element 38 corresponding to the measured value are expressed as a pair of data using, for example, a two-dimensional array.
When the reference table is created, the relationship between the amount of light received by the light receiving element 38 and the measured value of the inner diameter corresponding to the amount of light is extrapolated using a method such as the least square method or spline interpolation, and the amount of received light is zero. The value about the inner diameter D of the master of the DUT 10 is determined. Then, the convergence value is stored in the storage unit 61 in association with the reference table as the true value of the inner diameter D of the master of the DUT 10. Note that the true value of the inner diameter D of the master of the object to be measured 10 may be obtained using another method, for example, a contact type dimension measuring device.

被測定物10の測定を行う際、内径測定装置1は、被測定物10の内径Dとともに、受光素子38で受光した光量を測定する。そして、それらの測定結果と、参照テーブルに記録されたマスタの内径の測定値とを比較する。内径測定装置1は、その比較結果に基づいて、内面S1での散乱がない場合における被測定物10の内径Dの測定値、すなわち内径Dの真値を求める。   When measuring the device under test 10, the inner diameter measuring device 1 measures the amount of light received by the light receiving element 38 together with the inner diameter D of the device under test 10. Then, the measurement result is compared with the measured value of the inner diameter of the master recorded in the reference table. Based on the comparison result, the inner diameter measuring device 1 obtains a measured value of the inner diameter D of the object to be measured 10 when there is no scattering on the inner surface S1, that is, a true value of the inner diameter D.

図6に、被測定物10の内径Dを測定する際の内径測定装置1の動作フローチャートを示す。
最初に、初期化手順として、移動鏡44の基準位置、すなわち、第2の干渉計4の第1の光路と第2の光路間の光路差が0となる移動鏡44の位置を決定する(ステップS101)。そのために、内径測定装置1の第1の干渉計3に、被測定物10を設置せず、第2の干渉計4で干渉縞の検出される位置を求める。このとき、被測定物10の内面で反射される光束は存在しないから、第1の干渉計3を出射する光束は、全てB2となる。そのため、第2の干渉計4では、第1の光路におけるビームスプリッタ42から参照鏡43までの距離L1と、第2の光路におけるビームスプリッタ42から移動鏡44までの距離L2との差が0のとき、干渉信号は最大となる。そこで、コントローラ6の制御部66は、ピエゾコントローラ51を通じてピエゾ微動ステージ46を駆動し、移動鏡44を移動させる。そして、コントローラ6のピーク位置測定部63は、複数の測定点で検出器5で検出される光量を観測し、検出光量が最大、すなわち、干渉信号が最大値となる位置を見つける。その際、ピーク位置測定部63は、各測定点における検出器5からの出力信号に対して、時間平均値または移動平均値を求めてその測定点の出力信号としてもよい。そして、出力信号値の最大値、すなわち干渉信号の最大値を求める。ピーク位置測定部63は、干渉信号が最大値となったときの移動鏡44の位置を、位置計測用干渉計49から受信し、L1=L2となる位置P1として、コントローラ6の記憶部61に記憶する。
FIG. 6 shows an operation flowchart of the inner diameter measuring apparatus 1 when measuring the inner diameter D of the DUT 10.
First, as an initialization procedure, the reference position of the movable mirror 44, that is, the position of the movable mirror 44 at which the optical path difference between the first optical path and the second optical path of the second interferometer 4 becomes 0 is determined ( Step S101). Therefore, the position where the object to be measured 10 is not installed in the first interferometer 3 of the inner diameter measuring device 1 and the interference fringe is detected by the second interferometer 4 is obtained. At this time, since there is no light beam reflected by the inner surface of the DUT 10, all the light beams emitted from the first interferometer 3 are B2. Therefore, in the second interferometer 4, the difference between the distance L1 from the beam splitter 42 to the reference mirror 43 in the first optical path and the distance L2 from the beam splitter 42 to the moving mirror 44 in the second optical path is zero. When the interference signal is maximized. Therefore, the controller 66 of the controller 6 drives the piezo fine movement stage 46 through the piezo controller 51 to move the movable mirror 44. Then, the peak position measurement unit 63 of the controller 6 observes the light amount detected by the detector 5 at a plurality of measurement points, and finds the position where the detected light amount is maximum, that is, the interference signal is maximum. At that time, the peak position measurement unit 63 may obtain a time average value or a moving average value for the output signal from the detector 5 at each measurement point, and use it as the output signal at that measurement point. Then, the maximum value of the output signal value, that is, the maximum value of the interference signal is obtained. The peak position measurement unit 63 receives the position of the movable mirror 44 when the interference signal reaches the maximum value from the position measurement interferometer 49 and stores it in the storage unit 61 of the controller 6 as a position P1 where L1 = L2. Remember.

次に、内径測定装置1の第1の干渉計3に、被測定物10を設置する。このとき、上述したように、白色干渉縞は、被測定物10の内径Dと、(L2−L1)がほぼ等しい位置でのみ観測される。そこで、コントローラ6の制御部66は、ステージコントローラ52を通じて粗動ステージ47を駆動し、第2の干渉計4の移動鏡44を、被測定物10の内径Dとほぼ等しい距離だけ後退させる。そして、コントローラ6の制御部66は、上記と同様に、ピエゾコントローラ51を通じてピエゾ微動ステージ46を駆動し、移動鏡44を移動させて、複数の測定点で検出器5で検出される光量の増減を調べる。その際、コントローラ6の制御部66は、各測定点における検出器5からの出力信号に対して、時間平均値または移動平均値を求めてその測定点の出力信号とする(ステップS102)。そして、コントローラ6のピーク位置測定部63は、出力信号値の最大値、すなわち干渉信号の最大値を求める(ステップS103)。出力信号が最大となったときの移動鏡44の位置P2を、位置計測用干渉計49から受信する(ステップS104)。そして、コントローラ6の寸法測定部64は、記憶部からL1=L2のときの移動鏡44の位置P1を読み出してP2−P1の値を計算し、被測定物10の内径Dの測定値を得る(ステップS105)。また、コントローラ6は、このときの受光素子38で受光した光量の値を、通信部62を通じて取得する(ステップS106)。   Next, the DUT 10 is installed on the first interferometer 3 of the inner diameter measuring device 1. At this time, as described above, the white interference fringes are observed only at a position where the inner diameter D of the DUT 10 and (L2−L1) are substantially equal. Therefore, the control unit 66 of the controller 6 drives the coarse movement stage 47 through the stage controller 52 to retract the movable mirror 44 of the second interferometer 4 by a distance substantially equal to the inner diameter D of the object to be measured 10. Then, similarly to the above, the control unit 66 of the controller 6 drives the piezo fine movement stage 46 through the piezo controller 51 and moves the movable mirror 44 to increase or decrease the amount of light detected by the detector 5 at a plurality of measurement points. Examine. At that time, the controller 66 of the controller 6 obtains a time average value or a moving average value for the output signal from the detector 5 at each measurement point, and sets it as the output signal at that measurement point (step S102). Then, the peak position measurement unit 63 of the controller 6 obtains the maximum value of the output signal value, that is, the maximum value of the interference signal (step S103). The position P2 of the movable mirror 44 when the output signal becomes maximum is received from the position measurement interferometer 49 (step S104). Then, the dimension measuring unit 64 of the controller 6 reads the position P1 of the movable mirror 44 when L1 = L2 from the storage unit, calculates the value of P2-P1, and obtains the measured value of the inner diameter D of the DUT 10. (Step S105). Moreover, the controller 6 acquires the value of the light quantity received by the light receiving element 38 at this time through the communication unit 62 (step S106).

