JP2008270595A - Reaction product peeling preventive structure and manufacturing method thereof, and manufacturing method of semiconductor device using the structure - Google Patents

Reaction product peeling preventive structure and manufacturing method thereof, and manufacturing method of semiconductor device using the structure Download PDF

Info

Publication number
JP2008270595A
JP2008270595A JP2007112873A JP2007112873A JP2008270595A JP 2008270595 A JP2008270595 A JP 2008270595A JP 2007112873 A JP2007112873 A JP 2007112873A JP 2007112873 A JP2007112873 A JP 2007112873A JP 2008270595 A JP2008270595 A JP 2008270595A
Authority
JP
Japan
Prior art keywords
reaction product
chamber
prevention structure
structure according
preventing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007112873A
Other languages
Japanese (ja)
Inventor
Hirotsugu Shishikura
広継 宍倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Japan Ltd
Original Assignee
Texas Instruments Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Japan Ltd filed Critical Texas Instruments Japan Ltd
Priority to JP2007112873A priority Critical patent/JP2008270595A/en
Priority to US12/107,180 priority patent/US20080261074A1/en
Priority to PCT/US2008/061215 priority patent/WO2008131402A1/en
Publication of JP2008270595A publication Critical patent/JP2008270595A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/06Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for producing matt surfaces, e.g. on plastic materials, on glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reaction product peeling preventive structure capable of preventing or suppressing the peeling of reaction products undesirably sticking and deposited on a member in a chamber of a plasma etching device, and a manufacturing method thereof. <P>SOLUTION: Top surfaces (sticking-preventive surfaces) of an aluminum-made outer liner 40 and an inner liner 42 fitted as sticking-preventive plates in the chamber of the plasma etching device are roughened to surface roughness within a certain range without being subjected to alumite treatment, and thus a reaction product deposited film 50 is prevented from being peeled off, thereby reducing the contamination of a treated body 16 with particles. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、処理装置のチャンバ内で被処理体のパーティクル汚染を防止する技術に係り、特にプラズマエッチング装置内で反応生成物に起因するパーティクルの発生を防止する反応生成物剥離防止構造およびその製作方法ならびに当該構造を用いる半導体装置の製造方法に関する。   The present invention relates to a technique for preventing particle contamination of an object to be processed in a chamber of a processing apparatus, and in particular, a reaction product separation preventing structure for preventing generation of particles caused by a reaction product in a plasma etching apparatus and its manufacture. The present invention relates to a method and a method for manufacturing a semiconductor device using the structure.

半導体装置や液晶表示装置等の製造において、エッチングは、リソグラフィで形成されたレジストパターンをマスクとして被処理体表面の薄膜を所望の回路パターンに加工する技術であり、必須不可欠のプロセスである。現在主流となっているプラズマエッチングは、減圧下のチャンバ(処理容器)内で反応性の処理ガスを高周波放電により電離・解離させてプラズマ化し、プラズマ中のラジカルやイオンを被処理体(たとえば半導体ウェーハ、ガラス基板等)に供給して、基板表面の被エッチング膜と反応させる。この反応で生成した気相の反応生成物や反応副生成物の大部分は真空排気機構によりチャンバの外へ排出されるが、一部はチャンバ内の各部に付着して堆積膜を形成する。   In the manufacture of semiconductor devices, liquid crystal display devices, and the like, etching is a technique for processing a thin film on the surface of an object to be processed into a desired circuit pattern using a resist pattern formed by lithography as a mask, and is an indispensable process. In plasma etching, which is currently mainstream, reactive processing gas is ionized and dissociated by high-frequency discharge in a chamber (processing vessel) under reduced pressure to form plasma, and radicals and ions in the plasma are processed (for example, semiconductors). Wafer, glass substrate, etc.) to react with the film to be etched on the substrate surface. Most of the gas phase reaction products and reaction by-products generated by this reaction are discharged out of the chamber by the evacuation mechanism, but some adhere to each part in the chamber to form a deposited film.

従来より、チャンバ内壁やサセプタ(基板載置台)等の非交換部材に上記のような反応生成物が不所望に堆積するのを回避するために、それらの部材を覆う板材の防着カバー、いわゆる防着板を用いることも行われている。この場合、プラズマエッチングのプロセス中に生成する反応生成物は防着板に付着してそこに堆積するので、防着板で覆われている背後の部材(チャンバ側壁、サセプタ等)は反応生成物の付着・堆積から保護され、特段のクリーニングは不要となる。   Conventionally, in order to avoid undesired accumulation of reaction products as described above on non-exchange members such as a chamber inner wall and a susceptor (substrate mounting table), an adhesion cover for plate members covering these members, so-called The use of an adhesion preventing plate is also performed. In this case, the reaction product generated during the plasma etching process adheres to and deposits on the deposition plate, so that the members behind the deposition plate (chamber sidewall, susceptor, etc.) are reaction products. It is protected from adhesion / deposition of water and no special cleaning is required.

一般に、防着板は、アルマイト処理を施したアルミニウムからなり、チャンバ内に着脱自在に取付可能な交換部品として製作される。そして、プラズマエッチング装置での使用においては、定期的に新旧の交換が行われる。すなわち、プラズマエッチングのプロセスが行われる度に、防着板上で反応生成物の堆積膜が成長してその膜厚が増大し、そのまま放っておくと、やがて防着板から膜が剥がれ、これがパーティクルとなって被処理基板上に落下し、製品の歩留まりを下げる原因になる。そこで、膜剥がれが起きる前に、通常はチャンバ内に防着板を装着してから正味の使用時間つまり累積処理時間が設定時間に達したところで、該防着板をチャンバから取り外し、それと入れ代わりに新規の防着板をチャンバに装着する。チャンバから取り出された使用済みの防着板は、ブラシ等の治具で堆積膜を擦り取って表面を洗浄してからアルマイト処理を施され、再生部品として再利用される。   In general, the deposition preventing plate is made of anodized aluminum and is manufactured as a replacement part that can be detachably mounted in the chamber. And in use with a plasma etching apparatus, old and new exchange is performed regularly. That is, every time the plasma etching process is performed, a deposition film of a reaction product grows on the deposition plate and the film thickness increases, and if left as it is, the film peels off from the deposition plate in time. It becomes particles and falls on the substrate to be processed, which causes a decrease in product yield. Therefore, before the film peeling occurs, usually when the net use time, that is, the accumulated processing time has reached the set time after the deposition plate is installed in the chamber, the deposition plate is removed from the chamber and replaced with it. A new deposition plate is installed in the chamber. The used adhesion-preventing plate taken out from the chamber is subjected to alumite treatment after scraping the deposited film with a jig such as a brush to clean the surface, and is reused as a recycled part.

しかしながら、上記のような従来の防着板を使用するプラズマエッチング装置においては、防着板から反応生成物の堆積膜が剥がれやすく、このため、上記のようなパーティクル発生防止の観点から、防着板の交換サイクルを短く設定せざるを得ず、装置稼働率の低下や防着板再生費用の増大等を来たしている。   However, in the plasma etching apparatus using the conventional adhesion preventing plate as described above, the deposited film of the reaction product is easily peeled off from the adhesion preventing plate. The plate replacement cycle has to be set short, resulting in a decrease in the device operation rate and an increase in the cost of regenerating the protection plate.

本発明は、上述した従来技術の問題点に鑑みてなされたものであって、プラズマエッチング装置のチャンバ内で不所望な反応生成物の剥離を簡便に防止することができる反応生成物剥離防止構造およびその制作方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and is a reaction product peeling prevention structure that can easily prevent unwanted reaction products from peeling in a chamber of a plasma etching apparatus. And its production method.

上記の目的を達成するために、本発明の反応生成物剥離防止構造は、被処理体がチャンバ内に収容され、前記チャンバ内に減圧下で所定の処理ガスが導入され、前記処理ガスの放電により生成されるプラズマにより前記被処理体にプラズマエッチングが施されるプラズマ処理装置における反応生成物の剥離防止構造であって、前記チャンバ内で前記プラズマエッチングの処理の際に反応生成物が付着する所定の部材の表面から前記反応生成物の堆積膜が剥離するのを抑制するように前記部材の表面が粗面化されている。   In order to achieve the above object, the reaction product separation preventing structure of the present invention is configured such that an object to be processed is accommodated in a chamber, a predetermined processing gas is introduced into the chamber under reduced pressure, and discharge of the processing gas is performed. A reaction product peeling prevention structure in a plasma processing apparatus in which plasma processing is performed on the object to be processed by plasma generated by the step, wherein the reaction product adheres during the plasma etching processing in the chamber. The surface of the member is roughened so that the deposition film of the reaction product is prevented from peeling from the surface of the predetermined member.

上記の構成においては、チャンバ内で反応生成物の付着・堆積する部材の表面を適度に粗面化することで、反応生成物と部材表面との密着性が増大して膜剥離が抑制され、膜剥離に起因する被処理体へのパーティクル汚染が低減する。   In the above configuration, by appropriately roughening the surface of the member on which the reaction product adheres and accumulates in the chamber, adhesion between the reaction product and the member surface is increased, and film peeling is suppressed. Particle contamination to the object to be processed due to film peeling is reduced.

本発明の好適な一態様によれば、反応生成物は有機ポリマーからなり、炭素、水素、フッ素を含む。この場合、処理ガスは、炭素とフッ素を主成分とするハロゲン化合物でよく、さらに酸素を含んでよい。本発明は、特にシリコン窒化膜またはシリコン酸化膜を被エッチング材とするプラズマエッチングに好適に適用できる。   According to a preferred aspect of the present invention, the reaction product is made of an organic polymer and contains carbon, hydrogen, and fluorine. In this case, the processing gas may be a halogen compound containing carbon and fluorine as main components, and may further contain oxygen. The present invention is particularly applicable to plasma etching using a silicon nitride film or a silicon oxide film as an etching target material.

好適な一態様において、部材はアルミニウムからなり、アルマイト処理を施さずに表面を粗面化する。表面粗さは、平均粗さがRaとして、3μm≦Ra≦9μmの範囲が好ましく、特にRa=4.5μm付近(4μm≦Ra≦5μm)が最も好ましい。   In a preferred embodiment, the member is made of aluminum, and the surface is roughened without being subjected to an alumite treatment. The surface roughness is preferably in the range of 3 μm ≦ Ra ≦ 9 μm, with Ra being the average roughness, and most preferably around Ra = 4.5 μm (4 μm ≦ Ra ≦ 5 μm).

本発明の反応生成物剥離防止構造の製作には、サンドブラスト処理法を好適に用いることができる。この場合、サンドブラスト処理に使用される粒子は、アルミナ、珪砂あるいは石英の微粒子であり、その粒度は#70〜#150の範囲に選ばれるのが好ましい。   For the production of the reaction product peeling preventing structure of the present invention, a sandblasting method can be suitably used. In this case, the particles used for the sandblasting treatment are fine particles of alumina, silica sand or quartz, and the particle size is preferably selected in the range of # 70 to # 150.

また、本発明の半導体装置の製造方法は、反応生成物防着部材を備えたチャンバ内で半導体ウェーハに対してプラズマ処理を施す工程を含む半導体装置の製造方法であって、所定のレジストパターンが形成された半導体ウェーハをチャンバ内に導入する工程と、上記半導体ウェーハに対してプラズマエッチング処理を施す工程と、チャンバ内の反応生成物防着部材を取り出す工程と、取り出した防着部材を洗浄する工程と、洗浄した防着部材を上記チャンバ内に設置する工程と、 所定のレジストパターンが形成された半導体ウェーハをチャンバ内に導入する工程と、上記半導体ウェーハに対してプラズマエッチング処理を施す工程とを有し、上記防着部材の表面の平均粗さRaが3μm≦Ra≦9μmの範囲にある。   The semiconductor device manufacturing method of the present invention is a method for manufacturing a semiconductor device including a step of performing plasma processing on a semiconductor wafer in a chamber provided with a reaction product deposition member, wherein a predetermined resist pattern has a predetermined resist pattern. A step of introducing the formed semiconductor wafer into the chamber; a step of subjecting the semiconductor wafer to plasma etching; a step of removing the reaction product deposition member in the chamber; and cleaning the removed deposition member. A step, a step of installing the cleaned adhesion preventing member in the chamber, a step of introducing a semiconductor wafer on which a predetermined resist pattern is formed, and a step of performing a plasma etching process on the semiconductor wafer. The average roughness Ra of the surface of the deposition preventing member is in the range of 3 μm ≦ Ra ≦ 9 μm.

上記半導体装置の製造方法において、好ましくは、上記チャンバから取り出した上記防着部材に対して粗面処理を施す工程が更に含まれてよい。   Preferably, the method for manufacturing a semiconductor device may further include a step of subjecting the adhesion-preventing member taken out from the chamber to a rough surface treatment.

本発明の反応生成物剥離防止構造およびその製作方法、ならびに当該構造を用いる半導体装置の製造方法によれば、上記のような構成および作用により、プラズマエッチング装置のチャンバ内で不所望な反応生成物の剥離を簡便に防止することができる。   According to the reaction product peeling prevention structure and the manufacturing method thereof, and the method of manufacturing a semiconductor device using the structure of the present invention, an undesired reaction product in the chamber of the plasma etching apparatus is obtained by the above-described configuration and operation. Can be easily prevented.

以下、添付図を参照して本発明の好適な実施の形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1に、本発明の一実施形態を適用した容量結合型プラズマエッチング装置の構成を示す。このプラズマエッチング装置のチャンバ10はアルミニウム(Al)製の円筒状中空体として形成され、室内には上部電極を兼ねるシャワーヘッド12と下部電極を兼ねるサセプタ14が上下に所定の間隔を隔てて平行に配置されている。被処理体たとえば半導体ウェーハ16は、サセプタ14上に載置され、サセプタ上面に一体に取付されている静電チャック18によりクーロン力で保持される。また、サセプタ14の上面外周部には、半導体ウェーハ16を囲むように、たとえば多結晶シリコンからなる環状のフォーカスリング20が着脱可能に取付されている。   FIG. 1 shows a configuration of a capacitively coupled plasma etching apparatus to which an embodiment of the present invention is applied. A chamber 10 of this plasma etching apparatus is formed as a cylindrical hollow body made of aluminum (Al), and a shower head 12 also serving as an upper electrode and a susceptor 14 also serving as a lower electrode are vertically arranged in parallel at a predetermined interval. Has been placed. An object to be processed such as a semiconductor wafer 16 is placed on the susceptor 14 and is held by a Coulomb force by an electrostatic chuck 18 that is integrally attached to the upper surface of the susceptor. An annular focus ring 20 made of, for example, polycrystalline silicon is detachably attached to the outer peripheral portion of the upper surface of the susceptor 14 so as to surround the semiconductor wafer 16.

シャワーヘッド12は、処理ガス供給源(図示せず)より処理ガス供給管22A,22Bを介して所要の処理ガス(エッチングガス)を導入して混合し、混合処理ガスを多孔状のガス吐出口よりサセプタ14側に向けてシャワー状に噴出するようになっている。シャワーヘッド12は、定期的なクリーニングまたはメンテナンス作業において取り外しが容易にできるように、たとえばアルミニウム製の上蓋24を介してチャンバ10の上面に着脱自在に取り付けられ、電気的には上蓋24またはチャンバ10を介して接地される。   The shower head 12 introduces and mixes a required processing gas (etching gas) from a processing gas supply source (not shown) via processing gas supply pipes 22A and 22B, and the mixed processing gas is a porous gas discharge port. Further, it is ejected in a shower shape toward the susceptor 14 side. The shower head 12 is detachably attached to the upper surface of the chamber 10 via an upper lid 24 made of aluminum, for example, so that the shower head 12 can be easily removed during regular cleaning or maintenance work. Is grounded.

サセプタ14は、チャンバ10の底に絶縁板26を介して設置された円柱状または円筒状のたとえばアルミニウム製のサセプタ支持部28の上に固定されている。サセプタ14には、チャンバ10の外に配置された高周波電源30が整合器32を介して電気的に接続されている。   The susceptor 14 is fixed on a columnar or cylindrical susceptor support portion 28 made of, for example, aluminum and installed on the bottom of the chamber 10 via an insulating plate 26. A high frequency power supply 30 disposed outside the chamber 10 is electrically connected to the susceptor 14 via a matching unit 32.

チャンバ10は密閉かつ減圧可能な処理容器として構成されており、チャンバ側壁には半導体ウェーハ16を出し入れするためのウェーハ出入口34およびゲートバルブ35が取り付けられており、チャンバ底には排気管36を介して真空ポンプ(図示せず)に通じる排気口38が設けられている。   The chamber 10 is configured as a sealed and depressurized processing container. A wafer inlet / outlet 34 and a gate valve 35 for taking in and out the semiconductor wafer 16 are attached to the chamber side wall, and an exhaust pipe 36 is provided at the bottom of the chamber. An exhaust port 38 communicating with a vacuum pump (not shown) is provided.

チャンバ10内には、それぞれ防着板として、チャンバ内壁を覆うアウターライナー40と、サセプタ14ないしサセプタ支持部28の外周面を覆うインナーライナー42が着脱可能に取付されている。アウターライナー40は、より詳細には、チャンバ10の側壁を覆うように鉛直方向に延びる円筒状の側壁ライナー部40aと、シャワーヘッド12回りのチャンバ10の天井を覆うように水平方向に延びる環状の天井ライナー部40bとからなり、側壁ライナー部40aの上端に天井ライナー部40bの外周端が一体に接続している。側壁ライナー部40aには、ゲートバルブ35と対向する部位に内部ウェーハ出入口44およびシャッタ46が設けられる。インナーライナー42は、アウターライナー40の側壁ライナー部40aと対向して、チャンバ底の排気口38に通じる環状の排気空間48を形成する。   An outer liner 40 that covers the inner wall of the chamber and an inner liner 42 that covers the outer peripheral surface of the susceptor 14 or the susceptor support portion 28 are detachably attached to the chamber 10 as adhesion prevention plates. More specifically, the outer liner 40 has a cylindrical side wall liner portion 40a extending in the vertical direction so as to cover the side wall of the chamber 10, and an annular shape extending in the horizontal direction so as to cover the ceiling of the chamber 10 around the shower head 12. It consists of a ceiling liner part 40b, and the outer peripheral end of the ceiling liner part 40b is integrally connected to the upper end of the side wall liner part 40a. The side wall liner portion 40 a is provided with an internal wafer entrance / exit 44 and a shutter 46 at a portion facing the gate valve 35. The inner liner 42 faces the side wall liner portion 40a of the outer liner 40 and forms an annular exhaust space 48 that communicates with the exhaust port 38 at the bottom of the chamber.

アウターライナー40およびインナーライナー42はいずれもアルミニウム製であり、それぞれのおもて面は後に詳述するような所定範囲内の適度な表面粗さに粗面化されている。   Both the outer liner 40 and the inner liner 42 are made of aluminum, and each front surface is roughened to an appropriate surface roughness within a predetermined range as described in detail later.

このプラズマエッチング装置は、好適には、半導体ウェーハ16の主面に形成されているシリコン窒化膜あるいはシリコン酸化膜を被エッチング材とする。プラズマエッチング処理に際しては、処理ガス供給源より第1処理ガス供給管22Aおよび第2処理ガス供給管22Bを介してそれぞれフッ素系化合物ガスたとえばCHx4-x(x=1,2または3)および酸素ガスをシャワーヘッド12に導入して、シャワーヘッド12内で両ガスを混合し、その多孔状ガス吐出口より矢印に示すようにサセプタ14上の半導体ウェーハ16に向けて吐出させる。一方、真空ポンプによりチャンバ10内を所定圧力まで減圧し、高周波電源30より所定周波数の高周波を所定のパワーでサセプタ14に印加する。 This plasma etching apparatus preferably uses a silicon nitride film or a silicon oxide film formed on the main surface of the semiconductor wafer 16 as the material to be etched. In the plasma etching process, a fluorine compound gas such as CH x F 4-x (x = 1, 2 or 3) is supplied from the process gas supply source through the first process gas supply pipe 22A and the second process gas supply pipe 22B. And oxygen gas are introduced into the shower head 12, both gases are mixed in the shower head 12, and discharged from the porous gas discharge port toward the semiconductor wafer 16 on the susceptor 14 as indicated by an arrow. On the other hand, the inside of the chamber 10 is decompressed to a predetermined pressure by a vacuum pump, and a high frequency of a predetermined frequency is applied to the susceptor 14 from the high frequency power supply 30 with a predetermined power.

これにより、シャワーヘッド(上部電極)12とサセプタ(下部電極)14との間の領域(プラズマ生成空間)で処理ガスが高周波のパワーでプラズマ励起される。このプラズマ励起により処理ガスが分解、活性化して、たとえばフッ素や酸素等の活性種が生成される。これらの活性種は、イオンあるいは中性ラジカル等の励起状態にある分子、原子であり、化学反応を起こし易い状態にあり、半導体ウェーハ16の被エッチング材と容易に反応する。この反応によって生じる気相の生成物は、元素C,H、Fを含む有機ポリマーであり、その大部分が未反応の活性種や処理ガスと一緒に排気ガスとして排気空間48を通って排気口38からチャンバ10の外へ排出される。   As a result, the processing gas is plasma-excited with high-frequency power in a region (plasma generation space) between the shower head (upper electrode) 12 and the susceptor (lower electrode) 14. By this plasma excitation, the processing gas is decomposed and activated, and active species such as fluorine and oxygen are generated. These active species are molecules or atoms in an excited state such as ions or neutral radicals, and are in a state in which a chemical reaction is likely to occur, and easily react with the material to be etched of the semiconductor wafer 16. The gas phase product produced by this reaction is an organic polymer containing the elements C, H, and F, and most of them are exhausted through the exhaust space 48 as exhaust gas together with unreacted active species and processing gas. 38 is discharged out of the chamber 10.

しかし、反応生成物の一部は、チャンバ10の外に排出されずに、周囲の壁面つまりアウターライナー40の内壁(防着表面)およびインナーライナー42の外壁(防着表面)に付着して、堆積膜50を形成する。そして、プラズマエッチングのプロセスを重ねるにつれて、この反応生成物堆積膜50の膜厚が増大する。このように、アウターライナー40およびインナーライナー42が盾になってそれぞれのおもて面(防着表面)に反応生成物を付着・堆積させるので、それらに覆われた背後の部材(チャンバ10の内壁、サセプタ支持部28の外周面)には反応生成物が殆どあるいは僅かしか付着・堆積しないようになっている。   However, a part of the reaction product is not discharged out of the chamber 10, but adheres to the surrounding wall surface, that is, the inner wall (an adhesion surface) of the outer liner 40 and the outer wall (an adhesion surface) of the inner liner 42, A deposited film 50 is formed. As the plasma etching process is repeated, the thickness of the reaction product deposited film 50 increases. In this way, the outer liner 40 and the inner liner 42 serve as shields to attach and deposit reaction products on the respective front surfaces (adhesion surfaces). Almost or little reaction product is deposited or deposited on the inner wall and the outer peripheral surface of the susceptor support 28.

この実施形態においては、アウターライナー40およびインナーライナー42から反応生成物の堆積膜50が剥がれるのを効果的に防止ないし抑制するために、両ライナー40,42の防着表面を所定範囲内の適度な表面粗さに粗面化している。具体的には、両ライナー40,42の防着表面の表面粗さは、平均粗さをRaとすると、下限は3μm≦Raの条件を満たすのが好ましい。Raが3μm未満であると、後に詳述するように、反応生成物堆積膜50との密着性が悪くなって、膜剥離が生じやすい。また、Raの上限はRa≦9μmの条件を満たすのが好ましい。Raが9μmを超えると、両ライナー40,42の材質(アルミニウム)と反応生成物堆積膜50との間の熱膨張率の違いに起因した膜剥離が起こりやすくなる。なお、この実施形態においては、3μm≦Ra≦9μmの範囲内でRa=4.5μm付近(4μm≦Ra≦5μm)が膜剥離低減効果の最も大きいことが実験で確認されている。   In this embodiment, in order to effectively prevent or suppress the deposition film 50 of the reaction product from being peeled off from the outer liner 40 and the inner liner 42, the adhesion surfaces of both the liners 40 and 42 are set within a predetermined range. The surface is roughened to a rough surface. Specifically, it is preferable that the lower limit of the surface roughness of the adhesion preventing surfaces of both liners 40 and 42 satisfies the condition of 3 μm ≦ Ra, where Ra is the average roughness. When Ra is less than 3 μm, as will be described in detail later, the adhesion with the reaction product deposited film 50 is deteriorated, and film peeling is likely to occur. The upper limit of Ra preferably satisfies the condition of Ra ≦ 9 μm. When Ra exceeds 9 μm, film peeling due to the difference in coefficient of thermal expansion between the material (aluminum) of both liners 40 and 42 and the reaction product deposited film 50 is likely to occur. In this embodiment, it has been experimentally confirmed that Ra = 4.5 μm (4 μm ≦ Ra ≦ 5 μm) is most effective in reducing film peeling within a range of 3 μm ≦ Ra ≦ 9 μm.

図2に、この実施形態のプラズマエッチング装置において、シリコン窒化膜のプラズマエッチング処理を繰り返したときの正味の防着板使用時間(累積処理時間)と防着板(アウターライナー40およびインナーライナー42)上の反応生成物堆積膜50の膜厚との関係を示す。図示のように、使用時間が増すにしたがって、反応生成物堆積膜50の膜厚も略一定の比例係数C(図示の例はC=1.3384)で単調に増大する。   FIG. 2 shows the net deposition plate use time (cumulative processing time) and deposition plates (outer liner 40 and inner liner 42) when the plasma etching process of the silicon nitride film is repeated in the plasma etching apparatus of this embodiment. The relationship with the film thickness of the above reaction product deposited film 50 is shown. As shown in the figure, as the usage time increases, the film thickness of the reaction product deposition film 50 also increases monotonically with a substantially constant proportional coefficient C (C = 1.3384 in the example shown).

この実施形態においては、使用時間が延べ115時間を超して反応生成物堆積膜50の膜厚が153μmに達しても、図3に模式的に示すように、アウターライナー40の内壁(防着表面)に反応生成物堆積膜50がしっかりこびりついていて、膜剥離は全く生じなかった。図示省略するが、インナーライナー42においても、同様に反応生成物堆積膜50の剥離は全然見られなかった。   In this embodiment, even if the usage time exceeds 115 hours and the film thickness of the reaction product deposited film 50 reaches 153 μm, as shown schematically in FIG. The reaction product deposited film 50 was firmly adhered to the surface), and no film peeling occurred. Although not shown, the reaction product deposited film 50 was not peeled off at all in the inner liner 42 as well.

これに対し、比較例として、アウターライナー40およびインナーライナー42の防着表面に従来のようにアルマイト処理(52)を施した場合は、使用時間が50時間を超えたあたりで、まだ反応生成物堆積膜50の膜厚が67μmの段階で、図4に示すように、アウターライナー40の内壁(防着表面)から反応生成物堆積膜50が帯状に剥がれ落ちてアルマイト層52が露出するに至った。インナーライナー42においても、図示省略するが、同様に反応生成物堆積膜50の剥離が見られた。なお、アルマイト層52の表面粗さは平均粗さRaが2μm以下である。   On the other hand, as a comparative example, when the alumite treatment (52) is applied to the adhesion-preventing surfaces of the outer liner 40 and the inner liner 42 as in the prior art, the reaction product is still present when the usage time exceeds 50 hours. At the stage where the film thickness of the deposited film 50 is 67 μm, as shown in FIG. 4, the reaction product deposited film 50 is peeled off from the inner wall (anti-adhesion surface) of the outer liner 40 to expose the alumite layer 52. It was. Also in the inner liner 42, although not shown, the reaction product deposited film 50 was also peeled off. The surface roughness of the alumite layer 52 has an average roughness Ra of 2 μm or less.

上記のように、チャンバ10内で防着板として機能するAl製のアウターライナー40およびインナーライナー42の防着表面をアルマイト処理せずに一定範囲(3μm≦Ra≦9μm)内の表面粗さに粗面化することにより、反応生成物堆積膜50の剥離を抑制して、半導体ウェーハ16表面のパーティクル汚染を低減できる。また、アウターライナー40およびインナーライナー42から反応生成物堆積膜50が剥れ難くなるぶん、チャンバ10内の定期的クリーニングの実施あるいはライナー交換の間隔(サイクル)を延ばすことができ、装置稼働率の向上や防着板リサイクル費用の低減等も図れる。   As described above, the adhesion surface of the outer liner 40 and the inner liner 42 made of Al functioning as an adhesion-preventing plate in the chamber 10 has a surface roughness within a certain range (3 μm ≦ Ra ≦ 9 μm) without being anodized. By roughening, peeling of the reaction product deposition film 50 can be suppressed, and particle contamination on the surface of the semiconductor wafer 16 can be reduced. In addition, the reaction product deposited film 50 is less likely to be peeled off from the outer liner 40 and the inner liner 42, so that it is possible to extend the periodic cleaning in the chamber 10 or the interval (cycle) for replacing the liner. It is possible to improve and reduce the cost of recycling the protective plate.

ここで、図5の模式図を参照して、本発明における防着板(特に防着表面)の作用を説明する。図5Aは、本発明にしたがって防着板の表面粗さをRa=4.5μmとした場合である。この場合は、シリコン窒化膜あるいはシリコン酸化膜のプラズマエッチングにおいて、元素C、H、Fを含む有機ポリマーの反応生成物50がたとえば図中の白丸に模擬して示したように束状の繊維になって、防着板表面の凹凸部の中に膜の最下層部分を埋め込ませるようにして付着・堆積する。このように、反応生成物50の繊維と防着板表面の凹凸部との間の密着面積が大きいため、両者間の接着強度(結合力)が大きい。   Here, with reference to the schematic diagram of FIG. 5, the effect | action of the adhesion prevention board (especially adhesion prevention surface) in this invention is demonstrated. FIG. 5A shows a case where the surface roughness of the adhesion-preventing plate is Ra = 4.5 μm according to the present invention. In this case, in the plasma etching of the silicon nitride film or silicon oxide film, the reaction product 50 of the organic polymer containing the elements C, H, and F becomes, for example, a bundle of fibers as shown by simulating white circles in the figure. Thus, the lowermost layer portion of the film is embedded and deposited in the uneven portion on the surface of the deposition preventing plate. Thus, since the contact | adherence area between the fiber of the reaction product 50 and the uneven | corrugated | grooved part on the surface of an adhesion prevention board is large, the adhesive strength (bonding force) between both is large.

これに対して、図5Bは、防着板の表面粗さをRa=2μmとした場合である。従来のようにAl製の防着板の表面をアルマイト処理すると、この程度の細かな表面粗さになる。この場合は、有機ポリマーの反応生成物50が防着板表面の凹凸部の中に入り込まず、凸部の上に載るような形で付着・堆積するため、接触面積は小さくて密着度が良くなく、界面から膜剥離が生じやすい。   On the other hand, FIG. 5B shows a case where the surface roughness of the deposition preventing plate is Ra = 2 μm. When the surface of the Al-made deposition preventing plate is anodized as in the prior art, the surface roughness is as fine as this. In this case, the reaction product 50 of the organic polymer does not enter the uneven portion on the surface of the deposition preventing plate, but adheres and accumulates on the convex portion so that the contact area is small and the degree of adhesion is good. No film peeling occurs from the interface.

一般に、有機ポリマーの反応生成物の防着板表面への付着においては、原子レベルあるいは分子レベルでみた結合は物理吸着レベルであり、それ程強固なものではない。しかし、本発明による防着板は、そのように本来それ程強固でない付着力であっても、適度な表面粗さにより反応生成物堆積膜との密着ないし接着面積を大きくして、膜の剥離を効果的に抑制することができる。   In general, in the adhesion of the reaction product of the organic polymer to the surface of the adhesion-preventing plate, the bond at the atomic level or molecular level is at the physical adsorption level and is not so strong. However, the adhesion preventing plate according to the present invention increases the adhesion or adhesion area with the reaction product deposited film with an appropriate surface roughness, even if the adhesion force is not so strong by nature, and peels off the film. It can be effectively suppressed.

次に、図6のフローチャートにつき、この実施形態における防着板(アウターライナー40およびインナーライナー42)の再利用方法の一例を説明する。先ず、チャンバ10内の防着板を定期的に交換する場合は、それまで使用してきたアウターライナー40およびインナーライナー42を取り外す前に、プラズマクリーニングを実施する。より詳細には、チャンバ10内にクリーニングガスとして、たとえばNF3(三フッ化窒素)のような炭素を含まないフッ素系ガスと酸素系ガスの混合ガスを導入し、これらのガスをプラズマ励起してチャンバ10内部の表面をクリーニングする(ステップS1)。このプラズマクリーニングにより、各ライナー40,42の防着表面に付いている反応生成物堆積膜50の一部が除去される。 Next, with reference to the flowchart of FIG. 6, an example of a method for reusing the deposition preventing plates (the outer liner 40 and the inner liner 42) in this embodiment will be described. First, when periodically replacing the protection plate in the chamber 10, plasma cleaning is performed before removing the outer liner 40 and the inner liner 42 that have been used so far. More specifically, a mixed gas of fluorine-based gas and oxygen-based gas not containing carbon, such as NF 3 (nitrogen trifluoride), for example, is introduced into the chamber 10 as a cleaning gas, and these gases are plasma-excited. Then, the surface inside the chamber 10 is cleaned (step S1). By this plasma cleaning, a part of the reaction product deposited film 50 attached to the adhesion preventing surfaces of the liners 40 and 42 is removed.

上記プラズマクリーニングの後に、チャンバ上蓋24およびシャワーヘッド12を取り外し、アウターライナー40およびインナーライナー42をチャンバ10の外に取り出す。そして、各ライナー40,42の防着表面に残存する反応生成物堆積膜50の擦り落しを行う(ステップS2)。この擦り落しでは、防着表面を不織布あるいは樹脂系ブラシ等により摺擦するとよい。   After the plasma cleaning, the chamber upper cover 24 and the shower head 12 are removed, and the outer liner 40 and the inner liner 42 are taken out of the chamber 10. Then, the reaction product deposited film 50 remaining on the adhesion-preventing surfaces of the liners 40 and 42 is scraped off (step S2). In this scrubbing, the adhesion-preventing surface may be rubbed with a nonwoven fabric or a resin brush.

次いで、たとえば純水に浸漬しての超音波洗浄、あるいは化学薬液を用いる洗浄等により各ライナー40,42の防着表面を洗浄する(ステップS3)。   Next, the adhesion-preventing surfaces of the liners 40 and 42 are cleaned by, for example, ultrasonic cleaning immersed in pure water or cleaning using a chemical solution (step S3).

次いで、各ライナー40,42の防着表面をサンドブラスト処理する(ステップS4)。このサンドブラスト処理に使用する粒子は珪砂、石英、アルミナ等の微粒子であってよく、その粒度は#70〜#150の範囲が好ましく、特に粒度#100が好適である。このサンドブラスト処理により各ライナー40,42の防着表面が上記一定範囲(3μm≦Ra≦9μm)内の表面粗さに粗面化される。サンドブラスト処理に用いる微粒子はその粒径が揃うように、たとえば篩いにより分級するのが好ましい。なお、粒度#は、微粒子を10mm平方に並べて配列できる微粒子のほぼ個数に相当する。   Next, the adhesion-preventing surfaces of the liners 40 and 42 are sandblasted (step S4). The particles used for the sandblasting treatment may be fine particles such as silica sand, quartz, alumina, etc., and the particle size is preferably in the range of # 70 to # 150, and the particle size # 100 is particularly preferable. By this sandblast treatment, the adhesion-preventing surfaces of the liners 40 and 42 are roughened to a surface roughness within the above-mentioned predetermined range (3 μm ≦ Ra ≦ 9 μm). It is preferable to classify the fine particles used for the sandblast treatment by, for example, sieving so that the particle diameters thereof are uniform. The particle size # corresponds to the approximate number of fine particles that can be arranged in 10 mm square.

その後、サンドブラスト処理により粗面化されたアウターライナー40およびインナーライナー42の防着表面を洗浄する(ステップS5)。この洗浄工程では、各ライナー40,42の防着表面に付着しているパーティクルを効率的に除去できるような洗浄方法、たとえば超音波洗浄あるいは化学薬液洗浄を用いてよい。   Thereafter, the adhesion-preventing surfaces of the outer liner 40 and the inner liner 42 roughened by sandblasting are washed (step S5). In this cleaning step, a cleaning method capable of efficiently removing particles adhering to the adhesion-preventing surfaces of the liners 40 and 42, for example, ultrasonic cleaning or chemical solution cleaning may be used.

以上のようにしてアウターライナー40およびインナーライナー42の再生処理がなされる。そして、この再生処理されたアウターライナー40およびインナーライナー42は、定期交換でプラズマエッチング装置のチャンバ10内に装着され、再使用に付される。   As described above, the regeneration processing of the outer liner 40 and the inner liner 42 is performed. Then, the regenerated outer liner 40 and inner liner 42 are mounted in the chamber 10 of the plasma etching apparatus by regular replacement and are reused.

なお、上記ステップS3の洗浄工程の後で、各ライナー40,42の防着表面の表面粗さRaを表面粗さ計で計測し、Raの値が許容範囲から外れた場合に限って上記サンドブラスト処理を行うようにしてもよい。通常、チャンバ10内の防着板としての使用と上記ステップS1,S2,S3とを繰り返している間に防着表面45が滑らかになる。そこで、Ra<3μmの膜厚計測結果が得られた場合に、ステップS4の工程において上記サンドブラスト処理を行ってよい。あるいは、チャンバ10内のプラズマクリーニング(ステップS1)を省いて、反応生成物堆積膜50の擦り落し(ステップS2)から再生処理を始めてもよい。   In addition, after the cleaning process of the above step S3, the surface roughness Ra of the adhesion-preventing surfaces of the liners 40 and 42 is measured with a surface roughness meter, and the sandblasting is performed only when the value of Ra is out of the allowable range. Processing may be performed. Usually, the adhesion-preventing surface 45 becomes smooth while the use as the adhesion-preventing plate in the chamber 10 and the above steps S1, S2, and S3 are repeated. Therefore, when a film thickness measurement result of Ra <3 μm is obtained, the sandblasting process may be performed in the step S4. Alternatively, the plasma cleaning (step S1) in the chamber 10 may be omitted, and the regeneration process may be started from rubbing the reaction product deposited film 50 (step S2).

本発明によれば、プラズマエッチング装置のチャンバ内で使用される防着板以外の各種部材においても、その表面を上記一定範囲(3μm≦Ra≦9μm)内の表面粗さに粗面化することにより、反応性生物堆積膜について上記と同様の剥離防止または抑制の効果を得ることができる。この場合、そのような表面粗さの粗面化を施される部材の材質としては、Al以外にも、たとえば石英ガラス、窒化アルミニウム、ステンレス等でもよい。   According to the present invention, the surface of various members other than the adhesion-preventing plate used in the chamber of the plasma etching apparatus is roughened to a surface roughness within the predetermined range (3 μm ≦ Ra ≦ 9 μm). As a result, it is possible to obtain the same peeling prevention or suppression effect as described above for the reactive biodeposited film. In this case, as a material of the member subjected to such surface roughness, other than Al, for example, quartz glass, aluminum nitride, stainless steel, or the like may be used.

本発明は、シリコン窒化膜やシリコン酸化膜を被エッチング材とするプラズマエッチング装置に好適に適用可能であり、他のプラズマ処理装置たとえばPECVD(Plasma Enhanced Chemical Vapor Deposition)装置では大して顕著な作用効果が得られない。   The present invention can be suitably applied to a plasma etching apparatus using a silicon nitride film or a silicon oxide film as an etching material, and other plasma processing apparatuses such as PECVD (Plasma Enhanced Chemical Vapor Deposition) apparatus have a remarkable effect. I can't get it.

以上、本発明の好適な実施形態について説明したが、上述した実施形態は本発明を限定するものでない。当業者にあっては、具体的な実施態様において本発明の技術思想および技術範囲から逸脱せずに種々の変形・変更を加えることが可能である。   Although the preferred embodiments of the present invention have been described above, the above-described embodiments do not limit the present invention. Those skilled in the art can make various modifications and changes in specific embodiments without departing from the technical idea and technical scope of the present invention.

たとえば、上記実施形態において反応性生物堆積膜の剥離抑制のために防着板等の各種部材の表面に施される粗面化処理は、上述したようなサンドブラスト処理の他にも、化学薬液あるいは物理的摺擦による部材表面の蝕刻によって形成されてもよい。   For example, in the above embodiment, the surface roughening treatment performed on the surface of various members such as an adhesion-preventing plate in order to suppress the peeling of the reactive biodeposited film is not limited to the sandblast treatment as described above, It may be formed by etching the surface of the member by physical rubbing.

また、本発明における被処理体は半導体ウェーハに限るものではなく、たとえば液晶表示装置に用いられるガラス基板等であってもよい。本発明の適用可能なプラズマエッチング装置は上記実施形態のタイプに限らない。たとえば、下部電極を接地して上部電極に高周波を印加するアノードカップル式のプラズマエッチング装置にも本発明の反応生成物剥離防止構造は適用可能である。   Further, the object to be processed in the present invention is not limited to a semiconductor wafer, and may be, for example, a glass substrate used in a liquid crystal display device. The plasma etching apparatus to which the present invention is applicable is not limited to the type of the above embodiment. For example, the reaction product peeling preventing structure of the present invention can be applied to an anode-coupled plasma etching apparatus in which a lower electrode is grounded and a high frequency is applied to the upper electrode.

本発明の一実施形態におけるプラズマエッチング装置の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the plasma etching apparatus in one Embodiment of this invention. 実施形態のプラズマエッチング装置における防着板の使用時間と防着板に堆積する反応生成物の膜厚との関係を示すグラフである。It is a graph which shows the relationship between the usage time of the adhesion prevention board in the plasma etching apparatus of embodiment, and the film thickness of the reaction product deposited on an adhesion prevention board. 実施形態において反応生成物堆積膜の膜厚が所定値に達した時点での防着板の防着表面状態を示す図である。It is a figure which shows the adhesion prevention surface state of the adhesion prevention board at the time of the film thickness of the reaction product deposited film reaching predetermined value in embodiment. 比較例において反応生成物堆積膜の膜厚が所定値に達した時点での防着板の防着表面状態を示す図である。In a comparative example, it is a figure which shows the adhesion prevention surface state of the adhesion prevention board at the time of the film thickness of the reaction product deposited film reaching a predetermined value. 防着板の表面における本発明の作用を説明するための模式図である。It is a schematic diagram for demonstrating the effect | action of this invention in the surface of an adhesion prevention board. 防着板の表面における比較例(従来例)の作用を説明するための模式図である。It is a schematic diagram for demonstrating the effect | action of the comparative example (conventional example) in the surface of an adhesion prevention board. 実施形態における防着板の再利用方法(手順)の一例を示すフローチャートである。It is a flowchart which shows an example of the reuse method (procedure) of the adhesion prevention board in embodiment.

符号の説明Explanation of symbols

10 チャンバ
12 シャワーヘッド(上部電極)
14 サセプタ(下部電極)
16 半導体ウェーハ(被処理体)
30 高周波電源
38 排気口
40 アウターライナー(防着板)
42 インナーライナー(防着板)
50 反応生成物堆積膜
10 Chamber 12 Shower head (upper electrode)
14 Susceptor (lower electrode)
16 Semiconductor wafer (object to be processed)
30 High frequency power supply 38 Exhaust port 40 Outer liner (protection plate)
42 Inner liner (protection plate)
50 Reaction product deposited film

Claims (15)

被処理体がチャンバ内に収容され、前記チャンバ内に減圧下で所定の処理ガスが導入され、前記処理ガスの放電により生成されるプラズマにより前記被処理体にプラズマエッチングが施されるプラズマ処理装置における反応生成物の剥離防止構造であって、
前記チャンバ内で前記プラズマエッチングの処理の際に反応生成物が付着する所定の部材の表面から前記反応生成物の堆積膜が剥離するのを抑制するように前記部材の表面が粗面化されている反応生成物剥離防止構造。
A plasma processing apparatus in which a target object is accommodated in a chamber, a predetermined processing gas is introduced into the chamber under reduced pressure, and plasma etching is performed on the target object by plasma generated by discharge of the processing gas A reaction product peeling prevention structure in which
The surface of the member is roughened so as to prevent the deposition film of the reaction product from peeling from the surface of the predetermined member to which the reaction product adheres during the plasma etching process in the chamber. Reaction product peeling prevention structure.
前記反応生成物は、有機ポリマーからなる請求項1に記載の反応生成物剥離防止構造。   The reaction product peeling prevention structure according to claim 1, wherein the reaction product is made of an organic polymer. 前記反応生成物は、炭素、水素およびフッ素を含む請求項2に記載の反応生成物剥離防止構造。   The reaction product peeling prevention structure according to claim 2, wherein the reaction product contains carbon, hydrogen, and fluorine. 前記処理ガスは、炭素とフッ素を主成分とするハロゲン化合物を含む請求項1〜3のいずれか一項に記載の反応生成物剥離防止構造。   The reaction product exfoliation preventing structure according to any one of claims 1 to 3, wherein the processing gas contains a halogen compound containing carbon and fluorine as main components. 前記処理ガスは酸素を含む請求項4に記載の反応生成物剥離防止構造。   The reaction product peeling prevention structure according to claim 4, wherein the processing gas contains oxygen. 前記被処理体は、被エッチング材としてシリコン窒化膜またはシリコン酸化膜を有する請求項1〜5のいずれか一項に記載の反応生成物剥離防止構造。   The reaction product peeling prevention structure according to any one of claims 1 to 5, wherein the object to be processed includes a silicon nitride film or a silicon oxide film as a material to be etched. 前記部材は、アルミニウムからなる請求項1〜6のいずれか一項に記載の反応生成物剥離防止構造。   The reaction product peeling prevention structure according to claim 1, wherein the member is made of aluminum. 前記部材の表面の平均粗さがRaとして、3μm≦Ra≦9μmの範囲にある請求項1〜7のいずれか一項に記載の反応生成物剥離防止構造。   The reaction product exfoliation preventing structure according to any one of claims 1 to 7, wherein an average roughness of a surface of the member is in a range of 3 µm ≤ Ra ≤ 9 µm as Ra. 前記部材の表面の平均粗さがRaとして、4μm≦Ra≦5μmの範囲にある請求項8に記載の反応生成物剥離防止構造。   The reaction product peeling prevention structure according to claim 8, wherein the average roughness of the surface of the member is in the range of 4 μm ≦ Ra ≦ 5 μm as Ra. 前記部材は、前記チャンバの内壁の少なくとも一部を覆う第1の防着板を含む請求項1〜9のいずれか一項に記載の反応生成物剥離防止構造。   The reaction product peeling prevention structure according to any one of claims 1 to 9, wherein the member includes a first deposition preventing plate that covers at least a part of the inner wall of the chamber. 前記部材は、前記被処理体を載置して支持する載置台の表面の少なくとも一部を覆う第2の防着板を含む請求項1〜10のいずれか一項に記載の反応生成物剥離防止構造。   The reaction product peeling according to any one of claims 1 to 10, wherein the member includes a second adhesion-preventing plate that covers at least a part of a surface of a mounting table on which the object to be processed is mounted and supported. Prevention structure. 請求項1〜11のいずれか一項に記載の反応生成物剥離防止構造を製作するための方法であって、
前記部材の表面にサンドブラスト処理を施す反応生成物剥離防止構造の製作方法。
A method for producing the reaction product delamination prevention structure according to any one of claims 1 to 11,
A method for producing a reaction product peeling prevention structure in which a surface of the member is subjected to a sandblast treatment.
前記サンドブラスト処理に使用される粒子は、アルミナ、珪砂または石英の微粒子であり、その粒度は#70〜#150の範囲にある請求項12に記載の反応生成物剥離防止構造の製作方法。   13. The method for producing a reaction product exfoliation preventing structure according to claim 12, wherein the particles used for the sand blasting treatment are fine particles of alumina, silica sand or quartz, and the particle size thereof is in the range of # 70 to # 150. 反応生成物防着部材を備えたチャンバ内で半導体ウェーハに対してプラズマ処理を施す工程を含む半導体装置の製造方法であって、
所定のレジストパターンが形成された半導体ウェーハをチャンバ内に導入する工程と、
上記半導体ウェーハに対してプラズマエッチング処理を施す工程と、
チャンバ内の反応生成物防着部材を取り出す工程と、
取り出した防着部材を洗浄する工程と、
洗浄した防着部材を上記チャンバ内に設置する工程と、
所定のレジストパターンが形成された半導体ウェーハをチャンバ内に導入する工程と、
上記半導体ウェーハに対してプラズマエッチング処理を施す工程と
を有し、
上記防着部材の表面の平均粗さRaが3μm≦Ra≦9μmの範囲にある半導体装置の製造方法。
A method of manufacturing a semiconductor device including a step of performing plasma processing on a semiconductor wafer in a chamber provided with a reaction product deposition member,
Introducing a semiconductor wafer on which a predetermined resist pattern is formed into the chamber;
Performing a plasma etching process on the semiconductor wafer;
Removing the reaction product deposition member in the chamber;
A step of cleaning the removed adhesion-preventing member;
Installing the cleaned deposition preventing member in the chamber;
Introducing a semiconductor wafer on which a predetermined resist pattern is formed into the chamber;
Performing a plasma etching process on the semiconductor wafer,
A method of manufacturing a semiconductor device, wherein the surface roughness Ra of the deposition preventing member is in the range of 3 μm ≦ Ra ≦ 9 μm.
上記チャンバから取り出した上記防着部材に対して粗面処理を施す工程を更に有する請求項14に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 14, further comprising a step of performing a rough surface treatment on the adhesion-preventing member taken out from the chamber.
JP2007112873A 2007-04-23 2007-04-23 Reaction product peeling preventive structure and manufacturing method thereof, and manufacturing method of semiconductor device using the structure Pending JP2008270595A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007112873A JP2008270595A (en) 2007-04-23 2007-04-23 Reaction product peeling preventive structure and manufacturing method thereof, and manufacturing method of semiconductor device using the structure
US12/107,180 US20080261074A1 (en) 2007-04-23 2008-04-22 Structure for Preventing Peeling of Reaction Product, Process for Its Production and Process for the Production of a Semiconductor Device Using the Structure
PCT/US2008/061215 WO2008131402A1 (en) 2007-04-23 2008-04-23 Structure and process to prevent peeling of reaction product in semiconductor device manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007112873A JP2008270595A (en) 2007-04-23 2007-04-23 Reaction product peeling preventive structure and manufacturing method thereof, and manufacturing method of semiconductor device using the structure

Publications (1)

Publication Number Publication Date
JP2008270595A true JP2008270595A (en) 2008-11-06

Family

ID=39872513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007112873A Pending JP2008270595A (en) 2007-04-23 2007-04-23 Reaction product peeling preventive structure and manufacturing method thereof, and manufacturing method of semiconductor device using the structure

Country Status (3)

Country Link
US (1) US20080261074A1 (en)
JP (1) JP2008270595A (en)
WO (1) WO2008131402A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136384A1 (en) * 2012-03-14 2013-09-19 キヤノンアネルバ株式会社 Fastening member and vacuum device
US8974600B2 (en) 2009-07-28 2015-03-10 Tokyo Electron Limited Deposit protection cover and plasma processing apparatus
US9452250B2 (en) 2009-06-25 2016-09-27 Sorin Group Deutschland Gmbh Device for pumping blood in an extracorporeal circuit
JP2016225508A (en) * 2015-06-01 2016-12-28 キヤノンアネルバ株式会社 Ion beam etching device, and ion beam generator
US10213541B2 (en) 2011-07-12 2019-02-26 Sorin Group Italia S.R.L. Dual chamber blood reservoir
JP2019161227A (en) * 2018-03-16 2019-09-19 アーエスエム・イーぺー・ホールディング・ベスローテン・フェンノートシャップ Reactor, system including reactor, and methods of manufacturing and using same
US10458833B2 (en) 2014-05-16 2019-10-29 Sorin Group Italia S.R.L. Blood reservoir with fluid volume measurement based on pressure sensor
US11229729B2 (en) 2009-05-29 2022-01-25 Livanova Deutschland Gmbh Device for establishing the venous inflow to a blood reservoir of an extracorporeal blood circulation system
WO2023228232A1 (en) * 2022-05-23 2023-11-30 株式会社日立ハイテク Method for reproducing inner wall member

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009025971A1 (en) * 2009-06-15 2010-12-16 Aixtron Ag Method for setting up an epitaxial reactor
CN102087958B (en) * 2009-12-03 2012-10-17 无锡华润上华半导体有限公司 Method for processing by-product in reaction chamber
JP2011171450A (en) * 2010-02-17 2011-09-01 Nuflare Technology Inc Film deposition apparatus and method
JP5567392B2 (en) * 2010-05-25 2014-08-06 東京エレクトロン株式会社 Plasma processing equipment
US20110297088A1 (en) * 2010-06-04 2011-12-08 Texas Instruments Incorporated Thin edge carrier ring
US20120258280A1 (en) * 2011-04-11 2012-10-11 Applied Materials, Inc. Extended life textured chamber components and method for fabricating same
US9101954B2 (en) 2013-09-17 2015-08-11 Applied Materials, Inc. Geometries and patterns for surface texturing to increase deposition retention
JP6054471B2 (en) 2015-05-26 2016-12-27 株式会社日本製鋼所 Atomic layer growth apparatus and exhaust layer of atomic layer growth apparatus
JP6054470B2 (en) 2015-05-26 2016-12-27 株式会社日本製鋼所 Atomic layer growth equipment
JP6050860B1 (en) * 2015-05-26 2016-12-21 株式会社日本製鋼所 Plasma atomic layer growth equipment
JP2019009185A (en) * 2017-06-21 2019-01-17 東京エレクトロン株式会社 Plasma processing apparatus
CN109962000B (en) * 2017-12-25 2022-09-30 中微半导体设备(上海)股份有限公司 Plasma processing device and method capable of reducing pollution particles
CN111471980B (en) * 2020-04-15 2022-05-27 北京北方华创微电子装备有限公司 Reaction chamber suitable for remote plasma cleaning, deposition equipment and cleaning method
CN113594014B (en) * 2020-04-30 2024-04-12 中微半导体设备(上海)股份有限公司 Component, plasma reaction device, and component processing method
TWI746222B (en) 2020-10-21 2021-11-11 財團法人工業技術研究院 Deposition apparatus
CN114536158B (en) * 2022-01-19 2023-03-31 宁波云德半导体材料有限公司 Processing method of quartz window of etching machine reaction chamber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250814A (en) * 2000-03-06 2001-09-14 Hitachi Ltd Plasma treatment device
JP2004235545A (en) * 2003-01-31 2004-08-19 Hitachi High-Technologies Corp Device and method for processing plasma
JP2004356311A (en) * 2003-05-28 2004-12-16 Sony Corp Plasma processor
JP2005243988A (en) * 2004-02-27 2005-09-08 Hitachi High-Technologies Corp Plasma treatment apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3251215B2 (en) * 1996-10-02 2002-01-28 松下電器産業株式会社 Electronic device manufacturing apparatus and electronic device manufacturing method
KR19980062413U (en) * 1997-04-02 1998-11-16 문정환 Process chamber
US6423175B1 (en) * 1999-10-06 2002-07-23 Taiwan Semiconductor Manufacturing Co., Ltd Apparatus and method for reducing particle contamination in an etcher
US20020090464A1 (en) * 2000-11-28 2002-07-11 Mingwei Jiang Sputter chamber shield
KR100698871B1 (en) * 2001-07-03 2007-03-22 삼성전자주식회사 Dry Etching Apparatus
KR100859955B1 (en) * 2005-04-22 2008-10-06 주식회사 코미코 Internal memeber of plasma processing container and method for preparing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250814A (en) * 2000-03-06 2001-09-14 Hitachi Ltd Plasma treatment device
JP2004235545A (en) * 2003-01-31 2004-08-19 Hitachi High-Technologies Corp Device and method for processing plasma
JP2004356311A (en) * 2003-05-28 2004-12-16 Sony Corp Plasma processor
JP2005243988A (en) * 2004-02-27 2005-09-08 Hitachi High-Technologies Corp Plasma treatment apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229729B2 (en) 2009-05-29 2022-01-25 Livanova Deutschland Gmbh Device for establishing the venous inflow to a blood reservoir of an extracorporeal blood circulation system
US11844892B2 (en) 2009-05-29 2023-12-19 Livanova Deutschland Gmbh Device for establishing the venous inflow to a blood reservoir of an extracorporeal blood circulation system
US9452250B2 (en) 2009-06-25 2016-09-27 Sorin Group Deutschland Gmbh Device for pumping blood in an extracorporeal circuit
US8974600B2 (en) 2009-07-28 2015-03-10 Tokyo Electron Limited Deposit protection cover and plasma processing apparatus
US10213541B2 (en) 2011-07-12 2019-02-26 Sorin Group Italia S.R.L. Dual chamber blood reservoir
US11389580B2 (en) 2011-07-12 2022-07-19 Sorin Group Italia S.R.L. Dual chamber blood reservoir
WO2013136384A1 (en) * 2012-03-14 2013-09-19 キヤノンアネルバ株式会社 Fastening member and vacuum device
JPWO2013136384A1 (en) * 2012-03-14 2015-07-30 キヤノンアネルバ株式会社 Fastening member and vacuum device
US10458833B2 (en) 2014-05-16 2019-10-29 Sorin Group Italia S.R.L. Blood reservoir with fluid volume measurement based on pressure sensor
JP2016225508A (en) * 2015-06-01 2016-12-28 キヤノンアネルバ株式会社 Ion beam etching device, and ion beam generator
JP2019161227A (en) * 2018-03-16 2019-09-19 アーエスエム・イーぺー・ホールディング・ベスローテン・フェンノートシャップ Reactor, system including reactor, and methods of manufacturing and using same
WO2023228232A1 (en) * 2022-05-23 2023-11-30 株式会社日立ハイテク Method for reproducing inner wall member

Also Published As

Publication number Publication date
WO2008131402A1 (en) 2008-10-30
US20080261074A1 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
JP2008270595A (en) Reaction product peeling preventive structure and manufacturing method thereof, and manufacturing method of semiconductor device using the structure
KR102158307B1 (en) Plasma treatment process to improve in-situ chamber cleaning efficiency in plasma processing chamber
US8221579B2 (en) Method of reusing a consumable part for use in a plasma processing apparatus
TWI466170B (en) Bare aluminum baffles for resist stripping chambers
US5756400A (en) Method and apparatus for cleaning by-products from plasma chamber surfaces
US9184043B2 (en) Edge electrodes with dielectric covers
US5916454A (en) Methods and apparatus for reducing byproduct particle generation in a plasma processing chamber
JP4623055B2 (en) Metal film peeling prevention structure in metal film forming apparatus and semiconductor device manufacturing method using the structure
US6897161B2 (en) Method of cleaning component in plasma processing chamber and method of producing semiconductor devices
CN109961999B (en) Gas spray header and method for preventing polymer accumulation
CN100386467C (en) Method for regenerating container for plasma treatement, member inside container for plasma treatment, method for preparing member inside container for plasma treatment, and apparatus for plasma ...
JP2006319041A (en) Plasma cleaning method and method for forming film
US6545245B2 (en) Method for dry cleaning metal etching chamber
KR101486553B1 (en) Vacuum Processing Apparatus
JP6486215B2 (en) Plasma processing equipment
JP2011228546A (en) Plasma cvd apparatus and cleaning method therefor
JP2797307B2 (en) Plasma process equipment
JP4909494B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP3854017B2 (en) Plasma processing apparatus and plasma processing method
JP2001176843A (en) Dry cleaning method
JP2006173343A (en) Plasma cvd system and electrode for cvd system
JPH06283484A (en) Cleaning method of plasma device
JP2006196833A (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
JP2008229449A (en) Washing method
JP2009054914A (en) Semiconductor manufacturing device and method of use thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090825