JP2008299787A - Vehicle detector - Google Patents

Vehicle detector Download PDF

Info

Publication number
JP2008299787A
JP2008299787A JP2007148024A JP2007148024A JP2008299787A JP 2008299787 A JP2008299787 A JP 2008299787A JP 2007148024 A JP2007148024 A JP 2007148024A JP 2007148024 A JP2007148024 A JP 2007148024A JP 2008299787 A JP2008299787 A JP 2008299787A
Authority
JP
Japan
Prior art keywords
vehicle
likeness
distribution
reliability
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007148024A
Other languages
Japanese (ja)
Inventor
Shintaro Watanabe
信太郎 渡邉
Makito Seki
真規人 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007148024A priority Critical patent/JP2008299787A/en
Publication of JP2008299787A publication Critical patent/JP2008299787A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Traffic Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect an object ahead of one's own vehicle by a plurality of on-vehicle sensors, to identify whether the object is a vehicle, to output the reliability of a detection result, and to support driving based thereon. <P>SOLUTION: This vehicle detector of the present invention is introduced to have a means for measuring nonvehicle (peripheral object) likelihood, for example, white line likelihood and road likelihood, in addition to a means for measuring vehicle likelihood, and does not determine a preceding vehicle position independently by the respective means, but detects the preceding vehicle position, based on an integrated scale integrated with the "vehicle likelihood" and the "nonvehicle likelihood". The reliability of detection is also calculated based on a distribution of a photographed environment and the integrated vehicle likelihood, so as to execute identification for three patterns of the "vehicle", "nonvehicle" and "difficulty in identification". <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、複数の車載センサにより自車前方の対象を検知し、それが車かどうかを識別し、その検知結果の信頼性を出力する装置に関するものである。   The present invention relates to an apparatus that detects an object ahead of a host vehicle by using a plurality of in-vehicle sensors, identifies whether the object is a car, and outputs the reliability of the detection result.

単独のセンサで前車位置を正確に求めることは難しい。そのため、複数の検知手段の検知結果を総合的に判断して高精度に前車位置を求める方法がある。ミリ波レーダの出力やカメラ映像の画像処理によって前方の車らしさを測定する車らしさ測定手段を用いて、前車検知手段でそれぞれの車らしさ測定手段単独で前車検知を行う。統合手段では、各手段により求まった検知結果を統合し前車位置を決定し、その位置情報に従い車両制御装置で車両の動きを制御するものがある(例えば、特許文献1)。   It is difficult to accurately determine the position of the front vehicle with a single sensor. For this reason, there is a method for obtaining the front vehicle position with high accuracy by comprehensively judging the detection results of the plurality of detection means. Using the vehicle-likeness measuring means for measuring the vehicle-likeness ahead by image processing of millimeter wave radar output and camera video, the vehicle-likeness measuring means alone performs front-vehicle detection using the vehicle-likeness measuring means. Some integration means integrate the detection results obtained by the respective means to determine the front vehicle position, and control the movement of the vehicle by the vehicle control device according to the position information (for example, Patent Document 1).

特開2005−165421号公報(図1)Japanese Patent Laying-Open No. 2005-165421 (FIG. 1)

しかしながら、この方法では、(1)統合する情報として「車らしさ」のみを使っている点、(2)それぞれの車らしさ計測手段単独で前車位置を決定した後に統合する点、(3)複数の車らしさ計測手段間の相関関係が考慮されていない(逆に独立という前提のもとに検知結果より生成される確率分布の積算により統合を行っている)点、さらに、(4)前車検知結果の信頼性判定が「車」か「それ以外(撮影環境などの影響により判定が出来ない場合や、前方に車以外のものがある場合など)」かを判定する仕組みで、「車」「非車」「識別不能」を判定する仕組みではない点が問題点として挙げられる。   However, in this method, (1) only “car-likeness” is used as information to be integrated, (2) each vehicle-likeness measuring means alone determines the front vehicle position and then integrates, (3) multiple The correlation between vehicle quality measurement means is not taken into account (conversely, integration is performed by integrating probability distributions generated from detection results on the premise of being independent), and (4) previous vehicle inspection "Car" is a mechanism that determines whether the reliability judgment of the knowledge result is "car" or "other than that (when it cannot be judged due to the influence of the shooting environment, or when there is something other than a car ahead)" The problem is that it is not a mechanism for determining “non-car” or “unidentifiable”.

これに対して本発明は、まず、各測定手段により車らしさ、非車らしさを測ることにより、車と非車との分離性能を改善する。次に、単独の測定手段ごとには対象位置の判定を行わず、各測定手段による車らしさ分布を統合して探索範囲内の車らしさ分布を作成する。先行例では単独の検知手段で高い性能がなければ統合した対象位置は不正確なものになるが、本発明では判断を統合後に遅らせることにより高い検知性能を実現できる。   On the other hand, the present invention first improves the separation performance between the vehicle and the non-vehicle by measuring the vehicle-likeness and the non-vehicle-likeness by each measuring means. Next, the determination of the target position is not performed for each individual measuring unit, and the vehicle-likeness distribution by each measuring unit is integrated to create the vehicle-likeness distribution within the search range. In the preceding example, if the single detection means does not have high performance, the integrated target position becomes inaccurate, but in the present invention, high detection performance can be realized by delaying the determination after integration.

本発明の車両検知装置は、複数の異なるセンサを用いて車らしさ及び非車らしさを測定する車らしさ非車らしさ測定手段と、車らしさ非車らしさ測定手段の出力を統合した車らしさ分布を出力する車らしさ分布出力手段と、車らしさ分布から車の位置を判定する車位置判定手段とを備えたことを特徴とするものである。   The vehicle detection device of the present invention outputs a vehicle-likeness distribution that integrates the output of a vehicle-likeness / non-vehicleness-measuring means that measures vehicle-likeness and non-vehicle-likeness using a plurality of different sensors, and an output of the vehicle-likeness / non-vehicleness-likeness measuring means. Vehicle-likeness distribution output means, and vehicle position judging means for judging the position of the vehicle from the vehicle-likeness distribution.

本発明の車両検知装置は、複数の異なるセンサを用いて車らしさ及び非車らしさを測定する車らしさ非車らしさ測定手段と、車らしさ非車らしさ測定手段の出力を統合した車らしさ分布を出力する車らしさ分布出力手段と、車らしさ分布から車の位置を判定する車位置判定手段とを備えたので、高い検知性能を実現することができる。   The vehicle detection device of the present invention outputs a vehicle-likeness distribution that integrates the output of a vehicle-likeness / non-vehicleness-measuring means that measures vehicle-likeness and non-vehicle-likeness using a plurality of different sensors, and an output of the vehicle-likeness / non-vehicleness-likeness measuring means. Since the vehicle-likeness distribution output means and the vehicle position judging means for judging the position of the vehicle from the vehicle-likeness distribution are provided, high detection performance can be realized.

実施の形態1.
図1は、本発明の実施の形態1による車両検知装置の構成を示すブロック図である。ミリ波レーダ、レーザレーダ、画像センサなど複数の異なるセンサを用いて車らしさ測定手段11は、車らしさを測定する。車らしさ測定手段11から得られる信号を処理し、例えば、前車の左右位置と幅の2パラメータにより張られる特徴空間内での車らしさの分布を車らしさ分布出力手段13で求めることができる。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a configuration of a vehicle detection device according to Embodiment 1 of the present invention. The vehicle-likeness measuring means 11 measures the vehicle-likeness using a plurality of different sensors such as a millimeter wave radar, a laser radar, and an image sensor. The signal obtained from the vehicle quality measurement means 11 is processed, and for example, the vehicle quality distribution output means 13 can determine the distribution of the vehicle quality in the feature space spanned by the two parameters of the left and right positions and the width of the front vehicle.

例えば、ミリ波レーダによる対象までの距離の分布や、ミリ波レーダによる車間距離と自車速度センサによる自車速度との比較による対象の速度分布や、画像センサによる車両後面のテクスチャの車らしさの尺度など(テクスチャの左右対称性や車幅に当たる垂直エッジの量など)が考えられる。   For example, the distribution of the distance to the object by the millimeter wave radar, the speed distribution of the object by comparing the inter-vehicle distance by the millimeter wave radar and the own vehicle speed by the own vehicle speed sensor, and the vehicle likeness of the texture on the rear surface of the vehicle by the image sensor. Scales (such as the symmetry of the texture and the amount of vertical edge that hits the vehicle width) can be considered.

例えば、車の後面のテクスチャは左右対称の場合が多いため、テクスチャの左右対称性は高い方が車らしいとなる。また、車の左右端と背景間にはエッジが存在するはずなので、垂直エッジが多く検知される位置に車の左右端があり車らしいと判定できる。   For example, since the texture of the rear surface of a car is often left-right symmetric, it is more likely that the texture is more symmetrical. In addition, since there should be an edge between the left and right ends of the car and the background, it can be determined that there are left and right ends of the car at positions where many vertical edges are detected.

また、このような車らしさの時間的、空間的な連続性を測る尺度など(車両後面のテクスチャの前検知時との類似度の分布や、過去のフレーム時の車両検知位置と相対速度より推定される現フレームでの車両存在確率分布や、検知された車両の幅の安定度の分布など)も11の尺度として考えられる。同一の車両であれば微小な時間内に大きく位置が移動したり速度が変化したりしないため、前フレームまでに検知された位置周辺に車がいる可能性が高くなるため、その周辺は車らしさが高いとする。また車両後面のテクスチャはフレーム間で高い相関関係があるはずなので、前フレームの車位置のテクスチャと相関の高い位置の車らしさが高いとする。また、車幅も変化しないはずなので、前フレームで検知された車幅が車らしい幅とする。   In addition, a scale that measures the temporal and spatial continuity of such vehicle-likeness (estimated from the distribution of similarity to the previous detection of the texture on the rear surface of the vehicle, and the vehicle detection position and relative speed at the past frame) The vehicle existence probability distribution in the current frame to be detected, the distribution of the stability of the detected vehicle width, and the like) are also considered as 11 measures. If the same vehicle, the position does not move greatly and the speed does not change within a minute time, so there is a high possibility that there is a car around the position detected up to the previous frame, so the surrounding area is like a car. Is high. Further, since the texture on the rear surface of the vehicle should have a high correlation between frames, it is assumed that the vehicle quality at a position highly correlated with the texture of the vehicle position in the front frame is high. Also, since the vehicle width should not change, the vehicle width detected in the front frame is assumed to be a vehicle-like width.

非車らしさ測定手段12は、ミリ波レーダやレーザレーダや画像センサなどを利用して、車両以外の周辺物体、例えば白線らしさや道路らしさなどを測定しその分布を求める手段である。例えば、白線検知アルゴリズムによりカメラ映像から白線位置を検知できれば、その白線位置の近くは白線らしさが高いということになる。また、カメラ映像の地平線以下の領域の平均輝度(または輝度の中央値)は道路の輝度値に近いはずなので、その輝度との差が小さく、またテクスチャが少ない領域は道路らしさが高いということになる。   The non-car-likeness measuring means 12 is a means for measuring peripheral objects other than the vehicle, such as white line-likeness and road-likeness, by using a millimeter wave radar, a laser radar, an image sensor or the like, and obtaining the distribution. For example, if the white line position can be detected from the camera image by the white line detection algorithm, the white line near the white line position is high. Also, since the average brightness (or median brightness) of the area below the horizon of the camera image should be close to the brightness value of the road, the difference from that brightness is small, and the area with less texture is more likely to be a road Become.

なお、非車らしさ測定手段12は、車らしさ測定手段11として用いているセンサを用いてもよい。ここで大切なことは、複数の異なるセンサを用いて、異なる方式によるセンシング技術を用いて、車らしさ及び非車らしさを測定することである。   The non-vehicle-likeness measuring unit 12 may be a sensor used as the vehicle-likeness measuring unit 11. What is important here is to measure the vehicle-likeness and the non-vehicle-likeness using a plurality of different sensors and sensing techniques based on different methods.

車らしさ分布出力手段13は、前車の左右位置と幅の2パラメータにより張られる特徴空間内において、車らしさ測定手段11の各により出力された複数の車らしさ分布と非車らしさ測定手段12の各により出力された複数の非車らしさ分布とを統合して1つの車らしさ分布を生成する手段である。   The vehicle-likeness distribution output unit 13 includes a plurality of vehicle-likeness distribution and non-vehicle-likeness measuring units 12 output by the vehicle-likeness measuring unit 11 in a feature space spanned by two parameters of the left and right positions and the width of the front vehicle. This is means for integrating a plurality of non-vehicle-like distributions output by each to generate one vehicle-likeness distribution.

車らしさ分布出力手段13における統合の方法としては、例えば、車らしさの指標の重み付け線形和から非車らしさの指標の重み付け線形和を引き算することにより車らしさを統合する方法がある。   As an integration method in the vehicle-likeness distribution output unit 13, for example, there is a method of integrating the vehicle-likeness by subtracting the weighted linear sum of the non-vehicle-like index from the weighted linear sum of the vehicle-likeness index.

その他にも、それぞれの車らしさ及び非車らしさの指標を多次元空間を構成する軸と考えることで、この多次元空間内における車と非車の識別平面を求め、その平面からの距離によって車らしさを統合する方法などが考えられる。識別面は線形判別分析を用いたり、サポートベクターマシン(SVM)を用いたりすることにより求められる。また、カーネル関数を用いた非線形SVMを用いて高次空間における識別面を求めて、この識別面からの距離を高精度な車らしさと考えることもできる。   In addition, by considering each vehicle-likeness and non-vehiclelikeness index as an axis that constitutes a multidimensional space, the vehicle and non-vehicle identification plane in this multidimensional space is obtained, and the vehicle is determined by the distance from that plane. A method to integrate the uniqueness can be considered. The discriminant plane is obtained by using linear discriminant analysis or using a support vector machine (SVM). It is also possible to obtain an identification surface in a high-order space using a nonlinear SVM using a kernel function, and to consider the distance from the identification surface as a highly accurate vehicle.

前車検知手段14では、前車の左右位置と幅の2パラメータにより張られる特徴空間内において、車らしさ分布出力手段13の出力である車らしさ分布より車らしい点を探索し出力する。車らしさ分布において空間的に見て極大である点を出力することになる。前車検知手段14によって車らしさ分布を分析することで、車位置判定手段18で車の位置を判定することができる。この判定結果を受けて運転支援装置19で自車の運転を支援することができる。このため、車両検知装置は、通常、自車に備えられるものである。   The front vehicle detection means 14 searches for and outputs a car-like point from the vehicle-likeness distribution that is the output of the vehicle-likeness distribution output means 13 in the feature space spanned by the two parameters of the left and right position and width of the front car. A point that is maximum in terms of space in the distribution of carness is output. By analyzing the vehicle-likeness distribution by the front vehicle detection means 14, the vehicle position determination means 18 can determine the position of the vehicle. In response to this determination result, the driving support device 19 can assist in driving the vehicle. For this reason, a vehicle detection apparatus is normally provided in the own vehicle.

なお、図において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書の全文において共通することである。また、明細書全文に表れている構成要素の形容は、あくまで例示であってこれらの記載に限定されるものではない。   In the drawings, the same reference numerals denote the same or corresponding parts, and this is common throughout the entire specification. Further, the description of the constituent elements appearing in the whole specification is merely an example and is not limited to these descriptions.

統合する情報として「車らしさ」のみを用いた場合、つまり非車らしさ測定手段12を用いなかった場合には、白線や電柱などの直線的なエッジに囲まれた領域やトラックなどの大きな車の一部のパーツなどでいずれの車らしさの指標においても高い値を返すケースが発生し易くなる。例えば、カメラ映像から得られる画像特徴として背面テクスチャの左右対称性を車らしさの指標として考えた場合、車と非車の分布が大きく重なり、車らしさの指標のみの組み合わせでは非車と車を高精度に分離することが困難となることがある。   When only the “car likeness” is used as information to be integrated, that is, when the non-car likeness measuring means 12 is not used, an area surrounded by a straight edge such as a white line or a power pole or a large car such as a truck Some parts tend to return a high value in any vehicle quality index. For example, when considering the symmetry of the back surface texture as an image characteristic obtained from camera images as an index of car likeness, the distribution of cars and non-cars overlaps greatly, and the combination of only the car likeness index increases the non-car and car. It may be difficult to separate accurately.

これに対して、本発明では、非車らしさ測定手段12を併用することで、誤検知の可能性の高い白線や電柱などの対象をふるい落とすことができる。白線や電柱などの直線的なエッジに囲まれた領域やトラックなどの大きな車の一部のパーツなど、車らしさの指標だけでは誤検知してしまうケースを、白線らしさや電柱らしさなどの指標を総合的に判断することにより分離度の改善を図ることができる。   On the other hand, in the present invention, by using the non-vehicle-likeness measuring means 12 in combination, it is possible to screen out objects such as white lines and utility poles that are highly likely to be erroneously detected. Indices such as white lines and utility poles are used to detect cases such as areas surrounded by straight edges such as white lines and utility poles and parts of large vehicles such as trucks that are falsely detected only by the indications of the car. By making a comprehensive judgment, the degree of separation can be improved.

また、それぞれの車らしさ計測手段単独で前車位置を決定した後に統合するものとも異なる。例えば、先に示した先行例の構成では、それぞれの車らしさ計測手段単独での検知性能が低いため、複数の手段を用いているにも関わらず、各手段単独で前車位置を決定しそれを統合している。単独の計測手段では検知性能が乏しく正しい車位置以外の位置で車以上に車らしさが高くなることも多いことが推測される。   Moreover, it differs from what integrates, after determining a vehicle position by each vehicle-likeness measurement means independently. For example, in the configuration of the preceding example shown above, the detection performance of each vehicle-likeness measurement means alone is low, so the front vehicle position is determined by each means independently of the use of a plurality of means. Is integrated. It is presumed that the single measuring means has poor detection performance and often has a higher vehicle quality than the vehicle at positions other than the correct vehicle position.

以上のように、車両検知装置は、複数の異なるセンサを用いて車らしさ及び非車らしさを測定する車らしさ非車らしさ測定手段と、車らしさ非車らしさ測定手段の出力を統合した車らしさ分布を出力する車らしさ分布出力手段と、車らしさ分布から車の位置を判定する車位置判定手段とを備えたので、高い検知性能を実現することができる。   As described above, the vehicle detection device uses a plurality of different sensors to measure the vehicle-likeness and the non-vehicle-likeness, and the vehicle-likeness distribution that integrates the output of the vehicle-likeness / non-vehicleness-likeness measuring means and the vehicle-likeness / non-vehicleness-likeness measuring means. Since the vehicle-likeness distribution output means for outputting the vehicle position and the vehicle position determination means for judging the position of the vehicle from the vehicle-likeness distribution are provided, high detection performance can be realized.

実施の形態2.
図2は、本発明の実施の形態2による車両検知装置の構成を示すブロック図である。実施の形態1と異なる点を中心に以下、説明する。
Embodiment 2. FIG.
FIG. 2 is a block diagram showing the configuration of the vehicle detection device according to Embodiment 2 of the present invention. The following description will focus on differences from the first embodiment.

分布信頼度測定手段15では、車らしさ分布出力手段13で求めた車らしさ分布から前車位置の尤もらしさ、すなわち、車らしさ分布の分布信頼度を算出する手段である。例えば、検知位置の車らしさの値そのもの、車らしさの分布の鋭利度、検知位置周辺の2番目のピーク値との差、分布が峰状になっているかを現す指標などが挙げられる。検知位置周辺との車らしさの差の大きな方が信頼度が高い検知と考えられるため、車らしさの分布の鋭利度の高い方が信頼度が高く、2番目のピーク値との差の大きな方が信頼度が高いと考えられる。   The distribution reliability measuring means 15 is a means for calculating the likelihood of the front vehicle position, that is, the distribution reliability of the vehicle likelihood distribution from the vehicle likelihood distribution obtained by the vehicle likelihood distribution output means 13. For example, the value of the vehicle likeness at the detection position itself, the sharpness of the distribution of the vehicle likeness, the difference from the second peak value around the detection position, and an index indicating whether the distribution is ridged. The greater the difference in the vehicle quality from the vicinity of the detection position is considered to be the detection with higher reliability. Therefore, the higher the sharpness of the distribution of vehicle quality, the higher the reliability, and the greater the difference from the second peak value. Is considered highly reliable.

一方、環境信頼度測定手段16では、車らしさ測定手段11で計測したときの環境が、車両検出が容易か困難かを表す指標を出力する手段であり、センサの測定時の環境の環境信頼度を測るものである。例えば、撮影時の空の明るさや、背景の複雑さや、車エリアのエッジ量や、車エリアのコントラストなどが挙げられる。   On the other hand, the environmental reliability measurement means 16 is a means for outputting an index indicating whether the environment measured by the vehicle quality measurement means 11 is easy or difficult to detect the vehicle, and the environmental reliability of the environment at the time of sensor measurement. It measures. For example, the brightness of the sky at the time of photographing, the complexity of the background, the edge amount of the car area, the contrast of the car area, and the like can be mentioned.

例えば、車らしさ測定手段11として画像センサを用いた場合、撮影時の空の明るさは暗いと夜間の可能性が高くなり、明るすぎると日中の逆光シーンの可能性が高くなるため、適度な明るさが最も信頼度が高いと判定できる。背景の複雑さは、背景が複雑であれば市街地などの誤検知対象が多い可能性が高く、単純な場合は高速道路などの比較的容易な環境であると判断できる。また、車エリアのエッジ量が少ない場合やコントラストが低い場合は、撮影時に逆光であるとか、検知対象に特徴が少なくのっぺりとしている可能性が高く検知しにくいと判断できる。   For example, when an image sensor is used as the vehicle-likeness measuring unit 11, if the brightness of the sky at the time of shooting is dark, the possibility of nighttime increases, and if it is too bright, the possibility of a backlight scene during the day increases. It can be determined that the brightness is the most reliable. As for the complexity of the background, if the background is complex, there is a high possibility that there are many false detection targets such as urban areas. In addition, when the edge amount of the car area is small or the contrast is low, it can be determined that it is difficult to detect because there is a high possibility of being backlit at the time of shooting or having a few features in the detection target.

検知信頼度算出手段17では、分布信頼度測定手段15、環境信頼度測定手段16で求めた指標を統合することにより、検知結果の信頼度を出力する手段である。複数の指標の積や和を計算することにより検知信頼度の指標を得ることができる。   The detection reliability calculation unit 17 is a unit that outputs the reliability of the detection result by integrating the indexes obtained by the distribution reliability measurement unit 15 and the environment reliability measurement unit 16. An index of detection reliability can be obtained by calculating a product or a sum of a plurality of indices.

車両位置判定手段18では、前車検知手段14の検知結果と、車らしさ分布出力手段13の車らしさの値と、検知信頼度算出手段17の検知信頼度とを用いて、車、非車、判定困難の3状態を識別する。   The vehicle position determination unit 18 uses the detection result of the front vehicle detection unit 14, the vehicle likelihood value of the vehicle likelihood distribution output unit 13, and the detection reliability of the detection reliability calculation unit 17, so that the vehicle, non-car, Identify three states that are difficult to determine.

図3は、車らしさと信頼度との関係を示す模式図である。車、非車の識別は車らしさと信頼度の軸を考えて、信頼度が高いときは「車」「非車」をはっきりと識別し、信頼度の低いときは「判定困難」の領域が大きくなる仕組みをとる。   FIG. 3 is a schematic diagram showing the relationship between the vehicle quality and the reliability. The distinction between cars and non-cars is based on the axis of car-likeness and reliability. When the reliability is high, “car” and “non-car” are clearly identified, and when the reliability is low, the area of “difficult to judge” is Take a mechanism to grow.

運転支援装置19では、車両位置判定手段18で求まった識別結果に従い運転支援を行う。例えば、衝突軽減ブレーキシステムであれば、車が検知されていれば、その左右位置、幅、車間距離の変化量より衝突危険性を導出し、必要に応じて早いタイミングでブレーキ制御を行うなどの制御を行う。非車と識別されている場合は、検知した場所に車が存在しない(要するに誤検知)と判断しブレーキ制御は行わない。判定困難と識別された場合は、従来の安全システムの動作に従い、例えばミリ波レーダの出力のみを用いて従来どおりの制御を行う。   The driving support device 19 performs driving support according to the identification result obtained by the vehicle position determination means 18. For example, in the case of a collision-reducing brake system, if a vehicle is detected, the risk of collision is derived from the amount of change in the left-right position, width, and inter-vehicle distance, and brake control is performed at an early timing as necessary. Take control. If it is identified as a non-vehicle, it is determined that there is no vehicle at the detected location (in short, erroneous detection), and brake control is not performed. If it is determined that the judgment is difficult, the conventional control is performed using only the output of the millimeter wave radar, for example, according to the operation of the conventional safety system.

また、上記衝突危険性に基づき、ハンドルの陀角制御による回避制動や、シートベルトの引き込み制御、警告音の発報、表示デバイスへの警報表示や前車位置表示などによる運転手への警告提示などの運転支援も考えられる。   In addition, based on the above-mentioned collision risk, avoidance braking by steering angle control, seat belt pull-in control, warning sound, warning display on the display device and front vehicle position display, etc. Driving assistance such as can be considered.

図4は尤度について説明するための模式図である。ここで、図4の(a)に示すような車らしさ(尤度)の分布を持つ2つの指標を用いて総合判断する場合、先行例では(b)に示すようにそれぞれの指標で最も車らしい位置を決定し(この例の場合x1とx2)、この位置をもとに最終的な前車位置を決定する。この例の場合、x1とx2の間の位置に最終的な前車位置を誤検知する可能性が高くなる。これに対して、本発明では、(c)に示すようにx3において、統合尤度最大となる位置を検出することができる。 FIG. 4 is a schematic diagram for explaining the likelihood. Here, in the case of making a comprehensive determination using two indexes having a vehicle-likeness (likelihood) distribution as shown in FIG. 4 (a), in the preceding example, as shown in FIG. A probable position is determined (x 1 and x 2 in this example), and the final front vehicle position is determined based on this position. In this example, the possibility of erroneous detection the final preceding vehicle located at a position between x 1 and x 2 is increased. On the other hand, in the present invention, as shown in (c), the position where the integrated likelihood becomes maximum can be detected at x 3 .

さらに、複数の車らしさ計測手段間の相関関係が考慮されていないものとも異なる。すなわち、独立という前提のもとに検知結果より生成される確率分布の積算を単に統合しただけのものとは異なっている。手段が違っても同じ車らしさを測る指標間に相関がなく独立であるケースは考えにくく、極端な例を挙げると、意味はないが同じミリ波レーダを複数台並べて設置した場合、これらのセンサにより検知された前車位置は完全に一致することになる。このような場合に積算により確率分布を統合してしまうと、他のカメラ映像による検知結果が別の場所を指していたとしても、ミリ波レーダによる検知結果が何重にも積算されているのでミリ波レーダの指す位置が統合結果となってしまう。これに対して、本発明では、統合尤度が最大なる位置で判断するので、単純な積算とは異なり高い検知性能を実現することができる。   Furthermore, it is different from the case where the correlation between the plurality of vehicle quality measurement means is not considered. In other words, it is different from the case of simply integrating the integration of probability distributions generated from the detection results under the premise of being independent. Even if the means are different, it is difficult to imagine a case where the indicators that measure the same car quality are not correlated and independent, and in an extreme case, these sensors are not useful when two or more of the same millimeter wave radars are installed side by side. The position of the front vehicle detected by is completely coincident. In such a case, if the probability distribution is integrated by integration, even if the detection results from other camera images point to different locations, the detection results from the millimeter wave radar are accumulated multiple times. The position pointed to by the millimeter wave radar is the integration result. On the other hand, in the present invention, since the determination is made at the position where the integrated likelihood is the maximum, high detection performance can be realized unlike simple integration.

また、前車検知結果の信頼性判定が「車」か「それ以外(撮影環境などの影響により判定が出来ない場合や、前方に車以外のものがある場合など)」かを単に判定する仕組みとは、異なっている。100%の精度で前車位置を検知することは不可能であるため、求めた前車位置を安全システムに用いる場合、検知結果が高い信頼度で検知されているか否かを判定する仕組みが必要となる。先に示した先行例では、信頼度の指標として、統計データに基づく指標や、実際の検知時の評価値そのものかのいずれか1つの指標を信頼度と定義し、その1パラメータの大小により自信を持って車を検知したと言えるか否かを判定しており、車であると言えない場合に、撮影環境などの影響により対象検知自体が困難な状況なのか、検知対象が車ではないために信頼度が低くなっているのかを判定することができない。これに対して、本発明は、信頼度と検知時の車らしさの値の2パラメータを用いて感度を調節する仕組みを実現することにより「車」「非車」「識別困難」と区別することができ、高い検知性能を実現することができる。   In addition, a mechanism that simply determines whether the reliability judgment of the detection result of the front vehicle is “car” or “other than that (when it cannot be judged due to the influence of the shooting environment, or when there is something other than the car ahead)” Is different. Since it is impossible to detect the front vehicle position with 100% accuracy, when using the calculated front vehicle position in a safety system, a mechanism is required to determine whether the detection result is detected with high reliability. It becomes. In the preceding example shown above, as an index of reliability, either an index based on statistical data or an evaluation value itself at the time of actual detection is defined as the reliability, and confidence depends on the magnitude of that one parameter. Because it is determined whether or not it can be said that a car has been detected with the camera, and if it cannot be said that it is a car, it is difficult to detect the object itself due to the influence of the shooting environment, etc. It is impossible to determine whether the reliability is low. On the other hand, the present invention distinguishes from “car”, “non-car”, and “difficult to identify” by realizing a mechanism for adjusting sensitivity using two parameters of reliability and car-likeness value at the time of detection. And high detection performance can be realized.

本発明では、(A)車らしさを測る手段に加えて、非車(周辺物体)らしさ、例えば白線らしさ、道路らしさなどを測る手段を導入する。また、(B)それぞれの計測手段単独で前車位置を判定せずに、“車らしさ、非車らしさの尺度”を統合し統合された尺度から前車位置を検知する。また、(C)撮影環境や統合した車らしさの分布の状態から検知の信頼度と、検知時の車らしさの値そのものの2つのパラメータを加味して、「車」「非車」「識別困難」の3パターンへの識別を行う。   In the present invention, in addition to (A) means for measuring vehicle-likeness, means for measuring non-car (peripheral object) -likeness, for example, white line-likeness, road-likeness, and the like are introduced. Further, (B) the front vehicle position is detected from the integrated scales by integrating the “scale of vehicle-likeness and non-vehicle-likeness” without determining the front vehicle position by each measuring means alone. In addition, (C) “Car”, “Non-car”, “Difficult to identify” by taking into account two parameters of detection reliability and the value of car-likeness itself at the time of detection based on the shooting environment and the state of integrated car-likeness distribution. Is identified into three patterns.

以上のように、センサの測定時の環境の環境信頼度を測る環境信頼度測定手段と、車らしさ分布の分布信頼度と環境信頼度とから検知信頼度を算出する検知信頼度算出手段とを備え、車両位置判定手段は、検知信頼度を用いて車、非車、判定困難の3状態を識別するので、さらに高い検知性能を実現することができる。   As described above, the environmental reliability measuring means for measuring the environmental reliability of the environment at the time of sensor measurement, and the detection reliability calculating means for calculating the detection reliability from the distribution reliability and the environmental reliability of the vehicle-likeness distribution. In addition, the vehicle position determination means uses the detection reliability to identify the three states of car, non-car, and difficult to determine, so that higher detection performance can be realized.

本発明の実施の形態1による車両検知装置の構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle detection apparatus by Embodiment 1 of this invention. 本発明の実施の形態2による車両検知装置の構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle detection apparatus by Embodiment 2 of this invention. 車らしさと信頼度との関係を示す模式図である。It is a schematic diagram which shows the relationship between vehicle character and reliability. 尤度について説明するための模式図である。It is a schematic diagram for demonstrating likelihood.

符号の説明Explanation of symbols

11 車らしさ測定手段、12 非車らしさ測定手段、13 車らしさ分布出力手段、14 前車検知手段、15 分布信頼度測定手段、16 環境信頼度測定手段、17 検知信頼度算出手段、18 車位置判定手段、19 運転支援装置。 11 vehicle-likeness measurement means, 12 non-vehicle-likeness measurement means, 13 vehicle-likeness distribution output means, 14 front vehicle detection means, 15 distribution reliability measurement means, 16 environmental reliability measurement means, 17 detection reliability calculation means, 18 vehicle position Judging means, 19 Driving support device.

Claims (2)

複数の異なるセンサを用いて車らしさ及び非車らしさを測定する車らしさ非車らしさ測定手段と、
前記車らしさ非車らしさ測定手段の出力を統合した車らしさ分布を出力する車らしさ分布出力手段と、
前記車らしさ分布から車の位置を判定する車位置判定手段とを備えたことを特徴とする車両検知装置。
Vehicle-like / non-vehicle-likeness measuring means for measuring vehicle-likeness and non-vehicle-likeness using a plurality of different sensors;
Vehicle-likeness distribution output means for outputting a vehicle-likeness distribution that integrates the output of the vehicle-likeness non-vehicle-likeness measuring means;
A vehicle detection device comprising vehicle position determination means for determining a vehicle position from the vehicle-likeness distribution.
センサの測定時の環境の環境信頼度を測る環境信頼度測定手段と、
車らしさ分布の分布信頼度と前記環境信頼度とから検知信頼度を算出する検知信頼度算出手段とを備え、
車両位置判定手段は、前記検知信頼度を用いて車、非車、判定困難の3状態を識別することを特徴とする請求項1に記載の車両検知装置。
Environmental reliability measurement means for measuring the environmental reliability of the environment at the time of sensor measurement;
A detection reliability calculating means for calculating a detection reliability from the distribution reliability of the vehicle-likeness distribution and the environmental reliability;
2. The vehicle detection device according to claim 1, wherein the vehicle position determination unit identifies three states of a vehicle, a non-vehicle, and a determination difficulty using the detection reliability.
JP2007148024A 2007-06-04 2007-06-04 Vehicle detector Pending JP2008299787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007148024A JP2008299787A (en) 2007-06-04 2007-06-04 Vehicle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007148024A JP2008299787A (en) 2007-06-04 2007-06-04 Vehicle detector

Publications (1)

Publication Number Publication Date
JP2008299787A true JP2008299787A (en) 2008-12-11

Family

ID=40173226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007148024A Pending JP2008299787A (en) 2007-06-04 2007-06-04 Vehicle detector

Country Status (1)

Country Link
JP (1) JP2008299787A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011033840A1 (en) * 2009-09-18 2011-03-24 トヨタ自動車株式会社 Driving evaluation system, vehicle-mounted machine, and information processing center
CN104094311A (en) * 2012-03-02 2014-10-08 日产自动车株式会社 Three-dimensional object detection device
JP2015005225A (en) * 2013-06-21 2015-01-08 トヨタ自動車株式会社 Vehicle behavior prediction device
JP2019030557A (en) * 2017-08-09 2019-02-28 沖電気工業株式会社 Presentation device, presentation method, emotion estimation server, emotion estimation method, and emotion estimation system
JP7439079B2 (en) 2018-11-02 2024-02-27 ルノー エス.ア.エス. Method for generating control settings for a vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230115A (en) * 1993-02-01 1994-08-19 Toyota Motor Corp Vehicular gap detector
JPH09130781A (en) * 1995-10-31 1997-05-16 Matsushita Electric Ind Co Ltd Broad area supervisory equipment
JP2004098827A (en) * 2002-09-09 2004-04-02 Denso Corp Obstacles detector and program
JP2005004413A (en) * 2003-06-11 2005-01-06 Nissan Motor Co Ltd Drive supporting device for vehicle
JP2005165421A (en) * 2003-11-28 2005-06-23 Denso Corp Sensor fusion system and vehicle control unit using it
JP2007072987A (en) * 2005-09-09 2007-03-22 Denso Corp Environment recognition apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230115A (en) * 1993-02-01 1994-08-19 Toyota Motor Corp Vehicular gap detector
JPH09130781A (en) * 1995-10-31 1997-05-16 Matsushita Electric Ind Co Ltd Broad area supervisory equipment
JP2004098827A (en) * 2002-09-09 2004-04-02 Denso Corp Obstacles detector and program
JP2005004413A (en) * 2003-06-11 2005-01-06 Nissan Motor Co Ltd Drive supporting device for vehicle
JP2005165421A (en) * 2003-11-28 2005-06-23 Denso Corp Sensor fusion system and vehicle control unit using it
JP2007072987A (en) * 2005-09-09 2007-03-22 Denso Corp Environment recognition apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011033840A1 (en) * 2009-09-18 2011-03-24 トヨタ自動車株式会社 Driving evaluation system, vehicle-mounted machine, and information processing center
JP2011065527A (en) * 2009-09-18 2011-03-31 Toyota Motor Corp Driving evaluation system, vehicle-mounted machine, and information processing center
CN102549628A (en) * 2009-09-18 2012-07-04 丰田自动车株式会社 Driving evaluation system, vehicle-mounted machine, and information processing center
CN104094311A (en) * 2012-03-02 2014-10-08 日产自动车株式会社 Three-dimensional object detection device
EP2821957A4 (en) * 2012-03-02 2016-01-06 Nissan Motor Three-dimensional object detection device
JP2015005225A (en) * 2013-06-21 2015-01-08 トヨタ自動車株式会社 Vehicle behavior prediction device
JP2019030557A (en) * 2017-08-09 2019-02-28 沖電気工業株式会社 Presentation device, presentation method, emotion estimation server, emotion estimation method, and emotion estimation system
JP7439079B2 (en) 2018-11-02 2024-02-27 ルノー エス.ア.エス. Method for generating control settings for a vehicle

Similar Documents

Publication Publication Date Title
US8988276B2 (en) Vehicle surroundings monitoring device
US9760784B2 (en) Device, method and program for measuring number of passengers
CN107144839B (en) Detecting long objects by sensor fusion
JP5867273B2 (en) Approaching object detection device, approaching object detection method, and computer program for approaching object detection
US9296393B2 (en) Apparatus and method for recognizing vehicle
US9070023B2 (en) System and method of alerting a driver that visual perception of pedestrian may be difficult
US20030137593A1 (en) Infrared image-processing apparatus
JP4528283B2 (en) Vehicle periphery monitoring device
JP2007241740A (en) Vehicle periphery monitoring device
US20160379487A1 (en) Methods for identifying a vehicle from captured image data
JP2010132056A (en) Sensing device, sensing method, and vehicle control device
US8174578B2 (en) Vehicle periphery monitoring device
CN113192109B (en) Method and device for identifying motion state of object in continuous frames
JP2008299787A (en) Vehicle detector
JP6411933B2 (en) Vehicle state determination device
JP4813304B2 (en) Vehicle periphery monitoring device
KR20130015326A (en) Camera system and method for recognition distance using the same
JP2004349926A (en) Obstacle detection apparatus and method, and program for obstacle detection
KR101449288B1 (en) Detection System Using Radar
US9127941B2 (en) System for measuring vehicle distance and method thereof
JP4176558B2 (en) Vehicle periphery display device
JP6087240B2 (en) Vehicle periphery monitoring device
WO2008037473A1 (en) Park assist system visually marking up dangerous objects
CN114973728A (en) Method for acquiring bus sheltered traffic signal lamp
JP4823282B2 (en) Perimeter monitoring sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111227