ここで、干渉信号が最大値となる位置を検出する際のコントローラ6の動作について説明する。上述したように、実際の測定においては、空気擾乱、測定系の機械振動などの影響により、ノイズが加わり、検出器5で検出される光量は、時間的に変動する。そこで、本実施形態では、移動鏡44を、干渉信号が観測される範囲内で移動させつつ取得した測定信号を複数回取得し、それらを時間平均することにより、干渉信号を求める。ノイズ成分は、時間平均することによってほぼ0となるため、上記のように干渉信号を求めることにより、干渉信号が最大となる位置を正確に検出することができる。   Here, the operation of the controller 6 when detecting the position where the interference signal has the maximum value will be described. As described above, in actual measurement, noise is added due to the influence of air turbulence, mechanical vibration of the measurement system, and the amount of light detected by the detector 5 varies with time. Therefore, in this embodiment, the measurement signal acquired while moving the movable mirror 44 within the range in which the interference signal is observed is acquired a plurality of times, and the time average of these is obtained to obtain the interference signal. Since the noise component becomes almost zero by averaging over time, the position where the interference signal is maximized can be accurately detected by obtaining the interference signal as described above.

次に、コントローラ6は、得られた測定結果を、被測定物10の内面S1、S2の表面粗さを考慮して補正することにより、内径Dの真値を求める。
そのために、コントローラ6の寸法補正部65は、参照テーブルを参照して、上記の受光素子38の受光光量に対応するマスタの内径Dの測定値を求める(ステップS107)。この際、参照テーブル中に、受光光量の値に対応するデータがなければ、その受光光量と近い光量に対する測定値から、線形補間、スプライン補間などを用いて内挿することにより、当該受光光量に対応するマスタの内径Dの測定値を求める。
次に、寸法補正部65は、上記の測定値と、参照テーブルから求めたマスタの内径Dの測定値との差を補正値として求める(ステップS108)。最後に、寸法補正部65は、参照テーブルに関連付けて記憶されたマスタの内径Dの真値に、求めた補正値を加え、被測定物10の内径Dの真値とする(ステップS109)。
Next, the controller 6 determines the true value of the inner diameter D by correcting the obtained measurement result in consideration of the surface roughness of the inner surfaces S1 and S2 of the DUT 10.
For this purpose, the dimension correction unit 65 of the controller 6 refers to the reference table to obtain a measured value of the inner diameter D of the master corresponding to the amount of light received by the light receiving element 38 (step S107). At this time, if there is no data corresponding to the value of the received light amount in the reference table, the measured value for the light amount close to the received light amount is interpolated using linear interpolation, spline interpolation, etc. The measured value of the corresponding inner diameter D of the master is obtained.
Next, the dimension correction unit 65 obtains a difference between the above measured value and the measured value of the inner diameter D of the master obtained from the reference table as a correction value (step S108). Finally, the dimension correction unit 65 adds the obtained correction value to the true value of the inner diameter D of the master stored in association with the reference table to obtain the true value of the inner diameter D of the device under test 10 (step S109).

なお、寸法補正部65による、測定値の補正方法は、上記に限られない。例えば、以下に説明する方法で補正を行ってもよい。この代わりの方法では、参照テーブルとして、マスタの内径Dの測定値を記録する代わりに、散乱光の光量に対する補正量を記憶しておく。寸法補正部65は、被測定物10の測定を行う際、受光素子38で受光した散乱光の光量から、参照テーブルを参照して補正量を求める。そして、寸法補正部65は、得られた補正量を、被測定物10の内径Dの測定値に加えることにより、内径Dの真値を求める。   The measurement value correction method by the dimension correction unit 65 is not limited to the above. For example, you may correct | amend by the method demonstrated below. In this alternative method, instead of recording the measured value of the inner diameter D of the master as a reference table, the correction amount for the amount of scattered light is stored. The dimension correction unit 65 obtains a correction amount by referring to a reference table from the amount of scattered light received by the light receiving element 38 when measuring the DUT 10. Then, the dimension correction unit 65 obtains the true value of the inner diameter D by adding the obtained correction amount to the measured value of the inner diameter D of the DUT 10.

さらに、第1の干渉計3において、ビームスプリッタ33の位置が、被測定物10の内径の中心に正確に一致していない場合、光束B1は、被測定物10の内径の直径とずれた位置を通るので、測定された値は正確ではない。係る問題を解決するために、ビームスプリッタ33と被測定物10の位置関係を、被測定物10の円筒面内で光束B1と直交する方向にずらして内径の測定を繰り返す。そして、得られた測定値が最大となる値を、被測定物10の内径とする。   Further, in the first interferometer 3, when the position of the beam splitter 33 does not exactly coincide with the center of the inner diameter of the device under test 10, the light beam B 1 is shifted from the diameter of the inner diameter of the device under test 10. The measured value is not accurate. In order to solve the problem, the measurement of the inner diameter is repeated by shifting the positional relationship between the beam splitter 33 and the DUT 10 in the direction perpendicular to the light beam B1 within the cylindrical surface of the DUT 10. Then, the value at which the obtained measurement value is maximum is taken as the inner diameter of the DUT 10.

そのために、コントローラ6は、上記の手順で一旦内径の測定値を得ると、記憶部61に記憶する。次に、コントローラ6は、第1の干渉計3のステージコントローラ37に制御信号を送信してXYZステージ36を駆動し、所定量(例えば、0.1μm)だけ、被測定物10を光束B1に対して直交する方向に移動させる。そして、再度内径の測定を行って、測定値を得る。得られた測定値を、コントローラ6の記憶部61に記憶された測定値と比較する。そして、新たに得られた測定値の方が、記憶された測定値よりも大きい場合、記憶部61に記憶された測定値をその新たに得られた測定値で更新する。その後、再度同方向に被測定物10を移動し、内径の測定を繰り返す。そして、記憶部61に記憶された測定値の方が、新たに測定された測定値以上となる場合、その記憶部61に記憶された測定値を、被測定物10の内径Dとする。   Therefore, once the controller 6 obtains the measured value of the inner diameter by the above procedure, it stores it in the storage unit 61. Next, the controller 6 transmits a control signal to the stage controller 37 of the first interferometer 3 to drive the XYZ stage 36, and the measured object 10 is changed to the light beam B1 by a predetermined amount (for example, 0.1 μm). It is moved in a direction perpendicular to the direction. Then, the inner diameter is measured again to obtain a measured value. The obtained measurement value is compared with the measurement value stored in the storage unit 61 of the controller 6. If the newly obtained measurement value is larger than the stored measurement value, the measurement value stored in the storage unit 61 is updated with the newly obtained measurement value. Thereafter, the DUT 10 is moved again in the same direction, and the measurement of the inner diameter is repeated. And when the measured value memorize | stored in the memory | storage part 61 becomes more than the newly measured value, let the measured value memorize | stored in the memory | storage part 61 be the internal diameter D of the to-be-measured object 10. FIG.

一方、最初に測定された内径の測定値が、次に測定された測定値以上の場合、コントローラ6は、被測定物10を最初に移動させた方向と逆方向に移動させる。そして、上記と同様に測定を繰り返し、記憶部61に記憶された測定値が、新たに測定された測定値以上となったとき、その記憶部61に記憶された測定値を、被測定物10の内径Dとする。
このように、被測定物10とビームスプリッタ33の位置関係を変化させながら、内径Dの最大測定値を探索することにより、内径測定装置1は、ビームスプリッタ33を正確に被測定物10の中心に配置した状態の内径測定結果を得られるので、高精度で被測定物10の内径を測定することができる。なお、ビームスプリッタ33について、一度被測定物10の中心に位置決めされると、以後の測定においては、被測定物10を交換しない限り、上記のビームスプリッタ33の位置決め手順を省略することができる。
On the other hand, when the measured value of the inner diameter measured first is equal to or larger than the measured value measured next, the controller 6 moves the DUT 10 in the direction opposite to the direction in which the measured object 10 is first moved. Then, the measurement is repeated in the same manner as described above, and when the measured value stored in the storage unit 61 becomes equal to or greater than the newly measured value, the measured value stored in the storage unit 61 is used as the measured object 10. The inner diameter D of
In this way, by searching for the maximum measured value of the inner diameter D while changing the positional relationship between the object to be measured 10 and the beam splitter 33, the inner diameter measuring apparatus 1 accurately sets the beam splitter 33 to the center of the object to be measured 10. Since the inner diameter measurement result in the state of being placed in the position can be obtained, the inner diameter of the DUT 10 can be measured with high accuracy. Note that once the beam splitter 33 is positioned at the center of the device under test 10, in the subsequent measurement, the positioning procedure of the beam splitter 33 can be omitted unless the device under test 10 is replaced.

なお、ステップS101で移動鏡44の基準位置P1を測定する代わりに、上記のように、移動鏡44を参照鏡43よりもビームスプリッタ42に近づけて、光束B12と光束B21との間で生じる干渉信号が最大となる移動鏡44の位置P3を求めてもよい。そして、(P2−P3)/2の値を計算し、その値を、被測定物10の内径Dの測定値としてもよい。基準位置P1で観測される干渉信号の強度と、位置P2で観測される干渉信号の強度は、大きく異なる。一方、位置P2で観測される干渉信号と、位置P3で観測される干渉信号とは、ほぼ同程度の強度となる。そのため、位置P2と位置P3の差に基づいて被測定物10の内径の測定値を求める場合、基準位置P1と位置P2の差に基づいて内径の測定値を求める場合よりも、検出器5の受光量の変化に対する出力信号の変化を大きくすることができるので、干渉信号が最大値となる移動鏡44の位置をより正確に特定することができる。   Instead of measuring the reference position P1 of the movable mirror 44 in step S101, as described above, the movable mirror 44 is moved closer to the beam splitter 42 than the reference mirror 43, and interference occurs between the light beams B12 and B21. The position P3 of the movable mirror 44 that maximizes the signal may be obtained. And the value of (P2-P3) / 2 is calculated, and the value may be used as the measured value of the inner diameter D of the DUT 10. The intensity of the interference signal observed at the reference position P1 is greatly different from the intensity of the interference signal observed at the position P2. On the other hand, the interference signal observed at the position P2 and the interference signal observed at the position P3 have substantially the same intensity. Therefore, when the measured value of the inner diameter of the DUT 10 is obtained based on the difference between the position P2 and the position P3, the detector 5 can be obtained more than when the measured value of the inner diameter is obtained based on the difference between the reference position P1 and the position P2. Since the change in the output signal with respect to the change in the amount of received light can be increased, the position of the movable mirror 44 where the interference signal becomes the maximum value can be specified more accurately.

以上説明してきたように、本発明を適用した内径測定装置1は、被測定物10の内径Dを測定する際に、測定光が反射する被測定物10の内面S1において散乱される光量も測定する。そして、その散乱光の光量と、被測定物10のマスタの内径Dの測定値と表面粗さの関係を表す参照テーブルから補正値を求めて、被測定物10の内径Dの測定値を補正することにより、被測定物10の内径Dの真値を求める。そのため、被測定物10の内面S1の表面粗さによらず、その内径Dを高精度で測定することができる。   As described above, the inner diameter measuring apparatus 1 to which the present invention is applied measures the amount of light scattered on the inner surface S1 of the measurement object 10 reflected by the measurement light when measuring the inner diameter D of the measurement object 10. To do. Then, a correction value is obtained from a reference table representing the relationship between the amount of scattered light, the measured value of the inner diameter D of the master of the object to be measured 10 and the surface roughness, and the measured value of the inner diameter D of the object to be measured 10 is corrected. By doing so, the true value of the inner diameter D of the DUT 10 is obtained. Therefore, the inner diameter D can be measured with high accuracy regardless of the surface roughness of the inner surface S1 of the DUT 10.

なお、本発明は、上記の実施形態に限定されるものではない。例えば、被測定物は、円筒状のものに限られない。上記の実施形態の測定装置は、被測定物の向かい合った2面間の距離を測定したい場合、そのまま適用することができる。また、上記の実施形態の測定装置において、第2の干渉計をフィゾー型の干渉計としてもよい。   In addition, this invention is not limited to said embodiment. For example, the device under test is not limited to a cylindrical one. The measuring apparatus of the above embodiment can be applied as it is when measuring the distance between two opposing surfaces of an object to be measured. In the measurement apparatus of the above embodiment, the second interferometer may be a Fizeau interferometer.

また、本発明は、特許文献1に記載された測定装置のように、マイケルソン型の干渉計を一つのみ使用する構成に対しても適用できる。
図7に、マイケルソン型の干渉計を一つのみ使用する寸法測定装置11の構成の概略構成図を示す。この構成では、白色光源12から出射された測定光を、ビームスプリッタ13で被測定物10’に向かう第1の光束と、光路に沿って移動可能な移動鏡14に向かう第2の光束とに分割する。そして、被測定物10’で反射された第1の光束と移動鏡14で反射された第2の光とを、ビームスプリッタ13で再度一つの光束とし、検出器15でその干渉信号を検出する。検出器15から出力された信号は、コントローラ16に送信される。そして、コントローラ16は、干渉信号がピークとなる位置を求め、第1の光束と第2の光束との光路差が0となる移動鏡14の位置を求める。そして、被測定物10’との関係で予め定められた移動鏡14の基準位置と、求めた移動鏡14の位置との差を計算することにより、被測定物10’の寸法(例えば、表面高さなど)を求める。また、ビームスプリッタ13に近接して、受光素子17が設置される。受光素子17は、第1及び第2の光束の外に配置され、かつその受光面が被測定物10’に対向するように配置される。そして、測定光が被測定物10’の表面で散乱された光を受光し、その受光光量に応じた信号をコントローラ16に送信する。
The present invention can also be applied to a configuration in which only one Michelson interferometer is used as in the measurement apparatus described in Patent Document 1.
FIG. 7 shows a schematic configuration diagram of a configuration of the dimension measuring apparatus 11 that uses only one Michelson interferometer. In this configuration, the measurement light emitted from the white light source 12 is converted into a first light beam directed to the object to be measured 10 ′ by the beam splitter 13 and a second light beam directed to the movable mirror 14 movable along the optical path. To divide. Then, the first light beam reflected by the object to be measured 10 ′ and the second light reflected by the moving mirror 14 are converted into one light beam again by the beam splitter 13, and the interference signal is detected by the detector 15. . The signal output from the detector 15 is transmitted to the controller 16. Then, the controller 16 obtains the position where the interference signal has a peak, and obtains the position of the movable mirror 14 where the optical path difference between the first light flux and the second light flux is zero. Then, by calculating the difference between the reference position of the movable mirror 14 predetermined in relation to the measured object 10 ′ and the obtained position of the movable mirror 14, the dimension of the measured object 10 ′ (for example, the surface Height). Further, a light receiving element 17 is installed in the vicinity of the beam splitter 13. The light receiving element 17 is disposed outside the first and second light beams, and is disposed so that the light receiving surface thereof faces the object to be measured 10 ′. Then, the measurement light receives the light scattered on the surface of the object to be measured 10 ′, and transmits a signal corresponding to the received light amount to the controller 16.

コントローラ16は、上記の実施形態におけるコントローラ6と同様の構成を有する。そして、上記の実施形態と同様の手順により、被測定物10’の寸法の真値を推定する。すなわち、予め、白色光源12からの測定光が反射される表面の粗さを変えた、被測定物10’のマスタを複数準備し、それらマスタの測定対象寸法の測定値と、受光素子38で受光された散乱光の光量との関係を表した参照テーブル及びマスタの寸法の真値を記憶しておく。そして、実際の測定の際には、コントローラ16は、被測定物10’の測定対象寸法の測定値とともに、その被測定物10’の表面で散乱された光の光量を測定する。そして、その散乱光の光量に対応するマスタの測定対象寸法の測定値を求める。最後に、コントローラ16は、被測定物10’の測定対象寸法の測定値と、参照テーブルから求めたマスタの寸法測定値との差を補正値として求め、その参照テーブルに関連付けて記憶されたマスタの寸法の真値に加えることにより、被測定物10’の測定対象寸法の真値を求める。   The controller 16 has the same configuration as the controller 6 in the above embodiment. Then, the true value of the dimension of the DUT 10 ′ is estimated by the same procedure as in the above embodiment. That is, a plurality of masters of the object to be measured 10 ′ whose surface roughness on which the measurement light from the white light source 12 is reflected are prepared in advance, and the measurement values of the measurement target dimensions of the masters and the light receiving element 38 are used. A reference table representing the relationship with the amount of scattered light received and the true value of the master dimensions are stored. In actual measurement, the controller 16 measures the amount of light scattered on the surface of the measurement target 10 ′ together with the measurement value of the measurement target dimension of the measurement target 10 ′. Then, a measurement value of the measurement target dimension of the master corresponding to the amount of the scattered light is obtained. Finally, the controller 16 obtains a difference between the measured value of the measurement target dimension of the object to be measured 10 ′ and the measured dimension value of the master from the reference table as a correction value, and stores it in association with the reference table. Is added to the true value of the dimension, the true value of the measurement target dimension of the object to be measured 10 'is obtained.

さらに、上記の干渉計を二つ使用する構成の実施形態において、第1の干渉計3側に配置された白色光源と、第2の干渉計4側に配置された検出器を入れ替えてもよい。この場合、第2の干渉計4側で予め被測定物の測定対象寸法に相当する光路差を有する二つの光束を発生させ、それらの光束を光ファイバを通じて第1の干渉計3側へ送る。そして、第1の干渉計3では、受け取った二つの光束を、被測定物10の内面S1、S2で反射される光束とビームスプリッタ33を直進する二つの光束にさらに分割し、それらを一つに合わせて検出器で検出することにより、白色干渉縞を観察する。この場合も、第2の干渉計4側で発生させた光路差を測定することにより、被測定物10の内径Dの測定値を求めることができる。
以上のように、本発明の範囲内で、実施される形態に合わせて様々な変更を行うことができる。
Furthermore, in the embodiment using two interferometers, the white light source arranged on the first interferometer 3 side and the detector arranged on the second interferometer 4 side may be interchanged. . In this case, two light beams having an optical path difference corresponding to the measurement target dimension of the object to be measured are generated in advance on the second interferometer 4 side, and these light beams are sent to the first interferometer 3 side through the optical fiber. In the first interferometer 3, the received two light beams are further divided into a light beam reflected by the inner surfaces S 1 and S 2 of the object to be measured 10 and two light beams traveling straight through the beam splitter 33, and one of them. The white interference fringes are observed by detecting with a detector. Also in this case, the measured value of the inner diameter D of the DUT 10 can be obtained by measuring the optical path difference generated on the second interferometer 4 side.
As described above, various modifications can be made within the scope of the present invention according to the embodiment to be implemented.

本発明を適用した内径測定装置の概略構成図である。It is a schematic block diagram of the internal diameter measuring apparatus to which this invention is applied. 内径測定装置を構成する第1の干渉計の概略構成図である。It is a schematic block diagram of the 1st interferometer which comprises an internal diameter measuring apparatus. 内径測定装置を構成する第2の干渉計の概略構成図である。It is a schematic block diagram of the 2nd interferometer which comprises an internal diameter measuring apparatus. 内径測定装置のコントローラの機能ブロック図である。It is a functional block diagram of the controller of an internal diameter measuring device. 被測定物の表面で散乱された光の光量と被測定物の寸法測定値との関係を示すグラフである。It is a graph which shows the relationship between the light quantity of the light scattered on the surface of the to-be-measured object, and the dimension measurement value of the to-be-measured object. 内径測定装置の動作フローチャートである。It is an operation | movement flowchart of an internal diameter measuring apparatus. 本発明を適用した他の実施形態による寸法測定装置の概略構成図である。It is a schematic block diagram of the dimension measuring apparatus by other embodiment to which this invention is applied.

符号の説明Explanation of symbols

1 内径測定装置(寸法測定装置)
11 寸法測定装置
10、10’ 被測定物
2、12 白色光源
3、4 干渉計
5、15 検出器
6、16 コントローラ
31、41 コリメータレンズ
32、34 ウェッジプリズム
33、42、13 ビームスプリッタ
35 集光レンズ
36 XYZステージ
37 ステージコントローラ
38、17 受光素子
43 参照鏡
44、14 移動鏡
45 支持部材
46 ピエゾ微動ステージ
47 粗動ステージ
48 コーナーキューブ
49 位置計測用干渉計
51 ピエゾコントローラ
52 ステージコントローラ
61 記憶部
62 通信部
63 ピーク位置測定部
64 寸法測定部
65 寸法補正部
66 制御部
7,8 光ファイバ
1 Inner Diameter Measuring Device (Dimension Measuring Device)
DESCRIPTION OF SYMBOLS 11 Size measuring apparatus 10, 10 'Measured object 2,12 White light source 3,4 Interferometer 5,15 Detector 6,16 Controller 31,41 Collimator lens 32,34 Wedge prism 33,42,13 Beam splitter 35 Condensing Lens 36 XYZ stage 37 Stage controller 38, 17 Light receiving element 43 Reference mirror 44, 14 Moving mirror 45 Support member 46 Piezo fine movement stage 47 Coarse movement stage 48 Corner cube 49 Position measurement interferometer 51 Piezo controller 52 Stage controller 61 Storage section 62 Communication unit 63 Peak position measuring unit 64 Dimension measuring unit 65 Dimension correcting unit 66 Control unit 7, 8 Optical fiber

Claims (7)

被測定物の寸法を測定する寸法測定装置であって、
白色光源と、
前記白色光源から放射された光を、前記被測定物に向かう第1の光束と第2の光束に分岐し、該第1の光束を前記被測定物で反射させて該第2の光束との間に前記被測定物の測定対象寸法に対応する第1の光路差を生じさせ、該第1の光束と該第2の光束を一つの光束に合わせて出射させる第1の干渉計と、
前記第1の干渉計に設けられ、前記被測定物で散乱された光を検出する受光素子と、
位置が固定された参照鏡と、光路に沿って移動可能な移動鏡とを有する第2の干渉計であって、前記第1の干渉計を出射した光束を、該参照鏡に向かう第3の光束と、該移動鏡に向かう第4の光束に分岐して、該第3の光束と該第4の光束との間に第2の光路差を生じさせる第2の干渉計と、
前記第3の光束と前記第4の光束を受光し、前記第1の光路差と前記第2の光路差とが略等しい場合に生じる干渉信号を検出し、該干渉信号に対応する信号を出力する検出器と、
前記被測定物の測定対象寸法を求めるコントローラであって、
前記干渉信号の最大値に対応する前記移動鏡の位置を測定するピーク位置測定部と、
前記ピーク位置測定部で測定された移動鏡の位置から、前記第2の光路差を計算することにより、前記被測定物の測定対象寸法の測定値を求める寸法測定部と、
前記寸法測定部で求められた前記測定値を、前記受光素子で受光した散乱光の光量に基づいて補正することにより、前記測定対象寸法の真値を求める寸法補正部と、
を有するコントローラと、
を有することを特徴とする寸法測定装置。
A dimension measuring device for measuring a dimension of an object to be measured,
A white light source,
The light emitted from the white light source is branched into a first light beam and a second light beam that are directed toward the object to be measured, and the first light beam is reflected by the object to be measured, and the second light beam A first interferometer that causes a first optical path difference corresponding to a measurement target dimension of the object to be measured to emit the first light flux and the second light flux in accordance with one light flux;
A light receiving element provided in the first interferometer for detecting light scattered by the object to be measured;
A second interferometer having a reference mirror having a fixed position and a movable mirror movable along the optical path, wherein the light beam emitted from the first interferometer is directed to the reference mirror. A second interferometer for branching into a light beam and a fourth light beam directed to the movable mirror to produce a second optical path difference between the third light beam and the fourth light beam;
The third light beam and the fourth light beam are received, an interference signal generated when the first optical path difference and the second optical path difference are substantially equal is detected, and a signal corresponding to the interference signal is output. A detector to
A controller for obtaining a measurement target dimension of the object to be measured,
A peak position measurement unit for measuring the position of the movable mirror corresponding to the maximum value of the interference signal;
From the position of the movable mirror measured by the peak position measurement unit, by calculating the second optical path difference, a dimension measurement unit for obtaining a measurement value of the measurement target dimension of the object to be measured;
A dimension correction unit for obtaining a true value of the measurement target dimension by correcting the measurement value obtained by the dimension measurement unit based on the amount of scattered light received by the light receiving element;
A controller having
A dimension measuring apparatus comprising:
被測定物の寸法を測定する寸法測定装置であって、
白色光源と、
位置が固定された参照鏡と、光路に沿って移動可能な移動鏡とを有する第1の干渉計であって、前記白色光源から放射された光を、該参照鏡に向かう第1の光束と、該移動鏡に向かう第2の光束に分岐して、該第1の光束と該第2の光束との間に第1の光路差を生じさせる第1の干渉計と、
前記第1の干渉計から出射された前記第1の光束及び第2の光束を、前記被測定物に向かう第3の光束と第4の光束に分岐し、該第3の光束を前記被測定物で反射させて該第4の光束との間に前記被測定物の測定対象寸法に対応する第2の光路差を生じさせ、該第3の光束と該第4の光束を一つの光束に合わせて出射させる第2の干渉計と、
前記第2の干渉計に設けられ、前記被測定物で散乱された光を検出する受光素子と、
前記第3の光束と前記第4の光束を受光し、前記第1の光路差と前記第2の光路差とが略等しい場合に生じる干渉信号を検出し、該干渉信号に対応する信号を出力する検出器と、
前記被測定物の測定対象寸法を求めるコントローラであって、
前記干渉信号の最大値に対応する前記移動鏡の位置を測定するピーク位置測定部と、
前記ピーク位置測定部で測定された移動鏡の位置から、前記第1の光路差を計算することにより、前記被測定物の測定対象寸法の測定値を求める寸法測定部と、
前記寸法測定部で求められた前記測定値を、前記受光素子で受光した散乱光の光量に基づいて補正することにより、前記測定対象寸法の真値を求める寸法補正部と、
を有するコントローラと、
を有することを特徴とする寸法測定装置。
A dimension measuring device for measuring a dimension of an object to be measured,
A white light source,
A first interferometer having a reference mirror having a fixed position and a movable mirror movable along an optical path, wherein the light emitted from the white light source is directed to the reference mirror; A first interferometer for branching into a second light beam directed toward the movable mirror and causing a first optical path difference between the first light beam and the second light beam;
The first light beam and the second light beam emitted from the first interferometer are branched into a third light beam and a fourth light beam that are directed toward the object to be measured, and the third light beam is divided into the measured light. A second optical path difference corresponding to the measurement object size of the object to be measured is generated between the fourth light flux and the fourth light flux, and the third light flux and the fourth light flux are combined into one light flux. A second interferometer that emits together,
A light receiving element that is provided in the second interferometer and detects light scattered by the object to be measured;
The third light beam and the fourth light beam are received, an interference signal generated when the first optical path difference and the second optical path difference are substantially equal is detected, and a signal corresponding to the interference signal is output. A detector to
A controller for obtaining a measurement target dimension of the object to be measured,
A peak position measurement unit for measuring the position of the movable mirror corresponding to the maximum value of the interference signal;
From the position of the movable mirror measured by the peak position measurement unit, by calculating the first optical path difference, a dimension measurement unit for obtaining a measurement value of the measurement target dimension of the object to be measured;
A dimension correction unit for obtaining a true value of the measurement target dimension by correcting the measurement value obtained by the dimension measurement unit based on the amount of scattered light received by the light receiving element;
A controller having
A dimension measuring apparatus comprising:
被測定物の寸法を測定する寸法測定装置であって、
白色光源と、
光路に沿って移動可能な移動鏡とを有する第1の干渉計であって、前記白色光源から放射された光を、前記被測定物に向かう第1の光束と前記移動鏡に向かう第2の光束に分岐して、該第1の光束を前記被測定物で反射させて該第1の光束と該第2の光束との間に光路差を生じさせる干渉計と、
前記干渉計に設けられ、前記被測定物で散乱された光を検出する受光素子と、
前記干渉計を出射した前記第1の光束と前記第2の光束を受光し、前記第1の光束についての光路長と前記第2の光束についての光路長とが略等しい場合に生じる干渉信号を検出し、該干渉信号に対応する信号を出力する検出器と、
前記被測定物の測定対象寸法を求めるコントローラであって、
前記干渉信号の最大値に対応する前記移動鏡の位置を測定するピーク位置測定部と、
前記ピーク位置測定部で測定された移動鏡の位置と、予め定められた前記移動鏡の基準位置との差を計算することにより、前記被測定物の測定対象寸法の測定値を求める寸法測定部と、
前記寸法測定部で求められた前記測定値を、前記受光素子で受光した散乱光の光量に基づいて補正することにより、前記測定対象寸法の真値を求める寸法補正部と、
を有するコントローラと、
を有することを特徴とする寸法測定装置。
A dimension measuring device for measuring a dimension of an object to be measured,
A white light source,
A first interferometer having a movable mirror movable along an optical path, wherein the light emitted from the white light source is converted into a first light beam directed toward the object to be measured and a second directed toward the movable mirror. An interferometer that branches into a light beam and reflects the first light beam by the object to be measured to generate an optical path difference between the first light beam and the second light beam;
A light receiving element that is provided in the interferometer and detects light scattered by the object to be measured;
An interference signal generated when the first light flux and the second light flux emitted from the interferometer are received, and an optical path length for the first light flux is substantially equal to an optical path length for the second light flux. A detector for detecting and outputting a signal corresponding to the interference signal;
A controller for obtaining a measurement target dimension of the object to be measured,
A peak position measurement unit for measuring the position of the movable mirror corresponding to the maximum value of the interference signal;
A dimension measuring unit that calculates a measurement value of a measurement target dimension of the object to be measured by calculating a difference between a position of the moving mirror measured by the peak position measuring unit and a predetermined reference position of the moving mirror. When,
A dimension correction unit for obtaining a true value of the measurement target dimension by correcting the measurement value obtained by the dimension measurement unit based on the amount of scattered light received by the light receiving element;
A controller having
A dimension measuring apparatus comprising:
前記寸法補正部は、前記散乱光の光量が多いほど、前記測定値に対して前記測定対象寸法の真値が小さくなるように補正する、請求項1〜3の何れか一項に記載の寸法測定装置。   The said dimension correction | amendment part correct | amends so that the true value of the said measuring object dimension may become small with respect to the said measured value, so that there are many light quantities of the said scattered light, The dimension as described in any one of Claims 1-3 measuring device. 前記コントローラは、前記被測定物として基準用被測定物を用い、該基準用被測定物の測定対象寸法の真値と、前記第1の光束が反射する前記基準用被測定物の面の粗さを変えて測定した前記散乱光の光量と前記基準用被測定物の測定対象寸法の値との関係を表す参照テーブルとを記憶した記憶部をさらに有し、
前記寸法補正部は、前記参照テーブルから前記受光素子で受光した散乱光の光量に対応する前記基準用被測定物の測定対象寸法の基準値を求め、前記寸法測定部で求められた前記測定値と該基準値との差を算出し、前記基準用被測定物の測定対象寸法の真値に、該差を加えた値を前記被測定物の測定対象寸法の真値とする、請求項1〜3の何れか一項に記載の寸法測定装置。
The controller uses a reference measurement object as the measurement object, the true value of the measurement target dimension of the reference measurement object, and the rough surface of the reference measurement object reflected by the first light flux. A storage unit that stores a reference table that represents the relationship between the amount of scattered light measured by changing the thickness and the value of the measurement target dimension of the reference measurement object;
The dimension correction unit obtains a reference value of the measurement target dimension of the reference measurement object corresponding to the amount of scattered light received by the light receiving element from the reference table, and the measurement value obtained by the dimension measurement unit 2. A difference between the reference value and the reference value is calculated, and a value obtained by adding the difference to a true value of the measurement target dimension of the reference measurement object is defined as a true value of the measurement target dimension of the measurement object. The dimension measuring apparatus as described in any one of -3.
前記コントローラは、前記散乱光の光量と前記測定値に対する補正量との関係を表す参照テーブルとを記憶した記憶部をさらに有し、
前記寸法補正部は、前記参照テーブルから前記散乱光の光量に対応する前記補正量を求め、前記寸法測定部で求められた前記測定値に前記補正量を加えた値を前記被測定物の測定対象寸法の真値とする、請求項1〜3の何れか一項に記載の寸法測定装置。
The controller further includes a storage unit that stores a reference table representing a relationship between the amount of the scattered light and a correction amount for the measurement value;
The dimension correction unit obtains the correction amount corresponding to the amount of the scattered light from the reference table, and measures the measured value by adding the correction amount to the measurement value obtained by the dimension measurement unit. The dimension measuring apparatus according to any one of claims 1 to 3, wherein the target dimension is a true value.
白色光源から放射された光を、被測定物に向かう第1の光束と第2の光束に分岐し、該第1の光束を該被測定物で反射させて該第2の光束との間に該被測定物の測定対象寸法に対応する第1の光路差を生じさせ、該第1の光束と該第2の光束を一つの光束に合わせて出射させる第1の干渉計と、前記第1の干渉計に設けられ、前記被測定物で散乱された光を検出する受光素子と、位置が固定された参照鏡と、光路に沿って移動可能な移動鏡とを有する第2の干渉計であって、前記第1の干渉計を出射した光束を、該参照鏡に向かう第3の光束と、該移動鏡に向かう第4の光束に分岐して、該第3の光束と該第4の光束との間に第2の光路差を生じさせる第2の干渉計と、前記第3の光束と前記第4の光束を受光し、前記第1の光路差と前記第2の光路差とが略等しい場合に生じる干渉信号を検出し、該干渉信号に対応する信号を出力する検出器とを有する測定システムにおける被測定物の寸法測定方法であって、
前記干渉信号の最大値に対応する前記移動鏡の位置を測定するステップと、
前記ピーク位置測定部で測定された移動鏡の位置と、予め定められた前記移動鏡の基準位置との差を計算することにより、前記被測定物の測定対象寸法の測定値を求めるステップと、
前記寸法測定部で求められた前記測定値を、前記受光素子で受光した散乱光の光量に基づいて補正することにより、前記測定対象寸法の真値を求めるステップと、
を有することを特徴とする寸法測定方法。
The light emitted from the white light source is branched into a first light beam and a second light beam that are directed to the object to be measured, and the first light beam is reflected by the object to be measured and is between the second light beam and the second light beam. A first interferometer that generates a first optical path difference corresponding to a measurement target dimension of the object to be measured, and emits the first light flux and the second light flux according to one light flux; A second interferometer having a light receiving element for detecting light scattered by the object to be measured, a reference mirror having a fixed position, and a movable mirror movable along the optical path. Then, the light beam emitted from the first interferometer is branched into a third light beam directed to the reference mirror and a fourth light beam directed to the movable mirror, and the third light beam and the fourth light beam A second interferometer that generates a second optical path difference between the first light path, the third light flux, and the fourth light flux, and receives the first optical path difference and the first light path difference. Of the optical path difference detecting an interference signal which occurs when approximately equal to a dimension measuring method of an object to be measured in the measurement system and a detector for outputting a signal corresponding to the interference signal,
Measuring the position of the movable mirror corresponding to the maximum value of the interference signal;
Calculating a measurement value of a measurement target dimension of the object to be measured by calculating a difference between a position of the movable mirror measured by the peak position measurement unit and a predetermined reference position of the movable mirror;
Correcting the measurement value obtained by the dimension measurement unit based on the amount of scattered light received by the light receiving element, thereby obtaining a true value of the measurement target dimension;
A dimension measuring method characterized by comprising:
JP2007157941A 2007-06-14 2007-06-14 Dimension measuring device and dimension measuring method Pending JP2008309652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007157941A JP2008309652A (en) 2007-06-14 2007-06-14 Dimension measuring device and dimension measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007157941A JP2008309652A (en) 2007-06-14 2007-06-14 Dimension measuring device and dimension measuring method

Publications (1)

Publication Number Publication Date
JP2008309652A true JP2008309652A (en) 2008-12-25

Family

ID=40237383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007157941A Pending JP2008309652A (en) 2007-06-14 2007-06-14 Dimension measuring device and dimension measuring method

Country Status (1)

Country Link
JP (1) JP2008309652A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080541A (en) * 2014-10-17 2016-05-16 アイシン・エィ・ダブリュ株式会社 Method for detecting optimum measurement position for inside-diameter measuring apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290902A (en) * 1987-05-22 1988-11-28 Mitsubishi Heavy Ind Ltd Optical precise length measuring method
JPH06194320A (en) * 1992-12-25 1994-07-15 Hitachi Ltd Method and equipment for inspecting mirror face substrate in semiconductor manufacturing line and method for manufacturing
JPH11295039A (en) * 1998-04-13 1999-10-29 Nippon Steel Corp Method for measuring thickness by laser range finder
JP2001324308A (en) * 2000-05-15 2001-11-22 Nikon Corp Interval measuring instrument and surface shape measuring instrument
JP2002107118A (en) * 2000-10-03 2002-04-10 National Institute Of Advanced Industrial & Technology Length-information transmission method
JP2003254708A (en) * 2002-03-06 2003-09-10 Mitsutoyo Corp Method of measuring correction value
JP2005214740A (en) * 2004-01-28 2005-08-11 Mitsutoyo Corp Phase correction value measuring method
JP2006064496A (en) * 2004-08-26 2006-03-09 Hitachi Ltd Measuring method and measuring device for surface roughness of magnetic disk substrate and manufacturing method for magnetic disk
JP2007071685A (en) * 2005-09-07 2007-03-22 Matsushita Electric Ind Co Ltd Method and instrument for measuring position of interface

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290902A (en) * 1987-05-22 1988-11-28 Mitsubishi Heavy Ind Ltd Optical precise length measuring method
JPH06194320A (en) * 1992-12-25 1994-07-15 Hitachi Ltd Method and equipment for inspecting mirror face substrate in semiconductor manufacturing line and method for manufacturing
JPH11295039A (en) * 1998-04-13 1999-10-29 Nippon Steel Corp Method for measuring thickness by laser range finder
JP2001324308A (en) * 2000-05-15 2001-11-22 Nikon Corp Interval measuring instrument and surface shape measuring instrument
JP2002107118A (en) * 2000-10-03 2002-04-10 National Institute Of Advanced Industrial & Technology Length-information transmission method
JP2003254708A (en) * 2002-03-06 2003-09-10 Mitsutoyo Corp Method of measuring correction value
JP2005214740A (en) * 2004-01-28 2005-08-11 Mitsutoyo Corp Phase correction value measuring method
JP2006064496A (en) * 2004-08-26 2006-03-09 Hitachi Ltd Measuring method and measuring device for surface roughness of magnetic disk substrate and manufacturing method for magnetic disk
JP2007071685A (en) * 2005-09-07 2007-03-22 Matsushita Electric Ind Co Ltd Method and instrument for measuring position of interface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080541A (en) * 2014-10-17 2016-05-16 アイシン・エィ・ダブリュ株式会社 Method for detecting optimum measurement position for inside-diameter measuring apparatus

Similar Documents

Publication Publication Date Title
US7791731B2 (en) Partial coherence interferometer with measurement ambiguity resolution
US8411280B2 (en) Surface shape measurement apparatus
JP5207959B2 (en) Dimension measuring device
WO2013084557A1 (en) Shape-measuring device
JP6071042B2 (en) Dimension measuring device
JP6293528B2 (en) Calibration method of reference mirror surface shape in interferometer
JP2019211237A (en) Measurement instrument and machining device
JP4532556B2 (en) Interferometer with mirror device for measuring objects
JP4998738B2 (en) Dimension measuring apparatus and dimension measuring method
JP4843789B2 (en) Nanometer displacement measuring method and apparatus by laser speckle
JP5765584B2 (en) Shape measuring device
JP2008309652A (en) Dimension measuring device and dimension measuring method
JP2008309638A (en) Dimension measuring device and dimension measuring method
JP5704150B2 (en) White interference device and position and displacement measuring method of white interference device
JP4947301B2 (en) Dimension measuring apparatus and dimension measuring method
US20160153771A1 (en) Shape Measuring Device
WO2016084195A1 (en) White light interference device and method of detecting position and displacement by means of white light interference device
JP4936287B2 (en) Inner diameter measuring device
JP5585804B2 (en) Surface shape measurement method
JP3795976B2 (en) Non-contact temperature measuring device
JP2014132252A (en) Measurement method, measurement device and article fabrication method
JP5366112B2 (en) Inner diameter measuring device
JP2003287403A (en) Shape measuring apparatus using heterodyne interferometer, method of adjusting optical path length of the shape measuring apparatus using the heterodyne interferometer, and method of measuring shape using the heterodyne interferometer
JP2008309639A (en) Dimension measuring device and dimension measuring method
JP4936286B2 (en) Inner diameter measuring device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515