JP2008256681A - System for monitoring pressure fluctuations in nuclear power plant - Google Patents

System for monitoring pressure fluctuations in nuclear power plant Download PDF

Info

Publication number
JP2008256681A
JP2008256681A JP2008065444A JP2008065444A JP2008256681A JP 2008256681 A JP2008256681 A JP 2008256681A JP 2008065444 A JP2008065444 A JP 2008065444A JP 2008065444 A JP2008065444 A JP 2008065444A JP 2008256681 A JP2008256681 A JP 2008256681A
Authority
JP
Japan
Prior art keywords
strain
power plant
nuclear power
pressure
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008065444A
Other languages
Japanese (ja)
Inventor
Takeshi Hagiwara
剛 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008065444A priority Critical patent/JP2008256681A/en
Publication of JP2008256681A publication Critical patent/JP2008256681A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monitoring apparatus for measuring pressure fluctuation in reactor equipment, with high accuracy and high reliability. <P>SOLUTION: The apparatus is provided with an optical fiber 3, having a strain-measuring unit 4 adhered onto the surface of piping 2 connected to a reactor pressure vessel housed in a reactor containment 1 for measuring the strain applied to the pining 2 connected to the reactor pressure vessel; a strain converter 5, connected to the optical fiber 3 for converting a light signal into an electrical signal and a monitor 7 connected to the strain converter 6. Alternatively, the optical fiber 3 may be designed to directly pass through a through-hole 5 formed in the reactor containment 1 without converting the light signal to the electrical signal and the light signal may be converted to the electrical signal by a strain converter installed outside of the reactor containment 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、沸騰水型原子炉等の原子力プラントの圧力変動を監視するシステムに関する。   The present invention relates to a system for monitoring pressure fluctuations in a nuclear power plant such as a boiling water reactor.

沸騰水型原子炉において現在構造のまま熱出力の増加をはかり、蒸気流量を増加させると、一部のプラントにおいては、主蒸気系における圧力の脈動が増加し、これが原子炉に伝播して炉内に設置された蒸気乾燥器を破損する事態も想定されている。   In boiling water reactors, if the heat output is increased with the current structure and the steam flow rate is increased, the pressure pulsation in the main steam system will increase in some plants and this will propagate to the reactor and be transferred to the reactor. It is also assumed that the steam dryer installed inside will be damaged.

また、再循環流量を増加させるためにポンプの回転数を変更するなどした際に、ポンプの回転数と羽根枚数に応じて発生する圧力脈動が炉内の機器を損傷する事例なども知られている。一般に、圧力変動を抑制する手段としては、圧力を外に逃がすことや、ヘルムホルツ共鳴器を設置して脈動を吸収して抑制する方法などが知られている。   There are also known cases where pressure pulsations that occur according to the number of rotations of the pump and the number of blades damage the equipment in the furnace when the number of rotations of the pump is changed to increase the recirculation flow rate. Yes. In general, as means for suppressing pressure fluctuation, there are known a method of releasing pressure or a method of installing a Helmholtz resonator to absorb and suppress pulsation.

このような抑制手段としては、例えば一定の圧力以上に上昇した場合に蒸気を水プールに排出する手段と、排出時に水面振動を抑制するために水中への排出管に緩衝用の穴を多数設けることや、他分野の例では脈動発生源の圧力容器にヘルムホルツ共鳴器を隣接して設置する方法(例えば特許文献1参照)などが行われる。   As such a suppression means, for example, a means for discharging steam to the water pool when the pressure rises above a certain pressure, and a number of buffering holes are provided in the discharge pipe into the water in order to suppress water surface vibration at the time of discharge. In other examples, a method of installing a Helmholtz resonator adjacent to a pressure vessel of a pulsation generation source (see, for example, Patent Document 1) is performed.

