JP2008260346A - Power source system for hybrid electric vehicle, and its control device - Google Patents

Power source system for hybrid electric vehicle, and its control device Download PDF

Info

Publication number
JP2008260346A
JP2008260346A JP2007102978A JP2007102978A JP2008260346A JP 2008260346 A JP2008260346 A JP 2008260346A JP 2007102978 A JP2007102978 A JP 2007102978A JP 2007102978 A JP2007102978 A JP 2007102978A JP 2008260346 A JP2008260346 A JP 2008260346A
Authority
JP
Japan
Prior art keywords
battery
voltage
active material
electrode active
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007102978A
Other languages
Japanese (ja)
Other versions
JP5003257B2 (en
Inventor
Yasuhiko Osawa
康彦 大澤
Hideaki Horie
英明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007102978A priority Critical patent/JP5003257B2/en
Publication of JP2008260346A publication Critical patent/JP2008260346A/en
Application granted granted Critical
Publication of JP5003257B2 publication Critical patent/JP5003257B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power source system for a hybrid electric vehicle having a characteristic as a high energy density type battery and capable of easily performing detection of a transfer timing from an EV traveling mode to an HEV traveling mode. <P>SOLUTION: The power source system for the hybrid electric vehicle has a composite battery 5 in which parallel-connected batteries 20 having two kinds of secondary batteries having different charging state vs voltage characteristic connected in parallel are further connected in series; a voltage detector 7 or 8 for detecting the battery voltage of the composite battery 5. In the parallel-connected batteries 20, a first secondary battery 30 having almost non- or small reduction tendency of an open circuit voltage relative to reduction of the charging state (SOC) and a second secondary battery 40 having large reduction tendency of the open circuit voltage relative to reduction of the charging state are connected in parallel. Thereby, the in-parallel connection batteries 20 are constituted as a battery having the charging state vs voltage characteristic in which the reduction tendency of the open circuit voltage relative to reduction of the charging state is almost no or small and it becomes large near the last stage of discharge. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はハイブリッド電動車両用電源に二種類の二次電池を組み合わせた複合電池を用いたハイブリッド電動車両用電源システムおよびその制御装置に関する。   The present invention relates to a hybrid electric vehicle power supply system using a composite battery in which two types of secondary batteries are combined with a hybrid electric vehicle power supply, and a control device therefor.

従来、電気自動車(EV)やハイブリッド電気自動車(HEV)のモータ駆動用電源としては、下記特許文献1に記載されているような二種類の二次電池を組み合わせた複合電池が提案されている。この特許文献1の複合電池は、複数個のセルを直列に接続した高出力電池(高出力密度型電池)と、複数個のセルを直列に接続した高容量電池(高エネルギー密度型電池)とを並列に接続したものであり、一定以上の高出力密度を維持しつつ高エネルギー密度を得るという要求や、一定以上の高エネルギー密度を維持しつつ高出力密度を得るという要求に応えるようにしたものである。   Conventionally, as a power source for driving a motor of an electric vehicle (EV) or a hybrid electric vehicle (HEV), a composite battery combining two types of secondary batteries as described in Patent Document 1 has been proposed. The composite battery of Patent Document 1 includes a high output battery (high output density battery) in which a plurality of cells are connected in series, and a high capacity battery (high energy density battery) in which a plurality of cells are connected in series. Are connected in parallel to meet the requirement to obtain a high energy density while maintaining a high output density above a certain level, and the requirement to obtain a high output density while maintaining a high energy density above a certain level. Is.

一方、家庭用電源で車載二次電池の充電ができるプラグインハイブリッド電気自動車においては、二次電池を外部からの充電により充電したあと、電気モータを駆動源とする電気自動車走行モード(EV走行)でできるだけ長距離走行し、電池の放電末期近くになったとき、エンジンを始動させて、エンジンと電気モータでの併用で走行するハイブリッド走行モード(HEV走行)に入る。このEV走行からHEV走行への移行タイミングは、二次電池の充電状態(SOC:State of charge)が放電末期となる時期に対応した電池の端子電圧から知ることができる。
特開2004−111242号公報
On the other hand, in a plug-in hybrid electric vehicle that can charge an in-vehicle secondary battery with a household power source, the secondary battery is charged by external charging and then an electric vehicle driving mode (EV driving) using an electric motor as a drive source. When the vehicle is running as long as possible and the battery is near the end of discharge, the engine is started and the hybrid running mode (HEV running) in which the engine and the electric motor are used together is entered. The timing of transition from EV traveling to HEV traveling can be known from the terminal voltage of the battery corresponding to the time when the state of charge (SOC) of the secondary battery reaches the end of discharge.
Japanese Patent Laid-Open No. 2004-111242

しかしながら、特許文献1の高出力電池と高容量電池を並列接続した複合電池では、二次電池の充電状態(SOC)が例えばSOC100%から残りSOC20%になるまでの区間では端子電圧がほとんど低下せず、残りSOC20%からSOC0%までの区間で急峻に端子電圧が低下する特性のものとなっている。このため、電池電圧の変化からHEV走行モードへの移行タイミングを正確に検知することが難しく、結果として適正タイミングでHEV走行モードへ移行させることができないという問題があった。   However, in the composite battery in which the high-power battery and the high-capacity battery of Patent Document 1 are connected in parallel, the terminal voltage is almost reduced in the interval from the SOC 100% to the remaining SOC 20%, for example, from the SOC 100%. In addition, the terminal voltage sharply decreases in the interval from the remaining SOC 20% to SOC 0%. For this reason, it is difficult to accurately detect the transition timing from the change in the battery voltage to the HEV traveling mode, and as a result, there is a problem that the transition to the HEV traveling mode cannot be performed at an appropriate timing.

もちろん、並列接続される二次電池の特性が、電池の充電状態の低下によって電池電圧が大きく変化する高出力電池(高出力密度型電池)に類似の特性であれば、その電池電圧の電圧低下をパラメータとして、当該二次電池の充電状態を検出することは容易である。しかし、このような特性の二次電池では、電池電圧の低下が大きくなる分だけ、二次電池のエネルギー密度が低下してしまうという問題がある。特に、プラグインハイブリッド電気自動車の場合は、充電後しばらくの間は電気自動車走行モード(EV走行モード)で走行したい、という要求があるため、電池のエネルギー密度が早期に低下する特性であると、EV走行区間距離が短くなってしまう、という問題に直結する。   Of course, if the characteristics of secondary batteries connected in parallel are similar to those of a high power battery (high power density type battery) in which the battery voltage changes greatly due to a decrease in the state of charge of the battery, the voltage drop of the battery voltage It is easy to detect the state of charge of the secondary battery using as a parameter. However, in the secondary battery having such characteristics, there is a problem that the energy density of the secondary battery decreases as the battery voltage decreases. In particular, in the case of a plug-in hybrid electric vehicle, since there is a demand for traveling in the electric vehicle traveling mode (EV traveling mode) for a while after charging, the energy density of the battery is a characteristic that decreases early, This directly leads to the problem that the EV travel section distance is shortened.

本発明は、上述した問題点を解決するためになされたものであり、高エネルギー密度型電池としての特性を有し、かつEV走行モードからHEV走行モードへの移行タイミングの検出が容易なハイブリッド電動車両用電源システム、および電池の充電状態の減少に対する開回路電圧の低下傾向からみた適正な時期にHEV走行モードへの移行を行わせることが可能なハイブリッド電動車両用電源システムの制御装置を提供することにある。   The present invention has been made in order to solve the above-described problems, and has a characteristic as a high energy density battery, and is a hybrid electric vehicle that can easily detect the transition timing from the EV traveling mode to the HEV traveling mode. Provided is a power supply system for a vehicle and a control device for a power supply system for a hybrid electric vehicle capable of making a transition to the HEV travel mode at an appropriate time in view of a tendency of the open circuit voltage to decrease with respect to a decrease in the state of charge of the battery. There is.

本発明の上記目的は、下記の手段によって達成される。   The above object of the present invention is achieved by the following means.

(1)ハイブリッド電動車両用電源として、充電状態対電圧特性の異なる二種類の二次電池が並列に接続された並列接続電池またはこの並列接続電池がさらに直列に接続された直並列接続電池からなる複合電池と、前記複合電池の電池電圧を検出する電圧検出器とを有し、前記複合電池を構成する並列接続電池は、(イ)充電状態(SOC)の減少に対する開回路電圧の低下傾向がほとんどないかまたは小さい第1の充電状態対電圧特性を有する第1の二次電池と、(ロ)充電状態(SOC)の減少に対する開回路電圧(OCV)の低下傾向が前記第1の充電状態対電圧特性よりも大きい第2の充電状態対電圧特性を有する第2の二次電池とを並列に接続して、(ハ)充電状態(SOC)の減少に対する開回路電圧の低下傾向が、少なくとも半分の充電状態(SOC)を越えるまでの第1充電状態区間でほとんどないかまたは小さく、前記第1充電状態区間を過ぎてから前記放電末期までの第2充電状態区間で大きくなる第3の充電状態対電圧特性を有する電池として構成されている、ことを特徴とするハイブリッド電動車両用電源システム。   (1) As a power source for a hybrid electric vehicle, a parallel connection battery in which two types of secondary batteries having different charge state versus voltage characteristics are connected in parallel or a series / parallel connection battery in which this parallel connection battery is further connected in series is used. The parallel connection battery which has a composite battery and the voltage detector which detects the battery voltage of the composite battery, and the parallel battery which comprises the composite battery has the tendency of the open circuit voltage to fall with respect to the reduction | decrease of a state of charge (SOC). A first secondary battery having a first charge state vs. voltage characteristic with little or less, and (b) a decreasing tendency of the open circuit voltage (OCV) with respect to a decrease in the charge state (SOC). A second secondary battery having a second charge state-to-voltage characteristic larger than the voltage characteristic is connected in parallel, and (c) a tendency of the open circuit voltage to decrease with respect to a decrease in the state of charge (SOC) is at least 3rd charge which is little or small in the 1st charge state area until it exceeds the state of charge (SOC) of the minute, and becomes large in the 2nd charge state area after the 1st charge state period to the end of the discharge A power system for a hybrid electric vehicle, characterized in that it is configured as a battery having state-to-voltage characteristics.

(2)上記のハイブリッド電動車両用電源システムのための制御装置であって、前記電圧検出器により前記複合電池の電気自動車走行モード中の電池電圧を検出する電圧検出手段と、前記電圧検出手段にて検出される電池電圧が所定の走行モード移行電圧値まで低下したとき、エンジンを始動させてハイブリッド走行モードに移行させる移行制御手段と、を有し、前記移行制御手段は、前記並列接続電池が有する前記第3の充電状態対電圧特性上の充電状態(SOC)の減少に対する開回路電圧の低下傾向が大きい部分に、前記走行モード移行電圧値が設定されており、前記電圧検出手段で検出される電池電圧から判断されるセル電圧が、この設定されたモード移行電圧値に至ったとき、前記電気自動車走行モードから前記ハイブリッド走行モードに移行させる、ことを特徴とするハイブリッド電動車両用電源システムの制御装置。   (2) A control device for the above hybrid electric vehicle power supply system, wherein the voltage detector detects a battery voltage of the composite battery during an electric vehicle running mode, and the voltage detector Transition control means for starting the engine and transitioning to the hybrid travel mode when the detected battery voltage drops to a predetermined travel mode transition voltage value, and the transition control means includes the parallel-connected battery. The travel mode transition voltage value is set at a portion where the open circuit voltage tends to decrease with respect to the decrease in the state of charge (SOC) in the third state of charge versus voltage characteristic, and is detected by the voltage detecting means. When the cell voltage determined from the battery voltage reaches the set mode transition voltage value, the hybrid vehicle travels from the electric vehicle travel mode. Shifting to over-de, the controller of the power supply system for a hybrid electric vehicle, characterized in that.

本発明において「複合電池の電池電圧」といった場合、複合電池を構成する「並列接続電池の端子間電圧(開開路電圧)」を指す場合と、この並列接続電池がさらに直列に接続された「直並列接続電池の端子間電圧(開開路電圧)」つまり「複合電池の端子間電圧(開開路電圧)」を指す場合とが含まれる。   In the present invention, “battery voltage of a composite battery” refers to “a voltage between terminals of a parallel connection battery (open circuit voltage)” that constitutes the composite battery, and “a direct connection of the parallel connection battery further connected in series. It includes the case of referring to the “voltage between terminals of the parallel connection battery (open circuit voltage)”, that is, “the voltage between terminals of the composite battery (open circuit voltage)”.

本発明のハイブリッド電動車両用電源システムによれば、長時間にわたってEV走行ができる高容量電池(高エネルギー密度型電池)としての特性を有すると共に、EV走行モードからHEV走行モードへの移行タイミングを容易に検出可能な充電状態対電圧特性を得ることができる。また、本発明の制御装置によれば、測定が容易な電源電圧を指標として移行タイミングを検出することが可能であるため、電池の充電状態の減少に対する開回路電圧の低下傾向からみた適正な時期に、EV走行モードからHEV走行モードへの移行を行わせることができる。   According to the power supply system for a hybrid electric vehicle of the present invention, it has characteristics as a high capacity battery (high energy density type battery) capable of EV traveling for a long time, and easily makes a transition timing from the EV traveling mode to the HEV traveling mode. It is possible to obtain a state-of-charge vs. voltage characteristic that can be detected. In addition, according to the control device of the present invention, it is possible to detect the transition timing using an easily measured power supply voltage as an index. In addition, a transition from the EV traveling mode to the HEV traveling mode can be performed.

以下、本発明の実施の形態を、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明をプラグインハイブリッド電気自動車のモータ駆動用電源に適用した実施例を示すブロック図、図2はそのプラグインハイブリッド電気自動車の駆動系統を示す概略図である。   FIG. 1 is a block diagram showing an embodiment in which the present invention is applied to a motor drive power source of a plug-in hybrid electric vehicle, and FIG. 2 is a schematic diagram showing a drive system of the plug-in hybrid electric vehicle.

このプラグインハイブリッド電気自動車は、駆動源としてエンジン1とモータ10を備えている。すなわち、エンジン1の出力軸は、図2に示すように、電磁クラッチ14を介してモータ10の回転軸と接続され、モータ10の出力軸は無段変速機15を介して車軸16に連結されている。   This plug-in hybrid electric vehicle includes an engine 1 and a motor 10 as drive sources. That is, as shown in FIG. 2, the output shaft of the engine 1 is connected to the rotating shaft of the motor 10 via the electromagnetic clutch 14, and the output shaft of the motor 10 is connected to the axle 16 via the continuously variable transmission 15. ing.

上記モータ10を駆動するため、後述する複合電池5を含むハイブリッド電動車両用電源システム(電源システム)50が設けられており、インバータ9を介してモータ10に接続されている。エンジン1の回転軸には、駆動ベルト17を介して、発電兼始動用モータからなる発電機2の回転軸が連結されている。この発電機2はインバータ9を介して電源システム50に電気的に接続されており、エンジン1の出力を電力に変換したり、始動時にクランキングを行ったりする役目をする。   In order to drive the motor 10, a power system (power system) 50 for a hybrid electric vehicle including a composite battery 5 described later is provided and connected to the motor 10 via an inverter 9. The rotating shaft of the generator 1, which is a power generation and starting motor, is connected to the rotating shaft of the engine 1 via a drive belt 17. The generator 2 is electrically connected to the power supply system 50 via an inverter 9 and serves to convert the output of the engine 1 into electric power and to perform cranking at the start.

モータ10および発電機2は三相同期電動機または三相誘導電動機などの交流機からなるが、交流機に限らず直流電動機を用いることもできる。直流電動機を用いる場合には、インバータ9の代わりにDC/DCコンバータを用いる。   The motor 10 and the generator 2 are composed of an AC machine such as a three-phase synchronous motor or a three-phase induction motor. However, the motor 10 and the generator 2 are not limited to the AC machine, and a DC motor can also be used. When using a DC motor, a DC / DC converter is used instead of the inverter 9.

上記複合電池5は、充電状態対電圧特性の異なる二種類の二次電池(第1の二次電池30と第2の二次電池40)が並列に接続された並列接続電池20、またはこの並列接続電池20がさらに直列に接続された直並列接続電池から構成される。この実施形態の場合、上記複合電池5は、図3に示すように、第1の二次電池30と第2の二次電池40が並列に接続された並列接続電池20がさらに複数個直列に接続された直並列接続電池から構成されている。   The composite battery 5 includes a parallel-connected battery 20 in which two types of secondary batteries (a first secondary battery 30 and a second secondary battery 40) having different charge state versus voltage characteristics are connected in parallel, or the parallel battery 20 The connection battery 20 is composed of a series-parallel connection battery further connected in series. In the case of this embodiment, as shown in FIG. 3, the composite battery 5 includes a plurality of parallel-connected batteries 20 in which a first secondary battery 30 and a second secondary battery 40 are connected in parallel. It consists of connected series-parallel connected batteries.

詳述するに、各並列接続電池20は、図4(a)に示すように、充電状態(SOC)の減少に対する開回路電圧の低下傾向がほとんどないかまたは小さい第1の充電状態対電圧特性(曲線A)を有する第1の二次電池30と、充電状態(SOC)の減少に対する開回路電圧の低下傾向が上記第1の充電状態対電圧特性よりも大きい第2の充電状態対電圧特性(曲線B)を有する第2の二次電池40とを並列に接続したものからなり、全体として、充電状態(SOC)の減少に対する開回路電圧の低下傾向が、少なくとも半分の充電状態(SOC50%)を越えるまでの第1充電状態区間S1でほとんどないかまたは小さく、第1充電状態区間S1を過ぎてから放電末期(SOC0%)までの第2充電状態区間S2で大きくなる第3の充電状態対電圧特性(曲線C)を有する電池として構成されている。   Specifically, as shown in FIG. 4A, each parallel-connected battery 20 has a first charge state vs. voltage characteristic that has little or little tendency to decrease the open circuit voltage with respect to the decrease in the state of charge (SOC). The first secondary battery 30 having (curve A) and the second charge state versus voltage characteristic in which the open circuit voltage decreasing tendency with respect to the decrease in the state of charge (SOC) is larger than the first charge state versus voltage characteristic The second secondary battery 40 having (curve B) is connected in parallel, and as a whole, the tendency of the open circuit voltage to decrease with respect to the decrease in the state of charge (SOC) is at least half the state of charge (SOC 50%). ) Exceeds the first charge state section S1 until the first charge state section S1 is exceeded, and the third charge state increases in the second charge state section S2 from the end of the first charge state section S1 to the end of discharge (SOC 0%). And it is configured as a battery having a voltage characteristic (curve C).

ここで、SOC(%)とは、電池の残存容量(Ah)を電池の満充電容量(Ah)で割って100を掛けて得られた値であり、電池が満充電時の容量に対して何パーセントの容量を持っているのかを表す指標である。   Here, SOC (%) is a value obtained by dividing the remaining capacity (Ah) of the battery by the full charge capacity (Ah) of the battery and multiplying by 100. It is an index that expresses what percentage of capacity it has.

上記特性を持つ並列接続電池20の具体例として、本実施形態では、正極活物質がLiMPO(ここでMはFe、Mn、Coから選ばれる1つ以上の元素)で、負極活物質が黒鉛質カーボンからなる少なくとも1個以上のリチウムイオン電池(単セル)からなる第1の二次電池30と、正極活物質がLiMPO(ここでMはFe、Mn、Coから選ばれる1つ以上の元素)で、負極活物質がアモルファスカーボンからなる少なくとも1個以上のリチウムイオン電池(単セル)からなる第2の二次電池40と、を並列に接続したものからなる。図4(a)はこの並列接続電池20の充電状態対電圧特性を概略的に示している。 As a specific example of the parallel-connected battery 20 having the above characteristics, in this embodiment, the positive electrode active material is LiMPO 4 (where M is one or more elements selected from Fe, Mn, and Co), and the negative electrode active material is graphite. A first secondary battery 30 composed of at least one lithium ion battery (single cell) composed of carbonaceous material and a positive active material of LiMPO 4 (where M is one or more selected from Fe, Mn, Co) Element) in which the negative electrode active material is connected in parallel with at least one second secondary battery 40 made of amorphous carbon made of amorphous carbon. FIG. 4A schematically shows the charge state vs. voltage characteristics of the parallel-connected battery 20.

充電状態(SOC)つまり電池の残存容量を示す横軸のSOC100%とSOC0%というごく両端(放電初期と末期)を除いて、電池の充電状態(SOC)の減少に対する電位依存性がほとんどないLiMPOを正極に用い、同様に電池の充電状態(SOC)の減少に対する電位依存性の小さい黒鉛を負極に用いると、効果的に高エネルギー密度の電池を構成することができる。これに対して、同じLiMPOを正極にした場合でも、電池の充電状態(SOC)の減少に対する電位依存性があるアモルファスカーボンを負極に用いると、エネルギー密度は減じるが、電池の充電状態(SOC)の減少に対する電圧依存性がある電池を構成できる。そこで、この2種類の二次電池を並列に接続した並列接続電池20、またはこれをさらに複数個直列に接続した複合電池5を用いて電源システム50を構築し、満充電状態からEV走行した場合、電源容量の電池電圧依存性はごく小さいが、HEVモードが必要な充電状態(SOC)の低い時期、例えばSOC30%以下になると、電池の充電状態(SOC)に電圧が依存するようになる。よって、電池電圧を指標として、電池の充電状態(SOC)ないし残存容量を検出することが容易に行えるようになり、EV走行モードからHEV走行モードへ切り替えるタイミングの検出を確実に実行できるとともに、HEV走行モードでの制御も簡単になる。 LiMPO that has almost no potential dependence on the decrease in the state of charge (SOC) of the battery, except for both ends (the initial and final stages of discharge) of SOC 100% and SOC 0% on the horizontal axis indicating the remaining capacity of the battery, that is, the state of charge (SOC). When 4 is used for the positive electrode and graphite having a small potential dependency with respect to a decrease in the state of charge (SOC) of the battery is used for the negative electrode, a battery having a high energy density can be effectively constructed. On the other hand, even when the same LiMPO 4 is used as the positive electrode, the use of amorphous carbon having a potential dependence on the decrease in the state of charge (SOC) of the battery as the negative electrode reduces the energy density, but the state of charge of the battery (SOC A battery having a voltage dependency with respect to a decrease in the above can be configured. Therefore, when the power supply system 50 is constructed using the parallel connection battery 20 in which these two types of secondary batteries are connected in parallel, or the composite battery 5 in which a plurality of these secondary batteries are connected in series, and EV travels from a fully charged state. Although the battery voltage dependency of the power supply capacity is very small, the voltage depends on the state of charge (SOC) of the battery when the state of charge (SOC) requiring the HEV mode is low, for example, when the SOC is 30% or less. Therefore, it becomes easy to detect the state of charge (SOC) or the remaining capacity of the battery using the battery voltage as an index, and it is possible to reliably detect the timing for switching from the EV traveling mode to the HEV traveling mode. Control in the driving mode is also simplified.

図3に示すように、上記複合電池5の両端には正極端子51および負極端子52が設けられている。また、複合電池5の各並列接続電池20の両端には電池増設用ポート21が設けられており、並列接続する第1の二次電池30または第2の二次電池40の個数を増加できるようになっている。   As shown in FIG. 3, a positive electrode terminal 51 and a negative electrode terminal 52 are provided at both ends of the composite battery 5. In addition, battery expansion ports 21 are provided at both ends of each parallel connection battery 20 of the composite battery 5 so that the number of first secondary batteries 30 or second secondary batteries 40 connected in parallel can be increased. It has become.

さらにまた、複合電池5の各並列接続電池20の端子間には、各並列接続電池20の電圧(セル電圧)の検出とセルの充放電制御を行うセルコントローラ22が接続されている。ここで「セル電圧」とは、単セルとしての二次電池の電圧を意味するが、本発明では単セルの二次電池が並列に接続されるため、セル電圧は並列接続電池20の端子間電圧と同じになる。セルコントローラ22は、上記並列接続電池20が直列に接続された複合電池5の各単セルのセル電圧、つまり並列接続電池20の端子間電圧のバランスを抑制し、過充放電の可能性があるかどうかを判断する回路を備える。   Furthermore, a cell controller 22 that detects the voltage (cell voltage) of each parallel connection battery 20 and controls charge / discharge of the cells is connected between the terminals of each parallel connection battery 20 of the composite battery 5. Here, the “cell voltage” means the voltage of the secondary battery as a single cell. In the present invention, since the secondary batteries of the single cell are connected in parallel, the cell voltage is between the terminals of the parallel-connected battery 20. Same as voltage. The cell controller 22 suppresses the balance of the cell voltage of each single cell of the composite battery 5 in which the parallel-connected batteries 20 are connected in series, that is, the voltage between the terminals of the parallel-connected battery 20, and may be overcharged / discharged. A circuit for determining whether or not.

図1に戻り、電源システム50は、上記の複合電池5と、この複合電池5の電流を検出する電流検出器6と、この複合電池5の端子間電圧を検出する複合電池電圧検出器7と、並列接続電池20を構成する二次電池の一単位(単セル)あたりの電圧、つまりセル電圧を検出するセル電圧検出器8とで、構成されている。すなわち、上記の複合電池5の給電路中に直列に電流検出器6が挿入され、複合電池5の正極端子51と負極端子52には複合電池電圧検出器7が接続され、また並列接続電池20の両端には、セル電圧検出器8が接続されている。このセル電圧検出器8は、上述のセルコントローラ22のセル電圧の検出機能部を抽出して示したものである。   Returning to FIG. 1, the power supply system 50 includes the composite battery 5, a current detector 6 that detects a current of the composite battery 5, and a composite battery voltage detector 7 that detects a voltage between terminals of the composite battery 5. The voltage per unit (single cell) of the secondary battery constituting the parallel connection battery 20, that is, the cell voltage detector 8 for detecting the cell voltage. That is, the current detector 6 is inserted in series in the feeding path of the composite battery 5, the composite battery voltage detector 7 is connected to the positive terminal 51 and the negative terminal 52 of the composite battery 5, and the parallel-connected battery 20 is connected. The cell voltage detector 8 is connected to both ends of the. The cell voltage detector 8 is an extracted cell voltage detection function unit of the cell controller 22 described above.

図4(b)はプラグインハイブリッド電気自動車の走行モードと複合電池5の並列接続電池20の充電状態(SOC)との関係を示した図である。   FIG. 4B is a diagram showing the relationship between the travel mode of the plug-in hybrid electric vehicle and the state of charge (SOC) of the parallel connection battery 20 of the composite battery 5.

上記複合電池5の各並列接続電池20は、まず外部からの充電により満充電状態のSOC100%とされた後、モータ駆動用電源として用いられて、EV走行モードでの走行に供せられる。これを図4(b)にEV走行区間M1として示す。   Each parallel-connected battery 20 of the composite battery 5 is first charged to 100% SOC after being charged from the outside, and then used as a motor driving power source for running in the EV running mode. This is shown as EV travel section M1 in FIG. 4 (b).

電気自動車走行モード中の複合電池5の電流と端子間電圧が、電流検出器6および複合電池電圧検出器7にて検出され、電池コントローラ11に入力される。また並列接続電池20の電流と端子間電圧が、セルコントローラ22の電流検出機能部および電圧検出機能部(セル電圧検出器8)にて検出され、電池コントローラ11に入力される。   The current and terminal voltage of the composite battery 5 in the electric vehicle running mode are detected by the current detector 6 and the composite battery voltage detector 7 and input to the battery controller 11. In addition, the current of the parallel connection battery 20 and the voltage between the terminals are detected by the current detection function unit and the voltage detection function unit (cell voltage detector 8) of the cell controller 22 and input to the battery controller 11.

電池コントローラ11は、上記電流検出器6、複合電池電圧検出器7およびセル電圧検出器等から入力される電流と電圧に関する検出信号を受け、これらの値から並列接続電池20についての電池状態を表す信号を算出する。   The battery controller 11 receives detection signals relating to current and voltage input from the current detector 6, the composite battery voltage detector 7, the cell voltage detector, and the like, and represents the battery state of the parallel-connected battery 20 from these values. Calculate the signal.

本実施形態の場合、電池コントローラ11は、セル電圧検出器8にて検出されるセル電圧(並列接続電池20の端子間電圧)の値に基づいて、並列接続電池20についての電池状態を表す信号を算出し、所定の条件が満たされた場合に走行モードの移行を行う。   In the case of this embodiment, the battery controller 11 is a signal representing the battery state of the parallel connection battery 20 based on the value of the cell voltage (voltage between terminals of the parallel connection battery 20) detected by the cell voltage detector 8. Is calculated, and the driving mode is shifted when a predetermined condition is satisfied.

