JP2008286667A - Electromagnetic induction type position sensor - Google Patents

Electromagnetic induction type position sensor Download PDF

Info

Publication number
JP2008286667A
JP2008286667A JP2007132619A JP2007132619A JP2008286667A JP 2008286667 A JP2008286667 A JP 2008286667A JP 2007132619 A JP2007132619 A JP 2007132619A JP 2007132619 A JP2007132619 A JP 2007132619A JP 2008286667 A JP2008286667 A JP 2008286667A
Authority
JP
Japan
Prior art keywords
conductor patterns
electromagnetic induction
coil
sets
induction type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007132619A
Other languages
Japanese (ja)
Inventor
Koichi Hayashi
康一 林
Koji Kitagawa
浩二 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2007132619A priority Critical patent/JP2008286667A/en
Publication of JP2008286667A publication Critical patent/JP2008286667A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absolute encoder that outputs a displacement signal of low distortion, in a position sensor using an electromagnetic induction action for detecting a change of a reluctance as an amplitude change of an alternating current magnetic flux, using coils, by forming the plurality of coils with a conductor pattern using a printed board technique or the like. <P>SOLUTION: An electromagnetic induction type position sensor includes the coils 6 for receiving the alternating current magnetic flux of repeating high intensity and low intensity at substantial wavelength λ along a relative moving direction of a position detecting object, and for outputting an electromagnetic induced voltage varied accompanying a relative motion of the position detecting object. The coil 6 is constituted by connecting even number of same-shaped conductor patterns 11, 12, 13, 14 and 21, 22, 23, 24 of wavelength λ. The even number of same-shaped conductor patterns are arranged in positions where a phase difference between the first set of conductor patterns 11, 12, 13, 14 and the second set of conductor patterns 21, 22, 23, 24 is brought into λ/2 when conductor patterns are divided evenly into the two sets. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、回転又は直線的に相対移動する部材の、位置を電磁誘導作用により検出する電磁誘導型位置センサに関する。   The present invention relates to an electromagnetic induction type position sensor that detects the position of a member that rotates or linearly moves relative to each other by electromagnetic induction.

従来、工作機械の主軸等では軟磁性体から成る円筒形状の外周部にホブ加工等により歯車状の凹凸を付けたスケールを回転軸に固定し、スケール外周部のリラクタンス変化を電気信号に変換する位置センサが使用されている。このような位置センサは、位置検出に磁気を利用するため、水や油等に対する耐環境性に優れている。また、このような位置センサは、機械加工により多種の径サイズのスケールを容易に製造できるため、たとえば、工作機械の主軸のように多種類の外形サイズを必要とするため、同一外形サイズで多種類の貫通穴を必要とする用途に適している。   Conventionally, on a spindle of a machine tool, etc., a scale with a gear-like unevenness formed by hobbing etc. on a cylindrical outer periphery made of soft magnetic material is fixed to a rotating shaft, and the change in reluctance of the outer periphery of the scale is converted into an electrical signal. A position sensor is used. Since such a position sensor uses magnetism for position detection, it has excellent environmental resistance against water and oil. In addition, since such a position sensor can easily produce scales of various diameter sizes by machining, for example, it requires a large number of external sizes such as a spindle of a machine tool. Suitable for applications that require different types of through holes.

上記のような位置センサとしては、下記特許文献1に記載されている、プリント基板技術等を用いた導体パターンにより複数のコイルを形成し、これらのコイルを用いてリラクタンスの変化を交流磁束の振幅変化として検出する電磁誘導作用を利用した位置センサがある。   As the above position sensor, a plurality of coils are formed by a conductor pattern using printed circuit board technology described in Patent Document 1 below, and the change in reluctance is detected using these coils to determine the amplitude of the alternating magnetic flux. There is a position sensor using an electromagnetic induction effect detected as a change.

特許文献1に記載の技術について、図4を用いて説明する。導体パターンが形成されたプリント基板であるセンサ基板60の1層目と2層目には、8対のλの波長をした正弦波状導体パターン41と51、42と52、43と53、44と54、45と55、46と56、47と57、48と58とが、図示しないスケールの移動方向に直交する方向に一定の間隔をおいて、またスケールの移動方向に一定の位相差π/4(λ/8)ずつ、ずれて順番に配置されている。   The technique described in Patent Document 1 will be described with reference to FIG. On the first and second layers of the sensor substrate 60, which is a printed circuit board on which a conductor pattern is formed, sinusoidal conductor patterns 41 and 51, 42 and 52, 43 and 53, 44 having eight pairs of λ wavelengths, 54, 45 and 55, 46 and 56, 47 and 57, 48 and 58 are spaced apart in a direction orthogonal to the scale movement direction (not shown) and have a constant phase difference π / in the scale movement direction. 4 (λ / 8) are shifted in order.

各パターンの接続を説明する。センサ基板60の1層目と2層目の対となる正弦波状導体パターンを1組とし、上から下に順番に1組目から8組目とすると、1組目と6組目のパターン(41,46,56,51)の接続は、1組目の正弦波状導体パターン41は、6組目の正弦波状導体パターン46に基板左側で接続されており、6組目の正弦波状導体パターン46は、基板右側の1層目と2層目の層間接続によりに2層目の正弦波状導体パターン56に接続される。また、2層目の正弦波状導体パターン56は図4では見えない2層目の基板左側パターンにより、正弦波状導体パターン51に接続されている。   Connection of each pattern will be described. Assuming that the pair of sinusoidal conductor patterns of the first and second layers of the sensor substrate 60 is one set, and the first to eighth sets in order from top to bottom, the patterns of the first and sixth sets ( 41, 46, 56, 51), the first set of sinusoidal conductor patterns 41 is connected to the sixth set of sinusoidal conductor patterns 46 on the left side of the substrate, and the sixth set of sinusoidal conductor patterns 46 is connected. Are connected to the second-layer sinusoidal conductor pattern 56 by the interlayer connection on the right side of the substrate. The second-layer sinusoidal conductor pattern 56 is connected to the sinusoidal conductor pattern 51 by a second-layer substrate left-side pattern that is not visible in FIG.

2組目と5組目のパターン(42,45,55,52)の接続は、1組目と6組目のパターン(41,46,56,51)とほぼ同じ接続構成である。また、1組目の正弦波状導体パターン51は、基板右側の層間接続により2組目の正弦波状導体パターン42に接続されることにより、1組目、6組目、2組目、5組目がすべて直列接続され、コイル65を形成している。   The connection of the second set and the fifth set (42, 45, 55, 52) is substantially the same connection configuration as the first set and the sixth set (41, 46, 56, 51). Further, the first set of sine wave conductor patterns 51 are connected to the second set of sine wave conductor patterns 42 by interlayer connection on the right side of the substrate, so that the first group, the sixth group, the second group, the fifth group, and the like. Are all connected in series to form a coil 65.

また電磁誘導される信号は、正弦波状導体パターンの1組目と、6組目とは、正弦波形状の上下形状を逆とすることにより、導体パターンに流れる電流の向きは逆となり、かつ図4に示す直列接続を行うため、各パターンに発生する信号が加算される。ほぼ同様にして、3組目と4組目と、7組目と8組目の正弦波状導体パターンも直列接続されて、おりコイル66を形成している。   In addition, in the first and sixth sets of sinusoidal conductor patterns, the direction of the current flowing in the conductor pattern is reversed in the first and sixth sets of sinusoidal conductor patterns, and the electromagnetically induced signals are reversed. In order to perform the series connection shown in FIG. 4, signals generated in each pattern are added. In a similar manner, the third and fourth sets, and the seventh and eighth sets of sinusoidal conductor patterns are also connected in series to form the coil 66.

以上の構成により、コイル65と66からは、スケールの回転位置に応じた出力信号を得ることができる。   With the above configuration, an output signal corresponding to the rotational position of the scale can be obtained from the coils 65 and 66.

特開2006−17533号公報JP 2006-17533 A

上述した図4のセンサ基板60の様に複数のコイルを用いた位置センサは、スケールの移動方向に位相差をもつ正弦波状導体パターンを連続して並べたため、それぞれの導体パターンが発生する電磁誘導電圧を合成した信号が得られる。このため、その平均化効果により位置変化に対する振幅変化の歪みを小さくすることができ、高精度な位置検出を行うことができる。この従来技術による位置検出方法でも、十分な精度が得られており、信号周期λの信号をおおよそ10000分割する場合、位置検出誤差に換算すると、この誤差は、10程度の誤差として現れるのみである。   Since the position sensor using a plurality of coils like the sensor substrate 60 in FIG. 4 described above has arranged sinusoidal conductor patterns having a phase difference in the moving direction of the scale, the electromagnetic induction generated by each conductor pattern is arranged. A signal obtained by combining the voltages is obtained. For this reason, the distortion of the amplitude change with respect to the position change can be reduced by the averaging effect, and highly accurate position detection can be performed. Even with this conventional position detection method, sufficient accuracy is obtained. When a signal having a signal period λ is divided approximately by 10,000, this error only appears as an error of about 10 when converted to a position detection error. .

しかしながら、さらに高精度な位置検出を行いたい場合は、実際の電磁誘導電圧を合成した信号には、3次、5次、7次の高調波成分が含まれているため、これ以上の高精度化が難しかった。   However, if more precise position detection is desired, the synthesized signal of the actual electromagnetic induction voltage contains third-order, fifth-order, and seventh-order harmonic components. It was difficult to convert.

本発明は、上述のような事情から成されたものであり、本発明の目的は、電磁誘導電圧を合成した信号に3次、5次および7次の高調波成分を含まない、より高精度な電磁誘導型位置センサを提供することにある。   The present invention has been made under the circumstances as described above, and an object of the present invention is to provide a signal with a synthesized electromagnetic induction voltage that does not contain third-order, fifth-order, and seventh-order harmonic components, and has higher accuracy. An electromagnetic induction type position sensor is provided.

本発明の電磁誘導型位置センサは、位置検出対象物の相対移動方向にほぼ波長λで強弱を繰り返す交流磁束を受信して、前記位置検出対象物の相対移動に伴って変化する電磁誘導電圧を出力するコイルを備えた電磁誘導型位置センサであって、前記コイルは、同一形状で波長λの偶数個の導体パターンを直列接続して構成され、前記偶数個の導体パターンは、当該偶数個の導体パターンを2組に等分割したとき、1組目と2組目の導体パターンの位相差がλ/6、または、λ/10、または、λ/14となる位置に配置されていることを特徴とする。   The electromagnetic induction type position sensor of the present invention receives an alternating magnetic flux that repeatedly repeats the intensity at a wavelength λ in the relative movement direction of the position detection object, and generates an electromagnetic induction voltage that changes with the relative movement of the position detection object. An electromagnetic induction type position sensor including a coil for outputting, wherein the coil is configured by connecting an even number of conductor patterns having the same shape and a wavelength λ in series, and the even number of conductor patterns are the even number of conductor patterns. When the conductor pattern is equally divided into two sets, the phase difference between the first set and the second set of conductor patterns is λ / 6, λ / 10, or λ / 14. Features.

他の本発明である電磁誘導型位置センサは、位置検出対象物の相対移動方向にほぼ波長λで強弱を繰り返す交流磁束を受信して、前記位置検出対象物の相対移動に伴って変化する電磁誘導電圧を出力するコイルを備えた電磁誘導型位置センサであって、前記コイルは、同一形状かつ波長λの4の倍数個の導体パターンを直列接続して構成され、前記4の倍数個の導体パターンは、当該4の倍数個の導体パターンを4組に等分割したとき、1組目と2組目の導体パターンの位相差および3組目と4組目の導体パターンの位相差がλ/10となり、1組目と3組目の位相差および2組目と4組目の導体パターンの位相差がλ/6となる位置に配置されることを特徴とする。この場合、前記1組目から4組目までの4組の導体パターンは、相対移動方向に直交する方向に並べて配置されることが望ましい。   Another electromagnetic induction type position sensor according to the present invention receives an alternating magnetic flux that repeats strong and weak at a wavelength λ in the relative movement direction of the position detection object, and changes in accordance with the relative movement of the position detection object. An electromagnetic induction type position sensor including a coil for outputting an induced voltage, wherein the coil is configured by connecting conductor patterns having the same shape and multiples of 4 of a wavelength λ in series, and multiples of the 4 conductors In the pattern, when the multiple conductor patterns of 4 are equally divided into four sets, the phase difference between the first set and the second set of conductor patterns and the phase difference between the third set and the fourth set of conductor patterns are λ / 10 and is characterized in that the phase difference between the first set and the third set and the phase difference between the second set and the fourth set of conductor patterns are arranged at positions where λ / 6. In this case, it is desirable that the four sets of conductor patterns from the first set to the fourth set are arranged side by side in a direction orthogonal to the relative movement direction.

本発明の電磁誘導型位置センサは、正弦波形状の導体パターンの位相をλ/6あるいはλ/10あるいはλ/14ずらした配置とし、また直列接続することにより、信号の3次5次7次の高調波成分をキャンセルする事ができるため、位置の変位に対して高い精度でほぼ正弦波の信号振幅変化を得ることが可能である。この結果、分割演算によりもとめた位置に含まれる誤差を削減でき、高精度な位置センサを実現できる。また、移動方向にたいして、垂直方向に位置をずらして配置することにより、単位面積あたりの正弦波状導体パターンを、高密度に配置可能であり、電磁誘導電圧による起電圧を大きくすることができる。   In the electromagnetic induction type position sensor of the present invention, the phase of the sinusoidal conductor pattern is shifted by λ / 6, λ / 10, or λ / 14, and the third, fifth, and seventh orders of the signal by connecting them in series. Therefore, it is possible to obtain a substantially sinusoidal signal amplitude change with high accuracy with respect to the displacement of the position. As a result, an error included in the position obtained by the division calculation can be reduced, and a highly accurate position sensor can be realized. In addition, by arranging the positions shifted in the vertical direction with respect to the moving direction, sinusoidal conductor patterns per unit area can be arranged with high density, and the electromotive voltage due to the electromagnetic induction voltage can be increased.

以下、図面に基づいて本発明の実施形態を説明する。図1は、電磁誘導型位置センサの実施形態を示す斜視図である。図2は、図1のセンサ基板8のコイル形状を示す図である。図3は、図1の電磁誘導型位置センサからの信号を処理する信号処理回路の一例を示すブロック図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of an electromagnetic induction type position sensor. FIG. 2 is a diagram showing a coil shape of the sensor substrate 8 of FIG. FIG. 3 is a block diagram showing an example of a signal processing circuit for processing a signal from the electromagnetic induction type position sensor of FIG.

スケール2は円筒形状をした軟磁性体である鉄材等からできており、回転軸1に固着されている。また、スケール2はその外周部に歯車状のほぼλピッチの36個の凹凸を有している。コイル4が巻かれた電磁石5は、フェライト等の高周波特性の良い軟磁性体などからできている。コイル4は、図3に示すタイマー38が発生した励磁パルス信号EXを元に波形整形回路36を介して正弦波励磁信号VEXに波形整形される。さらに、正弦波励磁信号VEXは電流増幅器32に入力される。電流増幅器32は、正弦波励磁信号VEXを増幅して、コイル4へ正弦波の交流励磁電流I・SIN(ωt)を流す。これにより、電磁石5は、スケール2の凹凸面に向けて、交流の磁束を発生する。この時、スケール2の表面付近では、その表面の凹凸によるリラクタンス変化に応じて、スケール2の回転方向に、ほぼ波長λのピッチで強弱を繰り返す交流磁束を発生する。すなわち、この電磁石5とスケール2が、位置検出対象物(回転軸1)の移動方向にほぼ波長λの強弱を繰り返す交流磁束を発生する交流磁束発生手段として機能する。   The scale 2 is made of an iron material or the like that is a cylindrical soft magnetic material, and is fixed to the rotating shaft 1. In addition, the scale 2 has 36 concavo-convex portions of a gear-like shape with a substantially λ pitch on the outer peripheral portion thereof. The electromagnet 5 around which the coil 4 is wound is made of a soft magnetic material having a high frequency characteristic such as ferrite. The coil 4 is shaped into a sine wave excitation signal VEX via a waveform shaping circuit 36 based on the excitation pulse signal EX generated by the timer 38 shown in FIG. Further, the sine wave excitation signal VEX is input to the current amplifier 32. The current amplifier 32 amplifies the sine wave excitation signal VEX and passes a sine wave AC excitation current I · SIN (ωt) to the coil 4. As a result, the electromagnet 5 generates an alternating magnetic flux toward the uneven surface of the scale 2. At this time, in the vicinity of the surface of the scale 2, an alternating magnetic flux that repeats strength with a pitch of a wavelength λ is generated in the rotation direction of the scale 2 in accordance with the reluctance change due to the unevenness of the surface. That is, the electromagnet 5 and the scale 2 function as AC magnetic flux generating means for generating AC magnetic flux that repeats the intensity of the wavelength λ in the moving direction of the position detection target (rotating shaft 1).

センサ基板8は、電磁石5とスケール2の外周面に挟まれるように配置され、スケール2とは一定のギャップをおいて電磁石5側に固定されている。センサ基板8は、2層構造のプリント基板からできており、表面層である1層目の導体パターンと2層目の導体パターン(図2において破線で図示)がシート状の絶縁材を介して固定され、これらの導体パターンを層間接続することによって、2種類のコイル、すなわち、コイル6とコイル7が形成されている。   The sensor substrate 8 is disposed so as to be sandwiched between the electromagnet 5 and the outer peripheral surface of the scale 2, and is fixed to the electromagnet 5 side with a certain gap from the scale 2. The sensor substrate 8 is made of a printed circuit board having a two-layer structure, and a first-layer conductor pattern and a second-layer conductor pattern (illustrated by broken lines in FIG. 2), which are surface layers, are interposed via a sheet-like insulating material. Two types of coils, that is, a coil 6 and a coil 7 are formed by connecting these conductor patterns between layers.

コイル6は図2において上半分に図示された8個の導体パターン(11,12,13,14,21,22,23,24,)から構成され、またコイル7は図2において下半分に図示された8個の導体パターン(15,16,17,18,25,26,27,28)から構成される。   The coil 6 is composed of eight conductor patterns (11, 12, 13, 14, 21, 22, 23, 24, and the like) illustrated in the upper half in FIG. 2, and the coil 7 is illustrated in the lower half in FIG. 8 conductor patterns (15, 16, 17, 18, 25, 26, 27, 28).

各導体パターンは、正弦波形状となっている。また、1層目と2層目の同位置に形成された正弦波状導体パターンは、互いに逆位相の形状となっている。つまり、センサ基板8の1層目と2層目には、互いに逆位相をした対となる正弦波状導体パターン(11と21、12と22、13と23、14と24、15と25、16と26、17と27、18と28)が、配置されている。   Each conductor pattern has a sine wave shape. Further, the sinusoidal conductor patterns formed at the same position on the first layer and the second layer have shapes of opposite phases. In other words, the first and second layers of the sensor substrate 8 are paired sinusoidal conductor patterns (11 and 21, 12 and 22, 13 and 23, 14 and 24, 15 and 25, 16 in opposite phases to each other. 26, 17 and 27, 18 and 28) are arranged.

センサ基板8に形成された8組の導体パターンは、互いに、スケール2の移動方向に直交する方向に所定の間隔をおいて配置されている。また互いに逆位相をした対となる正弦波状導体パターンは、コイル6の場合は基板左側で、コイル7の場合は基板右側で、正弦波形状以外の導体パターンおよび層間接続により接続され1組の導体パターンを形成している。   The eight sets of conductor patterns formed on the sensor substrate 8 are arranged at a predetermined interval in a direction orthogonal to the moving direction of the scale 2. A pair of sinusoidal conductor patterns having opposite phases are connected to each other on the left side of the substrate in the case of the coil 6 and on the right side of the substrate in the case of the coil 7 by a conductor pattern other than the sinusoidal shape and interlayer connection. A pattern is formed.

次に一つのコイルを構成する4組の導体パターンの接続について説明する。コイル6はセンサ基板8の上半分に形成された4組の導体パターン(11と21、12と22、13と23、14と24)を接続することで構成される。すなわち、導体パターン11と21により構成される1組目の導体パターンは、基板右側にて、導体パターン21と導体パターン12に接続され、2組目の導体パターンに直列接続される。さらに、2組目の導体パターンは、導体パターン22と導体パターン13に接続され、3組目の導体パターンに直列接続される。さらに、3組目の導体パターンは、導体パターン23と導体パターン14に接続され、4組目の導体パターンに接続されている。以上のとおり、センサ基板8の上半分に形成された4組の正弦波状導体パターンが直列接続され、コイル6が構成される。   Next, connection of four sets of conductor patterns constituting one coil will be described. The coil 6 is configured by connecting four sets of conductor patterns (11 and 21, 12 and 22, 13 and 23, and 14 and 24) formed on the upper half of the sensor substrate 8. That is, the first set of conductor patterns composed of the conductor patterns 11 and 21 is connected to the conductor patterns 21 and 12 on the right side of the substrate, and is connected in series to the second set of conductor patterns. Further, the second set of conductor patterns is connected to the conductor patterns 22 and 13 and is connected in series to the third set of conductor patterns. Further, the third set of conductor patterns is connected to the conductor patterns 23 and 14 and is connected to the fourth set of conductor patterns. As described above, four sets of sinusoidal conductor patterns formed on the upper half of the sensor substrate 8 are connected in series to form the coil 6.

コイル7は、センサ基板8の下半分に形成された4組の導体パターン(15と25、16と26、17と27、18と28)を接続することで構成される。すなわち、コイル6の場合と同様に、導体パターン15と25、16と26、17と27、18と28の4組の正弦波状導体パターンを、基板左側にて、直列接続することでコイル7が構成される。   The coil 7 is configured by connecting four sets of conductor patterns (15 and 25, 16 and 26, 17 and 27, and 18 and 28) formed in the lower half of the sensor substrate 8. That is, as in the case of the coil 6, the coil 7 is formed by connecting four sets of sinusoidal conductor patterns of the conductor patterns 15 and 25, 16 and 26, 17 and 27, and 18 and 28 in series on the left side of the substrate. Composed.

ここで、正弦波状導体パターン11と12、13と14、15と16、17と18は、位相がそれぞれ、λ/10異なる正弦波状導体パターンである。また、正弦波状導体パターン11と13、12と14、15と17、16と18は、位相がそれぞれ、λ/6異なる正弦波状導体パターンである。換言すれば、いずれの正弦波状導体パターンも、λ/10の位相差を有する他の正弦波状導体パターン、および、λ/6の位相差を有する他の正弦波状導体パターンが一つずつ存在する。例えば、正弦波状導体パターン11の場合、λ/10の位相差を有する他の正弦波状導体パターンとして正弦波状導体パターン12が、λ/6の位相差を有する他の正弦波状導体パターンとして正弦波状導体パターン13が、それぞれ存在する。また、正弦波状導体パターン12の場合、λ/10の位相差を有する他の正弦波状導体パターンとして正弦波状導体パターン11が、λ/6の位相差を有する他の正弦波状導体パターンとして正弦波状導体パターン14が、それぞれ存在する。   Here, the sinusoidal conductor patterns 11 and 12, 13 and 14, 15 and 16, and 17 and 18 are sinusoidal conductor patterns having phases different from each other by λ / 10. The sinusoidal conductor patterns 11 and 13, 12 and 14, 15 and 17, and 16 and 18 are sinusoidal conductor patterns having phases different from each other by λ / 6. In other words, each sinusoidal conductor pattern has one other sinusoidal conductor pattern having a phase difference of λ / 10 and another sinusoidal conductor pattern having a phase difference of λ / 6. For example, in the case of the sine wave conductor pattern 11, the sine wave conductor pattern 12 is another sine wave conductor pattern having a phase difference of λ / 10, and the sine wave conductor is another sine wave conductor pattern having a phase difference of λ / 6. Each pattern 13 exists. In the case of the sine wave conductor pattern 12, the sine wave conductor pattern 11 is another sine wave conductor pattern having a phase difference of λ / 10, and the sine wave conductor is another sine wave conductor pattern having a phase difference of λ / 6. Each pattern 14 exists.

コイル6の1層目の4個の正弦波状導体パターン11,12,13,14に流れる電流の向きは、すべて同方向に流れ、2層目の4個の正弦波状導体パターン21,22,23,24に流れる電流の向きは、すべて同方向に、かつ対になる正弦波状導体パターン(11,12,13,14)とは逆となる電流が流れる。また、コイル7についても同様な電流の方向に設定されている。これにより、コイル65と66からは、スケールの回転位置に応じた出力信号を得ることができる。   The directions of the currents flowing through the four sine wave conductor patterns 11, 12, 13, and 14 in the first layer of the coil 6 all flow in the same direction, and the four sine wave conductor patterns 21, 22, and 23 in the second layer. , 24 are all in the same direction, and a current that is opposite to the pair of sinusoidal conductor patterns (11, 12, 13, 14) flows. The coil 7 is also set in the same current direction. As a result, an output signal corresponding to the rotational position of the scale can be obtained from the coils 65 and 66.

次に、正弦波状導体パターンの位相を、λ/6ずらすことにより、3次高調波を取り除く原理について説明する。3次高調波は電磁誘導される信号λ内に3周期を持つ信号成分、換言すれば、λ/3を一周期とする信号成分であり、導体パターンによりその位相は決定される。このため基準となる導体パターンに電磁誘導により発生する3次高調波信号と、その導体パターンの位相をλ/6ずらした導体パターンに発生する3次高調波は位相がλ/6ずれた信号となる。ここで、3次高調波の一周期はλ/3であるため、この3次高調波の位相がλ/6ずれるということは、逆位相になるということを意味する。つまり、基準となる導体パターンに発生する3次高調波信号と、位相をλ/6ずらした導体パターンに発生する3次高調波信号は、同じ振幅で、逆位相の信号成分となる。また基準となる導体パターンと、位相をλ/6ずらした導体パターンを直列接続することにより、電磁誘導される信号は加算されるため、3次高調波の信号成分がキャンセルされる。   Next, the principle of removing the third harmonic by shifting the phase of the sinusoidal conductor pattern by λ / 6 will be described. The third harmonic is a signal component having three periods in the electromagnetically induced signal λ, in other words, a signal component having λ / 3 as one period, and its phase is determined by the conductor pattern. For this reason, the third harmonic signal generated by electromagnetic induction in the reference conductor pattern and the third harmonic signal generated in the conductor pattern in which the phase of the conductor pattern is shifted by λ / 6 are a signal whose phase is shifted by λ / 6. Become. Here, since one cycle of the third harmonic is λ / 3, the fact that the phase of the third harmonic is shifted by λ / 6 means that the phase is opposite. That is, the third harmonic signal generated in the reference conductor pattern and the third harmonic signal generated in the conductor pattern whose phase is shifted by λ / 6 have the same amplitude and opposite phase signal components. In addition, by connecting the reference conductor pattern and the conductor pattern whose phase is shifted by λ / 6 in series, the electromagnetically induced signals are added, so that the third harmonic signal component is canceled.

同様にして、5次高調波はλ/5を一周期とする信号成分である。このため基準となる導体パターンに電磁誘導により発生する5次高調波信号と、その導体パターンの位相をλ/10ずらした導体パターンに発生する5次高調波は位相がλ/10ずれた逆位相の信号となる。基準となる導体パターンと、位相をλ/10ずらした導体パターンは直列接続されており、電磁誘導される信号は加算されるため、5次高調波の信号成分がキャンセルされる。   Similarly, the fifth harmonic is a signal component having λ / 5 as one cycle. Therefore, the fifth-order harmonic signal generated by electromagnetic induction in the reference conductor pattern and the fifth-order harmonic generated in the conductor pattern in which the phase of the conductor pattern is shifted by λ / 10 are opposite in phase to each other by λ / 10. Signal. The reference conductor pattern and the conductor pattern whose phase is shifted by λ / 10 are connected in series, and electromagnetically induced signals are added, so that the signal component of the fifth harmonic is canceled.

以上述べたように、本実施形態の誘導型位置センサによれば、3次、5次の高調波を取り除くことにより、より理想に近い正弦波が得られ、この信号を分割して演算した位置の、内挿誤差は、10000分割する場合3程度まで改善することができ、高精度な電磁誘導型位置センサを実現できる。また、各正弦波状導体パターンは、本実施例に示す位相をずらすことにより、スケール移動方向に直交する方向に、より高密度に配置可能であり、単位面積あたりの電磁誘導電圧による起電圧を大きくすることができる。   As described above, according to the inductive position sensor of the present embodiment, a sine wave closer to ideal can be obtained by removing the third and fifth harmonics, and the position calculated by dividing this signal is calculated. The interpolation error can be improved to about 3 when dividing 10,000, and a highly accurate electromagnetic induction type position sensor can be realized. Each sinusoidal conductor pattern can be arranged at a higher density in the direction orthogonal to the scale movement direction by shifting the phase shown in this embodiment, and the electromotive voltage due to the electromagnetic induction voltage per unit area is increased. can do.

なお、上記実施形態では、3次高調波、5次高調波をキャンセルさせる導体パターンの配置態様について記述したが、必ずしも、3次および5次の両方の高調波成分をキャンセルする必要はなく、いずれか一方の高調波成分のみをキャンセルするパターン配置としてもよい。また、逆に、3次、5次高調波に加えて、さらに、7次高調波をキャンセルさせるようなパターン配置としてもよい。7次高調波をキャンセルさせる場合には、各正弦波状導体パターンにとって、位相差λ/14の他の正弦波状導体パターンが存在するようにパターン配置をすればよい。   In the above-described embodiment, the arrangement pattern of the conductor pattern for canceling the third harmonic and the fifth harmonic is described. However, it is not always necessary to cancel both the third and fifth harmonic components. A pattern arrangement that cancels only one of the harmonic components may be adopted. Conversely, in addition to the third and fifth harmonics, the pattern arrangement may be such that the seventh harmonic is canceled. In the case of canceling the seventh harmonic, the patterns may be arranged so that each sinusoidal conductor pattern has another sinusoidal conductor pattern having a phase difference λ / 14.

具体的には、8組の正弦波状導体パターンで一つのコイルを形成し、1組目と2組目、3組目と4組目、5組目と6組目、7組目と8組目は、互いに位相をλ/14ずらして配置する。また、1組目と3組目、2組目と4組目、5組目と7組目、6組目と8組目は、互いに位相をλ/10ずらして配置する。さらに、1組目と5組目、2組目と6組目、3組目と7組目、4組目と8組目を、互いに位相をλ/6ずらして配置する。これにより、3次、5次、7次の高調波を取り除くことができる。ただし、7次の高調波成分そのものは、信号レベルが3次5次に比較し数分の1程度であり、誤差に与える影響は小さいため、必ずしも7次高調波をキャンセルするようなパターン配置としなくてもよい。   Specifically, one set of coils is formed with eight sets of sinusoidal conductor patterns, and the first set and the second set, the third set and the fourth set, the fifth set and the sixth set, the seventh set and the eighth set. The eyes are arranged with a phase shift of λ / 14 from each other. The first group, the third group, the second group, the fourth group, the fifth group, the seventh group, the sixth group, and the eighth group are arranged with phases shifted by λ / 10. Further, the first group, the fifth group, the second group, the sixth group, the third group, the seventh group, the fourth group, and the eighth group are arranged with a phase shift of λ / 6. Thereby, the third, fifth and seventh harmonics can be removed. However, since the 7th harmonic component itself has a signal level that is a fraction of that of the 3rd and 5th order and has little influence on the error, the pattern arrangement is such that the 7th harmonic is not necessarily canceled. It does not have to be.

なお、以上の説明では、位相をλ/10、λ/6ずらすと限定したが、わずかにこの位相を変えた配置としても、やや性能が劣る程度でほぼ同様な効果が得られる。したがって、λ/10やλ/6といった数値は、数学的に厳密な値を示すのではなく、高調波成分を大幅にキャンセルできる程度の誤差を含んでもよい。   In the above description, the phase is limited to be shifted by λ / 10 and λ / 6. However, even if the phase is slightly changed, substantially the same effect can be obtained with a slightly inferior performance. Therefore, numerical values such as λ / 10 and λ / 6 do not indicate mathematically strict values, but may include errors that can greatly cancel harmonic components.

また、上記した実施形態では、この1組目〜4組目の位相差を、1組目と2組目および3組目と4組目をλ/10とし、1組目と3組目および2組目と4組目をλ/6としているが、1組目と2組目および3組目と4組目をλ/6とし、1組目と3組目および2組目と4組目をλ/10としても同様の効果が得られる。   In the above-described embodiment, the first to fourth sets of phase differences are set to λ / 10 for the first set, the second set, the third set, and the fourth set. The second set and the fourth set are set to λ / 6, but the first set, the second set, the third set, and the fourth set are set to λ / 6, and the first set, the third set, the second set, and the fourth set are set. The same effect can be obtained even if the eye is λ / 10.

電磁誘導型位置センサの実施形態を示す斜視図である。It is a perspective view showing an embodiment of an electromagnetic induction type position sensor. 図1の電磁誘導型位置センサのコイル形状を示す図である。It is a figure which shows the coil shape of the electromagnetic induction type position sensor of FIG. 図1の電磁誘導型位置センサ信号処理回路の一例を示すブロック図である。It is a block diagram which shows an example of the electromagnetic induction type position sensor signal processing circuit of FIG. 従来の電磁誘導型位置センサのコイルを示す図である。It is a figure which shows the coil of the conventional electromagnetic induction type position sensor.

符号の説明Explanation of symbols

1 回転軸、2 スケール、4,6,7,65,66 コイル、5 電磁石、8,60 センサ基板、30,31 差動増幅器、32 電流増幅器、34,35 AD変換器、36 波形整形回路、37 マイクロプロセッサ、38 タイマー。   1 rotation axis, 2 scale, 4, 6, 7, 65, 66 coil, 5 electromagnet, 8, 60 sensor board, 30, 31 differential amplifier, 32 current amplifier, 34, 35 AD converter, 36 waveform shaping circuit, 37 microprocessor, 38 timer.

Claims (5)

位置検出対象物の相対移動方向にほぼ波長λで強弱を繰り返す交流磁束を受信して、前記位置検出対象物の相対移動に伴って変化する電磁誘導電圧を出力するコイルを備えた電磁誘導型位置センサであって、
前記コイルは、同一形状で波長λの偶数個の導体パターンを直列接続して構成され、
前記偶数個の導体パターンは、当該偶数個の導体パターンを2組に等分割したとき、1組目と2組目の導体パターンの位相差がλ/6となる位置に配置されていることを特徴とする電磁誘導型位置センサ。
An electromagnetic induction type position provided with a coil that receives an alternating magnetic flux that repeatedly repeats the intensity at a wavelength λ in the relative movement direction of the position detection object and outputs an electromagnetic induction voltage that changes with the relative movement of the position detection object. A sensor,
The coil is configured by connecting an even number of conductor patterns of the same shape and wavelength λ in series,
The even-numbered conductor patterns are arranged at positions where the phase difference between the first and second sets of conductor patterns is λ / 6 when the even-numbered conductor patterns are equally divided into two sets. An electromagnetic induction type position sensor.
位置検出対象物の相対移動方向にほぼ波長λで強弱を繰り返す交流磁束を受信して、前記位置検出対象物の相対移動に伴って変化する電磁誘導電圧を出力するコイルを備えた電磁誘導型位置センサであって、
前記コイルは、同一形状で波長λの偶数個の導体パターンを直列接続して構成され、
前記偶数個の導体パターンは、当該偶数個の導体パターンを2組に等分割したとき、1組目と2組目の導体パターンの位相差がλ/10となる位置に配置されていることを特徴とする電磁誘導型位置センサ。
An electromagnetic induction type position provided with a coil that receives an alternating magnetic flux that repeatedly repeats the intensity at a wavelength λ in the relative movement direction of the position detection object and outputs an electromagnetic induction voltage that changes with the relative movement of the position detection object. A sensor,
The coil is configured by connecting an even number of conductor patterns of the same shape and wavelength λ in series,
The even-numbered conductor patterns are arranged at positions where the phase difference between the first and second sets of conductor patterns is λ / 10 when the even-numbered conductor patterns are equally divided into two sets. An electromagnetic induction type position sensor.
位置検出対象物の相対移動方向にほぼ波長λで強弱を繰り返す交流磁束を受信して、前記位置検出対象物の相対移動に伴って変化する電磁誘導電圧を出力するコイルを備えた電磁誘導型位置センサであって、
前記コイルは、同一形状で波長λの偶数個の導体パターンを直列接続して構成され、
前記偶数個の導体パターンは、当該偶数個の導体パターンを2組に等分割したとき、1組目と2組目の導体パターンの位相差がλ/14となる位置に配置されていることを特徴とする電磁誘導型位置センサ。
An electromagnetic induction type position provided with a coil that receives an alternating magnetic flux that repeatedly repeats the intensity at a wavelength λ in the relative movement direction of the position detection object and outputs an electromagnetic induction voltage that changes with the relative movement of the position detection object. A sensor,
The coil is configured by connecting an even number of conductor patterns of the same shape and wavelength λ in series,
The even-numbered conductor patterns are arranged at positions where the phase difference between the first and second sets of conductor patterns is λ / 14 when the even-numbered conductor patterns are equally divided into two sets. An electromagnetic induction type position sensor.
位置検出対象物の相対移動方向にほぼ波長λで強弱を繰り返す交流磁束を受信して、前記位置検出対象物の相対移動に伴って変化する電磁誘導電圧を出力するコイルを備えた電磁誘導型位置センサであって、
前記コイルは、同一形状かつ波長λの4の倍数個の導体パターンを直列接続して構成され、
前記4の倍数個の導体パターンは、当該4の倍数個の導体パターンを4組に等分割したとき、1組目と2組目の導体パターンの位相差および3組目と4組目の導体パターンの位相差がλ/10となり、1組目と3組目の位相差および2組目と4組目の導体パターンの位相差がλ/6となる位置に配置されることを特徴とする電磁誘導型位置センサ。
An electromagnetic induction type position provided with a coil that receives an alternating magnetic flux that repeatedly repeats the intensity at a wavelength λ in the relative movement direction of the position detection object and outputs an electromagnetic induction voltage that changes with the relative movement of the position detection object. A sensor,
The coil is configured by connecting conductor patterns of the same shape and multiples of 4 of the wavelength λ in series,
When the multiple of 4 conductor patterns are obtained by equally dividing the multiple of 4 conductor patterns into four sets, the phase difference between the first and second sets of conductor patterns and the third and fourth sets of conductor patterns are obtained. The phase difference of the pattern is λ / 10, and the phase difference between the first set and the third set and the phase difference between the second set and the fourth set of conductor patterns are arranged at positions where the phase difference is λ / 6. Electromagnetic induction type position sensor.
請求項4に記載の電磁誘導型位置センサであって、
前記1組目から4組目までの4組の導体パターンは、相対移動方向に直交する方向に並べて配置されることを特徴とする電磁誘導型位置センサ。
The electromagnetic induction type position sensor according to claim 4,
The electromagnetic induction type position sensor, wherein the four sets of conductor patterns from the first set to the fourth set are arranged side by side in a direction orthogonal to the relative movement direction.
JP2007132619A 2007-05-18 2007-05-18 Electromagnetic induction type position sensor Pending JP2008286667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007132619A JP2008286667A (en) 2007-05-18 2007-05-18 Electromagnetic induction type position sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007132619A JP2008286667A (en) 2007-05-18 2007-05-18 Electromagnetic induction type position sensor

Publications (1)

Publication Number Publication Date
JP2008286667A true JP2008286667A (en) 2008-11-27

Family

ID=40146523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007132619A Pending JP2008286667A (en) 2007-05-18 2007-05-18 Electromagnetic induction type position sensor

Country Status (1)

Country Link
JP (1) JP2008286667A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105378500A (en) * 2013-07-19 2016-03-02 阿莱戈微系统有限责任公司 Methods and apparatus for magnetic sensor producing a changing magnetic field
CN106767956A (en) * 2017-02-27 2017-05-31 张道勇 High speed and super precision machine tool chief axis magnetic induction absolute value encoder and its measurement gear
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
CN111006698A (en) * 2018-10-04 2020-04-14 株式会社三丰 Electromagnetic induction type encoder
US10753769B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
WO2020202864A1 (en) * 2019-04-02 2020-10-08 村田機械株式会社 Magnetic linear sensor
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents
US11680996B2 (en) 2012-05-10 2023-06-20 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having integrated coil
WO2024090254A1 (en) * 2022-10-27 2024-05-02 株式会社デンソー Position detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225124A (en) * 1987-03-14 1988-09-20 Hitachi Ltd Magnetic position detector
JPH0443915A (en) * 1990-06-08 1992-02-13 Sony Magnescale Inc Position detector
JPH11223505A (en) * 1997-12-03 1999-08-17 Mitsutoyo Corp Induction type position measurement device
JP2006017533A (en) * 2004-06-30 2006-01-19 Okuma Corp Electromagnetic induction type position sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225124A (en) * 1987-03-14 1988-09-20 Hitachi Ltd Magnetic position detector
JPH0443915A (en) * 1990-06-08 1992-02-13 Sony Magnescale Inc Position detector
JPH11223505A (en) * 1997-12-03 1999-08-17 Mitsutoyo Corp Induction type position measurement device
JP2006017533A (en) * 2004-06-30 2006-01-19 Okuma Corp Electromagnetic induction type position sensor

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11680996B2 (en) 2012-05-10 2023-06-20 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having integrated coil
CN105378500A (en) * 2013-07-19 2016-03-02 阿莱戈微系统有限责任公司 Methods and apparatus for magnetic sensor producing a changing magnetic field
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10670672B2 (en) 2013-07-19 2020-06-02 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US11313924B2 (en) 2013-07-19 2022-04-26 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10753769B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US11307054B2 (en) 2014-10-31 2022-04-19 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
CN106767956A (en) * 2017-02-27 2017-05-31 张道勇 High speed and super precision machine tool chief axis magnetic induction absolute value encoder and its measurement gear
CN106767956B (en) * 2017-02-27 2023-03-24 张道勇 Magnetic induction absolute value encoder of high-speed high-precision machine tool spindle and measuring gear thereof
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US11768256B2 (en) 2017-05-26 2023-09-26 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
CN111006698A (en) * 2018-10-04 2020-04-14 株式会社三丰 Electromagnetic induction type encoder
CN111006698B (en) * 2018-10-04 2022-11-15 株式会社三丰 Electromagnetic induction type encoder
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
WO2020202864A1 (en) * 2019-04-02 2020-10-08 村田機械株式会社 Magnetic linear sensor
JP7346879B2 (en) 2019-04-02 2023-09-20 村田機械株式会社 magnetic linear sensor
JP2020169851A (en) * 2019-04-02 2020-10-15 村田機械株式会社 Magnetic linear sensor
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents
WO2024090254A1 (en) * 2022-10-27 2024-05-02 株式会社デンソー Position detection device

Similar Documents

Publication Publication Date Title
JP2008286667A (en) Electromagnetic induction type position sensor
JP4476717B2 (en) Electromagnetic induction type position sensor
KR101688202B1 (en) Magnetoelectronic angle sensor, in particular a reluctance resolver
CN107407692B (en) Bearing including angular displacement sensor
US6259249B1 (en) Induction-type position measuring apparatus
JP5189510B2 (en) Position sensor
CN105393090B (en) Rotary encoder
CN107407577B (en) Induction type movable sensor
JP6021136B1 (en) Electromagnetic induction type position detector
DK3245484T3 (en) INDUCTIVE MOVEMENT SENSORS
JP2009186200A (en) Electromagnetic induction type encoder
CN107407576B (en) Induction type movable sensor
CN106461422A (en) Inductive displacement sensor
JP2019184477A (en) Electromagnetic induction encoder
JP6849188B2 (en) Angle detector
JP6487246B2 (en) Electromagnetic induction position detector and position detection method using the same
JP6147658B2 (en) Electromagnetic induction type position detector and detection method
JPWO2009051069A1 (en) GMR sensor
JP2022106663A (en) Sensing winding configuration for electromagnetic induction encoder
JP2022106662A (en) Sensing winding configuration for electromagnetic induction encoder
JP2012005327A (en) Resolver
JP2009222436A (en) Resolver
CN104280697A (en) Microtechnical component for a magnetic sensor device or a magnetic actuator and production method for the microtechnical component
JP2020056754A (en) Electromagnetic induction encoder
JP6121657B2 (en) Differential magnetic field applying apparatus and differential magnetic field applying method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100304

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703