特に後者のような方法では、圧力脈動の振動数やその大きさを把握することが必要である。したがって、例えば時間応答性の良好な圧力センサを配管に設置することなどが考えられるが、内圧が高い圧力容器である配管に新たに貫通口を設けることはコストの面で不利である。このため、配管表面のひずみを検出して配管内または原子炉内の圧力脈動を間接的に測定する手法などが近年行われている。また、このような方法で測定された信号を原子炉格納容器外へ伝送するためには通常は金属を材料とする信号伝送線を内包した計装貫通口が用いられるが、貫通口で電磁ノイズを拾うことが多いため格納容器の内外にそれぞれ電気信号と光信号の間の変換器を設けて、一旦、金属の信号伝送線を光ファイバー線の信号伝送線に変換して、格納容器壁を貫通する光ファイバー式の計装貫通口などが開発されている。
特開平7−139738号公報
In particular, in the latter method, it is necessary to grasp the frequency and magnitude of pressure pulsation. Therefore, for example, it is conceivable to install a pressure sensor with good time response in the pipe, but it is disadvantageous in terms of cost to newly provide a through-hole in the pipe which is a pressure vessel having a high internal pressure. For this reason, in recent years, a technique for detecting the pressure pulsation in the pipe or the reactor indirectly by detecting the strain on the pipe surface has been performed. In addition, in order to transmit the signal measured by such a method to the outside of the containment vessel, an instrumentation through hole containing a signal transmission line made of metal is usually used. Since there is a converter between the electrical and optical signals inside and outside the containment vessel, the metal signal transmission line is converted into an optical fiber signal transmission line and penetrates the containment vessel wall. Optical fiber instrumentation through holes have been developed.
JP-A-7-139738

上述した配管表面のひずみを監視する方法においては、監視したい主蒸気配管や再循環系配管が運転中は密閉される原子炉格納容器内にあるため、格納容器内に立ち入ることができず、容器内に設置するひずみアンプやひずみゲージのケーブルなどを調整することができない。このため、運転前の設置時に信号/ノイズ比(S/N比)を高く調整するが、運転によって測定応力値や電磁場環境が変わり、S/N比が劣化した場合に再調整することができない。圧力脈動による配管表面のひずみは非常に微少な量であるため、S/N比の劣化によって監視不能になることがある。また、格納容器の内外を貫通する計測制御線の数は、計装ペネトレーションと呼ばれる格納容器の内外を貫通する電線貫通装置の数によって制限されるため、ひずみゲージの設置個数が限定されるという問題もある。さらに、監視箇所は配管内で圧力脈動が形成する定在波の形状が十分捕捉できるように、脈動の波長かその数分の一程度の長さの間隔で設置することが望ましいが、このように離れた位置にひずみゲージを設置すると、各ひずみゲージからひずみアンプまでの距離が長くなる。ひずみゲージは通常は抵抗値の微少な変化をブリッジ平衡回路によって電圧に換算して読み取るため、このようにアンプまでの信号線の長さが長くなると誤差が増加するし、また周囲の電磁ノイズを拾いやすくなる。   In the above-described method for monitoring the strain on the pipe surface, the main steam pipe and recirculation system pipe to be monitored are in the reactor containment vessel that is sealed during operation, and thus cannot enter the containment vessel. The strain amplifier or strain gauge cable installed inside cannot be adjusted. For this reason, the signal / noise ratio (S / N ratio) is adjusted to be high at the time of installation before operation, but cannot be readjusted when the measured stress value or electromagnetic field environment changes due to operation and the S / N ratio deteriorates. . Since the strain on the pipe surface due to pressure pulsation is very small, it may become impossible to monitor due to the deterioration of the S / N ratio. In addition, the number of measurement control lines that penetrate the inside and outside of the containment vessel is limited by the number of wire penetrating devices that penetrate the inside and outside of the containment vessel called instrumentation penetration, so the number of strain gauges installed is limited. There is also. Furthermore, it is desirable to install monitoring points at intervals of about one-tenth of the wavelength of the pulsation so that the shape of the standing wave formed by the pressure pulsation can be sufficiently captured in the pipe. If a strain gauge is installed at a position far away from each other, the distance from each strain gauge to the strain amplifier becomes longer. Strain gauges usually read minute changes in resistance values by converting them to voltages using a bridge balanced circuit, so the error increases as the length of the signal line to the amplifier increases in this way, and ambient electromagnetic noise is also reduced. It becomes easy to pick up.

本発明は上述した課題を解決するためになされたものであり、原子炉格納容器の中の配管内や圧力容器内の圧力脈動を多数の点で高いS/N比で測定し、また格納容器外へその信号を伝送する手段を提供することのできる圧力変動監視装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and measures pressure pulsations in piping and pressure vessels in a reactor containment vessel at a number of points with a high S / N ratio. An object of the present invention is to obtain a pressure fluctuation monitoring device capable of providing a means for transmitting the signal to the outside.