また、複合電池電圧検出器7にて検出される電圧(複合電池5の端子間電圧)の値に基づいて、並列接続電池20についての電池状態を表す信号を算出し、所定の条件が満たされた場合に走行モードの移行を行うこともできる。この場合には、複合電池5の端子間電圧と直列接続されている並列接続電池20の数とから、1つの並列接続電池20あたりの端子間電圧(セル電圧)を算出し、その値から並列接続電池20の1単位当たりにおける充電状態対電圧特性(曲線C)を既知の充電状態対電圧特性データとの比較において推定し、その結果を電池状態を表す信号として出力する。   Further, based on the value of the voltage (voltage between terminals of the composite battery 5) detected by the composite battery voltage detector 7, a signal indicating the battery state for the parallel connection battery 20 is calculated, and a predetermined condition is satisfied. In the event of a failure, the driving mode can be changed. In this case, the inter-terminal voltage (cell voltage) per one parallel-connected battery 20 is calculated from the inter-terminal voltage of the composite battery 5 and the number of parallel-connected batteries 20 connected in series, and the parallel value is calculated from the value. The charge state vs. voltage characteristic (curve C) per unit of the connected battery 20 is estimated in comparison with known charge state vs. voltage characteristic data, and the result is output as a signal representing the battery state.

いずれの場合も、電池コントローラ11は、検出または算出されたセル電圧が所定の走行モード移行電圧値Esまで低下したとき、エンジン1を始動させてハイブリッド走行モードに移行させる。この走行モード移行電圧値Esは、並列接続電池20が有する上記第3の充電状態対電圧特性(図4(a)の曲線A)上の充電状態(SOC)の減少に対する開回路電圧の低下傾向が大きい部分、つまり第2充電状態区間S2内に設定されており、移行制御手段としての電池コントローラ11は、検出または算出されるセル電圧が、このモード移行電圧値Esに至ったとき、エンジン1を始動させ、EV走行モードからHEV走行モードに移行させる。このエンジン1の始動は、電池コントローラ11から上記電池状態を表す信号を受けて、発電コントローラ13が、複合電池5からの電力で始動用モータである発電機2を起動させることで行う。電池コントローラ11には表示装置12が接続されている。   In any case, the battery controller 11 starts the engine 1 and shifts to the hybrid travel mode when the detected or calculated cell voltage decreases to the predetermined travel mode transition voltage value Es. This running mode transition voltage value Es is a tendency of the open circuit voltage to decrease with respect to the decrease in the state of charge (SOC) on the third state of charge versus voltage characteristic (curve A in FIG. 4A) of the parallel-connected battery 20. Is set in the second charge state section S2, and the battery controller 11 serving as the transition control means determines that the engine 1 when the detected or calculated cell voltage reaches the mode transition voltage value Es. Is started to shift from the EV traveling mode to the HEV traveling mode. The engine 1 is started by receiving a signal indicating the battery state from the battery controller 11 and starting the generator 2, which is a starting motor, by the power generation controller 13 using the power from the composite battery 5. A display device 12 is connected to the battery controller 11.

電池コントローラ11は、HEV走行モードに移行後は、発電コントローラ13を介して発電機2による発電を開始させる。発電機2で発電された電力は整流器3によって直流電力に変換され、上記複合電池5に供給される。   The battery controller 11 starts power generation by the generator 2 via the power generation controller 13 after shifting to the HEV travel mode. The electric power generated by the generator 2 is converted into DC power by the rectifier 3 and supplied to the composite battery 5.

車両コントローラ18は、運転者のアクセル操作やブレーキ操作等を示す車両信号とともに、電池コントローラ11からの電池状態を示す信号を入力として受け、インバータ9の動作を制御する。   The vehicle controller 18 receives a signal indicating the battery state from the battery controller 11 as well as a vehicle signal indicating the driver's accelerator operation, brake operation, and the like, and controls the operation of the inverter 9.

上記のハイブリッド電動車両用電源システムによれば、第1の二次電池30として、正極活物質がLiMPOで、負極活物質が黒鉛質カーボンからなるリチウムイオン電池(LiFePO/黒鉛電池)を用いると共に、第2の二次電池40として、正極活物質がLiMPOで、負極活物質がアモルファスカーボンからなるリチウムイオン電池(LiFePO/アモルファスカーボン電池)とを用い、両者を並列に接続して並列接続電池20を構成し、これをモータ駆動用電源に用いることにより、次のような利点が得られる。 According to the above-described hybrid electric vehicle power supply system, a lithium ion battery (LiFePO 4 / graphite battery) in which the positive electrode active material is LiMPO 4 and the negative electrode active material is graphitic carbon is used as the first secondary battery 30. In addition, a lithium ion battery (LiFePO 4 / amorphous carbon battery) in which the positive electrode active material is LiMPO 4 and the negative electrode active material is amorphous carbon is used as the second secondary battery 40, and both are connected in parallel. By configuring the connection battery 20 and using it as a power source for driving the motor, the following advantages can be obtained.

(1)LiFePO/黒鉛電池にLiFePO/アモルファスカーボン電池を並列接続することによって、LiFePO/黒鉛電池のみの場合に比べて、プラグインハイブリッド車両においてEV走行からHEV走行に移行する移行時期、すなわちエンジン1をかけるタイミングの検出を、電池電圧という簡単に測定のできるパラメーターをモニターするのみで、容易かつ確実に行うことができる。すなわち、耐久性はよいが容量の電位依存性がほとんどない正極活物質LiFePOを用いつつ、電池のエネルギー密度を大幅に損なうことなしに、しかも高価で複雑な制御系を使用することなしに、セル電圧を監視するだけで、EV走行からHEV走行を始める走行モードの移行タイミングの検出ができ、HEV走行時の電源電池の充電状態(SOC)の検出も容易に行うことができる。 (1) LiFePO by 4 / graphitizing batteries connected in parallel LiFePO 4 / amorphous carbon battery, LiFePO 4 / graphite as compared with the case of the battery alone, time migration to migrate to the HEV from the EV traveling in plug-in hybrid vehicle, That is, the timing of applying the engine 1 can be easily and reliably detected only by monitoring a parameter that can be easily measured, such as a battery voltage. In other words, while using the positive electrode active material LiFePO 4 having good durability but almost no potential dependence on the capacity, without significantly degrading the energy density of the battery, and without using an expensive and complicated control system, Only by monitoring the cell voltage, it is possible to detect the transition timing of the travel mode in which HEV travel starts from EV travel, and it is also possible to easily detect the state of charge (SOC) of the power battery during HEV travel.

このため、簡単な装置でEV走行による電池の放電しすぎを容易に防止できることから、車両のトラブルを未然に防ぐことができるとともに、電池の全容量を有効に活用することが可能となる。   For this reason, since it is possible to easily prevent the battery from being excessively discharged by EV traveling with a simple device, it is possible to prevent a vehicle trouble and to make effective use of the entire capacity of the battery.

正極活物質としてLiMPO(ここでMはFe、Mn、Coから選ばれる1つ以上の元素)が用いられるが、ここに挙げた元素Mのなかで、とくにFeからなるものが安定に、耐久性よく使用できる。 LiMPO 4 (wherein M is one or more elements selected from Fe, Mn and Co) is used as the positive electrode active material. Among the elements M listed here, those made of Fe are particularly stable and durable. Can be used well.

(2)さらに、LiFePO/アモルファスカーボン電池に黒鉛負極電池を組み合わせることにより、LiFePO/アモルファスカーボン電池のみを使用する場合に比べて、電池のエネルギー密度を大きくすることができ、EV走行距離をより長くすることができるので、経済的である上に、環境にもより好ましいものとなる。 (2) Furthermore, by combining a LiFePO 4 / amorphous carbon battery with a graphite negative electrode battery, the energy density of the battery can be increased compared with the case of using only a LiFePO 4 / amorphous carbon battery, and the EV travel distance can be increased. Since it can be made longer, it is economical and more favorable to the environment.

上記(1)(2)に述べた作用効果は、第2の二次電池40の負極活物質であるアモルファスカーボンとしてハードカーボンを用いた場合、特に好ましい。ハードカーボンは、容量の電位プロファイルの大きい部分のあるアモルファスカーボンのなかでも、容量的、電極反応、特に活物質内部でのリチウムイオンの拡散が容易であり、大きな電流でのレート特性に有利である。   The effects described in (1) and (2) above are particularly preferable when hard carbon is used as the amorphous carbon that is the negative electrode active material of the second secondary battery 40. Hard carbon is advantageous for rate characteristics at a large current because of its capacity, electrode reaction, and particularly easy diffusion of lithium ions inside the active material, even among amorphous carbon with a large capacity potential profile. .

(3)本発明のハイブリッド電動車両用電源システムでは、並列接続電池20の全体を単セルとみなし、これに対して1個宛セルコントローラを設ければよいので、従来のように二次電池1個からなる単セル毎にセルコントローラ22を設ける構成に比べ、電源のセルコントローラ22の数を低減することができる。   (3) In the hybrid electric vehicle power supply system of the present invention, the entire parallel-connected battery 20 is regarded as a single cell, and a single cell controller may be provided for this. Compared with the configuration in which the cell controller 22 is provided for each single cell, the number of power cell controllers 22 can be reduced.

今、比較のため、図12のような構成の複合電池を考えてみる。これは、上記のLiFePO/黒鉛電池からなる第1の二次電池30を複数個直列に接続してなる第1の直列電池と、LiFePO/アモルファスカーボン電池からなる第2の二次電池40を複数個直列に接続してなる第2の直列電池とを、並列に接続して、複合電池としたものである。このような構成の場合、図12に示すように、二次電池1個からなる各単セル毎にセルコントローラ22を設けることになる。 For comparison, consider a composite battery configured as shown in FIG. This is because a first series battery formed by connecting a plurality of first secondary batteries 30 made of the above LiFePO 4 / graphite battery in series and a second secondary battery 40 made of LiFePO 4 / amorphous carbon battery. Are connected in parallel with each other to form a composite battery. In the case of such a configuration, as shown in FIG. 12, a cell controller 22 is provided for each single cell composed of one secondary battery.

よって、本発明の実施形態にかかる図3の複合電池5を、この図12の構成の複合電池と比較した場合、セルコントローラ22の数は半分でよいことになる。   Therefore, when the composite battery 5 of FIG. 3 according to the embodiment of the present invention is compared with the composite battery having the configuration of FIG. 12, the number of cell controllers 22 may be half.

(4)さらにまた、並列に接続する黒鉛負極電池の容量を増加するか、または電池増設用ポート21を利用してさらに別の黒鉛負極電池を並列に接続することにより、ほぼ同じ構成の車両を用いて、EV走行距離の異なるプラグインハイブリッド車両を構成することができる。   (4) Furthermore, by increasing the capacity of the graphite negative electrode battery connected in parallel or connecting another graphite negative electrode battery in parallel using the battery expansion port 21, a vehicle having substantially the same configuration can be obtained. It is possible to configure plug-in hybrid vehicles having different EV travel distances.

以下に、本発明の実施例を比較例と対比しながら説明する。   Examples of the present invention will be described below in comparison with comparative examples.

<実施例1>
LiFePOを正極活物質とし、黒鉛を負極活物質とする第1の二次電池30と、LiFePOを正極活物質とし、ハードカーボンを負極活物質とする第2の二次電池40とを並列接続した並列接続電池20を作成した。
<Example 1>
Parallel LiFePO 4 as the positive electrode active material, the first secondary battery 30 to the graphite negative active material, the LiFePO 4 as a positive electrode active material, and a second secondary battery 40 to the hard carbon as a negative electrode active material A connected parallel connection battery 20 was created.

(正極の作成)
正極活物質としてLiFePO(燐酸鉄リチウム)を、Deracourtらの方法(Electrochemical Solid−State Letters, 9 (2006) A355.)により合成して準備した。
(Creation of positive electrode)
LiFePO 4 (lithium iron phosphate) was prepared as a positive electrode active material by synthesis by the method of Deracourt et al. (Electrochemical Solid-State Letters, 9 (2006) A355.).

次いで、上記で準備したLiFePO、導電助材であるアセチレンブラック、およびバインダーであるPVdF(ポリフッ化ビニリデン)を混合して、正極活物質スラリーを調整した。その際、組成比が正極活物質:アセチレンブラック:PVdF=86:7:7になるようにした。 Next, LiFePO 4 prepared above, acetylene black as a conductive additive, and PVdF (polyvinylidene fluoride) as a binder were mixed to prepare a positive electrode active material slurry. At that time, the composition ratio was adjusted to be positive electrode active material: acetylene black: PVdF = 86: 7: 7.

まず、LiFePO、アセチレンブラックとPVdFを計量し、これに適量のNMP(N−メチルー2−ピロリドン)を加えてホモジナイザーにてよく撹拌・混合した。その後、ダイコーターを用いて、このスラリーを、集電体である厚さ20μmのアルミ箔の両面に一定量塗布して乾燥した。このようにしてアルミ箔の両面に正極電極層を形成した。そして、ロールプレスにてプレスをかけて、正極電極層部分が100mmx200mmになるように、かつ電極層が存在しないリード部分が残るように切り出して、1枚のLiFePO正極とした。なお、このLiFePO正極の正極電極層の厚さは、出来上り時点で、120μmになるように塗布条件を調整した。 First, LiFePO 4 , acetylene black and PVdF were weighed, and an appropriate amount of NMP (N-methyl-2-pyrrolidone) was added thereto, followed by thorough stirring and mixing with a homogenizer. Thereafter, using a die coater, a certain amount of this slurry was applied to both sides of a 20 μm thick aluminum foil as a current collector and dried. Thus, the positive electrode layer was formed on both surfaces of the aluminum foil. Then, at pressing by a roll press, the positive electrode layer portion such that the 100Mmx200mm, and cut out so as to lead a portion electrode layer is not present remains, was one LiFePO 4 positive electrode. The coating conditions were adjusted so that the thickness of the positive electrode layer of this LiFePO 4 positive electrode was 120 μm at the time of completion.

(負極の作成)
第1の二次電池30の負極活物質には平均粒子径20μmの黒鉛を用い、第2の二次電池40の負極活物質には平均粒子径21μmのハードカーボン、あるいは平均粒子径5μmのハードカーボンを用いた。
(Creation of negative electrode)
The negative electrode active material of the first secondary battery 30 is graphite having an average particle diameter of 20 μm, and the negative electrode active material of the second secondary battery 40 is hard carbon having an average particle diameter of 21 μm or hard having an average particle diameter of 5 μm. Carbon was used.

第1の二次電池30の黒鉛負極の作製は、ハードカーボン負極の場合と同様に、次のようにして作製した。ホモジナイザイーの容器に、平均粒子径20μmの黒鉛からなる負極活物質と、導電助剤としてのアセチレンブラック、バインダとしてのPVdF、スラリー粘度調整溶媒としての適量のNMPを加え、よく撹拌・混合して負極活物質スラリーを調製した。次に、この黒鉛の負極活物質スラリーを、集電体である銅箔の両面に、単位面積あたりのカーボンの質量が1:1になるように塗布して、乾燥させ、プレスして行った。   The graphite negative electrode of the first secondary battery 30 was produced as follows, similarly to the case of the hard carbon negative electrode. In a homogenizer container, add a negative electrode active material made of graphite with an average particle diameter of 20 μm, acetylene black as a conductive additive, PVdF as a binder, and an appropriate amount of NMP as a slurry viscosity adjusting solvent, and stir and mix well. A negative electrode active material slurry was prepared. Next, this negative electrode active material slurry of graphite was applied to both sides of a copper foil as a current collector so that the mass of carbon per unit area was 1: 1, dried and pressed. .

この負極活物質スラリーをダイコーターを用いて、集電体である厚さ15μmの銅箔の両面に塗布して乾燥した。これにより、集電体である銅箔の両面に黒鉛の負極電極層を形成して、プレスをかけて、105mmx210mmになるよいうに、しかも負極電極層が存在しないリード部分を残して切り出して、1枚の黒鉛負極とした。なお黒鉛負極の負極電極層の厚さは、出来上り時点で、80μmになるように塗布条件を調整した。   This negative electrode active material slurry was applied to both sides of a 15 μm thick copper foil as a current collector using a die coater and dried. As a result, a negative electrode layer made of graphite was formed on both sides of a copper foil as a current collector, and pressed to be 105 mm × 210 mm, and the lead portion where the negative electrode layer did not exist was cut out, leaving 1 A sheet of graphite negative electrode was obtained. The coating conditions were adjusted so that the thickness of the negative electrode layer of the graphite negative electrode was 80 μm when completed.

第2の二次電池40のハードカーボン負極は、次のようにして作製した。ホモジナイザイーの容器に、平均粒子径21μmのハードカーボン、あるいは平均粒子径5μmのハードカーボンからなる負極活物質と、導電助剤としてのアセチレンブラック、バインダとしてのPVdF、スラリー粘度調整溶媒としての適量のNMPを加え、よく撹拌・混合して負極活物質スラリーを調製した。このハードカーボン負極スラリーは、負極活物質:アセチレンブラック:PVdFの質量比を88:4:8とした。   The hard carbon negative electrode of the second secondary battery 40 was produced as follows. In a homogenizer container, a negative active material made of hard carbon having an average particle diameter of 21 μm or hard carbon having an average particle diameter of 5 μm, acetylene black as a conductive assistant, PVdF as a binder, an appropriate amount as a slurry viscosity adjusting solvent NMP was added and stirred and mixed well to prepare a negative electrode active material slurry. In this hard carbon negative electrode slurry, the mass ratio of negative electrode active material: acetylene black: PVdF was 88: 4: 8.

この負極活物質スラリーをダイコーターを用いて、集電体である厚さ15μmの銅箔の両面に塗布して乾燥した。これにより正極の場合と同様に、集電体である銅箔の両面に負極電極層を形成して、プレスをかけ、105mmx210mmになるように、しかも負極電極層が存在しないリード部分を残して切り出して、1枚のハードカーボン負極とした。なおハードカーボン負極の負極電極層の厚さは、出来上り時点で、80μmになるように塗布条件を調整した。   This negative electrode active material slurry was applied to both sides of a 15 μm thick copper foil as a current collector using a die coater and dried. As in the case of the positive electrode, a negative electrode layer is formed on both sides of the current collector copper foil, pressed, and cut out to 105 mm × 210 mm, leaving a lead portion where the negative electrode layer is not present. Thus, one hard carbon negative electrode was obtained. The coating conditions were adjusted so that the thickness of the negative electrode layer of the hard carbon negative electrode was 80 μm at the time of completion.

(電解液の調整)
エチレンカーボネート(EC)とジエチルカーボネート(DEC)を3:7の体積比で混合し、電解液の可塑剤(有機溶媒)とした。次いで、この可塑剤に、リチウム塩であるLiPF6を1Mの濃度になるように添加して、電解液を調整した。
(Electrolyte adjustment)
Ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7 to obtain a plasticizer (organic solvent) for the electrolytic solution. Subsequently, LiPF6 which is a lithium salt was added to this plasticizer so that it might become a density | concentration of 1M, and electrolyte solution was adjusted.

(電池の作製)
黒鉛負極電池(第1の二次電池30)の作製は、つぎのように行った。
(Production of battery)
The production of the graphite negative electrode battery (first secondary battery 30) was performed as follows.

上記で切り出したLiFePO正極と黒鉛負極のそれぞれを、90℃の真空乾燥機にて1日乾燥したものを用いた。正極と負極の間に、厚さ25μmのポリプロピレンの多孔質膜を介在させ、最外側が負極になるようにして、6枚の正極と7枚の黒鉛負極を交互に積層して、各正極と負極をそれぞれ束ねてリードを溶接した。この積層体から正極および負極のリードを引き出した構造にて、アルミニウムのラミネートフィルムバックに収めて、注液機により電解液を注液して、減圧下でシールをして電池とした。 Each of the LiFePO 4 positive electrode and graphite negative electrode cut out above was dried for 1 day in a 90 ° C. vacuum dryer. Six positive electrodes and seven graphite negative electrodes are alternately laminated so that a 25 μm thick polypropylene porous film is interposed between the positive electrode and the negative electrode, and the outermost side is the negative electrode. The negative electrode was bundled and the lead was welded. A positive electrode and negative electrode lead was drawn from this laminate, and was placed in an aluminum laminate film back, and the electrolyte was injected with a liquid injector, and sealed under reduced pressure to obtain a battery.

また、ハードカーボン負極電池(第2の二次電池40)の作製は、つぎのように行った。   In addition, the hard carbon negative electrode battery (second secondary battery 40) was produced as follows.

上記で切り出したLiFePO正極とハードカーボン負極のそれぞれを90℃の真空乾燥機にて1日乾燥して用いた。この正極と負極の間に、厚さ25μmのポリプロピレンの多孔質膜を介して最外側が負極になるようにして6枚の正極と7枚の負極を交互に積層して、各正極と負極を束ねてリードを溶接した。この積層体から正極および負極のリードを引き出した構造にて、アルミニウムのラミネートフィルムバックに収めて、注液機により電解液を注液して、減圧下シールをして電池とした。 Each of the LiFePO 4 positive electrode and hard carbon negative electrode cut out above was dried for one day in a 90 ° C. vacuum dryer and used. Six positive electrodes and seven negative electrodes are alternately laminated between the positive electrode and the negative electrode with a 25 μm-thick polypropylene porous film interposed between the positive electrode and the negative electrode. Bundled and welded the lead. A positive electrode and negative electrode lead was drawn out from the laminate, and placed in an aluminum laminate film back, and an electrolyte was injected with a liquid injector, and sealed under reduced pressure to obtain a battery.

(並列接続)
上記した2種類の電池、黒鉛負極電池(第1の二次電池30)とハードカーボン負極電池(第2の二次電池40)を並列に接続して並列接続電池20を構成した。この並列接続電池20に、0.3Cの電流値にて4Vまで定電流−定電圧で充電をした後、0.1Cの電流値にて充電した後の放電曲線を測定し、充電状態対電圧特性(曲線C1)を得た。このときの、並列接続電池20の充電状態(SOC)と電池電圧(端子間電圧)の関係を図5に示した。図5において、縦軸は並列接続電池20の端子間電圧であるが、これは各単セルの開回路電圧を反映したものとなる。
(Parallel connection)
The above-mentioned two types of batteries, the graphite negative electrode battery (first secondary battery 30) and the hard carbon negative electrode battery (second secondary battery 40) were connected in parallel to constitute a parallel connection battery 20. After charging the parallel-connected battery 20 at a constant current-constant voltage up to 4 V at a current value of 0.3 C, a discharge curve after charging at a current value of 0.1 C was measured, and the charge state vs. voltage Characteristics (curve C1) were obtained. The relationship between the state of charge (SOC) of the parallel-connected battery 20 and the battery voltage (inter-terminal voltage) at this time is shown in FIG. In FIG. 5, the vertical axis represents the voltage across the terminals of the parallel-connected battery 20, but this reflects the open circuit voltage of each single cell.

図5から、充電状態(SOC)の減少に対する開回路電圧の低下傾向が、少なくとも半分の充電状態(SOC50%)を越えたSOC35%までの第1充電状態区間S1でほとんどないかまたは小さく、SOC35%を過ぎてから放電末期のSOC0%までの第2充電状態区間S2で大きくなる第3の充電状態対電圧特性(曲線C)を有する電池として構成されていることが分かる。   From FIG. 5, the decreasing tendency of the open circuit voltage with respect to the decrease in the state of charge (SOC) is almost or small in the first state of charge S1 up to SOC 35% exceeding at least half the state of charge (SOC 50%). It can be seen that the battery is configured as a battery having a third state of charge versus voltage characteristic (curve C) that increases in the second state of charge S2 from SOC over 0% to SOC 0% at the end of discharge.

できるだけ長距離をHEV走行モードで走行させたいという要請からすると、SOC35%程度からSOC10%程度までの第3充電状態区間S3内において、HEV走行モードへの移行点を定めればよいことになる。この第3充電状態区間S3を、並列接続電池20の端子間電圧を指標として見ると、上記モード移行電圧値Esは、上記第3充電状態区間S3に対応する3.15V〜2.5Vの間に定めれば良いことになる。また、この図5に示す並列接続電池20の充電状態対電圧特性(曲線C1)は傾斜が緩やかであり、上記モード移行電圧値Esとして選択しうる電圧範囲は3.15V〜2.5Vの範囲と広いため、HEV走行モードへ移行させるポイントを定めることも容易である。電圧レンジの中央付近に定めるとすれば、2.8V〜2.6Vの範囲にモード移行電圧値Esを定めるのが良く、こうすることで電池容量を有効に活用できることがわかる。   If the request is made to travel as long as possible in the HEV travel mode, the transition point to the HEV travel mode may be determined in the third charging state section S3 from about 35% SOC to about 10% SOC. When the third charge state section S3 is viewed using the voltage across the terminals of the parallel-connected battery 20 as an index, the mode transition voltage value Es is between 3.15V and 2.5V corresponding to the third charge state section S3. It will be good if it is decided to. Further, the charge state versus voltage characteristic (curve C1) of the parallel-connected battery 20 shown in FIG. 5 has a gentle slope, and the voltage range that can be selected as the mode transition voltage value Es is a range of 3.15V to 2.5V. Therefore, it is easy to determine a point to shift to the HEV traveling mode. If it is determined near the center of the voltage range, the mode transition voltage value Es is preferably determined in the range of 2.8V to 2.6V, and it can be seen that the battery capacity can be effectively used.

なお、上記第3充電状態区間S3を定めるに当たり、放電末期(SOC0%)とせず、その手前のSOC10%程度までとしているのは、走行が不能とならないよう、予備としての容量を残して置きたいためである。図4(b)に、EV走行区間M1、HEV走行区間M2、予備区間M3との関係を示す。   In determining the third charge state section S3, the end of discharge (SOC 0%) is not used, and the previous SOC is about 10%. In order to prevent running, it is desirable to leave a spare capacity. Because. FIG. 4B shows the relationship between the EV travel section M1, the HEV travel section M2, and the spare section M3.

この実施例1の並列接続電池20を8個並列に接続し、それらをさらに12個直列に接続してモータ駆動用電源としての複合電池5を構成した。また、この並列接続電池20ごとに、1つのセルコントローラ22を設けると共に、黒鉛負極電池をさらに増設するための電池増設用ポート21を取り付けた。この複合電池5をモータ駆動用電源として用いた場合、表1に示すように、エンジン始動タイミング検出の容易性が良好であり、電池エネルギー密度比も1.21と高い値であった。   Eight parallel-connected batteries 20 of Example 1 were connected in parallel, and 12 of them were further connected in series to constitute a composite battery 5 as a motor driving power source. In addition, one cell controller 22 is provided for each parallel-connected battery 20, and a battery expansion port 21 for further adding a graphite negative electrode battery is attached. When this composite battery 5 was used as a motor drive power source, as shown in Table 1, the engine start timing was easily detected and the battery energy density ratio was a high value of 1.21.

ここで「エネルギー密度」とは、単セルについて充放電を繰り返し、放電時の電池容量(Ah)と放電時の平均電圧(V)の積をセルの質量(kg)で除することで求められる質量エネルギ密度(Wh/kg)である。表1中の電池エネルギー密度比は、後述する比較例2のハードカーボン負極電池におけるエネルギー密度を1としたときの比較値として得られるものである。   Here, “energy density” is obtained by repeatedly charging and discharging a single cell, and dividing the product of the battery capacity (Ah) during discharge and the average voltage (V) during discharge by the mass (kg) of the cell. Mass energy density (Wh / kg). The battery energy density ratio in Table 1 is obtained as a comparative value when the energy density in the hard carbon negative electrode battery of Comparative Example 2 described later is 1.

<実施例2>
実施例2として、実施例1における黒鉛負極電池(第1の二次電池30)の正極を8枚、負極を7枚に変更すると共に、ハードカーボン負極電池(第2の二次電池40)の正極を4枚、負極を5枚に変更して、負極質量比(黒鉛:ハードカーボン)を実施例1の1:1から2:1に変更した以外は、実施例1と同じ方法で、並列接続電池20を作製した。ここでの並列接続電池20の電池充電状態(SOC)と電池電圧の関係を図6に示す。
<Example 2>
As Example 2, the positive electrode of the graphite negative electrode battery (first secondary battery 30) in Example 1 was changed to 8 sheets and the negative electrode was changed to 7 sheets, and the hard carbon negative battery (second secondary battery 40) was changed. In the same manner as in Example 1, except that the number of positive electrodes was changed to 4 and the number of negative electrodes was changed to 5, and the negative electrode mass ratio (graphite: hard carbon) was changed from 1: 1 to 2: 1 in Example 1. A connection battery 20 was produced. FIG. 6 shows the relationship between the battery charge state (SOC) of the parallel connection battery 20 and the battery voltage.

図6から分かるように、この実施例2の並列接続電池20の充電状態対電圧特性(曲線C2)は、実施例1の並列接続電池20の充電状態対電圧特性(図5)に比べ、第1充電状態区間S1がより長くかつ端子間電圧が3.15V〜2.5Vに立ち下がる第2充電状態区間S2がより狭くなって、高容量電池(高エネルギー密度型電池)に近づく。しかし、この曲線C2も比較的広い第2充電状態区間S2において緩やかに立ち下がる特徴を失っておらず、容易に走行モード移行点のモード移行電圧値Esを定めることができる。また曲線Cの傾斜から考えると、SOC17%程度からSOC5%程度までの第3充電状態区間S3内において、HEV走行モードへの移行点を定めることになる。このとき、モード移行電圧値Esを設定できる電圧範囲は変わらず、第3充電状態区間S3に対応する3.15V〜2.5Vと広いレンジにて、モード移行電圧値Esを定めれば良いことになる。また、電圧レンジの中央付近の2.8V〜2.6Vの範囲にモード移行電圧値Esを定めると、電池容量を有効に活用できることがわかる。   As can be seen from FIG. 6, the charge state vs. voltage characteristics (curve C2) of the parallel connection battery 20 of Example 2 are compared with the charge state vs. voltage characteristics (FIG. 5) of the parallel connection battery 20 of Example 1. The second charge state section S2 in which the one charge state section S1 is longer and the voltage between the terminals falls to 3.15 V to 2.5 V becomes narrower and approaches a high capacity battery (high energy density type battery). However, this curve C2 also does not lose the characteristic of gradually falling in the relatively wide second charging state section S2, and the mode transition voltage value Es at the traveling mode transition point can be easily determined. Considering the slope of the curve C, the transition point to the HEV travel mode is determined in the third charge state section S3 from about SOC 17% to about SOC 5%. At this time, the voltage range in which the mode transition voltage value Es can be set does not change, and the mode transition voltage value Es may be determined in a wide range of 3.15 V to 2.5 V corresponding to the third charging state section S3. become. It can also be seen that when the mode transition voltage value Es is determined in the range of 2.8V to 2.6V near the center of the voltage range, the battery capacity can be effectively utilized.

この実施例2の並列接続電池20を8個並列に接続し、それらをさらに12個直列に接続してモータ駆動用電源としての複合電池5を構成した。この複合電池5をモータ駆動用電源として用いたところ、表1に示すように、エンジン始動タイミング検出の容易性が良好であり、電池エネルギー密度比も1.33と高い値であった。   Eight parallel-connected batteries 20 of Example 2 were connected in parallel, and 12 of them were further connected in series to constitute a composite battery 5 as a motor driving power source. When this composite battery 5 was used as a motor drive power source, as shown in Table 1, the engine start timing was easily detected and the battery energy density ratio was a high value of 1.33.

<実施例3>
実施例3として、実施例1における黒鉛負極電池(第1の二次電池30)の正極を8枚、負極を9枚に変更し、ハードカーボン負極電池(第2の二次電池40)の正極を2枚、負極を3枚に変更して、負極質量比(黒鉛:ハードカーボン)を実施例1の1:1から4:1にした以外は、実施例1と同様にして、並列接続電池20を作製した。この並列接続電池20の電池充電状態(SOC)と電池電圧の関係を図7に示す。
<Example 3>
As Example 3, the positive electrode of the graphite negative electrode battery (first secondary battery 30) in Example 1 was changed to 8 sheets and the negative electrode was changed to 9 sheets, and the positive electrode of the hard carbon negative battery (second secondary battery 40). 2 and 3 negative electrodes, and the negative electrode mass ratio (graphite: hard carbon) was changed from 1: 1 to 4: 1 in Example 1, in the same manner as in Example 1, in a parallel connection battery. 20 was produced. FIG. 7 shows the relationship between the battery charge state (SOC) of the parallel connection battery 20 and the battery voltage.

図7から分かるように、この実施例3の並列接続電池20の特性(曲線C3)は、実施例2の並列接続電池20の特性(図6)に比べ、第1充電状態区間S1がより長くかつ端子間電圧が3.15V〜2.5Vに立ち下がる第2充電状態区間S2がより狭くなって、高容量電池(高エネルギー密度型電池)に近づく。しかし、この曲線C3も第2充電状態区間S2において緩やかに立ち下がる特徴を失っておらず、容易に走行モード移行点のモード移行電圧値Esを定めることができる。また曲線Cの傾斜から考えると、SOC15%程度からSOC5%程度までの第3充電状態区間S3内において、HEV走行モードへの移行点を定めることになる。このとき、モード移行電圧値Esを設定できる電圧範囲は変わらず、第3充電状態区間S3に対応する3.15V〜2.5Vと広いレンジにて、モード移行電圧値Esを定めれば良いことになる。また、電圧レンジの中央付近の2.8V〜2.6Vの範囲にモード移行電圧値Esを定めると、電池容量を有効に活用できることがわかる。   As can be seen from FIG. 7, the characteristic (curve C3) of the parallel connection battery 20 of Example 3 is longer in the first charge state section S1 than the characteristic of the parallel connection battery 20 of Example 2 (FIG. 6). And 2nd charge condition area S2 in which the voltage between terminals falls to 3.15V-2.5V becomes narrower, and approaches a high capacity | capacitance battery (high energy density type battery). However, this curve C3 also does not lose the characteristic of gently falling in the second charging state section S2, and the mode transition voltage value Es at the traveling mode transition point can be easily determined. Considering the slope of the curve C, the transition point to the HEV drive mode is determined in the third charging state section S3 from about SOC 15% to about SOC 5%. At this time, the voltage range in which the mode transition voltage value Es can be set does not change, and the mode transition voltage value Es may be determined in a wide range of 3.15 V to 2.5 V corresponding to the third charging state section S3. become. It can also be seen that when the mode transition voltage value Es is determined in the range of 2.8V to 2.6V near the center of the voltage range, the battery capacity can be effectively utilized.

この実施例3の並列接続電池20を8個並列に接続し、それらをさらに12個直列に接続してモータ駆動用電源としての複合電池5を構成した。この複合電池5をモータ駆動用電源として用いたところ、表1に示すように、エンジン始動タイミング検出の容易性が良好であり、電池エネルギー密度比も1.4と高い値であった。   Eight parallel-connected batteries 20 of Example 3 were connected in parallel, and twelve of them were further connected in series to constitute a composite battery 5 as a motor driving power source. When this composite battery 5 was used as a power source for driving a motor, as shown in Table 1, the engine start timing was easily detected and the battery energy density ratio was a high value of 1.4.

<比較例1>
比較例1として、実施例1の黒鉛負極電池(第1の二次電池30)だけでモータ駆動用電源としての電源電池を構成した。ここでは、12枚の正極と13枚の黒鉛負極を用いた二次電池(単電池)を直列に接続した直列接続電池だけで電源電池を構成した。第2の二次電池40は存在しない。したがって、この比較例1は、負極の質量比(黒鉛:ハードカーボン)を、実施例1の1:1から1:0に変更したものと等価になる。この比較例1の電源電池における単電池の電池充電状態(SOC)と電池電圧の関係を図8に示す。
<Comparative Example 1>
As Comparative Example 1, a power source battery as a motor driving power source was constituted only by the graphite negative electrode battery of Example 1 (first secondary battery 30). Here, the power supply battery was constituted only by a series connection battery in which secondary batteries (single cells) using 12 positive electrodes and 13 graphite negative electrodes were connected in series. There is no second secondary battery 40. Therefore, Comparative Example 1 is equivalent to the negative electrode mass ratio (graphite: hard carbon) changed from 1: 1 to 1: 0 in Example 1. FIG. 8 shows the relationship between the battery charge state (SOC) of the single battery and the battery voltage in the power supply battery of Comparative Example 1.

図8から分かるように、この黒鉛負極電池は、高容量電池(高エネルギー密度型電池)としての特性を示すが、立ち下がりが急峻であるため、電池電圧の変化から走行モード移行点を検知することは難しい。   As can be seen from FIG. 8, this graphite negative electrode battery exhibits characteristics as a high-capacity battery (high energy density type battery). However, since the fall is steep, the transition point of the running mode is detected from the change in battery voltage. It ’s difficult.

この比較例1の電源電池をモータ駆動用電源として用いたところ、表1に示すように、電池エネルギー密度比は1.7と高い値であったが、エンジン始動タイミングの検出には困難性があった。   When the power source battery of Comparative Example 1 was used as a motor driving power source, as shown in Table 1, the battery energy density ratio was a high value of 1.7, but it was difficult to detect the engine start timing. there were.

<比較例2>
比較例2として、実施例1のハードカーボン負極電池(第2の二次電池40)だけでモータ駆動用電源としての電源電池を構成した。ここでは、12枚の正極と13枚のハードカーボン負極を用いた二次電池(単電池)を直列に接続した直列接続電池だけで電源電池を構成した。第1の二次電池30は存在しない。したがって、この比較例2は、負極の質量比(黒鉛:ハードカーボン)を、実施例1の1:1から0:1に変更したものと等価になる。この比較例2の電源電池における単電池の電池充電状態(SOC)と電池電圧の関係を図9に示す。
<Comparative example 2>
As Comparative Example 2, a power battery as a motor driving power source was constituted only by the hard carbon negative electrode battery (second secondary battery 40) of Example 1. Here, the power supply battery was constituted only by a series connection battery in which secondary batteries (unit cells) using 12 positive electrodes and 13 hard carbon negative electrodes were connected in series. There is no first secondary battery 30. Therefore, Comparative Example 2 is equivalent to the negative electrode mass ratio (graphite: hard carbon) changed from 1: 1 to 0: 1 in Example 1. FIG. 9 shows the relationship between the battery charge state (SOC) of the single battery and the battery voltage in the power source battery of Comparative Example 2.

図9から分かるように、このハードカーボン負極電池は、立ち下がりが緩やかであるため、電池電圧の変化から走行モード移行点を検知することが容易であるが、電池の残存容量も低下してしまうため、高容量電池(高エネルギー密度型電池)としての特性が確保されない。   As can be seen from FIG. 9, this hard carbon negative battery has a gradual fall, so it is easy to detect the running mode transition point from the change in battery voltage, but the remaining capacity of the battery also decreases. Therefore, characteristics as a high capacity battery (high energy density type battery) are not ensured.

上記比較例2の電源電池をモータ駆動用電源として用いたところ、表1に示すように、エンジン始動タイミング検出の容易性は良好であったが、電池エネルギー密度比は1であり低い値であった。   When the power supply battery of Comparative Example 2 was used as a motor drive power supply, as shown in Table 1, the ease of engine start timing detection was good, but the battery energy density ratio was 1, which was a low value. It was.

表1は、上記の実施例1〜3の並列接続電池20と、比較例1、2の電源電池の単電池との利害得失をまとめたものである。表1において、負極質量比、電池電圧によるエンジン始動タイミング検出の容易性、および電池エネルギー密度比は、比較例2のハードカーボン負極電池を基準にし、これに対する並列接続電池20または単電池の相対値にて評価した。   Table 1 summarizes the advantages and disadvantages of the parallel-connected batteries 20 of Examples 1 to 3 described above and the cells of the power batteries of Comparative Examples 1 and 2. In Table 1, the negative electrode mass ratio, the ease of detection of engine start timing based on the battery voltage, and the battery energy density ratio are based on the hard carbon negative battery of Comparative Example 2, and the relative values of the parallel-connected battery 20 or the single battery relative thereto. Evaluated.

Figure 2008260346
Figure 2008260346

表1からわかるように、LiFePOを正極活物質とし、ハードカーボンを負極活物質とする第2の二次電池40と、黒鉛質カーボンを負極活物質とする第1の二次電池30を並列接続し、これを更に直列接続した並列接続電池20からなる複合電池5(実施例1〜3)は、EV走行モードからHEV走行モードに入るタイミングを容易かつ確実に検出できる。このため、放電しすぎによる不具合や、これを恐れての早めの走行モードの切り替えをせずに済むので、電池のエネルギー容量を有効に活用できる。また、黒鉛質カーボン負極電池をハードカーボン負極電池と並列接続して活用できるので、エネルギー密度に優れなおかつ制御性のよい電源電池を構成できる。この電源電池を搭載することによって、高性能で制御性のよいプラグインハイブリッド電気自動車を構成することができる。 As can be seen from Table 1, a second secondary battery 40 using LiFePO 4 as a positive electrode active material and hard carbon as a negative electrode active material and a first secondary battery 30 using graphite carbon as a negative electrode active material are arranged in parallel. The composite battery 5 (Examples 1 to 3) including the parallel connection batteries 20 that are connected and further connected in series can easily and reliably detect the timing of entering the HEV travel mode from the EV travel mode. For this reason, since it is not necessary to switch the driving mode early because there is a problem due to excessive discharge or fear of this, the energy capacity of the battery can be used effectively. Moreover, since the graphite carbon negative electrode battery can be utilized in parallel with the hard carbon negative electrode battery, a power battery having excellent energy density and good controllability can be configured. By mounting this power supply battery, a plug-in hybrid electric vehicle with high performance and good controllability can be configured.

次に、実施例1の並列接続電池20を用いた複合電池5を、プラグインハイブリッド電気自動車のモータ駆動用電源に適用した例について説明する。   Next, an example in which the composite battery 5 using the parallel connection battery 20 of Example 1 is applied to a motor driving power source of a plug-in hybrid electric vehicle will be described.

