JP2008286851A - Optical scanner - Google Patents

Optical scanner Download PDF

Info

Publication number
JP2008286851A
JP2008286851A JP2007129209A JP2007129209A JP2008286851A JP 2008286851 A JP2008286851 A JP 2008286851A JP 2007129209 A JP2007129209 A JP 2007129209A JP 2007129209 A JP2007129209 A JP 2007129209A JP 2008286851 A JP2008286851 A JP 2008286851A
Authority
JP
Japan
Prior art keywords
optical path
light beam
path bending
bending member
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007129209A
Other languages
Japanese (ja)
Other versions
JP5169019B2 (en
Inventor
Etsuko Shibata
悦子 芝田
Hiroki Kinoshita
博喜 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2007129209A priority Critical patent/JP5169019B2/en
Publication of JP2008286851A publication Critical patent/JP2008286851A/en
Application granted granted Critical
Publication of JP5169019B2 publication Critical patent/JP5169019B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an optical scanner capable of miniaturization and suppressing the generation of an erroneous signal of write-in position information. <P>SOLUTION: The optical scanner is provided with: a laser diode 1; a polygon mirror 5 which deflects a luminous flux radiated from the laser diode 1 in a main scanning direction Y; scanning lenses 11 and 12 which image the luminous flux deflected with the polygon mirror 5 on a face to be scanned (photoreceptor drum 40); a sensor 25 which receives the luminous flux from the polygon mirror 5 for detecting the write-in position of an image; and an optical path bending member 21 to guide the luminous flux from the polygon mirror 5 to the sensor 25. The luminous flux emitted from the optical path bending member 21 and directed to the sensor 25 crosses the front face of the scanning lens 11 arranged on the side of the polygon mirror 5 in the main scanning direction Y and the luminous flux emission position of the optical path bending member 21 and the luminous flux incident position on the sensor 25 are different from each other in a subscanning direction Z. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光走査装置、特に、電子写真法による画像形成装置に搭載され、感光体上に静電潜像を形成するための光走査装置に関する。   The present invention relates to an optical scanning device, and more particularly to an optical scanning device that is mounted on an electrophotographic image forming apparatus and forms an electrostatic latent image on a photoreceptor.

従来、この種の光走査装置においては、1ラインずつ書き込まれる画像の書出し位置を検出するために、偏向器にて主走査方向に偏向された光束を受光するセンサ(以下、SOSセンサとも記す)が配置されている。SOSセンサの構成や配置については、特許文献1〜4に記載されている。しかしながら、従来のSOSセンサにあっては、光走査装置の大型化の原因となり、かつ、書込み位置情報の誤信号が生じるという問題点を有していた。以下、この問題点について説明する。   Conventionally, in this type of optical scanning device, a sensor (hereinafter also referred to as an SOS sensor) that receives a light beam deflected in the main scanning direction by a deflector in order to detect the writing position of an image written line by line. Is arranged. The configuration and arrangement of the SOS sensor are described in Patent Documents 1 to 4. However, the conventional SOS sensor has a problem that it causes an increase in the size of the optical scanning device and an erroneous signal of writing position information occurs. Hereinafter, this problem will be described.

図10に従来の光走査装置を示す。レーザダイオード101から放射された光束は、コリメータレンズ102、アパーチャ103、シリンドリカルレンズ104を透過してポリゴンミラー105の反射面に入射する。光束はポリゴンミラー105の回転に伴って主走査方向Yに偏向され、走査レンズ111,112によって被走査面(感光体ドラム120)上に結像し、等速走査される。また、偏向された光束の一部は走査レンズ112を透過した後に、光路折曲げミラー115にて反射され、集光レンズ116を介してSOSセンサ117の受光面上を走査する。SOSセンサ117からの信号に基づいて画像の書出し位置が決定される。   FIG. 10 shows a conventional optical scanning device. The light beam emitted from the laser diode 101 passes through the collimator lens 102, the aperture 103, and the cylindrical lens 104 and enters the reflection surface of the polygon mirror 105. The light beam is deflected in the main scanning direction Y as the polygon mirror 105 rotates, and is imaged on the surface to be scanned (photosensitive drum 120) by the scanning lenses 111 and 112 and scanned at a constant speed. A part of the deflected light beam passes through the scanning lens 112, is reflected by the optical path bending mirror 115, and scans the light receiving surface of the SOS sensor 117 through the condenser lens 116. An image writing position is determined based on a signal from the SOS sensor 117.

このような光走査装置において装置の小型化を図るには、SOSセンサ117やミラー115をポリゴンミラー105に近付け、ハウジングの光軸方向Xの寸法を短くすることが考えられる。この場合、走査レンズ111又は走査レンズ112の前面近くにSOSセンサ117やミラー115を配置することになり、ミラー115からSOSセンサ117に向かう光束が走査レンズ111又は走査レンズ112の前面近くを通過する。   In order to reduce the size of such an optical scanning device, it is conceivable to bring the SOS sensor 117 and the mirror 115 closer to the polygon mirror 105 and shorten the dimension of the housing in the optical axis direction X. In this case, the SOS sensor 117 and the mirror 115 are arranged near the front surface of the scanning lens 111 or the scanning lens 112, and the light beam traveling from the mirror 115 toward the SOS sensor 117 passes near the front surface of the scanning lens 111 or the scanning lens 112. .

また、書出し位置を検出するためには、光束がSOSセンサ117に入射する瞬間だけレーザダイオード101から光束が放射されればよいという訳ではなく、入射前から光束が放射されており、SOSセンサ117上をポリゴンミラー105側から被走査面側に走査される。   Further, in order to detect the writing position, the light beam is not necessarily emitted from the laser diode 101 only at the moment when the light beam is incident on the SOS sensor 117, but the light beam is emitted from before the incident, and the SOS sensor 117. The upper side is scanned from the polygon mirror 105 side to the surface to be scanned.

従って、ミラー115やSOSセンサ117を走査レンズ111,112に近付けると、SOSセンサ117に入射する前の光束が走査レンズ111,112の被走査面側の面から入射してポリゴンミラー105側の面の内面で反射された後、被走査面側の面から出射してSOSセンサ117にゴースト光となって入射し、書出し位置情報の誤信号が生じる。
特開平5−93877号公報 特開平7−228004号公報 特開平8−110490号公報 特開2006−354681号公報
Accordingly, when the mirror 115 and the SOS sensor 117 are brought close to the scanning lenses 111 and 112, the light flux before entering the SOS sensor 117 is incident from the surface on the scanned surface side of the scanning lenses 111 and 112 and the surface on the polygon mirror 105 side. After being reflected by the inner surface, the light is emitted from the surface to be scanned and enters the SOS sensor 117 as ghost light, and an erroneous signal of the writing start position information is generated.
JP-A-5-93877 JP-A-7-228004 JP-A-8-110490 JP 2006-354681 A

そこで、本発明の目的は、装置の小型化を図るとともに、書込み位置情報の誤信号の発生を抑えることのできる光走査装置を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an optical scanning device that can reduce the size of the device and suppress the occurrence of erroneous signals of writing position information.

前記目的を達成するため、本発明は、
光源と、該光源からの光束を主走査方向に偏向する偏向器と、該偏向器にて偏向された光束を被走査面上に結像する少なくとも一つの走査レンズと、画像の書込み位置を検出するために前記偏向器からの光束を受光するセンサと、前記偏向器からの光束を前記センサに導くための光路折曲げ部材と、を備えた光走査装置において、
前記光路折曲げ部材から出射されて前記センサに向かう光束が、前記偏向器側に配置されている走査レンズの前面を主走査方向に横切り、かつ、光路折曲げ部材の光束出射位置と前記センサ上での光束入射位置とが副走査方向に異なること、
を特徴とする。
In order to achieve the above object, the present invention provides:
A light source, a deflector that deflects the light beam from the light source in the main scanning direction, at least one scanning lens that forms an image of the light beam deflected by the deflector on the surface to be scanned, and an image writing position are detected In order to do so, in an optical scanning device comprising: a sensor for receiving a light beam from the deflector; and an optical path bending member for guiding the light beam from the deflector to the sensor,
The light beam emitted from the optical path bending member and directed to the sensor crosses the front surface of the scanning lens disposed on the deflector side in the main scanning direction, and the light beam emission position of the optical path bending member and the sensor The light beam incident position at is different in the sub-scanning direction,
It is characterized by.

本発明に係る光走査装置においては、光路折曲げ部材やSOSセンサの偏向器側に配置されている走査レンズに対して、光路折曲げ部材から出射されたゴースト光が副走査方向に角度を持って入射する。該走査レンズの被走査面側の面で入射・出射の2回の屈折、偏向器側の面の内面反射により、ゴースト光は、光路折曲げ部材から直接SOSセンサに向かう光束とは、副走査方向に異なる角度でSOSセンサに向かうことになる。それゆえ、ゴースト光は正規の光束とは副走査方向に異なる高さを通過し、SOSセンサに入射されることはなく、書込み位置情報の誤信号を抑制できる。   In the optical scanning device according to the present invention, the ghost light emitted from the optical path bending member has an angle in the sub-scanning direction with respect to the scanning lens disposed on the deflector side of the optical path bending member or the SOS sensor. Incident. Ghost light is sub-scanned from the light beam that is directed directly from the optical path bending member to the SOS sensor due to two refractions of incidence / emission on the surface to be scanned side of the scanning lens and internal reflection on the surface on the deflector side. It will head to the SOS sensor at different angles in the direction. Therefore, the ghost light passes through a height different from that of the normal light flux in the sub-scanning direction and is not incident on the SOS sensor, so that an erroneous signal of the writing position information can be suppressed.

本発明に係る光走査装置において、光路折曲げ部材は偏向器からの光束を少なくとも主走査方向に集光するための曲面を有していてもよく、あるいは、偏向器からの光束を少なくとも副走査方向に集光するための曲面を有していてもよい。また、光路折曲げ部材は、その反射面が一つの自由曲面で構成されており、光束出射位置での自由曲面の法線が、少なくとも主走査方向に対して傾いていてもよい。また、光路折曲げ部材は少なくとも二つの反射面を有していてもよく、あるいは、光路折曲げ部材の入射光と出射光の位置が副走査方向に異なっていてもよい。   In the optical scanning device according to the present invention, the optical path bending member may have a curved surface for condensing the light beam from the deflector at least in the main scanning direction, or at least sub-scan the light beam from the deflector. You may have the curved surface for condensing in a direction. Moreover, the reflection surface of the optical path bending member may be a single free-form surface, and the normal of the free-form surface at the light beam exit position may be inclined at least with respect to the main scanning direction. The optical path bending member may have at least two reflecting surfaces, or the positions of incident light and outgoing light of the optical path bending member may be different in the sub-scanning direction.

さらに、光路折曲げ部材の少なくとも二つの反射面がプリズムで構成されていてもよく、このプリズムは集光作用を有していてもよい。また、プリズムでの光束の反射は全反射によるものであってもよい。   Furthermore, at least two reflecting surfaces of the optical path bending member may be constituted by a prism, and this prism may have a light collecting action. Further, the reflection of the light beam by the prism may be based on total reflection.

以下、本発明に係る光走査装置の実施例について添付図面を参照して説明する。   Embodiments of an optical scanning device according to the present invention will be described below with reference to the accompanying drawings.

(光走査装置の概略構成、図1参照)
図1は、本発明に係る光走査装置の概略構成を示す。この光走査装置は、光源部とポリゴンミラー5と第1走査レンズ11と第2走査レンズ12とウインド(防塵)ガラス13とを備えている。光源部はレーザダイオード1とコリメータレンズ2とアパーチャ3とシリンドリカルレンズ4とで構成されている。さらに、光路折曲げ部材21とSOSセンサ25とを備えている。
(Schematic configuration of optical scanning device, see FIG. 1)
FIG. 1 shows a schematic configuration of an optical scanning device according to the present invention. The optical scanning device includes a light source unit, a polygon mirror 5, a first scanning lens 11, a second scanning lens 12, and a window (dustproof) glass 13. The light source unit includes a laser diode 1, a collimator lens 2, an aperture 3, and a cylindrical lens 4. Furthermore, an optical path bending member 21 and an SOS sensor 25 are provided.

レーザダイオード1から放射された光束(拡散光)は、コリメータレンズ2でほぼ平行光に集光され、アパーチャ3からシリンドリカルレンズ4を経て、ポリゴンミラー5の反射面近傍で副走査方向Zに集光・結像する。この光束はポリゴンミラー5の回転に基づいて等角速度で主走査方向Yに偏向され、走査レンズ11,12によって感光体ドラム40上に結像し、等速走査される。また、第1走査レンズ11を透過した光束の一部は光路折曲げ部材21で反射され、SOSセンサ25の受光面上に集光する。   The light beam (diffused light) emitted from the laser diode 1 is condensed into substantially parallel light by the collimator lens 2, passes through the cylindrical lens 4 from the aperture 3, and condenses in the sub-scanning direction Z near the reflection surface of the polygon mirror 5.・ Image is formed. This light beam is deflected in the main scanning direction Y at a constant angular velocity based on the rotation of the polygon mirror 5, is imaged on the photosensitive drum 40 by the scanning lenses 11 and 12, and is scanned at a constant speed. In addition, a part of the light beam transmitted through the first scanning lens 11 is reflected by the optical path bending member 21 and condensed on the light receiving surface of the SOS sensor 25.

(第1実施例、図2〜図5参照)
図2に第1実施例におけるSOS光路を示す。本第1実施例において、光路折曲げ部材としては、図5に示すように、反射面22aを有するミラー22が用いられている。この光路折曲げミラー22は副走査方向Zに所定の角度で傾けて配置されており、該ミラー22から出射された光束は第1走査レンズ11の前面を主走査方向Yに横切ってSOSセンサ25に入射する。従って、光路折曲げミラー22の光束出射位置とSOSセンサ25での光束入射位置とが副走査方向Zに異なっている。
(Refer to the first embodiment, FIGS. 2 to 5)
FIG. 2 shows the SOS optical path in the first embodiment. In the first embodiment, as the optical path bending member, as shown in FIG. 5, a mirror 22 having a reflecting surface 22a is used. The optical path bending mirror 22 is disposed so as to be inclined at a predetermined angle in the sub-scanning direction Z. The light beam emitted from the mirror 22 crosses the front surface of the first scanning lens 11 in the main scanning direction Y, and the SOS sensor 25. Is incident on. Therefore, the light beam emission position of the optical path bending mirror 22 and the light beam incident position of the SOS sensor 25 are different in the sub-scanning direction Z.

ここで、第1実施例におけるポリゴンミラー5からSOSセンサ25の受光面までの光学系のコンストラクションデータを表1に示し、光路折曲げミラー22(第4面)とSOSセンサ25の受光面(第5面)の法線ベクトル(偏心データ)を表2に示す。第1走査レンズ11(第3面)の面形状及び光路折曲げミラー22(第4面)の面形状は、自由曲面であり、それらの非球面データを表3、表4に示す。自由曲面は式(1)に示す自由曲面式にて算出される。   Here, construction data of the optical system from the polygon mirror 5 to the light receiving surface of the SOS sensor 25 in the first embodiment is shown in Table 1, and the optical path bending mirror 22 (fourth surface) and the light receiving surface (first surface) of the SOS sensor 25 are shown. Table 2 shows the normal vectors (eccentric data) of (5 planes). The surface shape of the first scanning lens 11 (third surface) and the surface shape of the optical path bending mirror 22 (fourth surface) are free-form surfaces, and their aspheric data are shown in Tables 3 and 4. The free-form surface is calculated by the free-form surface equation shown in Equation (1).

Figure 2008286851
Figure 2008286851

Figure 2008286851
Figure 2008286851

Figure 2008286851
Figure 2008286851

Figure 2008286851
Figure 2008286851

Figure 2008286851
Figure 2008286851

比較のために、図7に光路折曲げミラー22が副走査方向Zに傾いていない場合のSOS光路を示す。この比較例における光学系のコンストラクションデータを表5に示し、光路折曲げミラー22(第4面)とSOSセンサ25の受光面(第5面)の法線ベクトル(偏心データ)を表6に示す。SOSセンサ25の法線とSOSセンサ25の受光面のZ座標のみが第1実施例と異なり、面形状は第1実施例と同じである(表3、表4参照)。   For comparison, FIG. 7 shows an SOS optical path when the optical path bending mirror 22 is not inclined in the sub-scanning direction Z. Table 5 shows construction data of the optical system in this comparative example, and Table 6 shows normal vectors (eccentric data) of the optical path bending mirror 22 (fourth surface) and the light receiving surface (fifth surface) of the SOS sensor 25. . Only the normal line of the SOS sensor 25 and the Z coordinate of the light receiving surface of the SOS sensor 25 are different from the first embodiment, and the surface shape is the same as that of the first embodiment (see Tables 3 and 4).

Figure 2008286851
Figure 2008286851

Figure 2008286851
Figure 2008286851

第1実施例を示す図2及び比較例を示す図7は、いずれもSOSセンサ25の受光面25aの中央に光束が集光された偏向角69°を示している。また、第1実施例を示す図3及び比較例を示す図8は、偏向角72.3°の場合のSOS光路を示している。図3及び図8に示す偏向角72.3°の場合、光路折曲げミラー22からの光束は、第1走査レンズ11の第2面から入射して第1面の内面で反射した後、第2面から出射してSOSセンサ25に到達する。   FIG. 2 showing the first embodiment and FIG. 7 showing the comparative example both show a deflection angle of 69 ° in which the light beam is collected at the center of the light receiving surface 25a of the SOS sensor 25. Further, FIG. 3 showing the first embodiment and FIG. 8 showing a comparative example show the SOS optical path when the deflection angle is 72.3 °. In the case of the deflection angle of 72.3 ° shown in FIGS. 3 and 8, the light beam from the optical path bending mirror 22 is incident from the second surface of the first scanning lens 11 and reflected by the inner surface of the first surface, The light is emitted from the two surfaces and reaches the SOS sensor 25.

図8に示す比較例の場合、光路折曲げミラー22が副走査方向Zに傾きを持っていないので、このミラー22で反射された光束は、第1走査レンズ11で屈折・反射しても副走査方向Zの角度が変わらないままSOSセンサ25の受光面25aに向かう。従って、図9に示すように、SOSセンサ25の受光面25a上で集光状態は正規の光束とは異なった大きな径となり、副走査方向Zの位置は正規の光束と同じ位置となる。即ち、正規の光束(偏向角69°)よりも先にゴースト光G(偏向角72.3°)がSOSセンサ25の受光部25bに入射してしまい、誤った書出し位置情報を発生してしまう。   In the case of the comparative example shown in FIG. 8, since the optical path bending mirror 22 has no inclination in the sub-scanning direction Z, the light beam reflected by this mirror 22 is sub-reflected and reflected by the first scanning lens 11. Heading toward the light receiving surface 25a of the SOS sensor 25 without changing the angle in the scanning direction Z. Therefore, as shown in FIG. 9, the light condensing state on the light receiving surface 25a of the SOS sensor 25 has a large diameter different from the normal light flux, and the position in the sub-scanning direction Z is the same position as the normal light flux. That is, the ghost light G (deflection angle 72.3 °) is incident on the light receiving portion 25b of the SOS sensor 25 before the regular light beam (deflection angle 69 °), and erroneous writing position information is generated. .

これに対して、第1実施例においては、光路折曲げミラー22が副走査方向Zに傾きを持っており、このミラー22で反射された光束は、副走査方向Zに約2.4°の角度でZ座標5.5(表1参照)のSOSセンサ25に入射するように設計されている。この場合、ゴースト光は、第1走査レンズ11に副走査方向Zに傾きを持って入射するため、第1走査レンズ11による2回の屈折と1回の内面反射によって、第1走査レンズ11の第2面から出射されるときの光束の副走査方向Zの角度は約−1.3°となり、SOSセンサ25の受光面25a上でのZ座標は0.4となる。   In contrast, in the first embodiment, the optical path bending mirror 22 has an inclination in the sub-scanning direction Z, and the light beam reflected by the mirror 22 is about 2.4 ° in the sub-scanning direction Z. It is designed to enter the SOS sensor 25 at an angle Z coordinate 5.5 (see Table 1). In this case, since the ghost light is incident on the first scanning lens 11 with an inclination in the sub-scanning direction Z, the refracted light of the first scanning lens 11 is reflected by two refractions and one internal reflection by the first scanning lens 11. The angle of the light beam emitted from the second surface in the sub-scanning direction Z is about −1.3 °, and the Z coordinate on the light receiving surface 25a of the SOS sensor 25 is 0.4.

図4に示すように、ゴースト光Gは比較例と同様に大径で副走査方向に約3mmである。しかし、受光部25b(Z=5.5)とゴースト光Gの中心(Z=0.4)の間隔が5.1mmであるため、受光部25bにゴースト光Gが入射することはなく、誤った書出し位置情報を発生することはない。ちなみに、受光部25bの副走査方向Zの寸法は2.5mmである。   As shown in FIG. 4, the ghost light G has a large diameter and about 3 mm in the sub-scanning direction as in the comparative example. However, since the distance between the light receiving unit 25b (Z = 5.5) and the center of the ghost light G (Z = 0.4) is 5.1 mm, the ghost light G is not incident on the light receiving unit 25b. No write position information is generated. Incidentally, the dimension of the light receiving portion 25b in the sub-scanning direction Z is 2.5 mm.

(第2実施例、図6参照)
図6に第2実施例である光走査装置に用いられる光路折曲げ部材を示す。この光路折曲げ部材はプリズム23にて構成したもので、前記光路折曲げミラー22と同じ位置に配置される。光走査装置としての他の構成は前記第1実施例(図1参照)と同じである。
(Refer to the second embodiment, FIG. 6)
FIG. 6 shows an optical path bending member used in the optical scanning device according to the second embodiment. This optical path bending member is constituted by a prism 23 and is arranged at the same position as the optical path bending mirror 22. Other configurations of the optical scanning device are the same as those of the first embodiment (see FIG. 1).

光束は、自由曲面で構成した入射面23aから入射し、反射面23b,23cで内面反射して副走査方向Zに高さを変えられ、出射面23dから副走査方向Zに角度を持って出射され、SOSセンサ25に向かう。また、光束は入射面23aの自由曲面によりSOSセンサ25の受光面25a上で集光される。   The light beam is incident from an incident surface 23a formed of a free-form surface, is internally reflected by the reflecting surfaces 23b and 23c, and is changed in height in the sub-scanning direction Z, and is emitted from the exit surface 23d with an angle in the sub-scanning direction Z. To the SOS sensor 25. Further, the light beam is condensed on the light receiving surface 25a of the SOS sensor 25 by the free curved surface of the incident surface 23a.

本第2実施例におけるポリゴンミラー5からSOSセンサ25の受光面までの光学系のコンストラクションデータを表7に示し、プリズム23とSOSセンサ25の受光面の法線ベクトル(偏心データ)を表8に示す。第1走査レンズ11(第3面)の面形状及びプリズム23の入射面23a(第4面)の面形状は、自由曲面であり、第1走査レンズ11(第3面)の非球面データは前記表3と同様であり、プリズム23の入射面23a(第4面)の非球面データは表9に示す。   Table 7 shows construction data of the optical system from the polygon mirror 5 to the light receiving surface of the SOS sensor 25 in the second embodiment, and Table 8 shows normal vectors (eccentric data) of the light receiving surfaces of the prism 23 and the SOS sensor 25. Show. The surface shape of the first scanning lens 11 (third surface) and the surface shape of the incident surface 23a (fourth surface) of the prism 23 are free-form surfaces, and the aspherical data of the first scanning lens 11 (third surface) is Table 9 shows the aspheric data of the incident surface 23a (fourth surface) of the prism 23, which is the same as in Table 3.

Figure 2008286851
Figure 2008286851

Figure 2008286851
Figure 2008286851

Figure 2008286851
Figure 2008286851

本第2実施例においても、前記第1実施例と同様に、第1走査レンズ11に再入射した後にSOSセンサ25に向かうゴースト光は、正規の光束とは副走査方向Zに異なる角度を持ち、図4に示したように、SOSセンサ25の受光部25bから外れた位置に到達し、誤った書出し位置情報が発生することはない。   Also in the second embodiment, similarly to the first embodiment, the ghost light that re-enters the first scanning lens 11 and then travels toward the SOS sensor 25 has an angle different from the normal light flux in the sub-scanning direction Z. As shown in FIG. 4, it reaches the position deviated from the light receiving portion 25b of the SOS sensor 25, and erroneous writing position information is not generated.

また、プリズム23は、個々の反射面の誤差感度がある程度高くなるが、ユニットとしてハウジングに組み込まれる場合の誤差感度が緩いため、金型を高精度化して樹脂成形すれば、組立て工程を高精度に行う必要がなくなる。さらに、反射面23b,23cによる2回の反射はいずれも全反射であるので、金属の蒸着を必要とせず、低コストでプリズム23を製作することができる。   In addition, the error sensitivity of the individual reflecting surfaces of the prism 23 is increased to some extent. However, since the error sensitivity is low when the prism 23 is incorporated in a housing as a unit, the assembly process can be performed with high accuracy if the mold is made highly accurate and resin-molded. There is no need to do it. Furthermore, since the two reflections by the reflection surfaces 23b and 23c are total reflection, the metal 23 is not required to be deposited, and the prism 23 can be manufactured at a low cost.

(他の実施例)
なお、本発明に係る光走査装置は前記実施例に限定するものではなく、その要旨の範囲内で種々に変更することができる。
(Other examples)
The optical scanning device according to the present invention is not limited to the above-described embodiments, and can be variously modified within the scope of the gist.

特に、光源部の構成や走査レンズの構成、形状などは任意である。また、各実施例で示した各種データは一例であることは勿論である。また、本発明は、書出し位置を検出するSOSセンサのみならず、走査ラインの書き終わり位置を検出するEOSセンサに対しても適用することができる。   In particular, the configuration of the light source unit and the configuration and shape of the scanning lens are arbitrary. Of course, the various data shown in each embodiment is an example. The present invention can be applied not only to the SOS sensor that detects the writing position but also to the EOS sensor that detects the writing end position of the scanning line.

本発明に係る光走査装置を示す概略構成図である。1 is a schematic configuration diagram showing an optical scanning device according to the present invention. 第1実施例におけるSOS光路を示す斜視図である。It is a perspective view which shows the SOS optical path in 1st Example. 第1実施例におけるゴースト光を示す斜視図である。It is a perspective view which shows the ghost light in 1st Example. 第1実施例におけるSOSセンサの受光面上でのゴースト光の集光状態を示す説明図である。It is explanatory drawing which shows the condensing state of the ghost light on the light-receiving surface of the SOS sensor in 1st Example. 第1実施例で用いられている光路折曲げ部材(ミラー)を示す斜視図である。It is a perspective view which shows the optical path bending member (mirror) used in 1st Example. 第2実施例で用いられている光路折曲げ部材(プリズム)を示す側面図である。It is a side view which shows the optical path bending member (prism) used in 2nd Example. 比較例におけるSOS光路を示す斜視図である。It is a perspective view which shows the SOS optical path in a comparative example. 比較例におけるゴースト光を示す斜視図である。It is a perspective view which shows the ghost light in a comparative example. 比較例におけるSOSセンサの受光面上でのゴースト光の集光状態を示す説明図である。It is explanatory drawing which shows the condensing state of the ghost light on the light-receiving surface of the SOS sensor in a comparative example. 従来の光走査装置を示す概略構成図である。It is a schematic block diagram which shows the conventional optical scanning device.

符号の説明Explanation of symbols

1…レーザダイオード
5…ポリゴンミラー
11,12…走査レンズ
21…光路折曲げ部材
22…光路折曲げミラー
23…プリズム
40…感光体ドラム(被走査面)
Y…主走査方向
Z…副走査方向
DESCRIPTION OF SYMBOLS 1 ... Laser diode 5 ... Polygon mirror 11, 12 ... Scan lens 21 ... Optical path bending member 22 ... Optical path bending mirror 23 ... Prism 40 ... Photosensitive drum (scanned surface)
Y ... Main scanning direction Z ... Sub scanning direction

Claims (9)

光源と、該光源からの光束を主走査方向に偏向する偏向器と、該偏向器にて偏向された光束を被走査面上に結像する少なくとも一つの走査レンズと、画像の書込み位置を検出するために前記偏向器からの光束を受光するセンサと、前記偏向器からの光束を前記センサに導くための光路折曲げ部材と、を備えた光走査装置において、
前記光路折曲げ部材から出射されて前記センサに向かう光束が、前記偏向器側に配置されている走査レンズの前面を主走査方向に横切り、かつ、光路折曲げ部材の光束出射位置と前記センサ上での光束入射位置とが副走査方向に異なること、
を特徴とする光走査装置。
A light source, a deflector that deflects the light beam from the light source in the main scanning direction, at least one scanning lens that forms an image of the light beam deflected by the deflector on the surface to be scanned, and an image writing position are detected In order to do so, in an optical scanning device comprising: a sensor for receiving a light beam from the deflector; and an optical path bending member for guiding the light beam from the deflector to the sensor,
The light beam emitted from the optical path bending member and directed to the sensor crosses the front surface of the scanning lens disposed on the deflector side in the main scanning direction, and the light beam emission position of the optical path bending member and the sensor The light beam incident position at is different in the sub-scanning direction,
An optical scanning device characterized by the above.
前記光路折曲げ部材は前記偏向器からの光束を少なくとも主走査方向に集光するための曲面を有していることを特徴とする請求項1に記載の光走査装置。   The optical scanning device according to claim 1, wherein the optical path bending member has a curved surface for condensing a light beam from the deflector at least in a main scanning direction. 前記光路折曲げ部材は前記偏向器からの光束を少なくとも副走査方向に集光するための曲面を有していることを特徴とする請求項1に記載の光走査装置。   The optical scanning device according to claim 1, wherein the optical path bending member has a curved surface for condensing a light beam from the deflector at least in a sub-scanning direction. 前記光路折曲げ部材は、その反射面が一つの自由曲面で構成されており、光束出射位置での前記自由曲面の法線が、少なくとも主走査方向に対して傾いていること、を特徴とする請求項1ないし請求項3のいずれかに記載の光走査装置。   The optical path bending member has a reflecting surface formed of one free-form surface, and a normal line of the free-form surface at a light beam exit position is inclined at least with respect to the main scanning direction. The optical scanning device according to claim 1. 前光路折曲げ部材は少なくとも二つの反射面を有していることを特徴とする請求項1ないし請求項4のいずれかに記載の光走査装置。   5. The optical scanning device according to claim 1, wherein the front optical path bending member has at least two reflecting surfaces. 前記光路折曲げ部材の入射光と出射光の位置が副走査方向に異なることを特徴とする請求項5に記載の光走査装置。   6. The optical scanning device according to claim 5, wherein positions of incident light and outgoing light of the optical path bending member are different in the sub-scanning direction. 前記光路折曲げ部材の少なくとも二つの反射面がプリズムで構成されていることを特徴とする請求項5又は請求項6に記載の光走査装置。   7. The optical scanning device according to claim 5, wherein at least two reflecting surfaces of the optical path bending member are formed of prisms. 前記プリズムが集光作用を有することを特徴とする請求項7に記載の光走査装置。   The optical scanning device according to claim 7, wherein the prism has a light collecting function. 前記プリズムでの光束の反射は全反射によるものであることを特徴とする請求項7又は請求項8に記載の光走査装置。   9. The optical scanning device according to claim 7, wherein the light beam is reflected by the prism by total reflection.
JP2007129209A 2007-05-15 2007-05-15 Optical scanning device Expired - Fee Related JP5169019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007129209A JP5169019B2 (en) 2007-05-15 2007-05-15 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007129209A JP5169019B2 (en) 2007-05-15 2007-05-15 Optical scanning device

Publications (2)

Publication Number Publication Date
JP2008286851A true JP2008286851A (en) 2008-11-27
JP5169019B2 JP5169019B2 (en) 2013-03-27

Family

ID=40146671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007129209A Expired - Fee Related JP5169019B2 (en) 2007-05-15 2007-05-15 Optical scanning device

Country Status (1)

Country Link
JP (1) JP5169019B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011248229A (en) * 2010-05-28 2011-12-08 Brother Ind Ltd Optical scanning apparatus
JP2012088612A (en) * 2010-10-21 2012-05-10 Konica Minolta Business Technologies Inc Optical scanner
JP2012118245A (en) * 2010-11-30 2012-06-21 Kyocera Document Solutions Inc Optical scanner and image forming apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610918U (en) * 1992-07-17 1994-02-10 旭光学工業株式会社 Laser optical system unit
JPH06202016A (en) * 1992-12-29 1994-07-22 Canon Inc Optical scanning device
JPH09101471A (en) * 1995-10-03 1997-04-15 Ricoh Co Ltd Optical scanning device
JPH09203876A (en) * 1996-01-26 1997-08-05 Ricoh Co Ltd Optical scanning device
JPH11223781A (en) * 1998-02-09 1999-08-17 Canon Inc Optical scanning device
JP2001133714A (en) * 1999-11-01 2001-05-18 Ricoh Co Ltd Scanning optical system
JP2002040340A (en) * 2000-07-25 2002-02-06 Minolta Co Ltd Laser beam scanner
JP2004279611A (en) * 2003-03-14 2004-10-07 Ricoh Co Ltd Optical writing device and image forming device
JP2005292845A (en) * 1998-12-17 2005-10-20 Canon Inc Scanning optical system, multibeam scanning optical system, and image forming apparatus using same
JP2006106694A (en) * 2004-09-13 2006-04-20 Ricoh Co Ltd Optical scanner and image forming apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610918U (en) * 1992-07-17 1994-02-10 旭光学工業株式会社 Laser optical system unit
JPH06202016A (en) * 1992-12-29 1994-07-22 Canon Inc Optical scanning device
JPH09101471A (en) * 1995-10-03 1997-04-15 Ricoh Co Ltd Optical scanning device
JPH09203876A (en) * 1996-01-26 1997-08-05 Ricoh Co Ltd Optical scanning device
JPH11223781A (en) * 1998-02-09 1999-08-17 Canon Inc Optical scanning device
JP2005292845A (en) * 1998-12-17 2005-10-20 Canon Inc Scanning optical system, multibeam scanning optical system, and image forming apparatus using same
JP2001133714A (en) * 1999-11-01 2001-05-18 Ricoh Co Ltd Scanning optical system
JP2002040340A (en) * 2000-07-25 2002-02-06 Minolta Co Ltd Laser beam scanner
JP2004279611A (en) * 2003-03-14 2004-10-07 Ricoh Co Ltd Optical writing device and image forming device
JP2006106694A (en) * 2004-09-13 2006-04-20 Ricoh Co Ltd Optical scanner and image forming apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011248229A (en) * 2010-05-28 2011-12-08 Brother Ind Ltd Optical scanning apparatus
US8508813B2 (en) 2010-05-28 2013-08-13 Brother Kogyo Kabushiki Kaisha Optical scanner
JP2012088612A (en) * 2010-10-21 2012-05-10 Konica Minolta Business Technologies Inc Optical scanner
JP2012118245A (en) * 2010-11-30 2012-06-21 Kyocera Document Solutions Inc Optical scanner and image forming apparatus
US8570631B2 (en) 2010-11-30 2013-10-29 Kyocera Mita Corporation Optical scanning device and image forming apparatus

Also Published As

Publication number Publication date
JP5169019B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP3856881B2 (en) Optical scanning device
JPH06265810A (en) Reflection type scanning optical system
JPH11257917A (en) Reflection type optical sensor
JP5882959B2 (en) Optical scanning device and image forming apparatus having the same
JP5169019B2 (en) Optical scanning device
JPH1131216A (en) Fingerprint read optical system
KR101329487B1 (en) System and method for performing optical navigation using a compact optical element
US6278108B1 (en) Synchronous light detector for optical scanning apparatus
US20070221825A1 (en) Imaging apparatus with resolution adjustability
JPH0553067A (en) Lens for optical scan and optical scanner
JP2006276133A (en) Optical scanner and method of optical scanning
JP5007604B2 (en) Optical scanning device
KR100529339B1 (en) Laser scanning unit
JP3254367B2 (en) Optical scanning optical system
JP2008287105A (en) Optical scanner
US7247841B2 (en) Light scanning apparatus
JPH11311749A (en) Optical scanning device
JP2015219496A (en) Scanning optical system and image formation device using the same
JP4967833B2 (en) Optical scanning device
JP2002040340A (en) Laser beam scanner
JP2005099401A (en) Semiconductor laser
JP5070559B2 (en) Optical scanning apparatus and image forming apparatus
JP4374976B2 (en) Tandem laser scanner
JP2984018B2 (en) Horizontal synchronization detection optical system of scanning optical device
JP2001296493A (en) Optical scanner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5169019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees