JP2008284626A - Micro-flow channel device - Google Patents

Micro-flow channel device Download PDF

Info

Publication number
JP2008284626A
JP2008284626A JP2007130005A JP2007130005A JP2008284626A JP 2008284626 A JP2008284626 A JP 2008284626A JP 2007130005 A JP2007130005 A JP 2007130005A JP 2007130005 A JP2007130005 A JP 2007130005A JP 2008284626 A JP2008284626 A JP 2008284626A
Authority
JP
Japan
Prior art keywords
microchannel
substrate
flow channel
microchannel device
lid plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007130005A
Other languages
Japanese (ja)
Other versions
JP2008284626A5 (en
Inventor
Nobuyuki Kasama
宣行 笠間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miraial Co Ltd
Original Assignee
Miraial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miraial Co Ltd filed Critical Miraial Co Ltd
Priority to JP2007130005A priority Critical patent/JP2008284626A/en
Publication of JP2008284626A publication Critical patent/JP2008284626A/en
Publication of JP2008284626A5 publication Critical patent/JP2008284626A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a micro-flow channel device with excellent heat resistance and chemical resistance, manufacturable with an inexpensively manufactured plastic substrate at low costs by a simple process. <P>SOLUTION: In this micro flow channel device, a lid plate 3 closing the open surface of a micro flow channel 2 while having a liquid inlet 4 and a liquid outlet 5 communicated with the micro flow channel 2 is joined in the plastic substrate 1 with the recessed micro flow channel 2 to flow a small amount of liquid through. In this occasion, both of the joining between the substrate 1 and the lid plate 3, and coating relative to the entire or a part of the inner surface of the micro flow channel 2 are conducted with a paint film 6 having silica sol including an organic binder as a main ingredient. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、化学反応を微小空間で行わせるために用いられるマイクロ流路デバイスに関する。   The present invention relates to a microchannel device used for performing a chemical reaction in a minute space.

マイクロ流路デバイスは一般に、微量の化学薬品や試液等のような液体を流すためのマイクロ流路が凹んで形成された基板にマイクロ流路の開放面を塞ぐための蓋板が接合され、マイクロ流路に連通する液体注入口と液体排出口が蓋板に形成されている。   In general, a microchannel device is formed by bonding a cover plate for closing an open surface of a microchannel to a substrate in which a microchannel for flowing a liquid such as a small amount of chemicals or a test solution is recessed. A liquid inlet and a liquid outlet that communicate with the flow path are formed in the lid plate.

そのような基板はガラス材料で形成すると、耐熱性が高くかつ化学的に安定している長所があるものの、マイクロ流路をエッチング等で形成するための製造コストが高くつき、大量生産してもさほど量産効果があがらない(例えば、特許文献1)。   When such a substrate is formed of a glass material, it has the advantage of being highly heat-resistant and chemically stable, but the manufacturing cost for forming the microchannel by etching or the like is high, and even if it is mass-produced There is not much mass production effect (for example, Patent Document 1).

しかし、基板をプラスチック材で形成すれば、マイクロ流路を金型成形することができるので製造コストが低減され、大量生産することにより大きな量産効果が得られる。そこで、マイクロ流路が化学的耐久性を有するように二酸化珪素等をコーティングして、それから基板と蓋板を接着剤等で接合している(例えば、特許文献2)。
特開2005−139016 特開2002−139419
However, if the substrate is formed of a plastic material, the micro flow path can be molded, so that the manufacturing cost is reduced, and a large mass production effect can be obtained by mass production. Therefore, silicon dioxide or the like is coated so that the microchannel has chemical durability, and then the substrate and the cover plate are bonded with an adhesive or the like (for example, Patent Document 2).
JP-A-2005-139016 JP2002-139419

マイクロ流路を形成する凹部は例えば幅が0.1mm程度の極めて細いものであり、そのような凹部のみへのコーティングは厚く形成するのが困難である。具体的には、例えば特許文献2に記載された発明では10nm〜100nm程度のコーティング厚しか得ることができない。そのため、マイクロ流路内での化学反応や高感度測定(例えば、熱レンズ検出装置が用いられた高感度測定)等により熱が発生すると、その熱でプラスチック製の基板が溶解して化学反応やその測定結果等に悪影響を及ぼす場合がある。   The concave portion forming the microchannel is extremely thin, for example, having a width of about 0.1 mm, and it is difficult to form a thick coating only on such a concave portion. Specifically, for example, in the invention described in Patent Document 2, only a coating thickness of about 10 nm to 100 nm can be obtained. Therefore, when heat is generated by a chemical reaction or high sensitivity measurement in the microchannel (for example, high sensitivity measurement using a thermal lens detection device), the plastic substrate is dissolved by the heat and the chemical reaction or The measurement result may be adversely affected.

また、基板と蓋板を接着剤で接合すると、接着剤中の溶剤が薬液や試液等で溶かされて液中に溶出するおそれがある。また、特許文献2に記載された発明では、マイクロ流路へのコーティングが安定状態になった後に基板と蓋板とを接合する工程をとっているため製造コストが嵩んでしまう。   In addition, when the substrate and the cover plate are joined with an adhesive, the solvent in the adhesive may be dissolved in a chemical solution or a test solution and eluted into the solution. Moreover, in the invention described in Patent Document 2, the manufacturing cost increases because the step of joining the substrate and the cover plate is performed after the coating on the microchannel becomes stable.

本発明は、そのような問題を解決するためになされたものであり、製造コストのかからないプラスチック製の基板を用いて、耐熱性と耐薬性に優れ、かつ簡単な工程により低コストで製造することができるマイクロ流路デバイスを提供することを目的とする。   The present invention has been made to solve such a problem, and is manufactured at a low cost by a simple process with excellent heat resistance and chemical resistance, using a plastic substrate that does not require manufacturing costs. An object of the present invention is to provide a microchannel device capable of performing

上記の目的を達成するため、本発明のマイクロ流路デバイスは、微量の液体を流すためのマイクロ流路が凹んで形成されたプラスチック製の基板に、マイクロ流路の開放面を塞ぐと共にマイクロ流路に連通する液体注入口と液体排出口とが形成された蓋板を接合した構成を有するマイクロ流路デバイスにおいて、基板と蓋板との接合、及びマイクロ流路の内面の全部又は一部に対するコーティングが共に、有機バインダーを含有するシリカゾルを主成分とする塗膜で行われているものである。   In order to achieve the above object, the microchannel device of the present invention is configured to block the open surface of the microchannel and cover the microflow channel with a plastic substrate in which a microchannel for flowing a small amount of liquid is recessed. In a microchannel device having a configuration in which a lid plate in which a liquid inlet and a liquid outlet that communicate with a path are formed is joined, the junction between the substrate and the lid plate, and all or part of the inner surface of the microchannel Both coatings are performed with a coating film mainly composed of silica sol containing an organic binder.

なお、塗膜が、基板と蓋板との接合面の両面に各々設けられて、その両面の塗膜どうしが熱圧着されていると好ましい。また、蓋板が基板と同じプラスチック材で形成されていてもよく、あるいは、蓋板がガラス材で形成されていてもよい。そして、基板が全体にシート材で形成されていて、マイクロ流路が形成されている部分では基板が裏面側に突出していてもよい。   In addition, it is preferable that a coating film is provided on both surfaces of the bonding surface of the substrate and the cover plate, and the coating films on both surfaces are thermocompression bonded. Moreover, the cover plate may be formed of the same plastic material as the substrate, or the cover plate may be formed of a glass material. And the board | substrate may be formed in the whole in the sheet | seat material, and the board | substrate may protrude in the back surface side in the part in which the microchannel is formed.

また、基板と蓋板の少なくとも一方のマイクロ流路に面する位置に電気配線が設けられていてもよく、その場合に、電気配線が塗膜の裏側に配置されて、電気配線がマイクロ流路内に露出しない状態になっていてもよい。また、基板と蓋板の少なくとも一方の素材として、電気配線が予め埋設されたフレキシブル基板が用いられていてもよい。   In addition, an electrical wiring may be provided at a position facing at least one of the microchannels of the substrate and the cover plate. In that case, the electrical wiring is arranged on the back side of the coating film, and the electrical wiring is arranged on the microchannel. It may be in a state where it is not exposed inside. Further, a flexible substrate in which electric wiring is embedded in advance may be used as at least one of the substrate and the cover plate.

本発明のマイクロ流路デバイスは、基板と蓋板との接合、及びマイクロ流路の内面の全部又は一部に対するコーティングが共に、有機バインダーを含有するシリカゾルを主成分とする塗膜で行われていることにより、製造コストのかからないプラスチック製の基板を用いて、耐熱性と耐薬性に優れ、かつ簡単な工程により低コストで製造することができる格別の効果を奏する。   In the microchannel device of the present invention, the bonding between the substrate and the cover plate and the coating on the whole or part of the inner surface of the microchannel are both performed with a coating film mainly composed of silica sol containing an organic binder. By using such a plastic substrate, it is possible to produce a plastic substrate that does not require manufacturing cost, and has excellent heat resistance and chemical resistance, and can be manufactured at a low cost by a simple process.

以下、図面を参照して本発明の実施の形態を説明する。
図1〜図4は本発明に係る第1の実施の形態であるマイクロ流路デバイスを示しており、図2はマイクロ流路デバイスの分解斜視図、図3は平面図であり、図1は、図3におけるI−I断面図、図4はIV−IV断面図である。
Embodiments of the present invention will be described below with reference to the drawings.
1 to 4 show a microchannel device according to a first embodiment of the present invention, FIG. 2 is an exploded perspective view of the microchannel device, FIG. 3 is a plan view, and FIG. 3 is a cross-sectional view taken along the line II in FIG. 3, and FIG. 4 is a cross-sectional view taken along the line IV-IV.

1は、プラスチック製の基板であり、例えばポリスチレン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリメチルメタクリレート、ポリエチレンビニルアルコール、アクリル樹脂、ポリビニル樹脂、エポキシ樹脂、ポリ塩化ビニル、不飽和ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリスルホン樹脂、環状シクロオレフィン樹脂、セルロースアセテート、硝酸セルロース、フルオロカーボン樹脂、又はポリカーボネート等のような有機高分子材料で形成されている。基板1は、例えば一辺が数cm程度の矩形状に形成されていて、その厚みは例えば0.5mm程度である。   1 is a plastic substrate, for example, polystyrene, polyethylene, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polymethyl methacrylate, polyethylene vinyl alcohol, acrylic resin, polyvinyl resin, epoxy resin, polyvinyl chloride, unsaturated polyester resin, It is made of an organic polymer material such as polyamide resin, polyimide resin, polysulfone resin, cyclic cycloolefin resin, cellulose acetate, cellulose nitrate, fluorocarbon resin, or polycarbonate. The substrate 1 is formed, for example, in a rectangular shape having a side of about several centimeters, and the thickness thereof is, for example, about 0.5 mm.

基板1の上面側には、微量の化学薬品や試液等のような液体を流すためのマイクロ流路2が凹んで形成されている。マイクロ流路2は、幅が例えば0.1mm程度で深さが例えば0.05mm程度の矩形状の断面形状に形成され、全体として例えば略Y字状の平面形状に形成されている。ただし、マイクロ流路2の断面形状や平面形状は、そのマイクロ流路デバイスの使用目的等に応じて、流路内部に液溜まり、ステップ、分岐、合流あるいは流路幅変更等の要素を含むものであってもよく、例えば、マイクロ流路2の断面形状は半円形等であってもよく、平面形状が略Y字状以外の形状であってもよい。   On the upper surface side of the substrate 1, a micro flow channel 2 for flowing a liquid such as a small amount of chemicals or a test solution is formed in a recessed manner. The microchannel 2 is formed in a rectangular cross-sectional shape having a width of, for example, about 0.1 mm and a depth of, for example, about 0.05 mm, and is formed, for example, in a substantially Y-shaped planar shape as a whole. However, the cross-sectional shape and planar shape of the microchannel 2 include elements such as a liquid pool, step, branch, merge or channel width change in the channel depending on the purpose of use of the microchannel device. For example, the cross-sectional shape of the microchannel 2 may be a semicircular shape, and the planar shape may be a shape other than a substantially Y shape.

このようなマイクロ流路2は、例えば予めシート状に形成された基板1の素材を加熱された金型でプレス加工することにより容易に製造することができる。なお、基板1を透明な材料で形成すれば、マイクロ流路2内を外部から目視観察したり、光学的な計測や処理を行えたりする点で好ましい。また、マイクロ流路2の断面形状が半円形等であってもよい。   Such a microchannel 2 can be easily manufactured by, for example, pressing a material of the substrate 1 formed in a sheet shape in advance with a heated mold. If the substrate 1 is formed of a transparent material, it is preferable in that the inside of the microchannel 2 can be visually observed from the outside and optical measurement and processing can be performed. Moreover, the cross-sectional shape of the microchannel 2 may be a semicircle or the like.

3は、マイクロ流路2の開放面を塞ぐために基板1の上面に接合固着される蓋板であり、基板1と同様に各種の有機高分子材料から一つを選択して形成することができる。ただし、基板1と同じ材料で形成すれば、接合や熱膨張の程度が基板1と一致する点で好ましい。また、蓋板3はガラス材料で形成してもよく、例えば珪酸ソーダガラス、硼珪酸ガラス、バリウム硼珪酸ガラス、石英ガラス等、あるいは結晶化ガラス、低融点ガラス等のようなガラス材料から選択することもできる。ただし、蓋板3側にもマイクロ流路を形成する場合には、製造コストの点でプラスチック製にした方が有利である。   Reference numeral 3 denotes a cover plate that is bonded and fixed to the upper surface of the substrate 1 in order to close the open surface of the microchannel 2, and can be formed by selecting one of various organic polymer materials in the same manner as the substrate 1. . However, it is preferable to form the same material as the substrate 1 in that the degree of bonding and thermal expansion is the same as that of the substrate 1. The lid plate 3 may be formed of a glass material, and is selected from glass materials such as sodium silicate glass, borosilicate glass, barium borosilicate glass, quartz glass, crystallized glass, low melting point glass, and the like. You can also However, when the micro flow path is also formed on the lid plate 3 side, it is advantageous to make the micro flow path from the viewpoint of manufacturing cost.

蓋板3には、マイクロ流路2に連通する液体注入口4と液体排出口5とが形成されている。液体注入口4は、略Y字状に形成されたマイクロ流路2の二つの分岐流路の端部に各々面する位置に蓋板3の表裏を貫通する状態に形成され、液体排出口5は、マイクロ流路2の合流流路の端部に面する位置に蓋板3の表裏を貫通する状態に形成されている。   The lid plate 3 is formed with a liquid inlet 4 and a liquid outlet 5 communicating with the microchannel 2. The liquid inlet 4 is formed in a state of penetrating the front and back of the cover plate 3 at positions facing the ends of the two branch channels of the microchannel 2 formed in a substantially Y shape. Is formed in a state of penetrating the front and back of the cover plate 3 at a position facing the end of the converging flow path of the micro flow path 2.

6は、基板1と蓋板3との接合、及びマイクロ流路2の内面コーティングという二つの目的に供せられる塗膜であり、有機バインダーを含有するシリカゾルを主成分とする同一の塗膜6が、この実施の形態では基板1と蓋板3の双方の対向面全面(即ち、基板1の上面と蓋板3の裏面の各全面)に塗布されて、基板1と蓋板3との接合時に加熱硬化処理されている。なお、必要な場合には、液体注入口4と液体排出口5の内周面にも塗膜6が形成される。   6 is a coating film provided for the two purposes of joining the substrate 1 and the cover plate 3 and coating the inner surface of the microchannel 2. The same coating film 6 mainly composed of silica sol containing an organic binder. However, in this embodiment, it is applied to the entire opposing surfaces of both the substrate 1 and the cover plate 3 (that is, the entire upper surface of the substrate 1 and the entire back surface of the cover plate 3) to join the substrate 1 and the cover plate 3. Sometimes heat-cured. If necessary, the coating film 6 is also formed on the inner peripheral surfaces of the liquid inlet 4 and the liquid outlet 5.

塗膜6の主成分であるシリカゾルは、二酸化珪素(SiO2 )の微粒子を例えばイソプロピルアルコール水溶液等のような溶媒中に分散させたもの、又は化学的に生成されたシリコンアルコキシドからなるゾルであり、溶媒を発散させるとゲル化して固形膜になる。そして、そのようなシリカゾルによって形成されたコーティング膜は有機バインダー濃度が小さい場合は親水性が大きいので、マイクロ流路2の表面に親水性が必要な場合に、親水性を得るための他の表面処理を施す必要がない。一方、コーティング膜における有機バインダー濃度が大きい場合は疎水性の膜になるので、親水性が必要な場合は親水処理をして用いる。 The silica sol as the main component of the coating film 6 is a sol made of silicon dioxide (SiO 2 ) fine particles dispersed in a solvent such as an isopropyl alcohol aqueous solution or a chemically generated silicon alkoxide. When the solvent is released, it gels and becomes a solid film. And since the coating film formed of such a silica sol has high hydrophilicity when the organic binder concentration is low, other surfaces for obtaining hydrophilicity when the surface of the microchannel 2 needs to be hydrophilic. There is no need for processing. On the other hand, when the organic binder concentration in the coating film is high, it becomes a hydrophobic film. Therefore, when hydrophilicity is required, it is used after being subjected to hydrophilic treatment.

また、シリカゾルは耐薬性と耐熱性に優れていて、溶剤等が溶け出すことなくプラスチック材に対し強接合され、接着性の低いポリエチレン樹脂系の材料に対しても強固に接合される。ポリエチレン樹脂系の材料は、再生処理や廃棄処理に際して公害発生のおそれが少ないので、リサイクルにも使い捨て使用にも適しており、透明性があることと合わせマイクロ流路デバイスに使用するメリットが大きい。   Silica sol is excellent in chemical resistance and heat resistance, and is strongly bonded to a plastic material without dissolving a solvent or the like, and is also firmly bonded to a polyethylene resin material having low adhesion. Polyethylene resin-based materials are less likely to cause pollution during recycling and disposal, and are therefore suitable for both recycling and single use. In addition to their transparency, there are great advantages in using them for microchannel devices.

シリカゾル中に含まれる有機バインダーは、アクリル樹脂系又はエポキシ樹脂系等のように一般的な有機バインダーを用いることができ、加熱処理により発散させて任意の量だけ残すことができる。したがって、シリカゾル中への混合量と加熱処理の温度と時間等を適宜選択することにより、シリカゾル中に残る有機バインダー量を任意に制御して、例えば二酸化珪素とプラスチック材との熱膨張率の相違を緩衝する機能等を最適な状態に調整することができる。   As the organic binder contained in the silica sol, a general organic binder such as an acrylic resin type or an epoxy resin type can be used, and it can be diffused by heat treatment and left in an arbitrary amount. Therefore, the amount of organic binder remaining in the silica sol can be arbitrarily controlled by appropriately selecting the mixing amount in the silica sol, the temperature and time of the heat treatment, and the difference in thermal expansion coefficient between, for example, silicon dioxide and the plastic material. It is possible to adjust the function for buffering to an optimal state.

このような有機バインダーを含有するシリカゾルを主成分とする塗膜6は、前述のように基板1と蓋板3の双方の対向面全面に塗布形成されている。したがって、マイクロ流路2内においても十分に厚く(例えば100nm〜5μm程度に)形成することができ、マイクロ流路2内での化学反応等により発生した熱でプラスチック製の基板1が溶解しない耐熱性を確保することができる。   The coating film 6 containing silica sol containing an organic binder as a main component is applied and formed on the entire facing surfaces of both the substrate 1 and the cover plate 3 as described above. Therefore, it can be formed sufficiently thick (for example, about 100 nm to 5 μm) in the microchannel 2, and the plastic substrate 1 is not dissolved by heat generated by a chemical reaction or the like in the microchannel 2. Sex can be secured.

基板1と蓋板3の各対向面への塗膜6の塗布は、ディッピング、スピンコーティング又は印刷等の手段により所定の膜厚で行うことができる。膜厚は、シリカゾルの粘度、即ちゾル中の固形成分の量や有機バインダーの量等で調整することができる。なお、塗膜6の塗布は、基板1や蓋板3を所定のサイズに切断する前又は後のどちらで行ってもよい。   Application of the coating film 6 to the opposing surfaces of the substrate 1 and the cover plate 3 can be performed with a predetermined film thickness by means such as dipping, spin coating or printing. The film thickness can be adjusted by the viscosity of the silica sol, that is, the amount of solid components in the sol and the amount of organic binder. The coating film 6 may be applied either before or after the substrate 1 or the cover plate 3 is cut into a predetermined size.

基板1と蓋板3の各々に塗布された塗膜6は、基板1と蓋板3を接合する前に、例えば70℃程度の温度で30秒〜2分程度仮焼成し、有機バインダーを少し発散させて軽く硬化させるとよい。疎水処理又は特別な親水処理等が必要な場合には、この段階で印刷又はディスペンサー等を用いて処理を行う。   The coating film 6 applied to each of the substrate 1 and the cover plate 3 is pre-baked for about 30 seconds to 2 minutes at a temperature of about 70 ° C., for example, before bonding the substrate 1 and the cover plate 3, and a little organic binder is added. It is better to diverge and lightly cure. If a hydrophobic treatment or a special hydrophilic treatment is required, the treatment is performed at this stage using printing or a dispenser.

そして最後に、基板1に塗布された塗膜6と蓋板3に塗布された塗膜6とを密着させ、例えば80〜260℃程度(基板1と蓋板3の材料の選択により異なる)に加熱して塗膜6どうしを圧着させる。そのような熱圧着は、加熱ローラーやスタンパー等を用いて圧接状態で行うとよい。このようにして、基板1と蓋板3の双方の対向面に塗布された塗膜6どうしが結合して、基板1と蓋板3とが強固に接合された状態になり、同時にマイクロ流路2の内面への厚いコーティングが完了し、マイクロ流路デバイスを極めて低コストに製造することができる。   Finally, the coating film 6 applied to the substrate 1 and the coating film 6 applied to the lid plate 3 are brought into close contact with each other, for example, at about 80 to 260 ° C. (depending on the selection of the material of the substrate 1 and the lid plate 3). Heat to make the coating films 6 crimp. Such thermocompression bonding may be performed in a pressure contact state using a heating roller, a stamper, or the like. In this way, the coating films 6 applied to the opposing surfaces of both the substrate 1 and the cover plate 3 are coupled to each other so that the substrate 1 and the cover plate 3 are firmly bonded, and at the same time, the micro flow path. The thick coating on the inner surface of the two is completed, and the microchannel device can be manufactured at a very low cost.

図5と図6は本発明に係る第2の実施の形態であるマイクロ流路デバイスを示しており、図5は平面図、図6は、図5におけるVI−VI断面図である。この実施の形態においては、電極として機能する電気配線7が基板1の上面に設けられている。基板1、マイクロ流路2及び蓋板3自体の構成は前述した第1の実施の形態に係るマイクロ流路デバイスと同様である。なお、蓋板3側に電気配線7を設けてもよい。   5 and 6 show a microchannel device according to a second embodiment of the present invention. FIG. 5 is a plan view, and FIG. 6 is a sectional view taken along line VI-VI in FIG. In this embodiment, an electrical wiring 7 that functions as an electrode is provided on the upper surface of the substrate 1. The configurations of the substrate 1, the microchannel 2 and the cover plate 3 themselves are the same as those of the microchannel device according to the first embodiment described above. The electrical wiring 7 may be provided on the lid plate 3 side.

電気配線7は、図5に示されるようにマイクロ流路2と交差する二箇所に互いの間に間隔をあけて配置され、各電気配線7が、図6に示されるようにマイクロ流路2の底面に面する状態に配置されている。電気配線7は、塗膜6の表裏どちら側に配置してもよいが、この実施の形態のように塗膜6の裏側に配置して、電気配線7がマイクロ流路2内に露出しないようにすれば、電気配線7がマイクロ流路2内の液体により腐食されるおそれがない点で好ましい。   As shown in FIG. 5, the electric wiring 7 is arranged at two positions intersecting the micro flow path 2 with a space between each other, and each electric wiring 7 is connected to the micro flow path 2 as shown in FIG. 6. It is arrange | positioned in the state which faces the bottom face. The electrical wiring 7 may be disposed on either the front or back side of the coating film 6, but is disposed on the back side of the coating film 6 as in this embodiment so that the electrical wiring 7 is not exposed in the microchannel 2. This is preferable in that the electrical wiring 7 is not corroded by the liquid in the microchannel 2.

図5に示されるように、基板1から外方に突出して設けられた配線基板(リードフレーム)8には、電気配線7と電気的に導通する接続端子9が設けられていて、電気配線7を外部の測定機器等に接続することができる。ただし、接続端子9に代えてコンタクトホールやコネクター等を設けてもよい。なお、図7に示される第3の実施の形態に係るマイクロ流路デバイスのように、電気配線7を電極として駆動するための駆動IC10(例えば、交流周波数を制御する)を配線基板8に設けてもよい。また、いわゆる電子タグ11を基板1又は蓋板3内に埋設又は貼着して、来歴情報等を記録できるようにしてもよい。   As shown in FIG. 5, a wiring board (lead frame) 8 provided so as to protrude outward from the substrate 1 is provided with a connection terminal 9 that is electrically connected to the electric wiring 7. Can be connected to an external measuring device or the like. However, a contact hole or a connector may be provided instead of the connection terminal 9. In addition, like the microchannel device according to the third embodiment shown in FIG. 7, a driving IC 10 (for example, controlling the AC frequency) for driving the electric wiring 7 as an electrode is provided on the wiring board 8. May be. Further, a so-called electronic tag 11 may be embedded or stuck in the substrate 1 or the cover plate 3 so that history information and the like can be recorded.

図8は、本発明に係る第4の実施の形態であるマイクロ流路デバイスを示しており、前述した第1の実施の形態に係るマイクロ流路デバイスと同様に構成されたマイクロ流路2の途中に疎水領域12を形成したものである。具体的には、その部分だけ塗膜6を塗布せずにプラスチック材の基板1が露出するようにすればその領域が疎水領域12になる。このように、塗膜6は必ずしも基板1と蓋板3の各対向面全面に設けなくてもよい。ただし、塗膜6の一部分に対して疎水処理を施してもよいことはいうまでもない。   FIG. 8 shows a microchannel device according to a fourth embodiment of the present invention, and shows a microchannel 2 configured similarly to the microchannel device according to the first embodiment described above. A hydrophobic region 12 is formed in the middle. Specifically, if the plastic substrate 1 is exposed without applying the coating film 6 only to that portion, the region becomes the hydrophobic region 12. Thus, the coating film 6 does not necessarily have to be provided on the entire opposing surfaces of the substrate 1 and the cover plate 3. However, it goes without saying that a hydrophobic treatment may be applied to a part of the coating film 6.

図9は、本発明に係る第5の実施の形態を示しており、基板1が全体にシート材で形成されて、マイクロ流路2が形成されている部分では基板1が裏面側に突出する状態になっているものである。マイクロ流路2は、角部に丸みのついた略半円状の断面形状になっている。基板1としてポリエチレン樹脂系の材料やフレキシブル基板を用いる場合等には、このような構成を採ることでマイクロ流路2を容易に低コストで形成することができる。   FIG. 9 shows a fifth embodiment according to the present invention, in which the substrate 1 is formed of a sheet material as a whole, and the substrate 1 protrudes to the back side in a portion where the microchannel 2 is formed. It is in a state. The microchannel 2 has a substantially semicircular cross-sectional shape with rounded corners. When a polyethylene resin material or a flexible substrate is used as the substrate 1, the micro flow path 2 can be easily formed at a low cost by adopting such a configuration.

本発明に係る第1の実施の形態であるマイクロ流路デバイスの側面断面図(図3におけるI−I断面図)である。It is side surface sectional drawing (II sectional drawing in FIG. 3) of the microchannel device which is 1st Embodiment based on this invention. 本発明に係る第1の実施の形態であるマイクロ流路デバイスの分解斜視図である。1 is an exploded perspective view of a microchannel device according to a first embodiment of the present invention. 本発明に係る第1の実施の形態であるマイクロ流路デバイスの平面図である。It is a top view of the microchannel device which is the 1st embodiment concerning the present invention. 本発明に係る第1の実施の形態であるマイクロ流路デバイスの正面断面図(図3におけるIV−IV断面図)である。It is front sectional drawing (IV-IV sectional drawing in FIG. 3) of the microchannel device which is 1st Embodiment based on this invention. 本発明に係る第2の実施の形態であるマイクロ流路デバイスの平面図である。It is a top view of the microchannel device which is the 2nd embodiment concerning the present invention. 本発明に係る第2の実施の形態であるマイクロ流路デバイスの正面断面図(図5におけるVI−VI断面図)である。It is front sectional drawing (VI-VI sectional drawing in FIG. 5) of the microchannel device which is the 2nd Embodiment which concerns on this invention. 本発明に係る第3の実施の形態であるマイクロ流路デバイスの平面図である。It is a top view of the microchannel device which is the 3rd embodiment concerning the present invention. 本発明に係る第4の実施の形態であるマイクロ流路デバイスの分解斜視図である。It is a disassembled perspective view of the microchannel device which is the 4th Embodiment concerning this invention. 本発明に係る第5の実施の形態であるマイクロ流路デバイスの正面断面図である。It is front sectional drawing of the microchannel device which is the 5th Embodiment which concerns on this invention.

符号の説明Explanation of symbols

1 基板
2 マイクロ流路
3 蓋板
4 液体注入口
5 液体排出口
6 塗膜
7 電気配線
10 駆動IC
11 電子タグ
DESCRIPTION OF SYMBOLS 1 Substrate 2 Micro flow path 3 Cover plate 4 Liquid inlet 5 Liquid outlet 6 Paint film 7 Electrical wiring 10 Drive IC
11 Electronic tag

Claims (8)

微量の液体を流すためのマイクロ流路が凹んで形成されたプラスチック製の基板に、上記マイクロ流路の開放面を塞ぐと共に上記マイクロ流路に連通する液体注入口と液体排出口とが形成された蓋板を接合した構成を有するマイクロ流路デバイスにおいて、
上記基板と上記蓋板との接合、及び上記マイクロ流路の内面の全部又は一部に対するコーティングが共に、有機バインダーを含有するシリカゾルを主成分とする塗膜で行われていることを特徴とするマイクロ流路デバイス。
A plastic substrate in which a microchannel for flowing a small amount of liquid is recessed is formed with a liquid inlet and a liquid outlet that close the open surface of the microchannel and communicate with the microchannel. In the microchannel device having a configuration in which the lid plate is joined,
The bonding between the substrate and the cover plate and the coating on all or a part of the inner surface of the microchannel are both performed with a coating film mainly composed of silica sol containing an organic binder. Microchannel device.
上記塗膜が、上記基板と上記蓋板との接合面の両面に各々設けられて、その両面の塗膜どうしが熱圧着されている請求項1記載のマイクロ流路デバイス。   The microchannel device according to claim 1, wherein the coating films are provided on both surfaces of the joint surface between the substrate and the lid plate, and the coating films on both surfaces are thermocompression bonded. 上記蓋板が上記基板と同じプラスチック材で形成されている請求項1又は2記載のマイクロ流路デバイス。   The microchannel device according to claim 1 or 2, wherein the lid plate is formed of the same plastic material as the substrate. 上記蓋板がガラス材で形成されている請求項1又は2記載のマイクロ流路デバイス。   The microchannel device according to claim 1 or 2, wherein the lid plate is formed of a glass material. 上記基板が全体にシート材で形成されていて、上記マイクロ流路が形成されている部分では上記基板が裏面側に突出している請求項1ないし4のいずれかの項に記載のマイクロ流路デバイス。   The microchannel device according to any one of claims 1 to 4, wherein the substrate is formed of a sheet material as a whole, and the substrate protrudes on the back surface side in a portion where the microchannel is formed. . 上記基板と上記蓋板の少なくとも一方の上記マイクロ流路に面する位置に電気配線が設けられている請求項1ないし5のいずれかの項に記載のマイクロ流路デバイス。   The microchannel device according to any one of claims 1 to 5, wherein an electrical wiring is provided at a position facing at least one of the substrate and the lid plate facing the microchannel. 上記電気配線が上記塗膜の裏側に配置されて、上記電気配線が上記マイクロ流路内に露出しない状態になっている請求項6記載のマイクロ流路デバイス。   The microchannel device according to claim 6, wherein the electrical wiring is disposed on the back side of the coating film so that the electrical wiring is not exposed in the microchannel. 上記基板と上記蓋板の少なくとも一方の素材として、電気配線が予め埋設されたフレキシブル基板が用いられている請求項6記載のマイクロ流路デバイス。   The microchannel device according to claim 6, wherein a flexible substrate in which electrical wiring is embedded in advance is used as at least one of the substrate and the cover plate.
JP2007130005A 2007-05-16 2007-05-16 Micro-flow channel device Pending JP2008284626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007130005A JP2008284626A (en) 2007-05-16 2007-05-16 Micro-flow channel device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007130005A JP2008284626A (en) 2007-05-16 2007-05-16 Micro-flow channel device

Publications (2)

Publication Number Publication Date
JP2008284626A true JP2008284626A (en) 2008-11-27
JP2008284626A5 JP2008284626A5 (en) 2010-02-18

Family

ID=40144841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007130005A Pending JP2008284626A (en) 2007-05-16 2007-05-16 Micro-flow channel device

Country Status (1)

Country Link
JP (1) JP2008284626A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515236A (en) * 2008-03-28 2011-05-19 プレジデント アンド フェローズ オブ ハーバード カレッジ Surface comprising microfluidic channels with controlled wetting properties
JP2011524815A (en) * 2008-06-02 2011-09-08 ベーリンガー インゲルハイム マイクロパーツ ゲゼルシャフト ミット ベシュレンクテル ハフツング Microfluidic foil structure for fluid metering
JP2011214996A (en) * 2010-03-31 2011-10-27 Enplas Corp Microchannel chip and microanalysis system
KR101191881B1 (en) 2010-02-26 2012-10-16 한국에너지기술연구원 protection layer of micro channel reactor and preparation method thereof
JP2014030382A (en) * 2012-08-03 2014-02-20 Univ Of Tokyo Microfluidic device and method for forming lipid bilayer membrane
WO2014087923A1 (en) * 2012-12-07 2014-06-12 アルプス電気株式会社 Bonded member and method for producing bonded member
US8883291B2 (en) 2007-08-07 2014-11-11 President And Fellows Of Harvard College Metal oxide coating on surfaces
WO2015159532A1 (en) * 2014-04-15 2015-10-22 セイコーエプソン株式会社 Chemical synthesis apparatus, and method for manufacturing chemical synthesis apparatus
WO2017179353A1 (en) * 2016-04-12 2017-10-19 株式会社日立製作所 Microreactor, formed product manufacturing system, and microreactor manufacturing method
WO2022181554A1 (en) * 2021-02-25 2022-09-01 キヤノン株式会社 Microchannel device and method for manufacturing same

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265130A (en) * 1986-05-14 1987-11-18 Hitachi Chem Co Ltd Production of silica glass
JP2002518202A (en) * 1998-06-18 2002-06-25 スリーエム イノベイティブ プロパティズ カンパニー Microfluidic product and method for producing the same
JP2003230829A (en) * 2001-12-06 2003-08-19 Hitachi Ltd Plane microfactory
JP2004074339A (en) * 2002-08-15 2004-03-11 Fuji Electric Holdings Co Ltd Micro-channel chip
JP2004516127A (en) * 2000-06-28 2004-06-03 スリーエム イノベイティブ プロパティズ カンパニー Sample processing equipment and carrier
JP2005037368A (en) * 2003-05-12 2005-02-10 Yokogawa Electric Corp Cartridge for chemical reaction, its manufacturing method, and driving system for cartridge for chemical reaction
JP2005103423A (en) * 2003-09-30 2005-04-21 Fuji Kagaku Kk Microchemistry device
JP2005114414A (en) * 2003-10-03 2005-04-28 Univ Waseda Flow cell
JP2005517959A (en) * 2002-02-21 2005-06-16 コミツサリア タ レネルジー アトミーク Components for biological or biochemical analytical microsystems
JP2005257283A (en) * 2004-03-09 2005-09-22 Fluidware Technologies Kk Microchip
JP2006184010A (en) * 2004-12-24 2006-07-13 Kobe Steel Ltd Microfluid device, manufacturing method thereof, and chemical analysis device provided with microfluid device
JP2007063055A (en) * 2005-08-30 2007-03-15 Hiroyuki Masaki Glass joint structure, article having glass joint structure, and method for joining glass
JP2007075950A (en) * 2005-09-14 2007-03-29 Kobe Steel Ltd Micro fluid device and process of manufacture thereof
WO2007046484A1 (en) * 2005-10-19 2007-04-26 Sharp Kabushiki Kaisha Electrophoretic chip, electrophoretic device, and electrophoretic system
WO2008065868A1 (en) * 2006-12-01 2008-06-05 Konica Minolta Opto, Inc. Microchip substrate bonding method and microchip

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265130A (en) * 1986-05-14 1987-11-18 Hitachi Chem Co Ltd Production of silica glass
JP2002518202A (en) * 1998-06-18 2002-06-25 スリーエム イノベイティブ プロパティズ カンパニー Microfluidic product and method for producing the same
JP2004516127A (en) * 2000-06-28 2004-06-03 スリーエム イノベイティブ プロパティズ カンパニー Sample processing equipment and carrier
JP2003230829A (en) * 2001-12-06 2003-08-19 Hitachi Ltd Plane microfactory
JP2005517959A (en) * 2002-02-21 2005-06-16 コミツサリア タ レネルジー アトミーク Components for biological or biochemical analytical microsystems
JP2004074339A (en) * 2002-08-15 2004-03-11 Fuji Electric Holdings Co Ltd Micro-channel chip
JP2005037368A (en) * 2003-05-12 2005-02-10 Yokogawa Electric Corp Cartridge for chemical reaction, its manufacturing method, and driving system for cartridge for chemical reaction
JP2005103423A (en) * 2003-09-30 2005-04-21 Fuji Kagaku Kk Microchemistry device
JP2005114414A (en) * 2003-10-03 2005-04-28 Univ Waseda Flow cell
JP2005257283A (en) * 2004-03-09 2005-09-22 Fluidware Technologies Kk Microchip
JP2006184010A (en) * 2004-12-24 2006-07-13 Kobe Steel Ltd Microfluid device, manufacturing method thereof, and chemical analysis device provided with microfluid device
JP2007063055A (en) * 2005-08-30 2007-03-15 Hiroyuki Masaki Glass joint structure, article having glass joint structure, and method for joining glass
JP2007075950A (en) * 2005-09-14 2007-03-29 Kobe Steel Ltd Micro fluid device and process of manufacture thereof
WO2007046484A1 (en) * 2005-10-19 2007-04-26 Sharp Kabushiki Kaisha Electrophoretic chip, electrophoretic device, and electrophoretic system
WO2008065868A1 (en) * 2006-12-01 2008-06-05 Konica Minolta Opto, Inc. Microchip substrate bonding method and microchip

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883291B2 (en) 2007-08-07 2014-11-11 President And Fellows Of Harvard College Metal oxide coating on surfaces
US8802027B2 (en) 2008-03-28 2014-08-12 President And Fellows Of Harvard College Surfaces, including microfluidic channels, with controlled wetting properties
JP2011515236A (en) * 2008-03-28 2011-05-19 プレジデント アンド フェローズ オブ ハーバード カレッジ Surface comprising microfluidic channels with controlled wetting properties
JP2011524815A (en) * 2008-06-02 2011-09-08 ベーリンガー インゲルハイム マイクロパーツ ゲゼルシャフト ミット ベシュレンクテル ハフツング Microfluidic foil structure for fluid metering
KR101191881B1 (en) 2010-02-26 2012-10-16 한국에너지기술연구원 protection layer of micro channel reactor and preparation method thereof
JP2011214996A (en) * 2010-03-31 2011-10-27 Enplas Corp Microchannel chip and microanalysis system
JP2014030382A (en) * 2012-08-03 2014-02-20 Univ Of Tokyo Microfluidic device and method for forming lipid bilayer membrane
WO2014087923A1 (en) * 2012-12-07 2014-06-12 アルプス電気株式会社 Bonded member and method for producing bonded member
WO2015159532A1 (en) * 2014-04-15 2015-10-22 セイコーエプソン株式会社 Chemical synthesis apparatus, and method for manufacturing chemical synthesis apparatus
WO2017179353A1 (en) * 2016-04-12 2017-10-19 株式会社日立製作所 Microreactor, formed product manufacturing system, and microreactor manufacturing method
JP2017189729A (en) * 2016-04-12 2017-10-19 株式会社日立製作所 Microreactor, chemical product production system and method for producing microreactor
US10464039B2 (en) 2016-04-12 2019-11-05 Hitachi, Ltd. Microreactor, chemical product manufacturing system and microreactor manufacturing method
WO2022181554A1 (en) * 2021-02-25 2022-09-01 キヤノン株式会社 Microchannel device and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP2008284626A (en) Micro-flow channel device
KR100998535B1 (en) Microfluidic circuit element comprising microfluidic channel with nano interstices and fabrication thereof
EP1950569A1 (en) Flow cell and process for producing the same
Kelly et al. Thermal bonding of polymeric capillary electrophoresis microdevices in water
DK2394156T3 (en) Device and method for electrochemical measurement of biochemical reactions as well as method of preparation for the device.
WO2001026812A1 (en) Microfluidic structures and methods of fabrication
WO2013118447A1 (en) Fluid handling apparatus and method for manufacturing same
JP2007136292A (en) Manufacturing method of microchannel structure, microchannel structure, and microreactor
JP2008224431A (en) Method of manufacturing microchip, and microchip
JP5948248B2 (en) Microchip and method for manufacturing microchip
CN109701674A (en) Micro-fluidic chip microelectrode technique
WO2016092973A1 (en) Fluid handling device and method for manufacturing fluid handling device
JP2012225827A (en) Fluid handling device and fluid handling system
JP2004340758A (en) Micro-fine flow passage, and micro chemical chip containing the same
JP2001183291A (en) Measurement chamber having fluorescent sensor element
EP2083949A1 (en) Method of bonding a micrifluidic device and a microfluidic device
JP6549355B2 (en) Fluid handling device
JP2013010076A (en) Method for manufacturing microchannel device and microchannel chip
JP5471989B2 (en) Biochemical reaction chip and manufacturing method thereof
JP5239871B2 (en) Microchip and manufacturing method of microchip
JP4992123B2 (en) Microchip substrate bonding method and microchip
WO2009125757A1 (en) Microchip and method for manufacturing microchip
JPWO2010016370A1 (en) Microchip, microchip manufacturing method, and microchip manufacturing apparatus
JP2008304352A (en) Channel device and method for bonding channel device-use board
JP2006133003A (en) Microchemical device and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120404

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120420

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002