本発明は上記問題点を解決するためになされたもので、原子炉格納容器内に収納された原子炉圧力容器またはこの原子炉圧力容器に接続された配管の表面に貼付けられて、これら原子炉圧力容器またはこの原子炉圧力容器に接続された配管のひずみを測定するひずみ測定部を有する光ファイバーと、この光ファイバーに接続されて光信号を電気信号に変換するひずみ変換器と、このひずみ変換器に接続された監視装置とを備えたことを特徴とする原子力プラントの圧力変動監視システムである。   The present invention has been made to solve the above problems, and is attached to the surface of a reactor pressure vessel housed in a reactor containment vessel or a pipe connected to the reactor pressure vessel, and these reactors An optical fiber having a strain measuring unit for measuring strain of a pressure vessel or a pipe connected to the reactor pressure vessel, a strain transducer connected to the optical fiber to convert an optical signal into an electrical signal, and a strain transducer A pressure fluctuation monitoring system for a nuclear power plant, comprising a connected monitoring device.

このように構成された本発明では、配管ひずみは光ファイバー内を光のかたちで伝送されるため、変換器にいたるまで電磁波ノイズの影響を受けない。このためS/N比が大幅に改善される。また、既存の計装貫通口を利用できるため、既存プラントに容易に追加して設置することができる。   In the present invention configured as described above, since the pipe strain is transmitted in the form of light through the optical fiber, it is not affected by electromagnetic noise until it reaches the converter. For this reason, the S / N ratio is greatly improved. Moreover, since the existing instrumentation through-hole can be used, it can be easily added to the existing plant.

以下、本発明に係る圧力変動監視装置の実施例について、図面を参照して説明する。   Embodiments of a pressure fluctuation monitoring apparatus according to the present invention will be described below with reference to the drawings.

(第1の実施例)
図1を用いて本発明の第1の実施例を説明する。図1は第1の実施例の構成を一部断面で示す斜視図である。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a perspective view showing a part of the structure of the first embodiment.

原子炉格納容器1の内側に設置された配管2の周方向に貼り付けたひずみ測定部4と、このひずみ測定部4で測定した光信号を導く光ファイバー3と、原子炉格納容器1内の計装貫通口5の近くに設置した光信号―電圧信号の変換器(ひずみ変換器)6と、変換器6からの出力信号を観測する監視装置7から構成されている。   A strain measuring unit 4 attached in the circumferential direction of a pipe 2 installed inside the reactor containment vessel 1, an optical fiber 3 for guiding an optical signal measured by the strain measuring unit 4, and a meter in the reactor containment vessel 1 An optical signal-voltage signal converter (strain converter) 6 installed near the loading / unloading port 5 and a monitoring device 7 for observing an output signal from the converter 6 are configured.

このように構成された本実施の形態において、配管ひずみは光ファイバー3内の光のかたちで伝送されるため、変換器6に至るまでは電磁波ノイズを拾うことがなく、変換器6の直前までのS/N比は、ひずみ測定部4と変換器6との距離に関係なく改善される。また、既存の計装線貫通口を利用できるため、容易に高S/N比の圧力変動監視装置を既存プラントに構築することができる。   In the present embodiment configured as described above, since the pipe strain is transmitted in the form of light in the optical fiber 3, electromagnetic noise is not picked up until the transducer 6 is reached. The S / N ratio is improved regardless of the distance between the strain measuring unit 4 and the transducer 6. Moreover, since the existing instrumentation wire through-hole can be used, a pressure fluctuation monitoring device having a high S / N ratio can be easily constructed in an existing plant.

ひずみ測定部4の位置は、原子炉運転時の圧力脈動の振動数と配管2内の音速を元に音響解析によって計算した配管内の圧力脈動の定在波の圧力振幅が極大となる位置(振動の腹の部分)に設置するのが好ましい。   The position of the strain measurement unit 4 is a position where the pressure amplitude of the standing wave of the pressure pulsation in the pipe calculated by acoustic analysis based on the frequency of the pressure pulsation during the operation of the reactor and the speed of sound in the pipe 2 is maximized ( It is preferable to install it on the part of the vibration belly.

さらに、ひずみ測定部4の位置は、原子炉運転時の圧力脈動の振動数と配管2内の音速を元に音響解析によって計算した配管2内の圧力脈動の定在波を入力とした構造振動解析による表面ひずみ振幅が極大となる位置に設置するのが好ましい。たとえば、圧力振幅が極大となる位置が複数ある場合に、配管の肉厚が薄い部分の方が表面ひずみ振幅が大きくなるのが普通であり、その場合、圧力振幅が極大となり、しかも配管の肉厚が比較的薄い部分にひずみ測定部4を設置するのが好ましい。   Furthermore, the position of the strain measurement unit 4 is the structural vibration with the standing wave of the pressure pulsation in the pipe 2 calculated by acoustic analysis based on the frequency of the pressure pulsation during the operation of the reactor and the speed of sound in the pipe 2 as input. It is preferable to install at a position where the surface strain amplitude by analysis becomes a maximum. For example, when there are multiple positions where the pressure amplitude is maximized, the surface strain amplitude is usually higher in the portion where the pipe thickness is thinner. In this case, the pressure amplitude is maximized and the pipe wall thickness is increased. It is preferable to install the strain measurement unit 4 in a relatively thin portion.

(第2の実施例)
次に、本発明に係る原子力プラントの圧力変動監視装置の、第2の実施例を図2を用いて説明する。
(Second embodiment)
Next, a second embodiment of the pressure fluctuation monitoring apparatus for a nuclear power plant according to the present invention will be described with reference to FIG.

図2は第2の実施例の構成を一部断面で示す斜視図である。 FIG. 2 is a perspective view showing the configuration of the second embodiment in partial cross section.

本実施例における原子炉格納容器1の計装貫通口5は金属線を内包しておらず物理的な貫通口である。この計装貫通孔5に直接光ファイバー3を通した構成とし、光信号と電圧信号の変換器6は原子炉格納容器1の外に設置されている。   The instrumentation through-hole 5 of the reactor containment vessel 1 in this embodiment is a physical through-hole that does not contain a metal wire. The optical fiber 3 is directly passed through the instrumentation through hole 5, and the optical signal / voltage signal converter 6 is installed outside the reactor containment vessel 1.

このように構成された本実施の形態において、光ファイバー3は直接、原子炉格納容器1外へ取り出される。このため、電磁ノイズを拾い易い貫通口5を含め、原子炉格納容器1内の電磁場環境からノイズを受けることがない。このため原子炉運転中であっても人が立入る事が出来る格納容器外の調整のみで高S/N比の測定が可能となる。   In the present embodiment configured as described above, the optical fiber 3 is directly taken out of the reactor containment vessel 1. For this reason, it does not receive noise from the electromagnetic field environment in the nuclear reactor containment vessel 1 including the through-hole 5 which is easy to pick up electromagnetic noise. For this reason, even when the reactor is in operation, a high S / N ratio can be measured only by adjusting the outside of the containment vessel that can be entered by a person.

また、光ファイバー式ひずみゲージは1本の光ファイバー3のみで複数の点のひずみ測定部4からの信号を伝送できるが、実施例1では原子炉格納容器1内で電気信号に変換するため、複数の計装貫通口5を使用しなければならない。これに対して本実施例では、光ファイバー3が一つの貫通口を使用するだけで複数のひずみ計測部4からの信号を原子炉格納容器外へ伝送することができる。このため既存の金属性の信号線を内包した計装貫通口5の一つを光ファイバー3用の計装貫通口5に交換するだけで、容易に複数点を監視できる高S/N比の圧力変動監視装置を既存プラントに構築することができる。   In addition, the optical fiber strain gauge can transmit signals from the strain measuring units 4 at a plurality of points using only one optical fiber 3, but in the first embodiment, the signal is converted into an electrical signal in the reactor containment vessel 1. Instrumentation penetration 5 must be used. On the other hand, in this embodiment, the optical fiber 3 can transmit signals from the plurality of strain measurement units 4 to the outside of the reactor containment vessel only by using one through-hole. For this reason, it is possible to easily monitor a plurality of points by simply replacing one of the instrumentation through holes 5 including the existing metallic signal line with the instrumentation through hole 5 for the optical fiber 3. A fluctuation monitoring device can be built in an existing plant.

(第3の実施例)
次に、本発明に係る第3の実施例を図3を用いて説明する。図3は第3の実施例の構成を一部断面で示す斜視図である。
(Third embodiment)
Next, a third embodiment according to the present invention will be described with reference to FIG. FIG. 3 is a perspective view showing a part of the configuration of the third embodiment.

本実施例では原子炉格納容器1の貫通口5は光ファイバー式の計装貫通口であり、配管2に装着された光ファイバー3は、光ファイバー結合器8によって貫通口内の光ファイバー9に結合される。原子炉格納容器1の外側で再び光ファイバー結合器8によって伝送用の光ファイバーに結合し、原子炉格納容器1の外に設置された光信号―電圧信号の変換器6まで導かれる。   In this embodiment, the through-hole 5 of the reactor containment vessel 1 is an optical fiber instrumentation through-hole, and the optical fiber 3 attached to the pipe 2 is coupled to the optical fiber 9 in the through-hole by an optical fiber coupler 8. The optical fiber coupler 8 again couples the transmission optical fiber outside the reactor containment vessel 1 to the optical signal-voltage signal converter 6 installed outside the reactor containment vessel 1.

この変換器6で発生したひずみ信号は高速フーリエ変換器(周波数分析器)10に入力され、振動数とひずみ振幅値が出力される。この振動数とひずみ振幅値を入力として計算機11内の音響解析ルーティン12で配管2に接続する原子炉圧力容器13を含めた圧力脈動の定在波分布が計算される。   The distortion signal generated by the converter 6 is input to a fast Fourier transformer (frequency analyzer) 10 to output a frequency and a distortion amplitude value. With this frequency and strain amplitude value as input, a standing wave distribution of pressure pulsation including the reactor pressure vessel 13 connected to the pipe 2 is calculated by the acoustic analysis routine 12 in the computer 11.

この計算結果は計算機11内の構造振動解析ルーティン14に受け渡され、原子炉圧力容器内に収納された蒸気乾燥器等の炉内構造物15の表面における圧力脈動振幅を入力して、構造振動解析を実施し、最大ひずみ振幅値を出力する。この最大ひずみ振幅値は比較ルーティン17へ受け渡され、原子炉内温度と構造物の材料を入力として計算された許容ひずみ振幅と比較され、この値よりも最大ひずみ振幅値が大きい時に計算機11のモニター16に警告信号を表示する。   This calculation result is transferred to the structural vibration analysis routine 14 in the computer 11, and the pressure pulsation amplitude on the surface of the reactor internal structure 15 such as a steam dryer housed in the reactor pressure vessel is input to obtain the structural vibration. Perform analysis and output maximum strain amplitude value. This maximum strain amplitude value is passed to the comparison routine 17 and compared with the allowable strain amplitude calculated with the reactor temperature and the structure material as inputs. When the maximum strain amplitude value is larger than this value, A warning signal is displayed on the monitor 16.

このように構成された本実施の形態において、原子炉圧力容器内の構造物に電磁ノイズに弱い抵抗式のひずみゲージを設置することなく、圧力バウンダリの外側から容易かつ正確に炉内構造物の健全性を診断する監視装置を構築することができる。   In the present embodiment configured as described above, the internal structure of the reactor structure can be easily and accurately applied from the outside of the pressure boundary without installing a resistance-type strain gauge that is weak against electromagnetic noise. A monitoring device for diagnosing soundness can be constructed.

(実施例4)
次に、本発明に係る原子力プラントの圧力変動監視装置の、第4の実施例を図4を用いて説明する。
Example 4
Next, a fourth embodiment of the pressure fluctuation monitoring apparatus for a nuclear power plant according to the present invention will be described with reference to FIG.

図4は第4の実施例の構成を一部断面で示す斜視図である。この実施例は第1の実施例の変形であって、複数(図示の例では2本)の光ファイバー3を用いて複数のひずみ測定部4のひずみを測定できるように構成されている。信号多重伝送アンプ20が原子炉格納容器1内に配置され、復調アンプが原子炉格納容器1外に配置されている。各光ファイバー3はそれぞれの変換器6に接続され、ここで変換された電気信号は信号多重伝送アンプ20に送られて多重化される。そして、1本の線で貫通口5を貫通し、復調アンプ21で複数の電圧信号に分離され、監視装置7に送られる。   FIG. 4 is a perspective view showing a part of the configuration of the fourth embodiment. This embodiment is a modification of the first embodiment, and is configured to measure strains of a plurality of strain measuring units 4 using a plurality (two in the illustrated example) of optical fibers 3. A signal multiplex transmission amplifier 20 is disposed in the reactor containment vessel 1, and a demodulation amplifier is disposed outside the reactor containment vessel 1. Each optical fiber 3 is connected to a respective converter 6, and the electrical signal converted here is sent to a signal multiplex transmission amplifier 20 and multiplexed. Then, it penetrates the through hole 5 with a single line, is separated into a plurality of voltage signals by the demodulation amplifier 21, and is sent to the monitoring device 7.

この実施例によれば、複数のひずみ測定部4のひずみを測定でき、しかも、1本の線で貫通口5を貫通できる。   According to this embodiment, the strains of the plurality of strain measuring units 4 can be measured, and the through hole 5 can be penetrated by one line.