最近、日常走行する程度の距離をEV走行するプラグインハイブリッド電気自動車が関心を集めている。一方、ポテンシャルの高いリチウムイオン電池に目を向けると、近年、化学的安定性が高く、耐久性に優れる正極材料として遷移金属とリチウムの複合燐酸化物が開発されてきた。この種の正極材料と黒鉛負極材料を用いて電池を構成すると、電池容量の電圧プロファイルがフラットで、エネルギー密度の高い電池を構成できるが、プラグインハイブリッド電気自動車用の電源とすると、二次電池の充電状態(SOC)を検出するのに高精度の電流計が必要な上に、電流積算の誤差がでやすい。特に、電池の放電末期でのみ電池電圧が急激に変化するので、EV走行モードからHEV走行モードに移行するタイミングの設定には、複雑な制御と、余裕をもって容量をかなり残した状態でEV走行をあきらめる等の手段をとる必要があり、電池の有効活用という点で課題を残す。   Recently, a plug-in hybrid electric vehicle that travels by EV for a distance that can be traveled on a daily basis has attracted attention. On the other hand, looking at lithium ion batteries with high potential, in recent years, composite phosphorous oxides of transition metals and lithium have been developed as positive electrode materials having high chemical stability and excellent durability. When this type of positive electrode material and graphite negative electrode material are used to form a battery, the battery capacity voltage profile is flat and a battery having a high energy density can be formed. However, when a power source for a plug-in hybrid electric vehicle is used, a secondary battery In addition, a highly accurate ammeter is required to detect the state of charge (SOC), and an error in current integration is likely to occur. In particular, since the battery voltage changes abruptly only at the end of the discharge of the battery, the EV drive mode is set with complicated control and a sufficient capacity with a margin for setting the timing for shifting from the EV drive mode to the HEV drive mode. It is necessary to take measures such as giving up, leaving a problem in terms of effective use of the battery.

そこで、実施例1の複合電池5をモータ駆動用電源として使用することで、プラグインハイブリッド電気自動車の走行モードの移行を容易に行う制御の具体例について、図10〜図11を用いて説明する。   Therefore, a specific example of control for easily shifting the running mode of the plug-in hybrid electric vehicle by using the composite battery 5 of Example 1 as a motor driving power source will be described with reference to FIGS. .

図10は、実施例1の並列接続電池20を直列接続してなる複合電池5を充電し、電池残存容量(EN)を記憶する手順を示したフローチャートである。   FIG. 10 is a flowchart showing a procedure for charging the composite battery 5 formed by connecting the parallel connection batteries 20 of Example 1 in series and storing the remaining battery capacity (EN).

まず電池温度Tが所定温度T0より低いこと、すなわちT<T0を確認する(S101)。電池温度Tが所定温度T0以上の場合は、電池冷却ファンを作動させてT<T0に冷却する(S102)。   First, it is confirmed that the battery temperature T is lower than the predetermined temperature T0, that is, T <T0 (S101). When the battery temperature T is equal to or higher than the predetermined temperature T0, the battery cooling fan is operated to cool to T <T0 (S102).

次に、複合電池電圧(E)を検出しつつ、かつT<T0を維持しつつ、複合電池5を充電する(S103〜S104)。この充電時の並列接続電池20における端子間電圧と電流、すなわちセル電圧とセル電流の時間変化の検出データをメモリへ保存し、充電を終了する(S105〜S106)。   Next, the composite battery 5 is charged while detecting the composite battery voltage (E) and maintaining T <T0 (S103 to S104). The inter-terminal voltage and current in the parallel-connected battery 20 at the time of charging, that is, the detection data of the time change of the cell voltage and cell current are stored in the memory, and the charging is terminated (S105 to S106).

その後、単セルの充電状態(SOC)つまり電池残存容量(EN)を算出し、算出された電池残存容量データを不揮発性メモリに書き込んで、充電処理を終了する(S107〜S108)。ここで電池残存容量(EN)を求める際は、充電時の電流−電圧曲線データから充電エネルギーを算出し、これと、メモリに格納されたセルの容量−電圧関係と充電前のセル電圧から求める充電前の残存容量とを加える。また充電エネルギーを算出する際は、セルの内部抵抗による影響を考慮して補正する。   Thereafter, the state of charge (SOC) of the single cell, that is, the remaining battery capacity (EN) is calculated, the calculated remaining battery capacity data is written in the nonvolatile memory, and the charging process is terminated (S107 to S108). Here, when the remaining battery capacity (EN) is obtained, the charging energy is calculated from the current-voltage curve data at the time of charging, and is obtained from the capacity-voltage relationship of the cells stored in the memory and the cell voltage before charging. Add the remaining capacity before charging. Further, when calculating the charging energy, correction is made in consideration of the influence of the internal resistance of the cell.

このようにして充電された複合電池5がモータ駆動用電源として用いられる。   The composite battery 5 charged in this way is used as a motor driving power source.

次に、上記の複合電池5によるプラグインハイブリッド電気自動車の走行時の制御方法を、図11のフローチャートに基づいて説明する。   Next, a control method during travel of the plug-in hybrid electric vehicle using the composite battery 5 will be described based on the flowchart of FIG.

電池コントローラ11は、セル電圧検出器8にてセル電圧(並列接続電池20の端子間電圧)(E)を検出する一方、既知の残存容量データ(EN)を読み込んで、両者を対比することにより電池の残存容量を算出し、その結果を表示装置12に表示する(S201〜S204)。   The battery controller 11 detects the cell voltage (voltage between terminals of the parallel-connected battery 20) (E) by the cell voltage detector 8, while reading the known remaining capacity data (EN) and comparing the two. The remaining capacity of the battery is calculated, and the result is displayed on the display device 12 (S201 to S204).

または、複合電池電圧検出器7にて複合電池電圧を検出し、その複合電池電圧からセル電圧(並列接続電池20の端子間電圧)(E)を算出する一方、既知の残存容量データ(EN)を読み込んで、両者を対比することにより電池の残存容量を算出し、その結果を表示装置12に表示する(S201〜S204)。   Alternatively, the composite battery voltage detector 7 detects the composite battery voltage and calculates the cell voltage (voltage between terminals of the parallel-connected battery 20) (E) from the composite battery voltage, while the known remaining capacity data (EN) Is read, the remaining capacity of the battery is calculated by comparing the two, and the result is displayed on the display device 12 (S201 to S204).

なお、上記の残存容量は、車両の走行前に電池が満充電状態(SOC100%)まで充電されたときは残存容量データから、それ以外のときには計測された電池電圧とメモリに予め格納されている電池電圧−容量関係のテーブルから算出する。   The remaining capacity is stored in advance in the battery voltage and memory measured from the remaining capacity data when the battery is fully charged (SOC 100%) before the vehicle travels, and otherwise measured. It is calculated from a battery voltage-capacity relationship table.

次に、走行モードが市街地モードであるか高速モードであるかを判断する(S205)。市街地モードであれば、電気自動車での走行(EV走行)が可能な電池残存容量があること、つまり上記セル電圧(E)が上述の所定の走行モード移行電圧値Esまで低下していないことを確認する(S206)。確認ができたならば(S206:YES)、EV走行を行う(S207)。   Next, it is determined whether the traveling mode is the urban area mode or the high speed mode (S205). In the urban area mode, there is a remaining battery capacity capable of running on an electric vehicle (EV running), that is, the cell voltage (E) is not lowered to the predetermined running mode transition voltage value Es described above. Confirm (S206). If it is confirmed (S206: YES), EV traveling is performed (S207).

このEV走行を継続している間は、常時、セル電圧(E)を検出し(S209)、EV走行が可能か否か、つまりセル電圧(E)が走行モード移行電圧値Esより大きいかどうかをチェックする(S210)。セル電圧(E)が走行モード移行電圧値Esより大きければ(S210:YES)、ステップS207に戻ってEV走行を続行する(S207〜S210)。   While the EV traveling is continued, the cell voltage (E) is always detected (S209), and whether or not the EV traveling is possible, that is, whether or not the cell voltage (E) is larger than the traveling mode transition voltage value Es. Is checked (S210). If the cell voltage (E) is greater than the travel mode transition voltage value Es (S210: YES), the process returns to step S207 to continue the EV travel (S207 to S210).

かくするうちに、並列接続電池20の残存容量が少なくなって、充電状態(SOC)が小さい領域に入り、セル電圧(E)が走行モード移行電圧値Esに至る。これによりステップS210の判断がNO(EV走行不可能)となり、電池コントローラ11は、発電コントローラ13を介して発電機2を始動モータとして起動させ、エンジン1を始動させる(S216)。その後、回生電力の充電を行いつつハイブリッド走行モードで運転を行う(S217)。   As a result, the remaining capacity of the parallel-connected battery 20 decreases, the state of charge (SOC) enters a small region, and the cell voltage (E) reaches the travel mode transition voltage value Es. As a result, the determination in step S210 becomes NO (EV traveling is impossible), and the battery controller 11 starts the generator 2 as a starter motor via the power generation controller 13 and starts the engine 1 (S216). Thereafter, the vehicle is operated in the hybrid travel mode while charging the regenerative power (S217).

一方、ステップS205において、走行モードが高速モードであると判断された場合は、エンジン1をかけ、回生電力の充電をOFFにしてハイブリッド走行モードで運転を行う(S211)。そして、高速モードでの運転中にセル電圧(E)を監視し(S213)、セル電圧(E)が所定の電圧値Et(Et≧Es)より高い状態(E>Et)にあるか否かを判断する(S214)。YESならばステップS211に戻って高速モードでの運転を継続し、セル電圧(E)が上記所定の電圧値Etにまで低下した場合は回生電力による充電をONにして(S215)、ステップS216へ進む。なお、高速モードでの運転を中止する場合は、ステップS212からステップS206に進み、市街地モードでの運転に入る。   On the other hand, if it is determined in step S205 that the travel mode is the high speed mode, the engine 1 is started, the regenerative electric power is turned off, and the vehicle is operated in the hybrid travel mode (S211). Then, the cell voltage (E) is monitored during operation in the high speed mode (S213), and whether or not the cell voltage (E) is higher than a predetermined voltage value Et (Et ≧ Es) (E> Et). Is determined (S214). If YES, the process returns to step S211, and the operation in the high-speed mode is continued. When the cell voltage (E) is reduced to the predetermined voltage value Et, charging by regenerative power is turned on (S215), and the process goes to step S216. move on. In addition, when stopping the driving | operation in high speed mode, it progresses to step S206 from step S212, and starts driving | running in a city area mode.

実施例1の並列接続電池20は、図5で示した充電状態対電圧特性を有するものであり、充電状態(SOC)の減少に対して電圧が穏やかに低下する傾斜部分を放電末期に近い部分に持つため、この傾斜部分のほぼ中央の、SOC20%前後に対応する2.6V以上2.8V以下の電圧値に、モード移行点を設定しておけば、この電圧値を上記のステップS209〜S210において常時監視するだけで、容易に電気自動車走行モードからハイブリッド走行モードへのモード移行点を検出することができる。   The parallel-connected battery 20 of Example 1 has the charge state vs. voltage characteristics shown in FIG. 5, and the sloped portion where the voltage gently decreases with respect to the decrease in the state of charge (SOC) is a portion near the end of discharge. Therefore, if a mode transition point is set to a voltage value of 2.6 V or more and 2.8 V or less corresponding to approximately 20% of SOC at substantially the center of the inclined portion, this voltage value is set to the above-described steps S209 to S209. The mode transition point from the electric vehicle travel mode to the hybrid travel mode can be easily detected only by constantly monitoring in S210.

本発明は、上記した実施形態のみに限定されるものではなく、種々改変することができる。例えば、上述した実施形態では、複合電池5を構成する複数の並列接続電池20のうち、代表的な一つの並列接続電池20について、その端子間電圧を検出し、その電圧値の変化から走行モード移行タイミングを検出した。しかし本発明はこれに限定されるものではない。すなわち、複合電池5を構成する複数の並列接続電池20のうち、2以上の複数個の並列接続電池20につき、または全ての並列接続電池20につき、それぞれの並列接続電池20の端子間電圧を検出し、それを総合的に評価することにより、走行モード移行タイミングを検出することも可能である。   The present invention is not limited to the above-described embodiment, and can be variously modified. For example, in the above-described embodiment, the voltage between the terminals is detected for one representative parallel-connected battery 20 among the plurality of parallel-connected batteries 20 constituting the composite battery 5, and the travel mode is determined from the change in the voltage value. The transition timing was detected. However, the present invention is not limited to this. That is, the voltage between terminals of each parallel connection battery 20 is detected for two or more parallel connection batteries 20 or for all parallel connection batteries 20 among the plurality of parallel connection batteries 20 constituting the composite battery 5. And it is also possible to detect the driving mode transition timing by comprehensively evaluating it.

また、上述した実施形態では、複合電池5を構成する並列接続電池20の端子間電圧を検出し、その電圧値の変化から走行モード移行タイミングを検出した。しかし、充電状態(SOC)の減少に対する開回路電圧の低下傾向に関する充電状態対電圧特性は、並列接続電池20の端子間電圧から見た場合と、複合電池5の端子間電圧から見た場合とで相関があり、ほぼ比例関係にある。したがって、上記並列接続電池20の端子間電圧を検出する電圧検出器の代わりに、複合電池5の端子間電圧を複合電池電圧検出器7により検出し、その検出電圧が、複合電池5における充電状態対電圧特性上の所定のモード移行電圧値に至ったときに、電池コントローラ11が電気自動車走行モードからハイブリッド走行モードに移行させる構成とするもでき、これによっても走行モード移行タイミングを容易に検出することができる。   Moreover, in embodiment mentioned above, the voltage between terminals of the parallel connection battery 20 which comprises the composite battery 5 was detected, and driving mode transfer timing was detected from the change of the voltage value. However, the charge state vs. voltage characteristics regarding the tendency of the open circuit voltage to decrease with respect to the decrease in the state of charge (SOC) are as seen from the voltage across the terminals of the parallel connection battery 20 and as seen from the voltage across the terminals of the composite battery 5. There is a correlation, and it is almost proportional. Therefore, instead of the voltage detector that detects the inter-terminal voltage of the parallel-connected battery 20, the inter-terminal voltage of the composite battery 5 is detected by the composite battery voltage detector 7, and the detected voltage is the charge state in the composite battery 5. The battery controller 11 can also be configured to shift from the electric vehicle travel mode to the hybrid travel mode when a predetermined mode transition voltage value on the voltage characteristic is reached, thereby easily detecting the travel mode transition timing. be able to.

また、上記実施形態では、上記並列接続電池20を構成する第1の二次電池30と第2の二次電池40の数は、互いに同数としたが、第1の二次電池30と第2の二次電池40とで異なる数の並列個数とすることもできる。例えば、図13(a)に示すように、2個の第1の二次電池30と1個の第2の二次電池40とを並列に接続した並列接続電池20や、図13(b)に示すように、1個の第1の二次電池30と2個の第2の二次電池40とを並列に接続した並列接続電池20を構成することもできる。もちろん、上記並列接続電池20を構成する第1の二次電池30と第2の二次電池40の数は、互いに同数ずつ増減させ、または互いに異なる数だけ増減させても良い。   Moreover, in the said embodiment, although the number of the 1st secondary battery 30 and the 2nd secondary battery 40 which comprise the said parallel connection battery 20 was mutually the same number, the 1st secondary battery 30 and the 2nd The number of parallel batteries may be different from that of the secondary battery 40. For example, as shown in FIG. 13A, a parallel connection battery 20 in which two first secondary batteries 30 and one second secondary battery 40 are connected in parallel, or FIG. 13B. As shown in FIG. 1, it is possible to configure a parallel connection battery 20 in which one first secondary battery 30 and two second secondary batteries 40 are connected in parallel. Of course, the number of the first secondary batteries 30 and the second secondary batteries 40 constituting the parallel connection battery 20 may be increased or decreased by the same number or different from each other.

また、上記実施形態では、上記並列接続電池20を構成する並列枝路中における第1の二次電池30と第2の二次電池40の数を同数としたが、同種の第1の二次電池30または第2の二次電池40の組合せである限り、複数の二次電池を直列に接続した構成、または直並列に接続した構成とすることもできる。前者としては、例えば、図14に示すように、2個直列の第1の二次電池30と2個直列の第2の二次電池40とを並列に接続した並列接続電池20を構成することができる。また後者としては、例えば、図15(a)に示すように、1個の第1の二次電池30と2個並列の第1の二次電池30とを直列に接続した直並列回路を2個直列の第2の二次電池40からなる直列回路とを並列に接続して、並列接続電池20を構成することができる。また、図15(b)に示すように、2個直列の第1の二次電池30からなる直列回路と、1個の第2の二次電池40と2個並列の第2の二次電池40とを直列に接続した直並列回路とを並列に接続して、並列接続電池20を構成することができる。   Moreover, in the said embodiment, although the number of the 1st secondary battery 30 and the 2nd secondary battery 40 in the parallel branch which comprises the said parallel connection battery 20 was made into the same number, the 1st secondary of the same kind As long as it is a combination of the battery 30 or the second secondary battery 40, a configuration in which a plurality of secondary batteries are connected in series or a configuration in which the batteries are connected in series and parallel can be used. As the former, for example, as shown in FIG. 14, a parallel-connected battery 20 in which two series first secondary batteries 30 and two series second secondary batteries 40 are connected in parallel is configured. Can do. Further, as the latter, for example, as shown in FIG. 15A, a series-parallel circuit in which one first secondary battery 30 and two parallel first secondary batteries 30 are connected in series is used. The parallel connection battery 20 can be configured by connecting in parallel a series circuit composed of the individual second secondary batteries 40. Further, as shown in FIG. 15B, a series circuit composed of two first secondary batteries 30 in series, one second secondary battery 40 and two second secondary batteries in parallel. The parallel-connected battery 20 can be configured by connecting in parallel a series-parallel circuit in which 40 is connected in series.

本発明の一実施形態にかかるハイブリッド電動車両の制御系を示すブロック図である。It is a block diagram which shows the control system of the hybrid electric vehicle concerning one Embodiment of this invention. 図1のハイブリッド電動車両の駆動系を示すブロック図である。FIG. 2 is a block diagram showing a drive system of the hybrid electric vehicle of FIG. 1. 本発明の一実施形態にかかる電源システムの構成を示す図である。It is a figure which shows the structure of the power supply system concerning one Embodiment of this invention. 図3の電源システムにおける並列接続電池の充電状態対電圧特性を示す図である。It is a figure which shows the charge condition versus voltage characteristic of the parallel connection battery in the power supply system of FIG. 本発明の実施例1にかかる並列接続電池の充電状態対電圧特性を示す図である。It is a figure which shows the charge condition versus voltage characteristic of the parallel connection battery concerning Example 1 of this invention. 本発明の実施例2にかかる並列接続電池の充電状態対電圧特性を示す図である。It is a figure which shows the charge condition versus voltage characteristic of the parallel connection battery concerning Example 2 of this invention. 本発明の実施例3にかかる並列接続電池の充電状態対電圧特性を示す図である。It is a figure which shows the charge condition versus voltage characteristic of the parallel connection battery concerning Example 3 of this invention. 比較例1にかかる黒鉛負極電池の充電状態対電圧特性を示す図である。It is a figure which shows the charge condition versus voltage characteristic of the graphite negative electrode battery concerning the comparative example 1. 比較例2にかかるハードカーボン負極電池の充電状態対電圧特性を示す図である。It is a figure which shows the charge condition versus voltage characteristic of the hard carbon negative electrode battery concerning the comparative example 2. FIG. 実施例1の並列接続電池を用いた複合電池を充電する手順を示したフローチャートである。3 is a flowchart showing a procedure for charging a composite battery using the parallel connection battery of Example 1. 本発明を適用したプラグインハイブリッド電気自動車の走行時の制御手順を示したフローチャートである。It is the flowchart which showed the control procedure at the time of driving | running | working of the plug-in hybrid electric vehicle to which this invention is applied. 本発明との比較用の複合電池の構成を示した図である。It is the figure which showed the structure of the composite battery for a comparison with this invention. 本発明のハイブリッド電動車両用電源システムを構成する並列接続電池の変形回路例を示した図である。It is the figure which showed the modification circuit example of the parallel connection battery which comprises the power supply system for hybrid electric vehicles of this invention. 本発明のハイブリッド電動車両用電源システムを構成する並列接続電池の他の変形回路例を示した図である。It is the figure which showed the other modification circuit example of the parallel connection battery which comprises the power supply system for hybrid electric vehicles of this invention. 本発明のハイブリッド電動車両用電源システムを構成する並列接続電池の別の変形回路例を示した図である。It is the figure which showed another modified circuit example of the parallel connection battery which comprises the power supply system for hybrid electric vehicles of this invention.

符号の説明Explanation of symbols

1 エンジン
2 発電機
3 整流器
5 複合電池
6 電流検出器
7 複合電池電圧検出器
8 セル電圧検出器
9 インバータ
10 モータ
11 電池コントローラ
12 表示装置
13 発電コントローラ
14 電磁クラッチ
15 無段変速機
16 車軸
17 駆動ベルト
18 車両コントローラ
20 並列接続電池
21 電池増設用ポート
22 セルコントローラ
30 第1の二次電池
40 第2の二次電池
50 電源システム
51 正極端子
52 負極端子
DESCRIPTION OF SYMBOLS 1 Engine 2 Generator 3 Rectifier 5 Composite battery 6 Current detector 7 Composite battery voltage detector 8 Cell voltage detector 9 Inverter 10 Motor 11 Battery controller 12 Display device 13 Electric power generation controller 14 Electromagnetic clutch 15 Continuously variable transmission 16 Axle 17 Drive Belt 18 Vehicle controller 20 Parallel connection battery 21 Battery expansion port 22 Cell controller 30 First secondary battery 40 Second secondary battery 50 Power supply system 51 Positive terminal 52 Negative terminal

Claims (12)

ハイブリッド電動車両用電源として、充電状態対電圧特性の異なる二種類の二次電池が並列に接続された並列接続電池またはこの並列接続電池がさらに直列に接続された直並列接続電池からなる複合電池と、
前記複合電池の電池電圧を検出する電圧検出器とを有し、
前記複合電池を構成する並列接続電池は、充電状態の減少に対する開回路電圧の低下傾向がほとんどないかまたは小さい第1の充電状態対電圧特性を有する第1の二次電池と、充電状態の減少に対する開回路電圧の低下傾向が前記第1の充電状態対電圧特性よりも大きい第2の充電状態対電圧特性を有する第2の二次電池とを並列に接続して、充電状態の減少に対する開回路電圧の低下傾向が、少なくとも半分の充電状態を越えるまでの第1充電状態区間でほとんどないかまたは小さく、前記第1充電状態区間を過ぎてから前記放電末期までの第2充電状態区間で大きくなる第3の充電状態対電圧特性を有する電池として構成されている、
ことを特徴とするハイブリッド電動車両用電源システム。
As a power source for a hybrid electric vehicle, a composite battery comprising a parallel connection battery in which two types of secondary batteries having different charge state vs. voltage characteristics are connected in parallel, or a series / parallel connection battery in which this parallel connection battery is further connected in series, and ,
A voltage detector for detecting a battery voltage of the composite battery,
The parallel connection battery constituting the composite battery includes a first secondary battery having a first charge state-to-voltage characteristic with little or no decrease in open circuit voltage with respect to a decrease in charge state, and a decrease in charge state. And a second secondary battery having a second charge state-to-voltage characteristic that is greater than the first charge state-to-voltage characteristic. The decreasing tendency of the circuit voltage is hardly or small in the first charge state interval until it exceeds at least half of the charge state, and is large in the second charge state interval from the first charge state interval to the end of discharge. Configured as a battery having a third state of charge versus voltage characteristic,
A power supply system for a hybrid electric vehicle.
前記第1の二次電池および第2の二次電池は、それぞれ、集電体の表面に形成された、正極活物質を含む正極活物質層と、電解質層と、集電体の表面に形成された、負極活物質を含む負極活物質層と、がこの順に積層されてなる少なくとも1つの単電池層を有する二次電池からなり、
前記第1の二次電池の正極活物質層と負極活物質層には、前記第1の充電状態対電圧特性を呈する第1の正極活物質と第1の負極活物質が用いられており、
また前記第2の二次電池の正極活物質層と負極活物質層の少なくとも一方に、前記第2の充電状態対電圧特性を呈する活物資質が用いられている、
ことを特徴とする請求項1に記載のハイブリッド電動車用電源システム。
The first secondary battery and the second secondary battery are respectively formed on a surface of a current collector, a positive electrode active material layer including a positive electrode active material, an electrolyte layer, and a current collector. A negative electrode active material layer containing a negative electrode active material and a secondary battery having at least one single battery layer laminated in this order,
The positive electrode active material layer and the negative electrode active material layer of the first secondary battery use the first positive electrode active material and the first negative electrode active material exhibiting the first charge state versus voltage characteristics,
Moreover, the active material property which exhibits the said 2nd charge state versus voltage characteristic is used for at least one of the positive electrode active material layer of the said 2nd secondary battery, and a negative electrode active material layer,
The power supply system for a hybrid electric vehicle according to claim 1.
前記第2の二次電池の前記第2の充電状態対電圧特性を呈する活物資質が、第2の負極活物質である、ことを特徴とする請求項2に記載のハイブリッド電動車用電源システム。   3. The power system for a hybrid electric vehicle according to claim 2, wherein the active material property of the second secondary battery exhibiting the second charge state versus voltage characteristic is a second negative electrode active material. 4. . 前記第2の二次電池の正極活物質層に前記第1の正極活物質が用いられ、前記第2の二次電池の負極活物質層に前記第2の負極活物質が用いられている、
ことを特徴とする請求項3に記載のハイブリッド電動車両用電源システム。
The first positive electrode active material is used for the positive electrode active material layer of the second secondary battery, and the second negative electrode active material is used for the negative electrode active material layer of the second secondary battery.
The power system for a hybrid electric vehicle according to claim 3.
前記第1の二次電池には、前記正極活物質層を構成する前記第1の正極活物質としてLiMPO(ここでMはFe、Mn、Coから選ばれる1つ以上の元素)が用いられ、前記負極活物質層を構成する前記第1の負極活物質として黒鉛質カーボンが用いられており、
また前記第2の二次電池には、前記負極活物質層を構成する第2の負極活物質としてアモルファスカーボンが用いられている、
ことを特徴とする請求項4に記載のハイブリッド電動車両用電源システム。
In the first secondary battery, LiMPO 4 (wherein M is one or more elements selected from Fe, Mn, and Co) is used as the first positive electrode active material constituting the positive electrode active material layer. , Graphite carbon is used as the first negative electrode active material constituting the negative electrode active material layer,
In the second secondary battery, amorphous carbon is used as a second negative electrode active material constituting the negative electrode active material layer.
The power supply system for a hybrid electric vehicle according to claim 4.
前記LiMPOのMがFeである、ことを特徴とする請求項5に記載のハイブリッド電動車両用電源システム。 The power supply system for a hybrid electric vehicle according to claim 5, wherein M of the LiMPO 4 is Fe. 前記アモルファスカーボンがハードカーボンである、ことを特徴とする請求項5または6に記載のハイブリッド電動車両用電源システム。   The power system for a hybrid electric vehicle according to claim 5 or 6, wherein the amorphous carbon is hard carbon. 請求項1〜7のいずれかに記載のハイブリッド電動車両用電源システムのための制御装置であって、
前記電圧検出器により前記複合電池の電気自動車走行モード中の電池電圧を検出する電圧検出手段と、
前記電圧検出手段にて検出される電池電圧が所定の走行モード移行電圧値まで低下したとき、エンジンを始動させてハイブリッド走行モードに移行させる移行制御手段と、を有し、
前記移行制御手段は、前記並列接続電池が有する前記第3の充電状態対電圧特性上の充電状態の減少に対する開回路電圧の低下傾向が大きい部分に、前記走行モード移行電圧値が設定されており、前記電圧検出手段で検出される電池電圧から判断されるセル電圧が、この設定されたモード移行電圧値に至ったとき、前記電気自動車走行モードから前記ハイブリッド走行モードに移行させる、
ことを特徴とするハイブリッド電動車両用電源システムの制御装置。
A control device for a power system for a hybrid electric vehicle according to any one of claims 1 to 7,
Voltage detecting means for detecting a battery voltage during the electric vehicle running mode of the composite battery by the voltage detector;
Transition control means for starting the engine and transitioning to the hybrid travel mode when the battery voltage detected by the voltage detection means has decreased to a predetermined travel mode transition voltage value;
In the transition control means, the travel mode transition voltage value is set in a portion where the decrease tendency of the open circuit voltage with respect to the decrease in the charge state on the third charge state versus voltage characteristic of the parallel-connected battery is large. When the cell voltage determined from the battery voltage detected by the voltage detection means reaches the set mode transition voltage value, the electric vehicle travel mode is shifted to the hybrid travel mode.
A control device for a power supply system for a hybrid electric vehicle characterized by the above.
前記電圧検出手段で検出される電池電圧が、前記並列接続電池の端子間電圧であることを特徴とする請求項8に記載のハイブリッド電動車両用電源システムの制御装置。   9. The control apparatus for a power system for a hybrid electric vehicle according to claim 8, wherein the battery voltage detected by the voltage detection means is a voltage between terminals of the parallel connection battery. 前記電圧検出手段で検出される電池電圧が、前記複合電池の端子間電圧である、ことを特徴とする請求項8記載のハイブリッド電動車両用電源システムの制御装置。   9. The control apparatus for a power system for a hybrid electric vehicle according to claim 8, wherein the battery voltage detected by the voltage detecting means is a voltage between terminals of the composite battery. 前記所定の走行モード移行電圧値が、前記並列接続電池を構成する二次電池の一単位あたり2.5V以上3.15V以下である、ことを特徴とする請求項8〜10のいずれかに記載のハイブリッド電動車両用電源システムの制御装置。   The predetermined travel mode transition voltage value is 2.5 V or more and 3.15 V or less per unit of the secondary battery constituting the parallel connection battery. Control device for a hybrid electric vehicle power system. 前記所定の走行モード移行電圧値が、前記並列接続電池を構成する二次電池の一単位あたり2.6V以上2.8V以下である、ことを特徴とする請求項8〜10のいずれかに記載のハイブリッド電動車両用電源システムの制御装置。   The predetermined travel mode transition voltage value is 2.6 V or more and 2.8 V or less per unit of the secondary battery constituting the parallel connection battery. Control device for a hybrid electric vehicle power system.
JP2007102978A 2007-04-10 2007-04-10 Power supply system for hybrid electric vehicle and control device thereof Expired - Fee Related JP5003257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007102978A JP5003257B2 (en) 2007-04-10 2007-04-10 Power supply system for hybrid electric vehicle and control device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007102978A JP5003257B2 (en) 2007-04-10 2007-04-10 Power supply system for hybrid electric vehicle and control device thereof

Publications (2)

Publication Number Publication Date
JP2008260346A true JP2008260346A (en) 2008-10-30
JP5003257B2 JP5003257B2 (en) 2012-08-15

Family

ID=39983163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007102978A Expired - Fee Related JP5003257B2 (en) 2007-04-10 2007-04-10 Power supply system for hybrid electric vehicle and control device thereof

Country Status (1)

Country Link
JP (1) JP5003257B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140213A1 (en) * 2009-06-02 2010-12-09 トヨタ自動車株式会社 Power supply system of electric vehicle and control method thereof
WO2011072564A1 (en) * 2009-12-16 2011-06-23 奇瑞汽车股份有限公司 Electric vehicle range extender control system and control method thereof
WO2011074169A1 (en) * 2009-12-14 2011-06-23 パナソニック株式会社 Method for determining completion of charging and discharging of lithium-ion secondary battery, charge control circuit, discharge control circuit, and power supply
JP2012054019A (en) * 2010-08-31 2012-03-15 Calsonic Kansei Corp Battery
WO2012147121A1 (en) 2011-04-25 2012-11-01 トヨタ自動車株式会社 Cell pack
JP2013089523A (en) * 2011-10-20 2013-05-13 Tdk Corp Battery pack and electricity storage device including the same
WO2013090080A1 (en) * 2011-12-15 2013-06-20 A123 Systems, Inc. Hybrid battery system
JP2013142568A (en) * 2012-01-10 2013-07-22 Denso Corp Secondary battery and remaining capacity calculating device for the same
WO2013179810A1 (en) * 2012-05-29 2013-12-05 株式会社 日立製作所 Device for controlling battery pack, power source device, and method for controlling battery pack
RU2538096C2 (en) * 2012-11-09 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Measuring instrument of residual energy of accumulator
CN105637380A (en) * 2013-10-14 2016-06-01 株式会社Lg化学 Apparatus for estimating voltage of hybrid secondary battery and method therefor
CN105723231A (en) * 2013-10-14 2016-06-29 株式会社Lg化学 Apparatus for estimating state of hybrid secondary battery and method therefor
JP2016539319A (en) * 2013-09-26 2016-12-15 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Energy storage device
CN106515459A (en) * 2016-12-15 2017-03-22 简式国际汽车设计(北京)有限公司 Active discharging method of double-motor controller of battery electric vehicle
CN106671781A (en) * 2015-11-06 2017-05-17 北汽福田汽车股份有限公司 Control method of high-pressure loop of vehicle, system, and vehicle
JP2017098243A (en) * 2015-11-18 2017-06-01 徐 夫子HSU Fu−Tzu Resonance lithium ion battery with damper functional
JP2017103240A (en) * 2012-11-22 2017-06-08 エルジー・ケム・リミテッド Electrolyte for lithium secondary batteries, and lithium secondary battery including the same
JP2020522841A (en) * 2017-05-26 2020-07-30 キティー・ホーク・コーポレーションKitty Hawk Corporation Electric transportation equipment hybrid battery system
KR20200106751A (en) * 2019-03-05 2020-09-15 현대자동차주식회사 Apparatus for controlling driving mode of hybrid vehicle and method thereof
CN113022367A (en) * 2021-02-04 2021-06-25 中植一客成都汽车有限公司 Auxiliary battery standard device and quick-change system of pure electric vehicle
US11097839B2 (en) 2019-10-09 2021-08-24 Kitty Hawk Corporation Hybrid power systems for different modes of flight
US11655024B1 (en) 2022-05-25 2023-05-23 Kitty Hawk Corporation Battery systems with power optimized energy source and energy storage optimized source

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI764391B (en) * 2020-11-24 2022-05-11 立錡科技股份有限公司 Charging control apparatus and charging control method for use in mobile devices and charging system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151581A (en) * 1990-10-15 1992-05-25 Hitachi Maxell Ltd Combined battery
JPH07111710A (en) * 1993-10-08 1995-04-25 Honda Motor Co Ltd Hybrid power supply for motor running vehicle
JP2001268814A (en) * 2000-03-17 2001-09-28 Internatl Business Mach Corp <Ibm> Power supply device, electric equipment, and power supply method
JP2006057583A (en) * 2004-08-23 2006-03-02 Toyota Motor Corp Vehicle control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151581A (en) * 1990-10-15 1992-05-25 Hitachi Maxell Ltd Combined battery
JPH07111710A (en) * 1993-10-08 1995-04-25 Honda Motor Co Ltd Hybrid power supply for motor running vehicle
JP2001268814A (en) * 2000-03-17 2001-09-28 Internatl Business Mach Corp <Ibm> Power supply device, electric equipment, and power supply method
JP2006057583A (en) * 2004-08-23 2006-03-02 Toyota Motor Corp Vehicle control device

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5234179B2 (en) * 2009-06-02 2013-07-10 トヨタ自動車株式会社 Electric vehicle power supply system and control method thereof
US8594873B2 (en) 2009-06-02 2013-11-26 Toyota Jidosha Kabushiki Kaisha Power supply system for electric powered vehicle and control method thereof
CN102448767A (en) * 2009-06-02 2012-05-09 丰田自动车株式会社 Power supply system of electric vehicle and control method thereof
WO2010140213A1 (en) * 2009-06-02 2010-12-09 トヨタ自動車株式会社 Power supply system of electric vehicle and control method thereof
WO2011074169A1 (en) * 2009-12-14 2011-06-23 パナソニック株式会社 Method for determining completion of charging and discharging of lithium-ion secondary battery, charge control circuit, discharge control circuit, and power supply
JP5033262B2 (en) * 2009-12-14 2012-09-26 パナソニック株式会社 Completion determination method and discharge end determination method for lithium ion secondary battery, charge control circuit, discharge control circuit, and power supply
WO2011072564A1 (en) * 2009-12-16 2011-06-23 奇瑞汽车股份有限公司 Electric vehicle range extender control system and control method thereof
JP2012054019A (en) * 2010-08-31 2012-03-15 Calsonic Kansei Corp Battery
WO2012147121A1 (en) 2011-04-25 2012-11-01 トヨタ自動車株式会社 Cell pack
US8647765B2 (en) 2011-04-25 2014-02-11 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a battery pack to minimize circulating current
JP2013089523A (en) * 2011-10-20 2013-05-13 Tdk Corp Battery pack and electricity storage device including the same
WO2013090080A1 (en) * 2011-12-15 2013-06-20 A123 Systems, Inc. Hybrid battery system
CN104350662A (en) * 2011-12-15 2015-02-11 A123系统公司 Hybrid battery system
US9979053B2 (en) 2011-12-15 2018-05-22 A123 Systems, LLC Hybrid battery system
JP2015508552A (en) * 2011-12-15 2015-03-19 エイ123 システムズ インコーポレイテッド Hybrid battery system
JP2013142568A (en) * 2012-01-10 2013-07-22 Denso Corp Secondary battery and remaining capacity calculating device for the same
JP2013246109A (en) * 2012-05-29 2013-12-09 Hitachi Ltd Control device of battery pack, power supply device, and method of controlling battery pack
WO2013179810A1 (en) * 2012-05-29 2013-12-05 株式会社 日立製作所 Device for controlling battery pack, power source device, and method for controlling battery pack
RU2538096C2 (en) * 2012-11-09 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Measuring instrument of residual energy of accumulator
US9853328B2 (en) 2012-11-22 2017-12-26 Lg Chem, Ltd. Electrolyte for lithium secondary batteries and lithium secondary battery including the same
JP2017103240A (en) * 2012-11-22 2017-06-08 エルジー・ケム・リミテッド Electrolyte for lithium secondary batteries, and lithium secondary battery including the same
JP2016539319A (en) * 2013-09-26 2016-12-15 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Energy storage device
US10027137B2 (en) 2013-09-26 2018-07-17 Siemens Aktiengesellschaft Energy storage device
US10088529B2 (en) 2013-10-14 2018-10-02 Lg Chem, Ltd. Apparatus for estimating state of hybrid secondary battery and method thereof
JP2016540962A (en) * 2013-10-14 2016-12-28 エルジー・ケム・リミテッド Apparatus and method for estimating state of hybrid secondary battery
EP3056918A4 (en) * 2013-10-14 2017-08-16 LG Chem, Ltd. Apparatus for estimating state of hybrid secondary battery and method therefor
CN105723231A (en) * 2013-10-14 2016-06-29 株式会社Lg化学 Apparatus for estimating state of hybrid secondary battery and method therefor
CN105637380A (en) * 2013-10-14 2016-06-01 株式会社Lg化学 Apparatus for estimating voltage of hybrid secondary battery and method therefor
US10073146B2 (en) 2013-10-14 2018-09-11 Lg Chem, Ltd. Apparatus for estimating voltage of hybrid secondary battery and method thereof
JP2017501372A (en) * 2013-10-14 2017-01-12 エルジー・ケム・リミテッド Apparatus and method for estimating voltage of hybrid secondary battery
CN106671781B (en) * 2015-11-06 2019-03-26 北京宝沃汽车有限公司 The control method and system of the high tension loop of vehicle, vehicle
CN106671781A (en) * 2015-11-06 2017-05-17 北汽福田汽车股份有限公司 Control method of high-pressure loop of vehicle, system, and vehicle
JP2017098243A (en) * 2015-11-18 2017-06-01 徐 夫子HSU Fu−Tzu Resonance lithium ion battery with damper functional
CN106515459B (en) * 2016-12-15 2019-03-08 简式国际汽车设计(北京)有限公司 A kind of active discharge method of pure electric automobile Double Motor Control device
CN106515459A (en) * 2016-12-15 2017-03-22 简式国际汽车设计(北京)有限公司 Active discharging method of double-motor controller of battery electric vehicle
JP2020522841A (en) * 2017-05-26 2020-07-30 キティー・ホーク・コーポレーションKitty Hawk Corporation Electric transportation equipment hybrid battery system
JP7084676B2 (en) 2017-05-26 2022-06-15 キティー・ホーク・コーポレーション Electric vehicle hybrid battery system
KR20200106751A (en) * 2019-03-05 2020-09-15 현대자동차주식회사 Apparatus for controlling driving mode of hybrid vehicle and method thereof
KR102645052B1 (en) * 2019-03-05 2024-03-08 현대자동차주식회사 Apparatus for controlling driving mode of hybrid vehicle and method thereof
US11097839B2 (en) 2019-10-09 2021-08-24 Kitty Hawk Corporation Hybrid power systems for different modes of flight
US11787537B2 (en) 2019-10-09 2023-10-17 Kitty Hawk Corporation Hybrid power systems for different modes of flight
CN113022367A (en) * 2021-02-04 2021-06-25 中植一客成都汽车有限公司 Auxiliary battery standard device and quick-change system of pure electric vehicle
US11655024B1 (en) 2022-05-25 2023-05-23 Kitty Hawk Corporation Battery systems with power optimized energy source and energy storage optimized source

Also Published As

Publication number Publication date
JP5003257B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5003257B2 (en) Power supply system for hybrid electric vehicle and control device thereof
JP6280196B2 (en) Apparatus and method for estimating state of charge of secondary battery including mixed positive electrode material
JP6192738B2 (en) Battery module and battery pack
JP5332983B2 (en) Battery system
JP4082147B2 (en) Assembled battery
JP5537521B2 (en) Lithium ion secondary battery control system and battery pack control system
JP6029251B2 (en) Apparatus and method for estimating state of charge of secondary battery including mixed positive electrode material
JP6185597B2 (en) Apparatus and method for estimating depth of discharge of secondary battery
US8305085B2 (en) Lithium-ion battery controlling apparatus and electric vehicle
JP2002358966A (en) Lithium secondary battery positive electrode plate and lithium secondary battery
CN104160291A (en) Control device for secondary battery, charging control method, and soc detection method
JP6898585B2 (en) Secondary battery state estimation method and state estimation system
JP2010011708A (en) Charge control method, discharge control method and charge/discharge system of battery pack
JP2016110917A (en) Lithium ion secondary battery and battery system
US20210152010A1 (en) Method for charging battery and charging system
JP2009199929A (en) Lithium secondary battery
JP6879136B2 (en) Charge / discharge control device for secondary batteries
JP5359485B2 (en) Control method of all-solid-state lithium ion secondary battery
JP7087960B2 (en) Charging system
JP2010074960A (en) Secondary battery system and charge/discharge control method of secondary battery
JP2013031248A (en) Battery device hysteresis reduction system
JP2012065474A (en) Controller for electric vehicle
JP6483915B2 (en) Hybrid electric vehicle
JP2010073498A (en) Controlling method of charging/discharging of secondary battery, secondary battery system, and hybrid automobile
US20230194619A1 (en) Battery system, vehicle including the same, and method for monitoring secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees