JP2008292434A - Optical cutting three-dimensional measurement instrument - Google Patents

Optical cutting three-dimensional measurement instrument Download PDF

Info

Publication number
JP2008292434A
JP2008292434A JP2007141119A JP2007141119A JP2008292434A JP 2008292434 A JP2008292434 A JP 2008292434A JP 2007141119 A JP2007141119 A JP 2007141119A JP 2007141119 A JP2007141119 A JP 2007141119A JP 2008292434 A JP2008292434 A JP 2008292434A
Authority
JP
Japan
Prior art keywords
imaging
positions
brightness
light
maximum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007141119A
Other languages
Japanese (ja)
Other versions
JP4966096B2 (en
Inventor
Ryosuke Mitaka
良介 三高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2007141119A priority Critical patent/JP4966096B2/en
Publication of JP2008292434A publication Critical patent/JP2008292434A/en
Application granted granted Critical
Publication of JP4966096B2 publication Critical patent/JP4966096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To clarify the correspondence of a height found with respect to a marked position, irrespective of the resolution of an imaging device, and to find the height of an object with high accuracy. <P>SOLUTION: In this optical cutting three-dimensional measurement instrument 1, a projector 10 projects a slit light 100 onto the object 2, the imaging device 11 photographs a region which includes an optical cutting line 101 out of the object 2, from a direction different from a projection direction of the projector 10, and generates a picked-up image 110. An image processor 13 has a lightness-measuring function for tracking each of the plurality of marked positions existing in the object 2 moved by a conveying means 12 on the picked-up image 110, and for measuring at least three times imaged lightness and times during the period, when each marked position is included within a range where an illuminance varies by the slit light 100; a maximum value calculating function for finding the maximum value of the imaged lightness by using the three imaged lightness and times for every marked position; and a height calculation means function for finding a relative height between the marked positions by using the maximum value of the imaged lightness for each marked position. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、対象物の形状を計測する光切断3次元計測装置に関するものである。   The present invention relates to an optical cutting three-dimensional measuring apparatus that measures the shape of an object.

対象物の形状を計測する従来の3次元計測装置として、対象物にスリット光を投影し、上記スリット光が投影された対象物の撮像画像(2次元画像)を取得し、取得した撮像画像に対し光切断線を横切る方向に沿って各画素の明度を計測して最大明度の画素(対象物の位置)を求めるもの(第1従来例の3次元計測装置)がある。第1従来例の3次元計測装置は、最大明度の位置の集合から光切断線の形状を認識し、認識した光切断線の形状に対し三角測量法を用いることによって対象物の高さを求めることができる。   As a conventional three-dimensional measuring apparatus that measures the shape of an object, slit light is projected onto the object, and a captured image (two-dimensional image) of the object on which the slit light is projected is acquired. On the other hand, there is an apparatus (a three-dimensional measuring apparatus of the first conventional example) that obtains a pixel (maximum brightness) pixel (position of an object) by measuring the brightness of each pixel along the direction crossing the light cutting line. The three-dimensional measuring apparatus of the first conventional example recognizes the shape of the light section line from the set of positions of maximum brightness, and obtains the height of the object by using a triangulation method for the recognized shape of the light section line. be able to.

ところが、第1従来例の3次元計測装置では、スリット光を対象物に向かって斜め方向から投影するため、対象物の高さによって、スリット光が投影される位置が異なってしまう。これにより、第1従来例の3次元計測装置には、光切断線の形状から求められた対象物の高さが実際には上記対象物のどの位置の値であるのかを正確に認識することができないという問題があった。つまり、対象物の高さごとに、計測位置が異なってしまっていた。   However, in the three-dimensional measuring apparatus of the first conventional example, the slit light is projected toward the object from an oblique direction, so the position at which the slit light is projected differs depending on the height of the object. As a result, the three-dimensional measuring apparatus of the first conventional example accurately recognizes the position of the target object actually obtained from the shape of the light section line. There was a problem that could not. In other words, the measurement position differs depending on the height of the object.

上記問題を解決するものとして、特許文献1には、スリット光ではなく、明領域と暗領域が形成された光パターンを対象物に投影し、上記光パターンの明領域と暗領域の境界線をイメージセンサ(撮像装置)の露光時間内に対象物全体に走査させることによって、対象物の各計測点での受光量を計測し、計測した受光量を用いて対象物の表面の3次元的な位置情報を求める第2従来例の3次元計測装置が開示されている。第2従来例の3次元計測装置によれば、イメージセンサの露光時間程度の極めて短い時間で対象物の3次元形状を求めることができる。
特許第2987000号公報(段落0020〜0031及び図1〜7)
In order to solve the above problem, Patent Document 1 discloses that a light pattern in which a bright region and a dark region are formed, not slit light, is projected onto an object, and a boundary line between the light region and the dark region of the light pattern is projected. By scanning the entire object within the exposure time of the image sensor (imaging device), the amount of received light at each measurement point of the object is measured, and the three-dimensional surface of the object is measured using the measured amount of received light. A three-dimensional measuring apparatus of a second conventional example for obtaining position information is disclosed. According to the three-dimensional measuring apparatus of the second conventional example, the three-dimensional shape of the object can be obtained in an extremely short time such as the exposure time of the image sensor.
Japanese Patent No. 2987000 (paragraphs 0020-0031 and FIGS. 1-7)

しかしながら、第2従来例の3次元計測装置には、イメージセンサで各計測点の受光量を計測したときに、隣接する計測点の間では受光量の差が小さく、この受光量の差がイメージセンサの受光素子の光強度の分解能(撮像明度の分解能)に依存してしまうという問題があった。また、第2従来例の3次元計測装置には、対象物の走査方向の長さが長くなるほど、光パターンの明領域と暗領域の境界線を走査させる速度を速くする必要があることから、隣接する計測点での受光量の差がさらに小さくなり、対象物の表面の3次元的な位置情報の精度が低下するという問題も生じた。さらに、第2従来例の3次元計測装置では、上記境界線の幅が広がってしまうと、隣接する計測点での受光量の差を明確に計測することができず、対象物の表面の3次元的な位置情報を精度よく求めることができないという問題があった。   However, in the second conventional example of the three-dimensional measuring apparatus, when the amount of light received at each measurement point is measured by the image sensor, the difference in the amount of received light is small between adjacent measurement points. There has been a problem in that it depends on the resolution of the light intensity of the light receiving element of the sensor (resolution of imaging brightness). Further, in the three-dimensional measuring apparatus of the second conventional example, as the length of the object in the scanning direction becomes longer, it is necessary to increase the speed of scanning the boundary line between the bright area and the dark area of the light pattern. The difference in the amount of received light at the adjacent measurement points is further reduced, resulting in a problem that the accuracy of the three-dimensional position information on the surface of the object is lowered. Further, in the three-dimensional measurement apparatus of the second conventional example, if the width of the boundary line increases, the difference in the amount of received light at adjacent measurement points cannot be clearly measured, and 3 on the surface of the object. There was a problem that the dimensional position information could not be obtained accurately.

第1従来例の3次元計測装置においても、対象物に投影されるスリット光が幅を有しているため、スリット光の幅方向の中心からずれた点をスリット光の中心として認識してしまい、スリット光の幅よりも狭い精度で光切断線の形状を認識することができなかった。このため、第1従来例の3次元計測装置には、対象物の高さを精度よく求めることができないという問題があった。   Also in the three-dimensional measuring apparatus of the first conventional example, the slit light projected onto the object has a width, so that a point shifted from the center in the width direction of the slit light is recognized as the center of the slit light. The shape of the optical cutting line could not be recognized with an accuracy narrower than the width of the slit light. For this reason, the three-dimensional measuring apparatus of the first conventional example has a problem that the height of the object cannot be obtained with high accuracy.

本発明は上記の点に鑑みて為されたものであり、その目的は、撮像装置の分解能に関わらず、求めた高さと着目位置の対応を明確にすることができるとともに対象物の高さを精度よく求めることができる光切断3次元計測装置を提供することにある。   The present invention has been made in view of the above points. The object of the present invention is to clarify the correspondence between the obtained height and the position of interest regardless of the resolution of the imaging apparatus, and to set the height of the object. An object of the present invention is to provide an optical cutting three-dimensional measuring apparatus that can be obtained with high accuracy.

請求項1の発明は、測定すべき対象物にスリット光を投影する投影手段と、前記投影手段と一体に設けられ当該投影手段と一の方向において予め設定された間隔を保持しながら前記対象物のうち少なくとも当該対象物に投影されたスリット光を含む領域を前記投影手段の投影方向とは異なる方向から撮影する撮像手段と、前記投影手段及び前記撮像手段と前記対象物との相対位置を前記一の方向において変化させる相対位置変動手段と、前記対象物にある複数の着目位置のそれぞれを、前記相対位置が異なるときに前記撮像手段によって撮影された複数の撮像画像上で追跡し、前記複数の着目位置のそれぞれに対して、当該着目位置が前記スリット光による照度変化が生じている範囲内に含まれている間に当該着目位置の撮像明度及び相対位置を少なくとも3回計測する明度計測手段と、前記着目位置ごとに前記少なくとも3つの撮像明度及び相対位置を用いて当該撮像明度の最大値及び当該最大値となる前記相対位置を求める最大値算出手段と、前記全ての着目位置の前記撮像明度が最大となる相対位置に対し三角測量法を用いて前記着目位置間の相対的な高さを求める高さ算出手段とを備えることを特徴とする。   According to the first aspect of the present invention, there is provided projection means for projecting slit light onto an object to be measured, and the object provided integrally with the projection means and maintaining a predetermined interval in one direction with the projection means. Imaging means for photographing at least a region including the slit light projected onto the target object from a direction different from the projection direction of the projection means, and the relative position between the projection means and the imaging means and the target object. A plurality of relative position changing means for changing in one direction and a plurality of positions of interest on the object are tracked on a plurality of captured images taken by the imaging means when the relative positions are different; For each of the positions of interest, while the position of interest is within the range where the illuminance change due to the slit light occurs, the imaging brightness and relative position of the position of interest Brightness measurement means for measuring at least three times, and maximum value calculation means for obtaining the maximum value of the imaging brightness and the relative position that is the maximum value using the at least three imaging brightness and relative positions for each position of interest. And a height calculating means for obtaining a relative height between the positions of interest using a triangulation method with respect to a relative position where the imaging brightness of all the positions of interest is maximized.

請求項2の発明は、請求項1の発明において、前記撮像手段は、前記対象物に投影されたスリット光と並行に画素が配列される撮像素子を当該移動方向に少なくとも3本配置して有することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the imaging unit has at least three imaging elements arranged in the moving direction in which pixels are arranged in parallel with the slit light projected onto the object. It is characterized by that.

請求項3の発明は、請求項1の発明において、前記撮像手段は、画素が格子状に配列された撮像素子を有し、前記対象物に投影されたスリット光と並行に配列されている撮像素子の撮像明度を読み出すことを可能とする。   According to a third aspect of the present invention, in the first aspect of the present invention, the imaging unit includes an imaging device in which pixels are arranged in a grid pattern, and the imaging is arranged in parallel with the slit light projected on the object. It is possible to read the imaging brightness of the element.

請求項4の発明は、請求項1乃至3のいずれか1項の発明において、前記最大値算出手段は、前記スリット光の投影強度分布のように単調増加し、その後、単調減少する関数に、前記少なくとも3つ以上の撮像明度をあてはめて近似することによって、前記撮像明度の最大値及び当該最大値となる前記相対位置を求めることを特徴とする。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the maximum value calculating means monotonically increases like a projected intensity distribution of the slit light, and then monotonously decreases. A maximum value of the imaging brightness and the relative position at which the maximum value is obtained are obtained by applying and approximating at least three or more imaging brightness values.

請求項5の発明は、請求項1乃至4のいずれか1項の発明において、前記相対位置変動手段によって前記相対位置が前記一の方向に変化したときに、前記投影手段及び前記撮像手段に対する前記対象物の相対的な移動量を実測する移動量実測手段を備えることを特徴とする。   The invention of claim 5 is the invention of any one of claims 1 to 4, wherein when the relative position is changed in the one direction by the relative position changing means, the projection means and the imaging means are It is characterized by comprising a movement amount measuring means for actually measuring the relative movement amount of the object.

請求項6の発明は、請求項1乃至5のいずれか1項の発明において、前記着目位置ごとの前記撮像明度の最大値を当該着目位置ごとに割り当てられた画素の画素値に対応させて画像を生成する最大値画像生成手段を備えることを特徴とする。   The invention of claim 6 is an image according to any one of claims 1 to 5, wherein the maximum value of the imaging brightness for each of the positions of interest corresponds to the pixel value of the pixel assigned to each of the positions of interest. And a maximum value image generating means for generating.

請求項1の発明によれば、計測した撮像明度及び相対位置から撮像明度の最大値及び最大値となる相対位置を求めることによって、スリット光の幅より狭い精度で対象物の高さを求めることができる。また、位置が固定された着目位置の撮像明度を計測していることから、対象物の中で、どの位置の高さを求めているのかを認識することができる。   According to the first aspect of the present invention, the height of the object is determined with an accuracy narrower than the width of the slit light by determining the relative position at which the maximum value and the maximum value of the imaging brightness are obtained from the measured imaging brightness and the relative position. Can do. In addition, since the imaged lightness of the position of interest with the position fixed is measured, it is possible to recognize which position the height of the object is obtained.

請求項2の発明によれば、スリット光パターンと並行に少なくとも3本のラインセンサを並べるように配置されているので、高速かつ高解像度の撮像を行うことができる。   According to the second aspect of the invention, since at least three line sensors are arranged in parallel with the slit light pattern, high-speed and high-resolution imaging can be performed.

請求項3の発明によれば、ランダムアクセスが可能なエリアセンサが用いられていることによって、対象物の移動速度や投影手段及び撮像手段の構成に合わせて撮像領域を任意に変更することができるので、高速かつ高解像度の撮像を行うことができるとともに、装置構成の変更を容易に行うことができる。   According to the invention of claim 3, by using an area sensor capable of random access, it is possible to arbitrarily change the imaging region in accordance with the moving speed of the object and the configuration of the projection unit and the imaging unit. Therefore, high-speed and high-resolution imaging can be performed, and the device configuration can be easily changed.

請求項4の発明によれば、着目位置において取得された撮像明度の変化を光切断線を横切る方向の投影強度の変化関数にあてはめることによって、撮像明度の最大値及び最大値となる相対位置を求める精度を向上させることができる。   According to the fourth aspect of the present invention, the maximum value of the imaging brightness and the relative position that is the maximum value are obtained by applying the change of the imaging brightness acquired at the position of interest to the change function of the projection intensity in the direction crossing the light cutting line. The required accuracy can be improved.

請求項5の発明によれば、前記投影手段及び前記撮像手段に対する対象物の相対的な移動量を実測することによって、対象物の運動が等速直線運動でない場合であっても、対象物上の着目位置を撮像画像上で正確に追跡することができるので、高精度な計測を行うことができる。   According to the invention of claim 5, even if the movement of the object is not a constant linear motion, by measuring the relative movement amount of the object with respect to the projection means and the imaging means, Can be accurately tracked on the captured image, so that highly accurate measurement can be performed.

請求項6の発明によれば、撮像明度の最大値を着目位置ごとに画像化することによって、対象物に均一な光を照射して撮影した場合と同様の濃淡画像を取得することができるので、例えば対象物の高さと明るさの両方の情報を用いて検査を行ったり、計測された3次元形状データをコンピュータ上でCG表示する際に必要なテキスチャ画像として用いたりすることができる。   According to the sixth aspect of the present invention, since the maximum value of the imaging brightness is imaged for each position of interest, a gray image similar to that obtained when the object is irradiated with uniform light can be acquired. For example, it is possible to perform inspection using information on both the height and brightness of an object, or to use the measured three-dimensional shape data as a texture image necessary for CG display on a computer.

(実施形態1)
まず、実施形態1の光切断3次元計測装置1の構成について図1〜4を用いて説明する。図1(a)は、本実施形態の光切断3次元計測装置1の構成図である。この光切断3次元計測装置1は、測定すべき対象物2にスリット光100を投影する投影装置10と、対象物2のうち少なくとも光切断線(対象物2に投影されたスリット光)101を含む領域を投影装置10の投影方向とは異なる方向から撮影する撮像装置11と、対象物2を一の方向(図1(a)の矢印m1の方向)に移動させる搬送装置(相対位置変動手段)12と、対象物2にある複数の着目位置A〜C(図2参照)のそれぞれを撮像画像110上で追跡し、各着目位置A〜Cでの撮像明度の最大値を求めることによって着目位置A〜C間の相対的な高さを求める画像処理装置13とを備えている。
(Embodiment 1)
First, the structure of the light cutting three-dimensional measuring apparatus 1 of Embodiment 1 is demonstrated using FIGS. Fig.1 (a) is a block diagram of the optical cutting three-dimensional measuring apparatus 1 of this embodiment. The light cutting three-dimensional measuring apparatus 1 includes a projection device 10 that projects slit light 100 onto an object 2 to be measured, and at least a light cutting line (slit light projected onto the object 2) 101 of the object 2. An imaging device 11 that captures an area including the image from a direction different from the projection direction of the projection device 10, and a transport device (relative position variation means) that moves the object 2 in one direction (the direction of the arrow m1 in FIG. 1A). ) 12 and a plurality of target positions A to C (see FIG. 2) in the object 2 are tracked on the captured image 110, and the maximum value of the imaged lightness at each target position A to C is obtained. And an image processing device 13 for obtaining a relative height between the positions A to C.

投影装置10は例えばスリットレーザー光源やプロジェクタなどであり、水平面から入射角θ(図1(a)参照)をなすスリット光100を対象物2に投影する。投影されたスリット光100は対象物2の表面で反射して、光切断線101をなす。   The projection device 10 is, for example, a slit laser light source or a projector, and projects the slit light 100 having an incident angle θ (see FIG. 1A) from the horizontal plane onto the object 2. The projected slit light 100 is reflected by the surface of the object 2 to form a light cutting line 101.

撮像装置11は例えばテレビカメラなどのエリアカメラであり、撮像素子としてランダムアクセスが可能なC−MOS撮像素子を搭載する。この撮像装置11は画素を正方格子状に配列し、かつ各画素の画素値をランダムに読み出して撮像画像110をなすものである。撮像装置11は、投影装置10と一体に設けられて投受光器14を構成する。このような構成の撮像装置11は、投影装置10と一の方向(図1(a)の矢印m1の方向)において予め設定された間隔を保持しながら、光切断線101と並行に配列されている撮像素子の撮像明度を読み出すことを可能とする。投影装置10と撮像装置11の撮影中の位置関係は固定されている。撮像装置11で撮像された撮像画像110は画像処理装置13に転送される。   The imaging device 11 is an area camera such as a television camera, for example, and includes a C-MOS imaging device capable of random access as an imaging device. This imaging device 11 arranges pixels in a square lattice pattern, and reads out pixel values of each pixel at random to form a captured image 110. The imaging device 11 is provided integrally with the projection device 10 and constitutes a projector / receiver 14. The imaging device 11 having such a configuration is arranged in parallel with the light cutting line 101 while maintaining a predetermined interval with the projection device 10 in one direction (the direction of the arrow m1 in FIG. 1A). It is possible to read the image brightness of the image sensor. The positional relationship during shooting of the projection device 10 and the imaging device 11 is fixed. The captured image 110 captured by the imaging device 11 is transferred to the image processing device 13.

搬送装置12は、スリット光100の長手方向と直交する一の方向(図1(a)の矢印m1の方向)に等速直線運動するように対象物2を駆動する。つまり、搬送装置12は、投受光器14(投影装置10及び撮像装置11)と対象物2との相対位置を一の方向において変化させるものである。   The conveying device 12 drives the object 2 so as to perform a linear motion at a constant speed in one direction orthogonal to the longitudinal direction of the slit light 100 (the direction of the arrow m1 in FIG. 1A). That is, the transport device 12 changes the relative position between the light projector / receiver 14 (projection device 10 and imaging device 11) and the object 2 in one direction.

画像処理装置13は例えばパソコン又は専用の処理装置若しくは制御装置などであり、撮像装置11から撮像画像110が転送されると、対象物2内の同一線n(図2参照)上にある複数の着目位置A〜C(図2参照)のそれぞれを、投受光器14と対象物2との相対位置が異なるときに撮影された複数の撮像画像110上で追跡し、複数の着目位置A〜Cのそれぞれに対して、上記着目位置A〜Cがスリット光100による照度変化が生じている範囲内に含まれている間に上記着目位置A〜Cの撮像明度及び時刻を3回計測する明度計測機能と、着目位置A〜Cごとに明度計測機能を用いて計測された3つの撮像明度及び時刻を用いて上記撮像明度の最大値及び最大値となる投受光器14と対象物2との相対位置を求める最大値検出機能と、各着目位置A〜Cの撮像明度が最大となる相対位置に対し三角測量法を用いて着目位置A〜C間の相対的な高さを求める高さ検出機能とを有している。また、画像処理装置13は記憶部130を備え、撮像装置11から転送された撮像画像110を記憶する。なお、各着目位置A〜Cの撮像明度及び時刻の計測回数は3回に限定されるものではなく、4回以上であってもよい。   The image processing device 13 is, for example, a personal computer or a dedicated processing device or control device. When the captured image 110 is transferred from the imaging device 11, a plurality of images on the same line n (see FIG. 2) in the object 2. Each of the positions of interest A to C (see FIG. 2) is tracked on a plurality of captured images 110 photographed when the relative positions of the light projector / receiver 14 and the object 2 are different, and a plurality of positions of interest A to C are captured. Brightness measurement that measures the imaging brightness and time of the focus positions A to C three times while the focus positions A to C are included in the range in which the illuminance change due to the slit light 100 occurs. The relative value between the light emitting / receiving device 14 and the object 2 that is the maximum value and the maximum value of the imaging brightness using the function and the three imaging brightness values and times measured using the brightness measurement function for each of the positions of interest A to C. Maximum value detection function to obtain the position and Each imaged-lightness of interested position A~C has a height detection function of determining a relative height between the interested position A~C using triangulation to relative position becomes maximum. The image processing apparatus 13 includes a storage unit 130 and stores the captured image 110 transferred from the imaging apparatus 11. In addition, the imaging brightness of each focus position A-C and the frequency | count of measurement of time are not limited to 3 times, You may be 4 times or more.

次に、本実施形態の動作について図2を用いて説明する。図2には、搬送装置12(図1(a)参照)によって対象物2を移動させながら、撮像時刻t1〜t8の8回、光切断線101の全体が見えるように撮像素子の全画素を読み出した撮像画像110を示す。対象物2が移動するにつれて、撮像画像110上での対象物2の位置が変化して見える。ただし、投受光器14(図1(a)参照)は固定されているので、撮像画像110上での光切断線101は対象物2の形状に応じて多少変形しつつも略同じ位置に見える。   Next, the operation of the present embodiment will be described with reference to FIG. In FIG. 2, all the pixels of the image sensor are shown so that the entire light section line 101 can be seen eight times from imaging time t1 to t8 while moving the object 2 by the transport device 12 (see FIG. 1A). The read captured image 110 is shown. As the object 2 moves, the position of the object 2 on the captured image 110 appears to change. However, since the light emitter / receiver 14 (see FIG. 1A) is fixed, the light cutting line 101 on the captured image 110 looks almost the same position while being slightly deformed according to the shape of the object 2. .

ここで、対象物2の3点A〜Cに着目する。対象物2が等速直線運動をしているので、これらの着目位置A〜Cは、連続して撮影された2枚の撮像画像110上で毎回距離d画素だけ移動しており、撮像時刻t1〜t8の間に光切断線101を通過する。上記距離dは、予め設定された対象物2の撮像時刻間隔δ間での実際の移動量Dと撮像画像110における1画素あたりの実空間での寸法rからd=D/rで計算される。したがって、移動する対象物2の着目位置A〜Cを撮像画像110上で追跡するのは容易である。各着目位置A〜Cを追跡したときの各着目位置A〜Cの撮像明度は図3のようになる。   Here, attention is paid to three points A to C of the object 2. Since the object 2 is moving at a constant linear velocity, these positions of interest A to C are moved by a distance of d pixels each time on the two captured images 110 captured continuously, and the imaging time t1. The light cutting line 101 passes through between t8 and t8. The distance d is calculated as d = D / r from the actual movement amount D of the target object 2 between the imaging time intervals δ set in advance and the dimension r in the real space per pixel in the captured image 110. . Therefore, it is easy to track the target positions A to C of the moving object 2 on the captured image 110. The imaging brightness of each target position A to C when tracking each target position A to C is as shown in FIG.

着目位置A〜CはA、B、Cの順で高さが低くなっているので(図1(a)参照)、光切断線101は、図2に示すようにA、B、Cの順に撮像画面110の下方向に歪んで見える。このため、図3に示すように、着目位置A〜Cのそれぞれで撮像明度が最大となる撮像時刻が異なる。例えば撮像時刻t5で撮像明度が最大となる着目位置Bを基準面高さとした場合、撮像時刻t7で撮像明度が最大となる着目位置Aでは光切断線101は撮像時刻間隔δ×2回の時間に移動した量、すなわち2Dだけ歪んでおり、撮像時刻t3で撮像明度が最大となる点Cでは光切断線101は撮像時刻間隔δ×(−2)回の時間に移動した量、すなわち−2Dだけ歪んでいると推定できる。この歪み量を、着目位置A,Cにおいて撮像明度が最大となるときの光切断線101(対象物2)と投受光器14との相対位置とする。スリット光100は水平面から角度θをなして投影されているので、図4に示すように着目位置Aは着目位置Bに比べて2Dtanθだけ高い位置にあり、着目位置Cは着目位置Bに比べて2Dtanθだけ低い位置にあると求めることができる。   Since the positions of interest A to C are lower in the order of A, B, and C (see FIG. 1A), the light cutting line 101 is in the order of A, B, and C as shown in FIG. The image appears to be distorted downward in the imaging screen 110. For this reason, as shown in FIG. 3, the imaging time at which the imaging brightness is maximized differs for each of the positions of interest A to C. For example, when the target position B at which the imaging brightness is maximized at the imaging time t5 is the reference plane height, the optical cutting line 101 is at the imaging time interval δ × 2 times at the focused position A at which the imaging brightness is maximized at the imaging time t7. , That is, the amount moved by the imaging time interval δ × (−2) times, that is, −2D at the point C at which the imaging brightness is maximized at the imaging time t3. It can be estimated that it is only distorted. This amount of distortion is defined as a relative position between the light cutting line 101 (target object 2) and the light projector / receiver 14 when the imaging brightness is maximized at the positions of interest A and C. Since the slit light 100 is projected from the horizontal plane at an angle θ, as shown in FIG. 4, the target position A is higher than the target position B by 2Dtanθ, and the target position C is higher than the target position B. It can be determined that the position is lower by 2Dtanθ.

このように、対象物2を移動させながら撮像時刻間隔δで撮像を行い、各着目位置A〜Cの撮像明度変化を計測して着目位置A,Cで撮像明度が最大となる撮像時刻と基準面高さである着目位置Bで撮像明度が最大となる撮像時刻との差を求めることにより、着目位置A〜Cについて撮像明度が最大となるときの投受光器14と光切断線101(対象物2)との相対位置を求め、スリット光100の入射角θの正接を乗じることにより各着目位置A〜Cの高さ情報を取得することができる。   In this way, imaging is performed at the imaging time interval δ while moving the object 2, the imaging brightness change at each of the target positions A to C is measured, and the imaging time and the reference at which the imaging brightness is maximized at the target positions A and C By calculating the difference from the imaging time at which the imaging brightness is maximized at the target position B, which is the surface height, the light emitter / receiver 14 and the light cutting line 101 (target) when the imaging brightness is maximized at the target positions A to C. By obtaining a relative position with respect to the object 2) and multiplying by the tangent of the incident angle θ of the slit light 100, the height information of the respective positions of interest A to C can be acquired.

以上、本実施形態によれば、各対象物2の各着目位置A〜Cで計測された撮像明度及び時刻から撮像明度の最大値及び最大値となる投受光器14と対象物2との相対位置を求めることによって、スリット光100の幅より狭い精度で対象物2の高さを求めることができる。また、位置が固定された着目位置A〜Cの撮像明度を計測していることから、対象物2の中で、どの位置の高さを求めているのかを認識することができる。   As described above, according to the present embodiment, the relative values of the light projector / receiver 14 and the object 2 that are the maximum value and the maximum value of the imaged lightness based on the imaged lightness and time measured at each target position A to C of each object 2. By obtaining the position, the height of the object 2 can be obtained with an accuracy narrower than the width of the slit light 100. In addition, since the imaging brightness of the positions of interest A to C where the positions are fixed is measured, it is possible to recognize which position of the target object 2 is being obtained.

なお、実施形態1の変形例として、搬送装置12aは対象物2と投受光器14の位置関係を相対的に変化させればよいので、図1(b)に示す光切断3次元計測装置1bのように、対象物2が固定され投受光器14が搬送装置12aによってスリット光100の向きと直交する方向(図1(b)の矢印m2の方向)に等速直線運動するように駆動されるようにしてもよい。   As a modification of the first embodiment, the transport device 12a only needs to relatively change the positional relationship between the object 2 and the light projector / receiver 14, so that the optical cutting three-dimensional measurement device 1b shown in FIG. Thus, the object 2 is fixed, and the light projector / receiver 14 is driven by the conveying device 12a so as to linearly move at a constant speed in the direction orthogonal to the direction of the slit light 100 (the direction of the arrow m2 in FIG. 1B). You may make it do.

(実施形態2)
撮像画面110上で横一列に並ぶ各着目位置A〜Cでの撮像明度変化を取得する場合、撮像画像110全体を読み出す必要はなく、撮像画像110上で距離d画素ずつ移動する3つの着目位置A〜Cを追跡して各着目位置A〜Cの撮像明度だけを読み出せばよい。
(Embodiment 2)
When acquiring imaging brightness changes at each of the target positions A to C arranged in a line on the imaging screen 110, it is not necessary to read the entire captured image 110, and three target positions that move by a distance d pixels on the captured image 110. It is only necessary to track A to C and read only the imaging brightness of each of the positions of interest A to C.

そこで、実施形態2の光切断3次元計測装置1は、図5に示す各撮像画像110上において上下方向に距離d画素ずつ離れた横一列の走査線L1〜L8の画素値だけを撮像時刻間隔δごとに読み出すものとする。なお、実施形態1と同様の構成要素については、同一の符号を付して説明を省略する。   Therefore, the light-cutting three-dimensional measurement apparatus 1 according to the second embodiment captures only the pixel values of the horizontal scanning lines L1 to L8 that are separated by a distance d pixels in the vertical direction on each captured image 110 illustrated in FIG. It is assumed that data is read every δ. In addition, about the component similar to Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

実施形態2において、着目位置A〜Cは撮像画像110上で撮像時刻間隔δごとに走査線L1から走査線L8まで移動していくので、着目位置A〜Cごとに走査線L1〜L8のどの位置で撮像明度が最大となったかを計測でき、撮像明度が最大となる撮像時刻が分かる。また、着目位置A〜Cにおいて基準面高さで撮像明度が最大となる撮像時刻は撮像の回ごとに撮像時間間隔δだけ遅くなっていくから容易に推定できる。よって、対象物2が移動して着目位置A〜Cがスリット光100を通過していくとき、撮像画像110上で着目位置A〜Cに対応する画素ごとに連続して3次元形状(高さ情報)を得ることができる。   In the second embodiment, the positions of interest A to C move from the scanning line L1 to the scanning line L8 at every imaging time interval δ on the captured image 110, so which of the scanning lines L1 to L8 is determined for each of the positions of interest A to C. It can be measured whether the imaging brightness is maximized at the position, and the imaging time at which the imaging brightness is maximized can be known. In addition, the imaging time at which the imaging brightness reaches the maximum at the reference plane height at the target positions A to C can be easily estimated because the imaging time interval δ is delayed with each imaging. Therefore, when the target object 2 moves and the target positions A to C pass through the slit light 100, the three-dimensional shape (height) is continuously provided for each pixel corresponding to the target positions A to C on the captured image 110. Information).

デジタル転送方式の撮像装置11においては単位時間あたりの転送データ量に限界があるので、単位時間内に取り込める撮像画像110の枚数(フレームレート)は転送する画像のデータ量に依存する。したがって、本実施形態の光切断3次元計測装置1によれば、撮像画像110上で上下方向に距離d画素ずつ離れた8本の走査線L1〜L8の画素値だけを連続して読み出すだけで対象物2の形状を求めることができるので、1回の撮像あたりの転送データ量を従来の光切断3次元計測装置に比べて圧倒的に少なくしてフレームレートを高くすることができ、単位時間内に高さ情報を計測する計測点を大幅に増加させることができる。   Since there is a limit to the amount of data transferred per unit time in the digital transfer type imaging apparatus 11, the number of captured images 110 (frame rate) that can be captured within the unit time depends on the data amount of the image to be transferred. Therefore, according to the light-cutting three-dimensional measurement apparatus 1 of the present embodiment, only the pixel values of the eight scanning lines L1 to L8 that are separated by a distance d pixels in the vertical direction on the captured image 110 are read out continuously. Since the shape of the object 2 can be obtained, the frame rate can be increased by overwhelmingly reducing the amount of transfer data per one imaging compared to the conventional optical cutting three-dimensional measuring apparatus, and the unit time The number of measurement points for measuring the height information can be greatly increased.

また、実施形態2の画像処理装置13は、着目位置A〜Cごとの撮像明度の最大値を上記着目位置A〜Cごとに割り当てられた画素の画素値に対応させて画像を生成する最大値画像生成機能を有している。つまり、本実施形態の光切断3次元計測装置1においては、着目位置A〜Cごとに、撮像明度が最大となる撮像時刻とともに撮像明度の最大値も同時に取得できるので、この値を記録しておけば、高さ情報とともに対象物2に均一な光を照射して撮影した場合と同様の濃淡画像も同時に取得することができる。   Further, the image processing apparatus 13 according to the second embodiment generates the image by associating the maximum value of the imaging brightness for each of the positions of interest A to C with the pixel value of the pixel assigned to each of the positions of interest A to C. It has an image generation function. In other words, in the light-cutting three-dimensional measuring apparatus 1 of the present embodiment, the maximum value of the imaging brightness can be obtained simultaneously with the imaging time at which the imaging brightness is maximized for each of the target positions A to C, so this value is recorded. If this is the case, a gray image similar to that obtained when the object 2 is irradiated with uniform light and photographed together with the height information can be acquired simultaneously.

以上、実施形態2によれば、ランダムアクセスが可能なエリアセンサが用いられていることによって、対象物2の移動速度や投影装置10及び撮像装置11の構成に合わせて撮像領域を任意に変更することができるので、高速かつ高解像度の撮像を行うことができるとともに、装置構成の変更を容易に行うことができる。   As described above, according to the second embodiment, by using an area sensor capable of random access, the imaging region is arbitrarily changed according to the moving speed of the target object 2 and the configurations of the projection device 10 and the imaging device 11. Therefore, high-speed and high-resolution imaging can be performed, and the device configuration can be easily changed.

また、撮像明度の最大値を着目位置A〜Cごとに画像化することによって、対象物2に均一な光を照射して撮影した場合と同様の濃淡画像を取得することができるので、例えば対象物2の高さと明るさの両方の情報を用いて検査を行ったり、計測された3次元形状データをコンピュータ上でCG表示(コンピュータグラフィック表示)する際に必要なテキスチャ画像として用いたりすることができる。   In addition, by imaging the maximum value of the imaging brightness for each of the positions of interest A to C, a grayscale image similar to the case where the object 2 is imaged by irradiating uniform light can be acquired. An inspection may be performed using both the height and brightness information of the object 2, or the measured three-dimensional shape data may be used as a texture image necessary for CG display (computer graphic display) on a computer. it can.

なお、実施形態2の変形例として、撮像装置11は、搬送装置12によって相対位置が一の方向に変化したときにおける撮像画像110内での対象物2の撮像領域の移動方向と直交する方向に画素が一列に配列されるラインセンサ(撮像素子)を上記移動方向に少なくとも3本配置して有するものであってもよい。つまり、実施形態2の撮像装置11は正方格子状に画素が配列され、かつ撮像素子上の任意の位置の画素値をランダムに読み出すことができるものであるのに対し、本変形例の光切断3次元計測装置1では一定距離だけ離れ光切断線101に並行な少なくとも3本の走査線上の画素値のみを用いるので、受光面に結像する光切断線101と並行に複数のラインセンサを配置する構成とする。予め対象物2の移動速度や投受光器14との位置関係などの条件が規定されているならば、上記構成とすることによりさらに高速な計測が可能となる。なお、光切断線101が上記少なくとも3本のラインセンサによる撮像領域内に含まれるように、3本のラインセンサを事前に設定する必要がある。   As a modification of the second embodiment, the imaging device 11 is arranged in a direction orthogonal to the moving direction of the imaging region of the target object 2 in the captured image 110 when the relative position is changed in one direction by the transport device 12. It may have at least three line sensors (imaging devices) in which pixels are arranged in a line in the moving direction. That is, the imaging device 11 of the second embodiment has pixels arranged in a square lattice and can read out pixel values at arbitrary positions on the imaging device at random. Since the three-dimensional measuring apparatus 1 uses only pixel values on at least three scanning lines that are separated by a certain distance and parallel to the light cutting line 101, a plurality of line sensors are arranged in parallel with the light cutting line 101 imaged on the light receiving surface. The configuration is as follows. If conditions such as the moving speed of the object 2 and the positional relationship with the light projecting and receiving device 14 are defined in advance, the above configuration enables higher-speed measurement. Note that it is necessary to set the three line sensors in advance so that the light section line 101 is included in the imaging region of the at least three line sensors.

上記変形例によれば、光切断線101と並行に少なくとも3本のラインセンサを並べるように配置されているので、高速かつ高解像度の撮像を行うことができる。   According to the above modification, since at least three line sensors are arranged in parallel with the light cutting line 101, high-speed and high-resolution imaging can be performed.

なお、上記走査線は、光切断線101の形状を十分に捕捉できるだけの数が必要である。すなわち、対象物2の高さ範囲が大きくなるほど多数の走査線を設定する必要がある。例えば、図6(a)に示すような三角形断面の対象物2aを計測する場合、光切断線101は大きくハの字状に歪むので走査線Liの本数が多くしなければならない。ただし、対象物2aの断面形状が概ね既知であるなら、走査線Liは図6(b)に示すように光切断線101と略並行に設定することによって、少ない走査線Liで計測することが可能となる。上記のように複数のラインセンサを用いる構成の場合であっても、異形のラインセンサを光切断線101と略並行になるよう配置すればよい。   Note that the scanning lines need to have a number sufficient to capture the shape of the light cutting line 101. That is, it is necessary to set a larger number of scanning lines as the height range of the object 2 increases. For example, when measuring the object 2a having a triangular cross section as shown in FIG. 6A, the light cutting line 101 is greatly distorted in a letter C shape, so the number of scanning lines Li must be increased. However, if the cross-sectional shape of the target 2a is generally known, the scanning line Li can be measured with a small number of scanning lines Li by setting the scanning line Li substantially parallel to the light cutting line 101 as shown in FIG. It becomes possible. Even in the case of a configuration using a plurality of line sensors as described above, the irregular line sensor may be arranged so as to be substantially parallel to the light cutting line 101.

(実施形態3)
実施形態1の光切断3次元計測装置1では、画像処理装置13は、着目位置A〜Cごとに単純に撮像明度が最大となる撮像時刻をもとに投受光器14との相対位置を求めているが、本実施形態の光切断3次元計測装置1では、着目位置A〜Cごとに光切断線101を横切る前後の複数の位置での撮像明度を求め、その複数の位置での撮像明度を用いて統計的に撮像明度が最大となるときの投受光器14と対象物2との相対位置を求めている。つまり、画像処理装置13は、最大値算出機能を用いて、光切断線101の投影強度分布のように単調増加し、その後、単調減少する関数に、少なくとも3つ以上の撮像明度をあてはめて近似することによって、撮像明度の最大値及び最大値となる相対位置を求める。これにより、高さ計測の分解能を向上することができる。なお、実施形態1と同様の構成要素については、同一の符号を付して説明を省略する。
(Embodiment 3)
In the light-cutting three-dimensional measurement apparatus 1 according to the first embodiment, the image processing apparatus 13 obtains a relative position with respect to the light projector / receiver 14 based on the imaging time at which the imaging brightness is simply maximized for each of the positions A to C. However, in the light-cutting three-dimensional measurement apparatus 1 according to the present embodiment, the imaged lightness at a plurality of positions before and after crossing the light-cutting line 101 is obtained for each of the positions A to C, and the imaged lightness at the plurality of positions is obtained. Is used to obtain the relative position between the light emitter / receiver 14 and the object 2 when the imaging brightness is statistically maximized. That is, the image processing apparatus 13 uses the maximum value calculation function to approximate a function that monotonously increases like the projected intensity distribution of the light cutting line 101 and then monotonously decreases by applying at least three or more imaging brightness values. By doing so, the maximum value of the imaging brightness and the relative position that becomes the maximum value are obtained. Thereby, the resolution of height measurement can be improved. In addition, about the component similar to Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

例えば、投影されたスリット光100を横断するときの撮像明度がおおよそ二次関数に近似できるとすれば、得られた撮像明度Iと時刻tを数1の二次関数に最小自乗近似すれば、投受光器14と対象物2との相対位置pは数2により得ることができる。   For example, assuming that the imaging brightness when traversing the projected slit light 100 can be approximated to a quadratic function, the obtained imaging brightness I and time t are approximated to a quadratic function of Equation 1 by a least square approximation. The relative position p between the light projector / receiver 14 and the object 2 can be obtained by Equation 2.

以上、実施形態3によれば、着目位置A〜Cにおいて取得された撮像明度の変化を光切断線101を横切る方向の投影強度の変化関数にあてはめることによって、撮像明度の最大値及び最大値となる相対位置を求める精度を向上させることができる。   As described above, according to the third embodiment, by applying the change in the imaging brightness acquired at the target positions A to C to the change function of the projection intensity in the direction crossing the light cutting line 101, the maximum value and the maximum value of the imaging brightness are obtained. The accuracy for obtaining the relative position can be improved.

なお、実施形態3では撮像明度の変化を二次関数に近似しているが、スリット光100の投影強度の実際の変化状態にしたがって、二次関数に限らず矩形波やガウス分布など、明度が一度だけ単調増加し、かつ一度だけ単調減少する関数ならばどのような関数でも構わない。   In the third embodiment, the change in imaging brightness is approximated to a quadratic function. However, according to the actual change state of the projection intensity of the slit light 100, the brightness is not limited to a quadratic function, but may be a square wave or a Gaussian distribution. Any function that monotonously increases only once and monotonically decreases only once can be used.

また、上記撮像時刻間隔δの間における撮像画像110上での対象物2の移動量dは必ずしも整数になるとは限らない。このような場合、図7に示すように、移動量dを超えない最大の整数d’間隔で2行分の画素値I(x,u)とI(x,u+1)を読み出し、座標(x,v)の画素値I’(x,v)を数3によりI(x,u)とI(x,u+1)から補間するようにすれば、より真値に近い撮像明度を得ることができ、特に上記のように関数近似により撮像明度が最大となる時刻を得るような場合に精度を向上させることができる。   Further, the moving amount d of the object 2 on the captured image 110 during the imaging time interval δ is not necessarily an integer. In such a case, as shown in FIG. 7, the pixel values I (x, u) and I (x, u + 1) for two rows are read at the maximum integer d ′ interval not exceeding the movement amount d, and the coordinates (x , V) pixel values I ′ (x, v) can be interpolated from I (x, u) and I (x, u + 1) by Equation 3 to obtain imaging brightness closer to the true value. In particular, the accuracy can be improved when obtaining the time when the imaging brightness is maximized by function approximation as described above.

(実施形態4)
実施形態1においては対象物2が等速直線運動をするものであるが、搬送装置12が例えばベルトコンベアのような送り速度が一定とならない装置であった場合、撮像時刻間隔δにおける対象物2の移動量Dに誤差が生じるため、計測精度が悪化するという問題が生じる。また、ベルトコンベアでは対象物2の蛇行が生じることがあるため、同一線n上の着目位置A〜Cを撮像画像110上で追跡するのに不具合が生じる。
(Embodiment 4)
In the first embodiment, the target object 2 performs a linear motion at a constant speed. However, when the transport device 12 is a device whose feed rate is not constant, such as a belt conveyor, the target object 2 at the imaging time interval δ. Since an error occurs in the movement amount D, there is a problem that the measurement accuracy deteriorates. In addition, since the object 2 may meander on the belt conveyor, there is a problem in tracking the positions of interest A to C on the same line n on the captured image 110.

そこで、実施形態4の光切断3次元計測装置1は、図1(a)に示す搬送装置12によって投受光器14と対象物2との相対位置が一の方向(図1(a)の矢印m1の方向)に変化したときに、投受光器14に対する対象物2の相対的な移動量を実測する移動量実測機能を撮像装置11に有している。なお、実施形態1と同様の構成要素については、同一の符号を付して説明を省略する。   Therefore, in the light cutting three-dimensional measuring apparatus 1 according to the fourth embodiment, the relative position between the light projector / receiver 14 and the target object 2 is indicated by the arrow in FIG. 1A by the transport device 12 illustrated in FIG. The imaging device 11 has a movement amount actual measurement function for actually measuring the relative movement amount of the object 2 with respect to the light projecting and receiving device 14 when the direction changes to the direction m1). In addition, about the component similar to Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

実施形態4の撮像装置11は、図8(a)に示すようにベルトコンベアである搬送装置12上に等間隔に印刷された白黒の縞パターンをラインカメラ視野15の位置で等時間間隔で撮影して、図8(b)のような画像111を取得する。図8(b)の画像111において、縞の幅w及び横方向位置pを読み取ることにより、対象物2が光切断線101を横切る際の移動速度及び横方向位置を実測することができる。また、この場合、撮像時刻間隔δ間での送り量のバラつきcによって画像111上で見かけの移動量dが変化するので、走査線は送り量の見かけのバラつき量γ=c/r分の幅を持つものとしておき、実測された移動速度をもとに撮像明度を参照する画素位置を調整する。   As shown in FIG. 8A, the imaging device 11 of Embodiment 4 captures black and white stripe patterns printed at equal intervals on the conveying device 12 that is a belt conveyor at the position of the line camera visual field 15 at equal time intervals. Then, an image 111 as shown in FIG. By reading the stripe width w and the lateral position p in the image 111 of FIG. 8B, the moving speed and the lateral position when the object 2 crosses the light cutting line 101 can be measured. In this case, since the apparent movement amount d on the image 111 changes due to the variation c in the feed amount between the imaging time intervals δ, the scanning line has a width corresponding to the apparent variation amount γ = c / r of the feed amount. The pixel position for referring to the imaging brightness is adjusted based on the actually measured moving speed.

以上、本実施形態によれば、投受光器14(投影装置10及び撮像装置11)に対する対象物2の相対的な移動量を実測することによって、対象物2の運動が等速直線運動でない場合であっても、対象物2上の着目位置A〜Cを撮像画像110上で正確に追跡することができるので、高精度な計測を行うことができる。   As described above, according to the present embodiment, when the relative movement of the object 2 with respect to the light projector / receiver 14 (projection apparatus 10 and imaging apparatus 11) is actually measured, the movement of the object 2 is not a constant linear motion. Even so, the positions of interest A to C on the object 2 can be accurately tracked on the captured image 110, so that highly accurate measurement can be performed.

なお、実施形態4の変形例として、エンコーダを用いて位置検出を行ってもよい。   As a modification of the fourth embodiment, position detection may be performed using an encoder.

(実施形態5)
実施形態1では撮像装置11のレンズ歪みは無視できるものとしているが、広角レンズを有するカメラなどを用いる場合、レンズの歪みを無視することができない。
(Embodiment 5)
In the first embodiment, the lens distortion of the imaging device 11 is negligible. However, when a camera having a wide-angle lens is used, the lens distortion cannot be ignored.

そこで、実施形態5では、図9(a)に示すようなテストターゲットを予め用いて、図9(b)のように撮像画像110全体にわたって基準点位置を取得してレンズ歪み量を実測し、走査線Liの形状を図9(c)に示すように変形させる。なお、実施形態1と同様の構成要素については、同一の符号を付して説明を省略する。   Therefore, in the fifth embodiment, by using a test target as shown in FIG. 9A in advance, the reference point position is acquired over the entire captured image 110 as shown in FIG. The shape of the scanning line Li is deformed as shown in FIG. In addition, about the component similar to Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

以上、本実施形態によれば、撮像装置11のレンズによるレンズ歪みの影響を低減することができるので、高精度な計測を行うことができる。   As described above, according to the present embodiment, it is possible to reduce the influence of lens distortion caused by the lens of the imaging device 11, so that highly accurate measurement can be performed.

(a)が実施形態1〜5の光切断3次元計測装置の構成図、(b)が実施形態1の変形例の構成図である。(A) is a block diagram of the optical cutting three-dimensional measuring apparatus of Embodiments 1-5, (b) is a block diagram of the modification of Embodiment 1. FIG. 光切断線の見え方を説明する図である。It is a figure explaining how a light section line looks. 対象物上の着目位置を追跡した際の明度変化を示す図である。It is a figure which shows the brightness change at the time of tracking the focus position on a target object. 対象物の高さを求める原理を説明する図である。It is a figure explaining the principle which calculates | requires the height of a target object. 実施形態2の光切断3次元計測装置において、走査線を設定して着目位置を追跡する方法を説明する図である。FIG. 10 is a diagram for explaining a method for tracking a position of interest by setting a scanning line in the light-cutting three-dimensional measuring apparatus according to the second embodiment. 同上において、走査線の設定方法の変形例において、(a)が投影装置と対象物との関係を示す図、(b)が撮像画像を示す図である。In the above, in a modification of the scanning line setting method, (a) is a diagram showing the relationship between the projection device and the object, and (b) is a diagram showing the captured image. 実施形態3の変形例において、撮像明度の補間方法を説明する図である。FIG. 10 is a diagram for explaining a method for interpolating imaging brightness in a modification of the third embodiment. 実施形態4の光切断3次元計測装置において、(a)が搬送装置の上面図、(b)が撮像画像を示す図である。In the optical cutting three-dimensional measuring apparatus of Embodiment 4, (a) is a top view of a conveyance apparatus, (b) is a figure which shows a captured image. 実施形態5の光切断3次元計測装置において、(a)がテストターゲットを示す図、(b)が撮像画像を示す図、(c)が走査線を示す図である。In the optical cutting three-dimensional measuring apparatus of Embodiment 5, (a) is a figure which shows a test target, (b) is a figure which shows a captured image, (c) is a figure which shows a scanning line.

符号の説明Explanation of symbols

1,1a 光切断3次元計測装置
10 投影装置
100 スリット光
101 光切断線
11 撮像装置
110 撮像画像
12,12a 搬送装置
13 画像処理装置
2,2a 対象物
DESCRIPTION OF SYMBOLS 1,1a Optical cutting three-dimensional measuring apparatus 10 Projection apparatus 100 Slit light 101 Optical cutting line 11 Imaging apparatus 110 Captured image 12, 12a Conveyance apparatus 13 Image processing apparatus 2, 2a Object

Claims (6)

測定すべき対象物にスリット光を投影する投影手段と、
前記投影手段と一体に設けられ当該投影手段と一の方向において予め設定された間隔を保持しながら前記対象物のうち少なくとも当該対象物に投影されたスリット光を含む領域を前記投影手段の投影方向とは異なる方向から撮影する撮像手段と、
前記投影手段及び前記撮像手段と前記対象物との相対位置を前記一の方向において変化させる相対位置変動手段と、
前記対象物にある複数の着目位置のそれぞれを、前記相対位置が異なるときに前記撮像手段によって撮影された複数の撮像画像上で追跡し、前記複数の着目位置のそれぞれに対して、当該着目位置が前記スリット光による照度変化が生じている範囲内に含まれている間に当該着目位置の撮像明度及び相対位置を少なくとも3回計測する明度計測手段と、
前記着目位置ごとに前記少なくとも3つの撮像明度及び相対位置を用いて当該撮像明度の最大値及び当該最大値となる前記相対位置を求める最大値算出手段と、
前記全ての着目位置の前記撮像明度が最大となる相対位置に対し三角測量法を用いて前記着目位置間の相対的な高さを求める高さ算出手段と
を備えることを特徴とする光切断3次元計測装置。
Projection means for projecting slit light onto the object to be measured;
A projection direction of the projection unit that is provided integrally with the projection unit and includes at least slit light projected on the target object while maintaining a predetermined interval in one direction with the projection unit. Imaging means for shooting from a different direction,
A relative position changing means for changing a relative position between the projection means and the imaging means and the object in the one direction;
Each of the plurality of positions of interest on the object is tracked on a plurality of captured images photographed by the imaging means when the relative positions are different, and the position of interest is relative to each of the plurality of positions of interest. Brightness measurement means for measuring the imaging brightness and the relative position of the position of interest at least three times while being included in the range in which the illuminance change due to the slit light occurs.
Maximum value calculation means for obtaining the maximum value of the imaging brightness and the relative position that is the maximum value using the at least three imaging brightness and relative positions for each of the positions of interest;
A light cutting unit comprising: height calculating means for obtaining a relative height between the positions of interest using a triangulation method with respect to a relative position where the imaging brightness of all the positions of interest is maximized. Dimensional measuring device.
前記撮像手段は、前記対象物に投影されたスリット光と並行に画素が配列される撮像素子を当該移動方向に少なくとも3本配置して有することを特徴とする請求項1記載の光切断3次元計測装置。   2. The light-cutting three-dimensional image according to claim 1, wherein the imaging unit has at least three imaging elements in which pixels are arranged in parallel with the slit light projected on the object in the moving direction. Measuring device. 前記撮像手段は、画素が格子状に配列された撮像素子を有し、前記対象物に投影されたスリット光と並行に配列されている撮像素子の撮像明度を読み出すことを可能とする請求項1記載の光切断3次元計測装置。   The image pickup unit includes an image pickup device in which pixels are arranged in a grid pattern, and can read out the image brightness of the image pickup device arranged in parallel with the slit light projected onto the object. The light cutting three-dimensional measuring apparatus as described. 前記最大値算出手段は、前記スリット光の投影強度分布のように単調増加し、その後、単調減少する関数に、前記少なくとも3つ以上の撮像明度をあてはめて近似することによって、前記撮像明度の最大値及び当該最大値となる前記相対位置を求めることを特徴とする請求項1乃至3のいずれか1項に記載の光切断3次元計測装置。   The maximum value calculating means applies the at least three or more imaging brightnesses to a function that monotonously increases and then monotonously decreases like the projection intensity distribution of the slit light, thereby approximating the maximum imaging brightness. The optical cutting three-dimensional measurement apparatus according to claim 1, wherein the relative position that is a value and the maximum value is obtained. 前記相対位置変動手段によって前記相対位置が前記一の方向に変化したときに、前記投影手段及び前記撮像手段に対する前記対象物の相対的な移動量を実測する移動量実測手段を備えることを特徴とする請求項1乃至4のいずれか1項に記載の光切断3次元計測装置。   And a moving amount measuring unit that measures a relative moving amount of the object relative to the projection unit and the imaging unit when the relative position is changed in the one direction by the relative position changing unit. The optical cutting three-dimensional measuring apparatus according to any one of claims 1 to 4. 前記着目位置ごとの前記撮像明度の最大値を当該着目位置ごとに割り当てられた画素の画素値に対応させて画像を生成する最大値画像生成手段を備えることを特徴とする請求項1乃至5のいずれか1項に記載の光切断3次元計測装置。   6. The maximum value image generating means for generating an image by associating the maximum value of the imaging brightness for each target position with a pixel value of a pixel assigned for each target position. The light cutting three-dimensional measurement apparatus according to any one of the above.
JP2007141119A 2007-05-28 2007-05-28 Optical cutting three-dimensional measuring device Active JP4966096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007141119A JP4966096B2 (en) 2007-05-28 2007-05-28 Optical cutting three-dimensional measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007141119A JP4966096B2 (en) 2007-05-28 2007-05-28 Optical cutting three-dimensional measuring device

Publications (2)

Publication Number Publication Date
JP2008292434A true JP2008292434A (en) 2008-12-04
JP4966096B2 JP4966096B2 (en) 2012-07-04

Family

ID=40167295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007141119A Active JP4966096B2 (en) 2007-05-28 2007-05-28 Optical cutting three-dimensional measuring device

Country Status (1)

Country Link
JP (1) JP4966096B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522143A (en) * 2010-03-12 2013-06-13 サンライズ アール アンド ディー ホールディングス,エルエルシー System and method for product identification
JP2014035260A (en) * 2012-08-08 2014-02-24 Fujishoji Co Ltd Inspection device, and inspection method for game board
WO2022259594A1 (en) * 2021-06-10 2022-12-15 ソニーセミコンダクタソリューションズ株式会社 Distance measurement device and distance measurement method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375605A (en) * 1986-09-19 1988-04-06 Fujitsu Ltd Apparatus for inspecting mounting component
JPH0658725A (en) * 1992-08-04 1994-03-04 Aisin Seiki Co Ltd Detecting method of attribute of high-luminance area
JP2003166815A (en) * 2001-11-30 2003-06-13 Shibuya Kogyo Co Ltd Three-dimensional height measuring method for object
JP2005300525A (en) * 2004-03-15 2005-10-27 Omron Corp Sensor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375605A (en) * 1986-09-19 1988-04-06 Fujitsu Ltd Apparatus for inspecting mounting component
JPH0658725A (en) * 1992-08-04 1994-03-04 Aisin Seiki Co Ltd Detecting method of attribute of high-luminance area
JP2003166815A (en) * 2001-11-30 2003-06-13 Shibuya Kogyo Co Ltd Three-dimensional height measuring method for object
JP2005300525A (en) * 2004-03-15 2005-10-27 Omron Corp Sensor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522143A (en) * 2010-03-12 2013-06-13 サンライズ アール アンド ディー ホールディングス,エルエルシー System and method for product identification
JP2014035260A (en) * 2012-08-08 2014-02-24 Fujishoji Co Ltd Inspection device, and inspection method for game board
WO2022259594A1 (en) * 2021-06-10 2022-12-15 ソニーセミコンダクタソリューションズ株式会社 Distance measurement device and distance measurement method

Also Published As

Publication number Publication date
JP4966096B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
KR101461068B1 (en) Three-dimensional measurement apparatus, three-dimensional measurement method, and storage medium
US10151580B2 (en) Methods of inspecting a 3D object using 2D image processing
US9275431B2 (en) Method and system for calibrating laser measuring apparatus
US6549288B1 (en) Structured-light, triangulation-based three-dimensional digitizer
US20170307363A1 (en) 3d scanner using merged partial images
CN111274834B (en) Reading of optical codes
US6377298B1 (en) Method and device for geometric calibration of CCD cameras
JP6296206B2 (en) Shape measuring apparatus and shape measuring method
US7620235B2 (en) Device for scanning three-dimensional objects
US5576948A (en) Machine vision for adaptive laser beam steering
US7315383B1 (en) Scanning 3D measurement technique using structured lighting and high-speed CMOS imager
JP4966096B2 (en) Optical cutting three-dimensional measuring device
JP2014155063A (en) Chart for resolution measurement, resolution measurement method, positional adjustment method for camera module, and camera module manufacturing method
WO2022050279A1 (en) Three-dimensional measurement device
TW200902964A (en) System and method for height measurement
JP6412372B2 (en) Information processing apparatus, information processing system, information processing apparatus control method, and program
JP2020027599A (en) Three-dimensional scanning system
JP2008304190A (en) Highly precise method and device for measuring displacement of object to be measured by laser reflected light
US20140367468A1 (en) Method and system for recording images of surfaces of moving objects with reduced distortion
JP4760072B2 (en) X-ray inspection apparatus and X-ray inspection method
KR101071861B1 (en) 3-dimensional measuring apparatus for tire
JP6884393B2 (en) A method and device for performing phase analysis by converting a deformation grid into a rectangular grid or a square grid using projective transformation.
JP2018044863A (en) Measurement device, measurement method, system and goods manufacturing method
JP2009186216A (en) Three-dimensional shape measuring device
JP2010203826A (en) Measuring method, measuring device, measurement control program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120330

R150 Certificate of patent or registration of utility model

Ref document number: 4966096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3