JP2008309000A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2008309000A
JP2008309000A JP2007155004A JP2007155004A JP2008309000A JP 2008309000 A JP2008309000 A JP 2008309000A JP 2007155004 A JP2007155004 A JP 2007155004A JP 2007155004 A JP2007155004 A JP 2007155004A JP 2008309000 A JP2008309000 A JP 2008309000A
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
internal combustion
combustion engine
large diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007155004A
Other languages
Japanese (ja)
Other versions
JP4869161B2 (en
Inventor
Takuya Kitasei
琢也 北清
Minehiro Murata
峰啓 村田
Satoshi Hiranuma
智 平沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
UD Trucks Corp
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp, Mitsubishi Fuso Truck and Bus Corp filed Critical UD Trucks Corp
Priority to JP2007155004A priority Critical patent/JP4869161B2/en
Publication of JP2008309000A publication Critical patent/JP2008309000A/en
Application granted granted Critical
Publication of JP4869161B2 publication Critical patent/JP4869161B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine capable of compatibly establishing reduction of exhaust pressure of an internal combustion engine, and acceleration of diffusion and atomization of reducer at a high level, and capable of reducing exhaust pressure of the internal combustion engine and achieving good exhaust emission control performance by evenly supplying reducer to each section of a catalyst device. <P>SOLUTION: This exhaust emission control device has a casing 22 comprising an expansion part 22a expanding diameter toward a downstream side, a large diameter part 22b continuing from the expansion part 22a with a same diameter, and a contraction part 22c contracting diameter toward a downstream side from the large diameter part 22b arranged at an upstream side of an SCR (selective reduction type NOx catalyst) in an exhaust gas passage, a fin device 26 forming swirl arranged at the large diameter part 22b, and an injection nozzle 34 injecting urea water solution arranged at a downstream of the fin device 26. Increase of pressure loss is suppressed by forming swirl in the large diameter part 22b of which passage cross section is large, and swirl is accelerated in the contraction part 22c after that to diffuse and atomize urea water solution by good agitation action. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は内燃機関の排気浄化装置に係り、詳しくは排気通路を流通する排ガス中に噴射ノズルから還元剤を噴射して下流側の浄化装置に供給する排気浄化装置に関するものである。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to an exhaust gas purification apparatus that injects a reducing agent from an injection nozzle into exhaust gas flowing through an exhaust passage and supplies the reducing agent to a downstream purification apparatus.

この種の排ガス中に還元剤を噴射して下流側の浄化装置に供給する排気浄化装置としては、例えばSCR触媒(選択還元型NOx触媒)を備えたものがある。周知のようにSCR触媒は排ガス中のNOxを還元するためにNH(アンモニア)を必要とすることから、排気通路のSCR触媒の上流側に配置した噴射ノズルから還元剤として尿素水溶液を噴射し、尿素水溶液が排気熱及び排ガス中の水蒸気により加水分解されて生成されるNH(アンモニア)を利用してSCR触媒によるNOx還元作用を得ている。 As an exhaust gas purification device that injects a reducing agent into this type of exhaust gas and supplies it to a downstream purification device, for example, there is one equipped with an SCR catalyst (selective reduction type NOx catalyst). As is well known, since the SCR catalyst requires NH 3 (ammonia) to reduce NOx in the exhaust gas, an aqueous urea solution is injected as a reducing agent from an injection nozzle disposed upstream of the SCR catalyst in the exhaust passage. In addition, the NOx reduction action by the SCR catalyst is obtained by utilizing NH 3 (ammonia) generated by hydrolysis of the urea aqueous solution by exhaust heat and water vapor in the exhaust gas.

SCR触媒のNOx還元作用は尿素水溶液の供給状態の影響を強く受け、良好な還元作用を得るには、排ガス中に尿素水溶液を十分に拡散・霧化させると共に、排気通路等の壁面への尿素水溶液の付着を防止して、SCR触媒の各部位に均等にNHを供給する必要がある。このような要望を達成するために排気通路に排ガスを撹拌するための手段を設けた種々の対策が提案されている(例えば、特許文献1参照)。 The NOx reduction action of the SCR catalyst is strongly influenced by the supply state of the urea aqueous solution, and in order to obtain a good reduction action, the urea aqueous solution is sufficiently diffused and atomized in the exhaust gas and the urea on the wall of the exhaust passage and the like It is necessary to supply NH 3 evenly to each part of the SCR catalyst while preventing adhesion of the aqueous solution. In order to achieve such a demand, various countermeasures have been proposed in which means for stirring exhaust gas is provided in the exhaust passage (see, for example, Patent Document 1).

上記特許文献1の技術は、SCR触媒に代えて内燃機関の排気通路に設けられたNOx還元用コンバータを対象としており、コンバータの上流側に配置した噴射ノズルから還元剤(未燃燃料)を噴射するものであるが、コンバータの各部位に均等に還元剤を供給することが要望される点では共通している。この目的のために、特許文献1の図2に示す第2実施形態では、排ガスを撹拌するための撹拌手段として、噴射ノズルの下流側に排気流れを横切る方向に棒状部材を配設し、排ガスを棒状部材に衝突させて撹拌することにより排ガス中への還元剤の拡散・霧化を促進している。
特開2002−213233号明細書(図2)
The technique disclosed in Patent Document 1 is directed to a NOx reduction converter provided in an exhaust passage of an internal combustion engine instead of an SCR catalyst, and a reducing agent (unburned fuel) is injected from an injection nozzle disposed upstream of the converter. However, it is common in that it is desired to supply the reducing agent evenly to each part of the converter. For this purpose, in the second embodiment shown in FIG. 2 of Patent Document 1, as a stirring means for stirring the exhaust gas, a rod-shaped member is arranged on the downstream side of the injection nozzle in a direction crossing the exhaust flow, Is made to collide with the rod-shaped member and stirred to promote diffusion and atomization of the reducing agent into the exhaust gas.
Japanese Patent Laid-Open No. 2002-213233 (FIG. 2)

ところで、この種の撹拌手段は排ガスの撹拌作用により還元剤の拡散・霧化を促進できる反面、排気通路内への設置により圧損を生じることから内燃機関の排圧を増加させて走行性能を低下させる要因となり得る。双方の条件は基本的にトレードオフの関係にあるが、上記特許文献1の技術では、排ガスを棒状部材に衝突させて撹拌作用を得る原理のため、例えば、撹拌作用の向上を目的として棒状部材の本数を増加させると、圧損と共に内燃機関の排圧が急増してしまい、結果として双方の条件を低次元でしか両立できなかった。   By the way, this kind of agitation means can promote the diffusion and atomization of the reducing agent by the agitation action of the exhaust gas, but it causes pressure loss due to the installation in the exhaust passage, so the exhaust pressure of the internal combustion engine is increased and the running performance is lowered. Can be a factor. Both conditions are basically in a trade-off relationship. However, in the technique of the above-mentioned Patent Document 1, for example, a rod-shaped member for the purpose of improving the stirring action because of the principle of obtaining a stirring action by colliding exhaust gas with the rod-shaped member. When the number of the cylinders is increased, the exhaust pressure of the internal combustion engine increases rapidly with the pressure loss, and as a result, both conditions can only be achieved at a low level.

加えて、上記特許文献1の技術では、ごく狭い排気通路内に噴射ノズルから還元剤を噴射していることから、噴射ノズルの対向壁に還元剤が付着し易い傾向がある。そして、一旦付着した還元剤は排ガス中に拡散・霧化し難いことから、この現象も上記トレードオフの関する不具合を助長する要因となった。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、内燃機関の排圧低減と還元剤の拡散・霧化の促進とを高次元で両立でき、もって、内燃機関の排圧を低減して良好な走行性能を実現できると共に、触媒装置の各部位に還元剤を均等に供給して良好な浄化性能を達成することができる内燃機関の排気浄化装置を提供することにある。
In addition, in the technique of Patent Document 1, since the reducing agent is injected from the injection nozzle into a very narrow exhaust passage, the reducing agent tends to adhere to the opposing wall of the injection nozzle. And since the reducing agent once adhered is difficult to diffuse and atomize in the exhaust gas, this phenomenon also contributes to the above-mentioned problems related to the trade-off.
The present invention has been made in order to solve such problems. The object of the present invention is to reduce the exhaust pressure of the internal combustion engine and promote the diffusion and atomization of the reducing agent at a high level. An exhaust purification device for an internal combustion engine that can achieve good running performance by reducing exhaust pressure of the internal combustion engine, and can achieve good purification performance by uniformly supplying a reducing agent to each part of the catalyst device It is to provide.

上記目的を達成するため、請求項1の発明は、内燃機関の排気通路に配設された浄化装置と、浄化装置の上流側の排気通路の一部を構成し、排気通路から下流側に向けて拡径する拡大部、拡大部から略同一径を保って下流側に連続する大径部、及び大径部から下流側に向けて縮径して浄化装置側と接続される縮小部により構成されたケーシングと、ケーシングの大径部内に配設され、大径部を流通する排ガスに旋回流を生起させる旋回流発生手段と、ケーシングの大径部内に配設され、大径部を流通する排ガス中に浄化触媒の作動に要する還元剤を噴射する還元剤噴射手段とを備えたことを特徴とする。   In order to achieve the above object, a first aspect of the present invention comprises a purification device disposed in an exhaust passage of an internal combustion engine, and a part of an exhaust passage on the upstream side of the purification device, from the exhaust passage toward the downstream side. An enlarged part that expands in diameter, a large-diameter part that keeps the same diameter from the enlarged part and continues downstream, and a reduced part that shrinks from the large-diameter part toward the downstream side and is connected to the purification device side And a swirl flow generating means for generating a swirl flow in the exhaust gas flowing through the large diameter portion, and disposed in the large diameter portion of the casing and flowing through the large diameter portion. And a reducing agent injection means for injecting a reducing agent required for the operation of the purification catalyst into the exhaust gas.

従って、内燃機関の排ガスは排気通路を経てケーシング内を流通して下流側の浄化装置に到達し、浄化装置で有害成分を浄化された後に大気中に排出される。ケーシング内を流通する過程で、まず、排ガスは拡大部から大径部に移送されて流速を低下させ、この大径部において旋回流発生手段により旋回流を生起されると共に、還元剤噴射手段から還元剤が噴射される。なお、旋回流発生手段と還元剤噴射手段とは何れを上流側としてもよい。   Therefore, the exhaust gas of the internal combustion engine flows through the casing through the exhaust passage and reaches the downstream purification device, and after the harmful components are purified by the purification device, it is discharged into the atmosphere. In the process of circulating in the casing, first, the exhaust gas is transferred from the enlarged portion to the large diameter portion to reduce the flow velocity, and in this large diameter portion, the swirling flow is generated by the swirling flow generating means, and the reducing agent injection means A reducing agent is injected. Note that any one of the swirl flow generation means and the reducing agent injection means may be upstream.

通路断面積の大きな大径部内では、還元剤噴射手段から対向壁までの還元剤の噴射距離を長く設定可能なため、噴射された還元剤の対向壁への付着が抑制される。また、大きな通路断面積を有する大径部内には大径の旋回流発生手段を設置可能であり、大径の旋回流発生手段によれば旋回流を生起するときの排ガスの圧損が低減され、且つ大径部内を流通するときの排ガス流速が低いことから、旋回流の生起に伴う圧損はさらに低減される。よって、このときには最小限の排ガスの圧損により排ガスに旋回流が生起される。   In the large-diameter portion having a large passage cross-sectional area, it is possible to set the injection distance of the reducing agent from the reducing agent injection means to the opposing wall, so that the injected reducing agent is prevented from adhering to the opposing wall. Further, a large-diameter swirling flow generating means can be installed in the large-diameter portion having a large passage cross-sectional area, and the large-diameter swirling flow generating means reduces the pressure loss of the exhaust gas when generating the swirling flow, And since the exhaust gas flow velocity when circulating in the large diameter portion is low, the pressure loss accompanying the occurrence of the swirling flow is further reduced. Therefore, at this time, a swirling flow is generated in the exhaust gas due to the minimum pressure loss of the exhaust gas.

その後、排ガスは旋回流の撹拌作用により還元剤を拡散・霧化させながら大径部内を経て縮小部に導入される。縮小部では通路断面積が次第に小さくなることから、所謂旋回流の角運動量保存則に従って排ガスの旋回流は次第に増速され、排ガスの撹拌がさらに促進される。従って、上記大径部での還元剤の壁面付着の抑制と相俟って還元剤は排ガス中に良好に拡散・霧化され、下流側の浄化装置の各部位に均等に供給される。   Thereafter, the exhaust gas is introduced into the reduced portion through the large diameter portion while diffusing and atomizing the reducing agent by the stirring action of the swirling flow. Since the passage cross-sectional area gradually decreases in the reduction portion, the swirling flow of the exhaust gas is gradually increased according to the so-called angular momentum conservation law of the swirling flow, and the stirring of the exhaust gas is further promoted. Accordingly, in combination with the suppression of the wall surface of the reducing agent on the large-diameter portion, the reducing agent is diffused and atomized well in the exhaust gas, and is evenly supplied to each part of the downstream purification device.

請求項2の発明は、請求項1において、旋回流発生手段が、大径部内の軸線を中心とした外周側に排ガスに旋回流を生起させる複数のフィンが配設され、大径部の軸線近傍の上流側に排ガスを外周側に案内するノーズコーンが設けられたことを特徴とする。
従って、旋回流発生手段のフィンが大径部の軸線を中心とした外周側に位置することから、軸線に沿った排ガスの移送方向を外周側に変更する必要があるが、大径部の軸線近傍に位置するノーズコーンにより排ガスは円滑に外周側に案内されるため、この箇所を流通する際の排ガスの圧損が最小限に抑制される。
According to a second aspect of the present invention, in the first aspect, the swirling flow generating means is provided with a plurality of fins for generating a swirling flow in the exhaust gas on the outer peripheral side centered on the axis in the large diameter portion, and the axis of the large diameter portion. A nose cone for guiding the exhaust gas to the outer peripheral side is provided on the upstream side in the vicinity.
Accordingly, since the fin of the swirl flow generating means is located on the outer peripheral side centering on the axis of the large diameter portion, it is necessary to change the transfer direction of the exhaust gas along the axis to the outer peripheral side. Since the exhaust gas is smoothly guided to the outer peripheral side by the nose cone located in the vicinity, the pressure loss of the exhaust gas when flowing through this portion is suppressed to the minimum.

以上説明したように請求項1の発明の内燃機関の排気浄化装置によれば、内燃機関の排圧低減と還元剤の拡散・霧化の促進とを高次元で両立でき、もって、内燃機関の排圧を低減して良好な走行性能を実現できると共に、触媒装置の各部位に還元剤を均等に供給して良好な浄化性能を達成することができる。
請求項2の発明の内燃機関の排気浄化装置によれば、請求項1に加えて、排ガスを旋回流発生手段のフィンまで円滑に案内して、排ガスの圧損、ひいては内燃機関の排圧をさらに低減することができる。
As described above, according to the exhaust gas purification apparatus for an internal combustion engine of the first aspect of the present invention, the reduction of the exhaust pressure of the internal combustion engine and the promotion of diffusion and atomization of the reducing agent can be achieved at a high level. The exhaust pressure can be reduced to realize good running performance, and the reducing agent can be evenly supplied to each part of the catalyst device to achieve good purification performance.
According to the exhaust gas purification apparatus for an internal combustion engine of the second aspect of the present invention, in addition to the first aspect, the exhaust gas is smoothly guided to the fins of the swirling flow generating means to further reduce the pressure loss of the exhaust gas and thus the exhaust pressure of the internal combustion engine. Can be reduced.

以下、本発明をSCR触媒を備えた内燃機関の排気浄化装置に具体化した一実施形態を説明する。
図1は本実施形態の内燃機関の排気浄化装置が適用されたディーゼル機関を示す全体構成図であり、内燃機関1は直列6気筒機関として構成されている。内燃機関1の各気筒には燃料噴射弁2が設けられ、各燃料噴射弁2は共通のコモンレール3から加圧燃料を供給され、開弁に伴って対応する気筒の筒内に燃料を噴射する。
Hereinafter, an embodiment in which the present invention is embodied in an exhaust gas purification apparatus for an internal combustion engine equipped with an SCR catalyst will be described.
FIG. 1 is an overall configuration diagram showing a diesel engine to which an exhaust gas purification apparatus for an internal combustion engine of the present embodiment is applied. The internal combustion engine 1 is configured as an in-line 6-cylinder engine. Each cylinder of the internal combustion engine 1 is provided with a fuel injection valve 2. Each fuel injection valve 2 is supplied with pressurized fuel from a common common rail 3, and injects fuel into the cylinder of the corresponding cylinder when the valve is opened. .

内燃機関1の吸気側には吸気マニホールド4が装着され、吸気マニホールド4に接続された吸気通路5には、上流側よりエアクリーナ6、ターボチャージャ7のコンプレッサ7a、インタクーラ8が設けられている。また、内燃機関1の排気側には排気マニホールド10が装着され、排気マニホールド10には上記コンプレッサ7aと同軸上に連結されたターボチャージャ7のタービン7bが接続されている。タービン7bには排気通路11が接続され、排気通路11には、上流側から第1コンバータ12、尿素噴射撹拌部13、第2コンバータ14が配設され、図示はしないがその下流側には消音器が設けられている。   An intake manifold 4 is mounted on the intake side of the internal combustion engine 1, and an intake passage 5 connected to the intake manifold 4 is provided with an air cleaner 6, a compressor 7 a of a turbocharger 7, and an intercooler 8 from the upstream side. An exhaust manifold 10 is mounted on the exhaust side of the internal combustion engine 1, and a turbine 7 b of a turbocharger 7 connected coaxially with the compressor 7 a is connected to the exhaust manifold 10. An exhaust passage 11 is connected to the turbine 7b, and a first converter 12, a urea injection stirring unit 13, and a second converter 14 are disposed in the exhaust passage 11 from the upstream side. A vessel is provided.

第1コンバータ12は前後方向(排ガスの流通方向)に沿った円筒状をなし、その内部の上流側には前段酸化触媒15が配置され、下流側には排ガス中のPM(パティキュレート・マター)を捕集するためのウォールフロー式のDPF(ディーセルパティキュレートフィルタ)16が設置されている。排気通路11の第1コンバータ12の上流側位置には、DPF16の強制再生用の燃料噴射弁17が設置されている。   The first converter 12 has a cylindrical shape along the front-rear direction (exhaust gas flow direction), the upstream oxidation catalyst 15 is disposed on the upstream side of the first converter 12, and PM (particulate matter) in the exhaust gas is disposed on the downstream side. A wall flow type DPF (Diesel Particulate Filter) 16 is provided for collecting slag. A fuel injection valve 17 for forced regeneration of the DPF 16 is installed at a position upstream of the first converter 12 in the exhaust passage 11.

第1コンバータ12と同じく第2コンバータ14も前後方向に沿った円筒状をなし、その内部の上流側にはNH(アンモニア)の供給により排ガス中のNOxを還元するSCR触媒(選択還元型NOx触媒)18が配置され、下流側には後段酸化触媒19が設置されている。
第1及び第2コンバータ12,14を連結する排気通路11を、以下の説明では上流側排気管21a及び下流側排気管21bと称する。これらの上流側及び下流側排気管21a,21bは他の排気通路11の箇所と同様に断面円形のパイプ状をなし、その内径は、内燃機関1の排気量等の仕様を考慮した上で、排ガス流通時に排圧を大きく増加させない程度の寸法(例えば、65mm)に設定されている。上記尿素噴射撹拌部13は、これらの上流側及び下流側排気管12,14の間に配設されて排気通路11の一部を構成している。
Like the first converter 12, the second converter 14 has a cylindrical shape along the front-rear direction, and an SCR catalyst (selective reduction type NOx) that reduces NOx in the exhaust gas by supplying NH 3 (ammonia) is provided upstream of the second converter 14. Catalyst) 18 is disposed, and a downstream oxidation catalyst 19 is disposed downstream.
In the following description, the exhaust passage 11 connecting the first and second converters 12 and 14 is referred to as an upstream exhaust pipe 21a and a downstream exhaust pipe 21b. These upstream side and downstream side exhaust pipes 21a and 21b are formed in a pipe shape having a circular cross section like the other exhaust passages 11, and the inner diameter of the exhaust pipes 21a and 21b takes into account the specifications such as the displacement of the internal combustion engine 1, It is set to a dimension (for example, 65 mm) that does not greatly increase the exhaust pressure during exhaust gas circulation. The urea injection stirring unit 13 is disposed between the upstream and downstream exhaust pipes 12 and 14 and constitutes a part of the exhaust passage 11.

図2は尿素噴射撹拌部13を示す拡大断面図、図3はフィン装置26を示す図2のIII−III線断面図である。尿素噴射撹拌部13のケーシング22は、上流側排気管21aの後端(下流側)から連続しながら下流側に向けてコーン状に拡径する拡大部22a、拡大部22aの後端から同一径を保って下流側に連続する大径部22b、及び大径部22bの後端から連続しながら下流側に向けてコーン状に縮径して、その後端を下流側排気管21bの前端(上流側)に接続された縮小部22cから構成されている。上流側及び下流側排気管12,14に比較してケーシング22の大径部22aは内径が大きく設定されている(例えば、98mm)。上流側排気管21aからの排ガスは尿素噴射撹拌部13のケーシング22内を流通して下流側排気管21bに移送されるが、ケーシング22内の通路断面積の変化に応じて排ガスは流速を変化させながら流通することになり、上記内径の設定により大径部22bでは排ガスの流速が大幅に低下する。   FIG. 2 is an enlarged cross-sectional view showing the urea injection stirring unit 13, and FIG. 3 is a cross-sectional view taken along the line III-III of FIG. The casing 22 of the urea injection stirring unit 13 has an enlarged diameter 22a that expands in a cone shape toward the downstream side while continuing from the rear end (downstream side) of the upstream exhaust pipe 21a, and the same diameter from the rear end of the enlarged portion 22a. The large-diameter portion 22b that continues to the downstream side while maintaining the diameter, and the diameter decreases in a cone shape toward the downstream side while continuing from the rear end of the large-diameter portion 22b, and the rear end is the front end (upstream of the downstream exhaust pipe 21b The reduction part 22c connected to the side). Compared to the upstream and downstream exhaust pipes 12 and 14, the large diameter portion 22a of the casing 22 has a larger inner diameter (for example, 98 mm). Exhaust gas from the upstream side exhaust pipe 21a flows through the casing 22 of the urea injection stirring unit 13 and is transferred to the downstream side exhaust pipe 21b. The exhaust gas changes its flow rate according to the change in the cross-sectional area of the passage in the casing 22. The flow rate of the exhaust gas is greatly reduced in the large-diameter portion 22b due to the setting of the inner diameter.

ケーシング22の拡大部22aの前端は上流側排気管21aの後端に溶接され、ケーシング22の縮小部22cの後端は下流側排気管21bの前端に溶接されている。また、ケーシング22の拡大部22aの後端及び大径部22bの前端にはそれぞれ四角板状のフランジ23が溶接され、これらのフランジ23が相互にボルト24及びナット25で締結されることにより拡大部22aと大径部22bとが一体化されている。拡大部22a及び大径部22bのフランジ23間には、四角板状をなすフィン装置26(旋回流発生手段)のベース部27の周囲が挟み込まれて共締めされ、これによりベース部27は、尿素噴射撹拌部13のケーシング22内において排ガスの流通方向に対して直交する姿勢で配置されている。   The front end of the enlarged portion 22a of the casing 22 is welded to the rear end of the upstream side exhaust pipe 21a, and the rear end of the reduced portion 22c of the casing 22 is welded to the front end of the downstream side exhaust pipe 21b. Further, square plate-like flanges 23 are welded to the rear end of the enlarged portion 22a of the casing 22 and the front end of the large-diameter portion 22b, respectively, and these flanges 23 are mutually fastened by bolts 24 and nuts 25 to enlarge. The portion 22a and the large diameter portion 22b are integrated. Between the flange 23 of the enlarged portion 22a and the large diameter portion 22b, the periphery of the base portion 27 of the fin device 26 (swirl flow generating means) having a square plate shape is sandwiched and fastened together. It arrange | positions with the attitude | position orthogonal to the distribution direction of waste gas in the casing 22 of the urea injection stirring part 13. FIG.

ベース部27は鋼板をプレス成型して製作されており、以下、このベース部27を含めたフィン装置26の構成を詳述する。ケーシング22内においてベース部27にはケーシング22の軸線Lを中心とする円形状の透孔28(図3に示す)が貫設され、透孔28の周囲は扇状に4等分されてそれぞれフィン29及びフィン支持部30が形成されている。各フィン29及びフィン支持部30は透孔28を中心とした周方向に交互に配列され、各フィン支持部30に比較して各フィン29は周方向に大幅に長く設定されている。各フィン29は両側に位置するフィン支持部30の内の一方(図3の時計周り側)に対して連続し、他方のフィン支持部30(図3の反時計周り側)及びケーシング22の内周壁に対してはプレス成型により分断されている。   The base part 27 is manufactured by press-molding a steel plate. Hereinafter, the configuration of the fin device 26 including the base part 27 will be described in detail. In the casing 22, a circular through hole 28 (shown in FIG. 3) centering on the axis L of the casing 22 is provided in the base portion 27. 29 and the fin support part 30 are formed. The fins 29 and the fin support portions 30 are alternately arranged in the circumferential direction around the through hole 28, and each fin 29 is set to be significantly longer in the circumferential direction than the fin support portions 30. Each fin 29 is continuous with one of the fin support portions 30 located on both sides (clockwise side in FIG. 3), and the other fin support portion 30 (counterclockwise side in FIG. 3) and the inside of the casing 22 are provided. The peripheral wall is divided by press molding.

結果として、ケーシング22の内周側の等分4箇所からフィン支持部30が内周に向けて延設され、これらのフィン支持部30の一側縁にそれぞれ対応するフィン29の基端が支持されている。各フィン29は基端側のフィン支持部30との境界から折曲され、これにより各フィン29はケーシング22の大径部22b内において、先端側を排ガス流通方向の下流側に指向させ、且つ同一周方向に角度αでベース部27から起立させた姿勢をなしている。また、各フィン29の折曲によりベース部27には各フィン29に対応する扇状の4つの流通孔31が形成され、各流通孔31を介して拡大部22aと大径部22bとが連通している。   As a result, the fin support portions 30 extend from the four equally divided locations on the inner peripheral side of the casing 22 toward the inner periphery, and the base ends of the fins 29 corresponding to the one side edges of the fin support portions 30 are supported. Has been. Each fin 29 is bent from the boundary with the fin support portion 30 on the proximal end side, whereby each fin 29 is directed in the large diameter portion 22b of the casing 22 with the distal end side downstream in the exhaust gas circulation direction, and The posture is raised from the base portion 27 at an angle α in the same circumferential direction. Further, the fan 27 is bent to form four fan-shaped flow holes 31 corresponding to the fins 29 in the base portion 27, and the enlarged portion 22 a and the large diameter portion 22 b communicate with each other through the flow holes 31. ing.

ケーシング22の拡大部22a内には、カップ状にプレス成型されたフィン装置26のノーズコーン32が配設され、ノーズコーン32はケーシング22の軸線L上で先端を上流側に指向させ、基端をベース部27上に当接させた姿勢で配設されている。ノーズコーン32の基端は円筒状をなしてベース部27の透孔28と略同一径に形成され、各フィン支持部30の内周縁に対して溶接されることによりベース部27上に固定されている。ケーシング22の拡大部22a内ではノーズコーン32を中心としてリング状の案内路33が形成され、この案内路33はフィン装置26の各流通孔31を介して大径部22b内と連通している。   A nose cone 32 of a fin device 26 press-molded into a cup shape is disposed in the enlarged portion 22 a of the casing 22, and the nose cone 32 has a distal end directed upstream on an axis L of the casing 22, and a proximal end Is arranged in a posture in which it is brought into contact with the base portion 27. The base end of the nose cone 32 is formed in a cylindrical shape and substantially the same diameter as the through hole 28 of the base portion 27, and is fixed on the base portion 27 by being welded to the inner peripheral edge of each fin support portion 30. ing. A ring-shaped guide path 33 is formed around the nose cone 32 in the enlarged portion 22 a of the casing 22, and the guide path 33 communicates with the inside of the large-diameter portion 22 b through the flow holes 31 of the fin device 26. .

ケーシング22のフィン装置26より若干下流側の位置には、ケーシング22の内外を貫通するように電磁式の噴射ノズル34(還元剤噴射手段)が配置され、噴射ノズル34は先端側をケーシング22内の下流側に所定角度βで指向させた姿勢で固定されている。噴射ノズル34は図示しないタンクから圧送される尿素水溶液を還元剤としてケーシング22内に任意に噴射可能に構成されている。   An electromagnetic injection nozzle 34 (reducing agent injection means) is disposed at a position slightly downstream of the fin device 26 of the casing 22 so as to penetrate the inside and outside of the casing 22. Is fixed in a posture oriented at a predetermined angle β on the downstream side. The injection nozzle 34 is configured to be able to arbitrarily inject into the casing 22 using a urea aqueous solution fed from a tank (not shown) as a reducing agent.

上記した内燃機関1の各気筒の燃料噴射弁2、強制再生用の燃料噴射弁17、尿素水溶液の噴射ノズル34等のデバイス類、及び図示しないセンサ類はECU41(電子コントロールユニット)に接続され、センサ類からの検出情報に基づいてECU41により駆動制御される。例えばECU41は機関回転速度や負荷等の内燃機関1の運転状態に基づき、燃料噴射弁2の噴射量、噴射圧、噴射時期を制御して内燃機関1を運転する。   Devices such as the fuel injection valve 2 of each cylinder of the internal combustion engine 1, the fuel injection valve 17 for forced regeneration, the urea aqueous solution injection nozzle 34, and other sensors, not shown, are connected to an ECU 41 (electronic control unit). The drive is controlled by the ECU 41 based on detection information from the sensors. For example, the ECU 41 operates the internal combustion engine 1 by controlling the injection amount, injection pressure, and injection timing of the fuel injection valve 2 based on the operating state of the internal combustion engine 1 such as the engine speed and load.

内燃機関1の運転中において、内燃機関1から排出された排ガスは排気マニホールド10から排気通路11を経て第1コンバータ12内に導入され、内部の前段酸化触媒15及びDPF16を通過後に上流側排気管21aから尿素噴射撹拌部13のケーシング22内に導入される。さらに排ガスはケーシング22内を流通後に下流側排気管21bから第2コンバータ14内に導入され、内部のSCR触媒18及び後段酸化触媒19を通過後に消音器を経て大気中に排出される。   During operation of the internal combustion engine 1, exhaust gas discharged from the internal combustion engine 1 is introduced into the first converter 12 through the exhaust manifold 10 through the exhaust passage 11, and after passing through the internal pre-stage oxidation catalyst 15 and the DPF 16, the upstream exhaust pipe. It is introduced into the casing 22 of the urea jet stirring unit 13 from 21a. Further, after flowing through the casing 22, the exhaust gas is introduced into the second converter 14 from the downstream exhaust pipe 21b, and after passing through the internal SCR catalyst 18 and the post-stage oxidation catalyst 19, is exhausted to the atmosphere through a silencer.

上記DPF16では、排ガスが内部の通路の壁を流通して含有するPMが捕捉され、これによりPMの浄化が行われる。DPF16上のPM捕集量はPMの捕集に伴って次第に増加するが、捕集されたPMは、内燃機関1が所定の運転状態(例えば、排ガス温度が比較的高い運転状態)のときに、前段酸化触媒15上での酸化反応により排ガス中のNOから生成されたNO2 を酸化剤として利用して連続的に焼却除去される。 In the DPF 16, PM containing exhaust gas flowing through the wall of the internal passage is captured, thereby purifying the PM. The amount of PM collected on the DPF 16 gradually increases with the collection of PM, but the collected PM is in a predetermined operation state (for example, an operation state where the exhaust gas temperature is relatively high). The NO 2 generated from the NO in the exhaust gas by the oxidation reaction on the pre-stage oxidation catalyst 15 is continuously incinerated and removed using as an oxidizing agent.

また、このようなDPF16の連続再生作用が得られない運転状態が継続されると、DPF16でのPM捕集量が次第に増加して許容量を越えてしまうため、このような状況を想定して、ECU41は内燃機関1の運転状態から推定したPM捕集量がDPF16の許容量を越える以前に、DPF16上のPMを強制的に焼却除去する強制再生を実施する。この強制再生には、排気通路11上の燃料噴射弁17が利用され、燃料噴射弁17から未燃燃料を噴射して前段酸化触媒15上に供給し、その酸化反応熱により下流側のDPF16を昇温してPMを焼却除去する。なお、メイン噴射後の膨張行程または排気行程でのポスト噴射により前段酸化触媒15上に未燃燃料を供給するようにしてもよい。   Further, if such an operation state in which the continuous regeneration action of the DPF 16 is not obtained is continued, the amount of PM trapped in the DPF 16 gradually increases and exceeds the allowable amount. The ECU 41 performs forced regeneration to forcibly remove PM on the DPF 16 before the amount of collected PM estimated from the operating state of the internal combustion engine 1 exceeds the allowable amount of the DPF 16. For this forced regeneration, a fuel injection valve 17 on the exhaust passage 11 is used, unburned fuel is injected from the fuel injection valve 17 and supplied onto the pre-stage oxidation catalyst 15, and the downstream DPF 16 is supplied by the oxidation reaction heat. The temperature is raised and PM is removed by incineration. Note that unburned fuel may be supplied onto the pre-stage oxidation catalyst 15 by post-injection in the expansion stroke or exhaust stroke after the main injection.

一方、上記SCR触媒18にNOx浄化作用を発揮させるために、ECU41は内燃機関1の運転状態や噴射ノズル34近傍に設置された図示しない温度センサの検出値等に基づき、噴射ノズル34からの尿素水溶液の噴射量を制御する。噴射された尿素水溶液は尿素噴射撹拌部13から下流側排気管21bを流通する過程で、排気熱及び排ガス中の水蒸気により加水分解されてNHを生成して下流側のSCR触媒18上に移送され、SCR触媒18上でNHを利用して排ガス中のNOxが無害なNに還元される。なお、DPF16でのPMの燃焼で発生するCOやSCR触媒18上での余剰NHは後段酸化触媒19により処理される。 On the other hand, in order to cause the SCR catalyst 18 to exert a NOx purification action, the ECU 41 detects urea from the injection nozzle 34 based on the operating state of the internal combustion engine 1, a detection value of a temperature sensor (not shown) installed in the vicinity of the injection nozzle 34, and the like. Control the amount of aqueous solution sprayed. The injected urea aqueous solution is hydrolyzed by the exhaust heat and water vapor in the exhaust gas in the process of flowing from the urea injection stirring unit 13 to the downstream side exhaust pipe 21b to generate NH 3 and is transferred onto the SCR catalyst 18 on the downstream side. Then, NOx in the exhaust gas is reduced to harmless N 2 using NH 3 on the SCR catalyst 18. Note that CO generated by combustion of PM in the DPF 16 and excess NH 3 on the SCR catalyst 18 are processed by the post-stage oxidation catalyst 19.

そして、上記SCR触媒18上でのNOx還元作用は噴射ノズル34からの尿素水溶液の供給状態の影響を強く受けることから、本実施形態では尿素噴射撹拌部13により尿素水溶液の拡散・霧化を促進する構成を採っており、以下、当該構成による作用効果を説明する。
上記のように第1コンバータ12を経た排ガスは尿素噴射撹拌部13のケーシング22を経て第2コンバータ14内に導入され、尿素噴射撹拌部13のケーシング22内を流通する過程では、まず、拡大部22aからフィン装置26の流通孔31を経て大径部22bに導入される。フィン装置26の流通孔31は各フィン29に対応してケーシング22の軸線Lを中心とした外周側に位置するため、軸線Lに沿った排ガスの移送方向を外周側に変更する必要があるが、ケーシング22の軸線L上に位置するノーズコーン32により排ガスは案内路33を経て円滑に外周側に案内されるため、この箇所を流通する際の排ガスの圧損は最小限に抑制される。
Since the NOx reduction action on the SCR catalyst 18 is strongly influenced by the supply state of the urea aqueous solution from the injection nozzle 34, in this embodiment, the urea injection stirring unit 13 promotes diffusion and atomization of the urea aqueous solution. Hereinafter, the operation and effect of the configuration will be described.
As described above, the exhaust gas that has passed through the first converter 12 is introduced into the second converter 14 through the casing 22 of the urea injection stirring unit 13, and in the process of flowing through the casing 22 of the urea injection stirring unit 13, first, an expansion unit 22a is introduced into the large diameter portion 22b through the flow hole 31 of the fin device 26. Since the flow holes 31 of the fin device 26 are located on the outer peripheral side centering on the axis L of the casing 22 corresponding to the fins 29, it is necessary to change the transfer direction of the exhaust gas along the axis L to the outer peripheral side. Since the exhaust gas is smoothly guided to the outer peripheral side through the guide path 33 by the nose cone 32 positioned on the axis L of the casing 22, the pressure loss of the exhaust gas when flowing through this portion is suppressed to the minimum.

フィン装置26の流通孔31を通過する際に、排ガスは各フィン29に衝突した後にフィン角度αに倣って案内され、これにより大径部22b内で旋回流を生起する。大きな通路断面積を有する大径部22b内には大径のフィン装置26を設置可能であり、大径のフィン装置26のフィン29によれば旋回流を生起するときの排ガスの圧損が低減され、且つ大径部22b内を流通するときの排ガスは流速が低いことから、旋回流の生起に伴う圧損はさらに低減される。よって、このときには最小限の排ガスの圧損により排ガスに旋回流が生起される。   When passing through the flow holes 31 of the fin device 26, the exhaust gas collides with the fins 29 and is guided along the fin angle α, thereby generating a swirling flow in the large-diameter portion 22b. A large-diameter fin device 26 can be installed in the large-diameter portion 22b having a large passage cross-sectional area, and the fin 29 of the large-diameter fin device 26 reduces the pressure loss of exhaust gas when a swirling flow is generated. And since the exhaust gas when distribute | circulating the inside of the large diameter part 22b has low flow velocity, the pressure loss accompanying generation | occurrence | production of a swirl flow is further reduced. Therefore, at this time, a swirling flow is generated in the exhaust gas due to the minimum pressure loss of the exhaust gas.

その後、フィン装置26を通過した直後に排ガスには噴射ノズル34から尿素水溶液が噴射され、排ガスは旋回流の撹拌作用により尿素水溶液を拡散・霧化させながら大径部22b内を下流側へと移送されて縮小部22cに導入される。縮小部22cでは通路断面積が次第に小さくなることから、所謂旋回流の角運動量保存則に従って排ガスの旋回流は次第に増速される。即ち、通路断面積の大きな大径部22b内では排ガスの圧損を低減できるものの強い旋回流は期待できず、旋回流による撹拌作用にも限界がある。しかしながら、縮小部22cに通過する過程で旋回流が増速することにより排ガスの撹拌が促進されるため、尿素水溶液は排ガス中に良好に拡散・霧化される。   Thereafter, immediately after passing through the fin device 26, urea aqueous solution is injected into the exhaust gas from the injection nozzle 34, and the exhaust gas diffuses and atomizes the urea aqueous solution by the swirling agitating action, and then moves inside the large-diameter portion 22b to the downstream side. It is transferred and introduced into the reduction unit 22c. Since the cross-sectional area of the passage is gradually reduced in the reduction part 22c, the swirling flow of the exhaust gas is gradually increased according to the so-called law of conservation of swirling angular momentum. That is, in the large-diameter portion 22b having a large passage cross-sectional area, although the pressure loss of the exhaust gas can be reduced, a strong swirling flow cannot be expected, and the stirring action by the swirling flow has a limit. However, since the stirring of the exhaust gas is promoted by increasing the swirling flow in the process of passing through the reducing portion 22c, the urea aqueous solution is diffused and atomized well in the exhaust gas.

排ガスと共に移送中の尿素水溶液は加水分解によりNHを生成するが、上記のように排ガス中への尿素水溶液の拡散・霧化が促進されることから、結果として生成されたNHは排ガスと共に第2コンバータ14内のSCR触媒18の各部位に均等に供給される。
一方、噴射ノズル34からはケーシング22内の対向壁に向けて尿素水溶液が噴射され、対向壁に到達するまでに旋回流に晒されて拡散・霧化する一方、対向壁に到達して付着した後には良好な拡散・霧化が望めなくなる。よって、噴射ノズル34から対向壁までの尿素水溶液の噴射距離を可能な限り長く設定することが望ましいが、本実施形態では通路断面積の大きな大径部22bで噴射ノズル34から尿素水溶液を噴射していることから、ケーシング壁面への尿素水溶液の付着が極力抑制されて一層良好な拡散・霧化が実現される。
The urea aqueous solution being transferred together with the exhaust gas generates NH 3 by hydrolysis. However, since the diffusion and atomization of the urea aqueous solution into the exhaust gas is promoted as described above, the resulting NH 3 is produced together with the exhaust gas. The SCR catalyst 18 in the second converter 14 is equally supplied to each part.
On the other hand, the urea aqueous solution is sprayed from the injection nozzle 34 toward the opposing wall in the casing 22 and is exposed to the swirling flow until reaching the opposing wall to diffuse and atomize, while reaching the opposing wall and adhere to it. Later, good diffusion and atomization cannot be expected. Therefore, it is desirable to set the injection distance of the urea aqueous solution from the injection nozzle 34 to the opposing wall as long as possible. However, in this embodiment, the urea aqueous solution is injected from the injection nozzle 34 at the large diameter portion 22b having a large passage cross-sectional area. Therefore, adhesion of the urea aqueous solution to the casing wall surface is suppressed as much as possible, and better diffusion / atomization is realized.

以上のように本実施形態の内燃機関1の排気浄化装置では、排ガス流速が低い大径部22bにおいて大径のフィン装置26により旋回流を生起させるため、旋回流を生起させるときの排ガスの圧損、ひいては内燃機関1の排圧増加を最小限に抑制でき、一方、その後に排ガスが縮小部22cを流通する過程で旋回流を増速させるため、良好な撹拌作用により尿素水溶液を排ガス中に十分に拡散・霧化できる。しかも、通路断面積の大きな大径部22b内で尿素水溶液を噴射するため、尿素水溶液の壁面付着を抑制して一層良好な拡散・霧化を実現できる。結果として、一般にトレードオフの関係にある内燃機関1の排圧低減と尿素水溶液の拡散・霧化の促進とを高次元で両立でき、旋回流を生起するときの排圧増加を最小限に抑制して良好な走行性能を実現できると共に、SCR触媒18の各部位にNHを均等に供給して良好なNOx浄化性能を達成することができる。 As described above, in the exhaust gas purification apparatus for the internal combustion engine 1 according to the present embodiment, the swirl flow is generated by the large-diameter fin device 26 in the large-diameter portion 22b where the exhaust gas flow velocity is low. As a result, an increase in exhaust pressure of the internal combustion engine 1 can be suppressed to a minimum, and on the other hand, since the swirl flow is accelerated in the process in which the exhaust gas circulates through the contracting portion 22c, the urea aqueous solution is sufficiently contained in the exhaust gas by a good stirring action. Can diffuse and atomize. Moreover, since the urea aqueous solution is injected in the large-diameter portion 22b having a large passage cross-sectional area, it is possible to suppress the adhesion of the urea aqueous solution to the wall surface and realize better diffusion and atomization. As a result, it is possible to reduce the exhaust pressure of the internal combustion engine 1 that is generally in a trade-off relationship and promote the diffusion and atomization of the urea aqueous solution at a high level, and suppress the increase of the exhaust pressure when generating a swirling flow to a minimum. Thus, good running performance can be realized, and NH 3 can be evenly supplied to each part of the SCR catalyst 18 to achieve good NOx purification performance.

図4はSCR触媒18のNOx浄化率と排気通路11の圧損との関係を従来技術と本実施形態の排気浄化装置とで比較した試験結果を示す図である。従来技術としては排気通路11にフィン装置26を備えないもの(図中に白抜き四角印で示す)と、本実施形態のように排気通路11を拡径することなく単にフィン装置26を設けたもの(図中に黒塗り四角印で示す)とが挙げられている。また、実施形態の排気浄化装置としては、フィン装置26にノーズコーン32を備えてベース部27に対するフィン角度αを30°に設定したもの(図中に黒塗り丸印で示す)と、同じくノーズコーン32を備えてフィン角度αを60°に設定したもの(図中に白抜き丸印で示す)と、ノーズコーン32を備えずにフィン角度αを30°に設定したもの(図中に白抜き三角印で示す)とが挙げられている。   FIG. 4 is a diagram showing test results comparing the relationship between the NOx purification rate of the SCR catalyst 18 and the pressure loss of the exhaust passage 11 between the conventional technology and the exhaust purification device of the present embodiment. As a conventional technique, the exhaust passage 11 is not provided with the fin device 26 (indicated by white squares in the drawing), and the fin device 26 is simply provided without increasing the diameter of the exhaust passage 11 as in the present embodiment. (Shown by black squares in the figure). Further, as the exhaust emission control device of the embodiment, the nose cone 32 is provided in the fin device 26 and the fin angle α with respect to the base portion 27 is set to 30 ° (indicated by a black circle in the drawing), and the nose is also the same. The fin angle α is set to 60 ° with the cone 32 (indicated by white circles in the drawing), and the fin angle α is set to 30 ° without the nose cone 32 (white in the drawing). And is indicated by a triangle symbol).

従来技術では、フィン装置無しに対してフィン装置有りでは、圧損の増加と引き換えに尿素水溶液の拡散・霧化の促進によりNOx浄化率が向上するものの、破線で示すように双方の要件を高次元で達成することはできない。これに対して本実施形態の排気浄化装置では、フィン角度αの相違やノーズコーン32の有無に応じてNOx浄化率と圧損との関係は変化するものの、実線で示すように双方の要件を高次元で達成でき、上記本実施形態の作用効果が裏付けられていることが判る。   In the prior art, when there is a fin device compared with no fin device, the NOx purification rate improves by promoting diffusion and atomization of the urea aqueous solution in exchange for an increase in pressure loss, but both requirements are high-dimensional as shown by the broken line Cannot be achieved. In contrast, in the exhaust purification apparatus of the present embodiment, although the relationship between the NOx purification rate and the pressure loss changes depending on the difference in the fin angle α and the presence or absence of the nose cone 32, both requirements are increased as shown by the solid line. It can be achieved in a dimension, and it can be seen that the operational effects of the present embodiment are supported.

また、拡大部22aではノーズコーン32により排ガスを外周側に案内してフィン装置26の流通孔31を流通させるため、その際の圧損を低減でき、内燃機関1の排圧をさらに低減できるという利点も得られる。
加えて、尿素噴射撹拌部13のケーシング22は排気通路11の他の箇所、例えば上流側排気管21aや下流側排気管21bと比較すれば大径になるものの、第1及び第2コンバータ12,14等に比べると格段に小径であり、車両の床下での設置場所も限定されない。よって、尿素噴射撹拌部13を設けても排気浄化装置の車両への搭載性はほとんど悪化せず、尿素噴射撹拌部13の設置による弊害を未然に防止できるという利点もある。
Further, since the enlarged portion 22a guides the exhaust gas to the outer peripheral side by the nose cone 32 and distributes it through the circulation hole 31 of the fin device 26, the pressure loss at that time can be reduced and the exhaust pressure of the internal combustion engine 1 can be further reduced. Can also be obtained.
In addition, the casing 22 of the urea injection stirring unit 13 is larger in diameter than other parts of the exhaust passage 11, for example, the upstream side exhaust pipe 21a and the downstream side exhaust pipe 21b, but the first and second converters 12, Compared to 14 etc., the diameter is much smaller, and the installation location under the floor of the vehicle is not limited. Therefore, even if the urea injection agitation unit 13 is provided, the mountability of the exhaust gas purification device on the vehicle is hardly deteriorated, and there is an advantage that adverse effects due to the installation of the urea injection agitation unit 13 can be prevented.

以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記実施形態では、SCR触媒18を備えたディーゼル機関1の排気浄化装置に具体化したが、適用対象はこれに限ることはない。例えばガソリン機関でも希薄燃焼運転時を想定してSCR触媒18を備える場合があるため、このようなガソリン機関に適用してもよい。   This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in the above-described embodiment, the exhaust purification device of the diesel engine 1 including the SCR catalyst 18 is embodied, but the application target is not limited to this. For example, a gasoline engine may be provided with the SCR catalyst 18 assuming a lean combustion operation, and may be applied to such a gasoline engine.

また、上記実施形態では、SCR触媒18に供給する尿素水溶液の拡散・霧化のためにSCR触媒18の上流側に尿素噴射撹拌部13を設けたが、その利用態様はこれに限ることはない。例えば上記実施形態のDPF16に関する説明からも明らかなように、燃料噴射弁17から供給される未燃燃料を前段酸化触媒15上で酸化反応させてDPF16を昇温する強制再生では、前段酸化触媒15による酸化反応を最大限に発揮させるために、未燃燃料を前段酸化触媒15の各部位に均等に供給することが望ましい。そこで、前段酸化触媒15の上流側に上記実施形態の尿素噴射撹拌部13と同様のケーシング22を設けて燃料噴射弁17を設置し、燃料噴射弁17から噴射された未燃燃料の排ガス中への拡散・霧化を促進するようにしてもよい。この場合には、DPF16が本発明の浄化装置に相当することになる。   Moreover, in the said embodiment, although the urea injection stirring part 13 was provided in the upstream of the SCR catalyst 18 for spreading | diffusion and atomization of the urea aqueous solution supplied to the SCR catalyst 18, the utilization aspect is not restricted to this. . For example, as is clear from the description of the DPF 16 in the above embodiment, in the forced regeneration in which the unburned fuel supplied from the fuel injection valve 17 is oxidized on the front-stage oxidation catalyst 15 to raise the temperature of the DPF 16, the front-stage oxidation catalyst 15 In order to maximize the oxidation reaction caused by the above, it is desirable to supply unburned fuel evenly to each part of the pre-stage oxidation catalyst 15. Therefore, a casing 22 similar to the urea injection stirring unit 13 of the above embodiment is provided upstream of the upstream oxidation catalyst 15 and the fuel injection valve 17 is installed, and into the exhaust gas of unburned fuel injected from the fuel injection valve 17. You may make it accelerate | stimulate the spreading | diffusion and atomization of. In this case, the DPF 16 corresponds to the purification device of the present invention.

また、本実施形態の排気浄化装置では備えていないが、SCR触媒18に代えてNOx浄化のために吸蔵型NOx触媒を備えた場合には、吸蔵されたNOxを放出還元するNOxパージを要すると共に、NOxに代えてSOx(硫黄酸化物)が吸蔵されたときの硫黄被毒対策として、NOx触媒の上流側に配置した前段酸化触媒に未燃燃料を供給して酸化反応熱によりNOx触媒を昇温してSOxを除去するSOxパージを要する。そこで、このNOxパージやSOxパージのために、吸蔵型NOx触媒及び前段酸化触媒の上流側に上記実施形態の尿素噴射撹拌部13と同様のケーシング22を設けて燃料噴射弁17を設置し、燃料噴射弁17から噴射された未燃燃料の拡散・霧化を促進するようにしてもよい。この場合には、吸蔵型NOx触媒や前段酸化触媒が本発明の浄化装置に相当することになる。   Although not provided in the exhaust purification device of the present embodiment, if a storage type NOx catalyst is provided for NOx purification instead of the SCR catalyst 18, NOx purge for releasing and reducing the stored NOx is required. As a countermeasure against sulfur poisoning when SOx (sulfur oxide) is occluded instead of NOx, unburned fuel is supplied to the pre-stage oxidation catalyst arranged upstream of the NOx catalyst, and the NOx catalyst is raised by the heat of oxidation reaction. Requires SOx purge to warm and remove SOx. Therefore, for this NOx purge and SOx purge, a casing 22 similar to the urea injection agitation unit 13 of the above embodiment is provided upstream of the storage type NOx catalyst and the pre-stage oxidation catalyst, and the fuel injection valve 17 is installed. The diffusion and atomization of unburned fuel injected from the injection valve 17 may be promoted. In this case, the storage-type NOx catalyst and the pre-stage oxidation catalyst correspond to the purification device of the present invention.

また、上記実施形態では、フィン装置26にノーズコーン32を設けると共に、フィン装置26の下流側に噴射ノズル34を配置したが、これに限ることはない。例えばノーズコーン32を省略してベース部27の中心の透孔28に排ガスを流通させてもよいし、透孔28を閉塞してもよい。また、フィン装置26と噴射ノズル34の位置を逆転させてもよい。   Moreover, in the said embodiment, while providing the nose cone 32 in the fin apparatus 26 and arrange | positioning the injection nozzle 34 in the downstream of the fin apparatus 26, it does not restrict to this. For example, the nose cone 32 may be omitted and the exhaust gas may be circulated through the central through hole 28 of the base portion 27, or the through hole 28 may be closed. Further, the positions of the fin device 26 and the injection nozzle 34 may be reversed.

実施形態の内燃機関の排気浄化装置が適用されたディーゼル機関を示す全体構成図である。1 is an overall configuration diagram showing a diesel engine to which an exhaust gas purification apparatus for an internal combustion engine according to an embodiment is applied. 尿素噴射撹拌部を示す拡大断面図である。It is an expanded sectional view which shows a urea injection stirring part. フィン装置を示す図2のIII−III線断面図である。It is the III-III sectional view taken on the line of FIG. 2 which shows a fin apparatus. SCR触媒のNOx浄化率と排気通路の圧損との関係を従来技術と本実施形態の排気浄化装置とで比較した試験結果を示す図である。It is a figure which shows the test result which compared the relationship between the NOx purification rate of an SCR catalyst, and the pressure loss of an exhaust passage with the prior art and the exhaust purification apparatus of this embodiment.

符号の説明Explanation of symbols

1 内燃機関
16 DPF(浄化装置)
18 SCR触媒(浄化装置)
22 ケーシング
22a 拡大部
22b 大径部
22c 縮小部
26 フィン装置
29 フィン
34 噴射ノズル(還元剤噴射手段)
1 Internal combustion engine 16 DPF (Purification device)
18 SCR catalyst (Purification device)
22 Casing 22a Enlargement part 22b Large diameter part 22c Reduction part 26 Fin device 29 Fin 34 Injection nozzle (reducing agent injection means)

Claims (2)

内燃機関の排気通路に配設された浄化装置と、
上記浄化装置の上流側の排気通路の一部を構成し、該排気通路から下流側に向けて拡径する拡大部、該拡大部から略同一径を保って下流側に連続する大径部、及び該大径部から下流側に向けて縮径して上記浄化装置側と接続される縮小部により構成されたケーシングと、
上記ケーシングの大径部内に配設され、該大径部を流通する排ガスに旋回流を生起させる旋回流発生手段と、
上記ケーシングの大径部内に配設され、該大径部を流通する排ガス中に上記浄化触媒の作動に要する還元剤を噴射する還元剤噴射手段と
を備えたことを特徴とする内燃機関の排気浄化装置。
A purification device disposed in an exhaust passage of the internal combustion engine;
A part of the exhaust passage on the upstream side of the purification device, an enlarged portion that expands from the exhaust passage toward the downstream side, a large diameter portion that keeps the same diameter from the enlarged portion and continues to the downstream side, And a casing constituted by a reduced portion that is reduced in diameter from the large diameter portion toward the downstream side and connected to the purification device side,
A swirl flow generating means disposed in the large diameter portion of the casing and generating a swirl flow in the exhaust gas flowing through the large diameter portion;
An exhaust gas for an internal combustion engine, comprising: a reducing agent injection means disposed in the large diameter portion of the casing and for injecting a reducing agent required for the operation of the purification catalyst into the exhaust gas flowing through the large diameter portion. Purification equipment.
上記旋回流発生手段は、上記大径部内の軸線を中心とした外周側に上記排ガスに旋回流を生起させる複数のフィンが配設され、上記大径部の軸線近傍の上流側に上記排ガスを外周側に案内するノーズコーンが設けられたことを特徴とする請求項1記載の内燃機関の排気浄化装置。   The swirling flow generating means is provided with a plurality of fins for generating a swirling flow in the exhaust gas on an outer peripheral side centering on an axis in the large diameter portion, and the exhaust gas is disposed on the upstream side in the vicinity of the axis of the large diameter portion. 2. An exhaust gas purification apparatus for an internal combustion engine according to claim 1, further comprising a nose cone for guiding the outer periphery.
JP2007155004A 2007-06-12 2007-06-12 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4869161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007155004A JP4869161B2 (en) 2007-06-12 2007-06-12 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007155004A JP4869161B2 (en) 2007-06-12 2007-06-12 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008309000A true JP2008309000A (en) 2008-12-25
JP4869161B2 JP4869161B2 (en) 2012-02-08

Family

ID=40236831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007155004A Expired - Fee Related JP4869161B2 (en) 2007-06-12 2007-06-12 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4869161B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024629A (en) * 2007-07-20 2009-02-05 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control system of internal combustion engine
JP2009127451A (en) * 2007-11-20 2009-06-11 Osaka Gas Co Ltd Fluid mixer and denitration device
WO2010079847A1 (en) * 2009-01-09 2010-07-15 トヨタ自動車株式会社 Exhaust gas purification device for an internal combustion engine
JP2010185365A (en) * 2009-02-12 2010-08-26 Toyota Motor Corp Control device of internal combustion engine
JP2010248955A (en) * 2009-04-14 2010-11-04 Hino Motors Ltd Exhaust emission control device
JP2011106412A (en) * 2009-11-20 2011-06-02 Denso Corp Exhaust emission control device for internal combustion engine
JP2012127232A (en) * 2010-12-14 2012-07-05 Ud Trucks Corp Exhaust pipe structure for exhaust emission control device
US8499548B2 (en) 2008-12-17 2013-08-06 Donaldson Company, Inc. Flow device for an exhaust system
US8539761B2 (en) 2010-01-12 2013-09-24 Donaldson Company, Inc. Flow device for exhaust treatment system
US8915064B2 (en) 2007-05-15 2014-12-23 Donaldson Company, Inc. Exhaust gas flow device
US8938954B2 (en) 2012-04-19 2015-01-27 Donaldson Company, Inc. Integrated exhaust treatment device having compact configuration
CN105804840A (en) * 2016-05-16 2016-07-27 天纳克(苏州)排放系统有限公司 Exhaust gas treatment device
US9534525B2 (en) 2015-05-27 2017-01-03 Tenneco Automotive Operating Company Inc. Mixer assembly for exhaust aftertreatment system
WO2017063808A1 (en) * 2015-10-14 2017-04-20 Robert Bosch Gmbh Device for the secondary treatment of the exhaust gas of an internal combustion engine
US9670811B2 (en) 2010-06-22 2017-06-06 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US9707525B2 (en) 2013-02-15 2017-07-18 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
WO2017133631A1 (en) * 2016-02-03 2017-08-10 天纳克(苏州)排放系统有限公司 Mixing cavity assembly
JP2018021511A (en) * 2016-08-03 2018-02-08 いすゞ自動車株式会社 Exhaust pipe
DE102017220633A1 (en) * 2017-11-17 2019-05-23 Volkswagen Ag Humidification system and fuel cell system with a humidification system
US11560831B2 (en) 2018-02-28 2023-01-24 Tenneco Gmbh Low-pressure EGR system with turbo bypass

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119715A (en) * 1976-03-31 1977-10-07 Riken Keikinzoku Kogyo Kk Muffler
JPS61164018A (en) * 1985-01-14 1986-07-24 Mazda Motor Corp Exhaust gas purifying device of engine
JPH0197023U (en) * 1987-12-18 1989-06-28
JP2003193823A (en) * 2001-12-26 2003-07-09 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
WO2006001855A2 (en) * 2004-06-15 2006-01-05 Cummings Craig D Gas flow enhancer for combustion engines
JP2006029233A (en) * 2004-07-16 2006-02-02 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine
JP2006070710A (en) * 2004-08-31 2006-03-16 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine
JP2006183509A (en) * 2004-12-27 2006-07-13 Mitsubishi Fuso Truck & Bus Corp Exhaust gas agitating device of internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119715A (en) * 1976-03-31 1977-10-07 Riken Keikinzoku Kogyo Kk Muffler
JPS61164018A (en) * 1985-01-14 1986-07-24 Mazda Motor Corp Exhaust gas purifying device of engine
JPH0197023U (en) * 1987-12-18 1989-06-28
JP2003193823A (en) * 2001-12-26 2003-07-09 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
WO2006001855A2 (en) * 2004-06-15 2006-01-05 Cummings Craig D Gas flow enhancer for combustion engines
JP2006029233A (en) * 2004-07-16 2006-02-02 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine
JP2006070710A (en) * 2004-08-31 2006-03-16 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine
JP2006183509A (en) * 2004-12-27 2006-07-13 Mitsubishi Fuso Truck & Bus Corp Exhaust gas agitating device of internal combustion engine

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8915064B2 (en) 2007-05-15 2014-12-23 Donaldson Company, Inc. Exhaust gas flow device
JP2009024629A (en) * 2007-07-20 2009-02-05 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control system of internal combustion engine
US9422844B2 (en) 2007-07-20 2016-08-23 Mitsubishi Fuso Truck And Bus Corporation Exhaust purification device for engine
JP2009127451A (en) * 2007-11-20 2009-06-11 Osaka Gas Co Ltd Fluid mixer and denitration device
US9180407B2 (en) 2008-12-17 2015-11-10 Donaldson Company, Inc. Flow device for an exhaust system
US9925502B2 (en) 2008-12-17 2018-03-27 Donaldson Company, Inc. Flow device for an exhaust system
US8499548B2 (en) 2008-12-17 2013-08-06 Donaldson Company, Inc. Flow device for an exhaust system
JP5163755B2 (en) * 2009-01-09 2013-03-13 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CN102272420A (en) * 2009-01-09 2011-12-07 丰田自动车株式会社 Exhaust gas purification device for an internal combustion engine
CN102272420B (en) * 2009-01-09 2014-07-09 丰田自动车株式会社 Exhaust gas purification device for an internal combustion engine
US9145810B2 (en) 2009-01-09 2015-09-29 Toyota Jidosha Kabushiki Kaisha Device for purifying exhaust gas of an internal combustion engine
WO2010079847A1 (en) * 2009-01-09 2010-07-15 トヨタ自動車株式会社 Exhaust gas purification device for an internal combustion engine
JP2010185365A (en) * 2009-02-12 2010-08-26 Toyota Motor Corp Control device of internal combustion engine
JP2010248955A (en) * 2009-04-14 2010-11-04 Hino Motors Ltd Exhaust emission control device
JP2011106412A (en) * 2009-11-20 2011-06-02 Denso Corp Exhaust emission control device for internal combustion engine
US8539761B2 (en) 2010-01-12 2013-09-24 Donaldson Company, Inc. Flow device for exhaust treatment system
US9810126B2 (en) 2010-01-12 2017-11-07 Donaldson Company, Inc. Flow device for exhaust treatment system
US10294841B2 (en) 2010-06-22 2019-05-21 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US11608764B2 (en) 2010-06-22 2023-03-21 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US10968800B2 (en) 2010-06-22 2021-04-06 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US9670811B2 (en) 2010-06-22 2017-06-06 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
JP2012127232A (en) * 2010-12-14 2012-07-05 Ud Trucks Corp Exhaust pipe structure for exhaust emission control device
US8938954B2 (en) 2012-04-19 2015-01-27 Donaldson Company, Inc. Integrated exhaust treatment device having compact configuration
US9598999B2 (en) 2012-04-19 2017-03-21 Donaldson Company, Inc. Integrated exhaust treatment device having compact configuration
US9458750B2 (en) 2012-04-19 2016-10-04 Donaldson Company, Inc. Integrated exhaust treatment device having compact configuration
US10533477B2 (en) 2012-04-19 2020-01-14 Donaldson Company, Inc. Integrated exhaust treatment device having compact configuration
US10603642B2 (en) 2013-02-15 2020-03-31 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US11110406B2 (en) 2013-02-15 2021-09-07 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US9707525B2 (en) 2013-02-15 2017-07-18 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US10245564B2 (en) 2013-02-15 2019-04-02 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US9534525B2 (en) 2015-05-27 2017-01-03 Tenneco Automotive Operating Company Inc. Mixer assembly for exhaust aftertreatment system
CN108138631A (en) * 2015-10-14 2018-06-08 罗伯特·博世有限公司 For the equipment of engine exhaust gas post processing
WO2017063808A1 (en) * 2015-10-14 2017-04-20 Robert Bosch Gmbh Device for the secondary treatment of the exhaust gas of an internal combustion engine
WO2017133631A1 (en) * 2016-02-03 2017-08-10 天纳克(苏州)排放系统有限公司 Mixing cavity assembly
CN105804840A (en) * 2016-05-16 2016-07-27 天纳克(苏州)排放系统有限公司 Exhaust gas treatment device
JP2018021511A (en) * 2016-08-03 2018-02-08 いすゞ自動車株式会社 Exhaust pipe
DE102017220633A1 (en) * 2017-11-17 2019-05-23 Volkswagen Ag Humidification system and fuel cell system with a humidification system
CN111344888A (en) * 2017-11-17 2020-06-26 奥迪股份公司 Humidification system and fuel cell system with humidification system
US11837758B2 (en) 2017-11-17 2023-12-05 Volkswagen Ag Humidification system, and fuel cell system comprising a humidification system
US11560831B2 (en) 2018-02-28 2023-01-24 Tenneco Gmbh Low-pressure EGR system with turbo bypass

Also Published As

Publication number Publication date
JP4869161B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP4869161B2 (en) Exhaust gas purification device for internal combustion engine
JP4949152B2 (en) Exhaust gas purification device for internal combustion engine
JP5244334B2 (en) Exhaust gas purification device for internal combustion engine
KR100974982B1 (en) Exhaust purification device for engine
JP5090890B2 (en) Engine exhaust purification system
JP2011099390A (en) Exhaust emission control device of engine
JP2008128093A (en) Exhaust emission control device for internal combustion engine
WO2009119574A1 (en) Exhaust purification device for an internal combustion engine
JP2011099415A (en) Exhaust emission control device for engine
JP2008127998A (en) Exhaust emission control device of internal combustion engine
JP2008180202A (en) Exhaust emission control device
JP2011099416A (en) Exhaust emission control device for engine
JP5244955B2 (en) Exhaust gas purification device for internal combustion engine
JP5004308B2 (en) Engine exhaust purification system
JP2008127997A (en) Exhaust emission control device of internal combustion engine
JP5224294B2 (en) Engine exhaust purification system
JP2010031719A (en) Exhaust emission control device
WO2011067966A1 (en) Engine exhaust-air purifying apparatus
CN209838505U (en) Radial injection close-coupled mixing device for mixing reducing agent fluid
RU2721389C1 (en) Device and system for distribution of additive into exhaust
JP5224265B2 (en) Engine exhaust purification system
CN111810278A (en) Radial injection close-coupled mixing device for mixing reducing agent fluid
JP2023024308A (en) Mixing apparatus
JP2009156199A (en) Engine exhaust emission control device
JP2009162122A (en) Exhaust gas passage structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4869161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

LAPS Cancellation because of no payment of annual fees