(他の実施例)
以上説明した各実施例は単なる例示であって、本発明はこれらに限定されるものではない。たとえば、第3の実施例(図3)の計算機11の内容は、他の実施例にも適用できる。
(Other examples)
Each embodiment described above is merely an example, and the present invention is not limited to these. For example, the contents of the computer 11 of the third embodiment (FIG. 3) can be applied to other embodiments.

本発明の第1実施形態を一部断面で示す斜視図。The perspective view which shows 1st Embodiment of this invention in a partial cross section. 本発明の第2実施形態を一部断面で示す斜視図。The perspective view which shows 2nd Embodiment of this invention in a partial cross section. 本発明の第3実施形態を示す概念図。The conceptual diagram which shows 3rd Embodiment of this invention. 本発明の第4実施形態を一部断面で示す斜視図。The perspective view which shows 4th Embodiment of this invention in a partial cross section.

符号の説明Explanation of symbols

1…原子炉格納容器、2…配管、3…光ファイバー、4…ひずみ測定部、5…貫通口、6…変換器(ひずみ変換器)、7…監視装置、8…光ファイバー結合器、9…貫通孔内の光ファイバー、10…高速フーリエ変換器(周波数分析器)、11…計算機、12…音響解析ルーティン、13…原子炉圧力容器、14…構造振動解析ルーティン、15…炉内構造物、16…モニター、17…比較ルーティン、20…信号多重伝送アンプ、21…復調アンプ。   DESCRIPTION OF SYMBOLS 1 ... Reactor containment vessel, 2 ... Piping, 3 ... Optical fiber, 4 ... Strain measuring part, 5 ... Through-hole, 6 ... Converter (strain converter), 7 ... Monitoring apparatus, 8 ... Optical fiber coupler, 9 ... Through Optical fiber in hole, 10 ... Fast Fourier transformer (frequency analyzer), 11 ... computer, 12 ... acoustic analysis routine, 13 ... reactor pressure vessel, 14 ... structural vibration analysis routine, 15 ... internal reactor structure, 16 ... Monitor, 17 ... comparison routine, 20 ... signal multiplex transmission amplifier, 21 ... demodulation amplifier.

Claims (8)

原子炉格納容器内に収納された原子炉圧力容器またはこの原子炉圧力容器に接続された配管の表面に貼付けられて、これら原子炉圧力容器またはこの原子炉圧力容器に接続された配管のひずみを測定するひずみ測定部を有する光ファイバーと、この光ファイバーに接続されて光信号を電気信号に変換するひずみ変換器と、このひずみ変換器に接続された監視装置とを備えたことを特徴とする原子力プラントの圧力変動監視システム。   Affixed to the surface of the reactor pressure vessel housed in the reactor containment vessel or piping connected to this reactor pressure vessel, the strain of these reactor pressure vessels or piping connected to this reactor pressure vessel is reduced. A nuclear power plant comprising: an optical fiber having a strain measuring unit for measuring; a strain converter connected to the optical fiber to convert an optical signal into an electrical signal; and a monitoring device connected to the strain converter. Pressure fluctuation monitoring system. 請求項1記載の原子力プラントの圧力変動監視システムにおいて、この光ファイバーを格納容器に設けた貫通口に電気信号に変換することなく直接通し、原子炉格納容器の外に設置したひずみ変換器で光信号を電気信号に変換することを特徴とする原子力プラントの圧力変動監視システム。   2. A pressure fluctuation monitoring system for a nuclear power plant according to claim 1, wherein the optical fiber is directly passed through a through hole provided in the containment vessel without being converted into an electrical signal, and an optical signal is transmitted by a strain transducer installed outside the reactor containment vessel. A pressure fluctuation monitoring system for a nuclear power plant, characterized by converting the power into an electric signal. 請求項1記載の原子力プラントの圧力変動監視システムにおいて、この光ファイバーを格納容器に設けた光ファイバー式計装貫通口の伝送用の光ファイバーに電気信号に変換することなく直接接続し、格納容器の外に設置したひずみ変換器で光信号を電気信号に変換することを特徴とする原子力プラントの圧力変動監視システム。   The pressure fluctuation monitoring system for a nuclear power plant according to claim 1, wherein the optical fiber is directly connected to an optical fiber for transmission of an optical fiber type instrumentation through hole provided in the containment vessel without being converted into an electric signal, and is connected to the outside of the containment vessel. A pressure fluctuation monitoring system for a nuclear power plant, wherein an optical signal is converted into an electric signal by an installed strain transducer. 請求項1記載の原子力プラントの圧力変動監視システムにおいて、変換器から出力される複数の電圧信号を格納容器内に設置した信号多重伝送アンプに入力し、この信号多重伝送アンプの出力信号を格納容器の計装貫通口を通して格納容器外に設置した復調アンプで複数の電圧信号に分離することを特徴とする原子力プラントの圧力変動監視システム。   The pressure fluctuation monitoring system for a nuclear power plant according to claim 1, wherein a plurality of voltage signals output from the converter are input to a signal multiplex transmission amplifier installed in the storage container, and an output signal of the signal multiplex transmission amplifier is input to the storage container. A pressure fluctuation monitoring system for a nuclear power plant, which is separated into a plurality of voltage signals by a demodulating amplifier installed outside the containment vessel through an instrumentation through-hole. 請求項1記載の原子力プラントの圧力変動監視システムにおいて、ひずみ測定部を原子炉運転時の圧力脈動の振動数と配管内の音速を元に音響解析によって計算した配管内の圧力脈動の定在波の圧力振幅が極大となる位置に設置したことを特徴とする原子力プラントの圧力変動監視システム。   2. A pressure fluctuation monitoring system for a nuclear power plant according to claim 1, wherein the strain measurement unit uses a vibration wave pressure frequency in the reactor operation and a sound wave in the piping calculated by acoustic analysis based on the sound velocity in the piping. A pressure fluctuation monitoring system for a nuclear power plant that is installed at a position where the pressure amplitude of the nuclear power plant becomes maximum. 請求項5記載の原子力プラントの圧力変動監視システムにおいて、ひずみ測定部を原子炉運転時の圧力脈動の振動数と配管内の音速を元に音響解析によって計算した配管内の圧力脈動の定在波を入力とした構造振動解析による表面ひずみ振幅が極大となる位置に設置したことを特徴とする原子力プラントの圧力変動監視システム。   6. The pressure fluctuation monitoring system for a nuclear power plant according to claim 5, wherein the strain measurement section uses a pressure pulsation standing wave in a pipe calculated by acoustic analysis based on the frequency of pressure pulsation during reactor operation and the speed of sound in the pipe. A pressure fluctuation monitoring system for a nuclear power plant, which is installed at a position where the surface strain amplitude is maximized by structural vibration analysis. 請求項1記載の原子力プラントの圧力変動監視装置において、
測定されたひずみ信号を入力として高速フーリエ変換を行い、ひずみ信号の振動数を同定する周波数分析器と、
周波数分析器によって同定したひずみ信号の振動数をもとに音響解析によって配管内とこの配管に接続する原子炉圧力容器内の圧力脈動の定在波を計算し、ひずみ信号を原子炉圧力容器内の圧力振幅量へ変換する変換手段と、
を備えたことを特徴とする原子力プラントの圧力変動監視システム。
In the nuclear power plant pressure fluctuation monitoring apparatus according to claim 1,
A frequency analyzer that performs fast Fourier transform using the measured strain signal as input and identifies the frequency of the strain signal;
Based on the frequency of the strain signal identified by the frequency analyzer, the standing wave of pressure pulsation in the pipe and the reactor pressure vessel connected to this pipe is calculated by acoustic analysis, and the strain signal is calculated in the reactor pressure vessel. Conversion means for converting the pressure amplitude into
A pressure fluctuation monitoring system for a nuclear power plant characterized by comprising:
請求項7記載の原子力プラントの圧力変動監視システムにおいて、
計算された原子炉圧力容器内の圧力脈動の定在波を入力とした原子炉圧力容器内構造物の構造振動解析によって原子炉圧力容器内構造物に生じる最大ひずみ振幅を計算し、配管表面のひずみ信号をこの配管に接続する原子炉圧力容器内に設置された構造物に生じる最大ひずみ振幅量へ変換する手段と、
測定結果から計算された原子炉圧力容器内構造物に生じる最大ひずみ振幅量と、測定時の運転温度と構造物を構成する材料の疲労限度から計算される許容ひずみ振幅量を比較し、測定結果から計算された最大ひずみ振幅が許容ひずみ振幅を超えた場合に監視員または運転員に視覚的または聴覚的な警告を発する手段と、
を備えたことを特徴とする原子力プラントの圧力変動監視システム。
In the nuclear power plant pressure fluctuation monitoring system according to claim 7,
The maximum strain amplitude generated in the reactor pressure vessel structure is calculated by structural vibration analysis of the reactor pressure vessel structure using the calculated standing wave of the pressure pulsation in the reactor pressure vessel as an input, and the piping surface Means for converting a strain signal into a maximum strain amplitude generated in a structure installed in a reactor pressure vessel connected to the pipe;
Compare the maximum strain amplitude calculated in the reactor pressure vessel structure calculated from the measurement results with the allowable strain amplitude calculated from the operating temperature during measurement and the fatigue limit of the materials that make up the structure. A visual or audible warning to the monitor or operator if the maximum strain amplitude calculated from exceeds the allowable strain amplitude;
A pressure fluctuation monitoring system for a nuclear power plant characterized by comprising:
JP2008065444A 2007-03-14 2008-03-14 System for monitoring pressure fluctuations in nuclear power plant Pending JP2008256681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008065444A JP2008256681A (en) 2007-03-14 2008-03-14 System for monitoring pressure fluctuations in nuclear power plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007065859 2007-03-14
JP2008065444A JP2008256681A (en) 2007-03-14 2008-03-14 System for monitoring pressure fluctuations in nuclear power plant

Publications (1)

Publication Number Publication Date
JP2008256681A true JP2008256681A (en) 2008-10-23

Family

ID=39980374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008065444A Pending JP2008256681A (en) 2007-03-14 2008-03-14 System for monitoring pressure fluctuations in nuclear power plant

Country Status (1)

Country Link
JP (1) JP2008256681A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169612A (en) * 2010-02-16 2011-09-01 Hitachi-Ge Nuclear Energy Ltd Pressure pulsation measuring method of main steam pipework
WO2012063705A1 (en) 2010-11-08 2012-05-18 株式会社エヌ・ティ・ティ・ドコモ Mobile communication system
CN102538662A (en) * 2010-09-07 2012-07-04 克洛纳测量技术有限公司 Deflection measuring device according to the interferometer principle
JP2016217792A (en) * 2015-05-16 2016-12-22 株式会社大林組 Evaluation method for striking number of hydraulic hammer and investigation method for front natural ground using the same, and investigation system for front natural ground

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129697A (en) * 1982-01-29 1983-08-02 株式会社日立製作所 Multiple transmission type nuclear power station
JPS58166836A (en) * 1982-03-26 1983-10-03 Toshiba Corp Signal transmitter for building of reactor
JPS6160198A (en) * 1984-08-31 1986-03-27 株式会社東芝 Signal transmitter for process instrumentation
JPH05297180A (en) * 1992-04-20 1993-11-12 Hitachi Ltd Light monitoring device in reactor containment
JPH07139738A (en) * 1993-11-12 1995-05-30 Hitachi Ltd Gas turbine combustion device
JPH1164210A (en) * 1997-08-27 1999-03-05 Toshiba Corp Method for inspecting system piping
JP2000162367A (en) * 1998-11-24 2000-06-16 Babcock Hitachi Kk Reactor internal structure monitor
JP2001133582A (en) * 1999-11-05 2001-05-18 Hitachi Ltd Monitoring device of structure
JP2001153719A (en) * 1999-11-24 2001-06-08 Toshiba Corp Analysis system for vibration characteristic
JP2001235577A (en) * 2000-02-21 2001-08-31 Taisei Corp Integrated management system for structure
JP2005326301A (en) * 2004-05-14 2005-11-24 Hitachi Ltd Reactor power measuring apparatus
JP2007155361A (en) * 2005-11-30 2007-06-21 Continuum Dynamics Inc System and method for determining fluctuating pressure load on component of reactor steam dome
JP2007232430A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Monitoring method of boiling water reactor and its monitoring program

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129697A (en) * 1982-01-29 1983-08-02 株式会社日立製作所 Multiple transmission type nuclear power station
JPS58166836A (en) * 1982-03-26 1983-10-03 Toshiba Corp Signal transmitter for building of reactor
JPS6160198A (en) * 1984-08-31 1986-03-27 株式会社東芝 Signal transmitter for process instrumentation
JPH05297180A (en) * 1992-04-20 1993-11-12 Hitachi Ltd Light monitoring device in reactor containment
JPH07139738A (en) * 1993-11-12 1995-05-30 Hitachi Ltd Gas turbine combustion device
JPH1164210A (en) * 1997-08-27 1999-03-05 Toshiba Corp Method for inspecting system piping
JP2000162367A (en) * 1998-11-24 2000-06-16 Babcock Hitachi Kk Reactor internal structure monitor
JP2001133582A (en) * 1999-11-05 2001-05-18 Hitachi Ltd Monitoring device of structure
JP2001153719A (en) * 1999-11-24 2001-06-08 Toshiba Corp Analysis system for vibration characteristic
JP2001235577A (en) * 2000-02-21 2001-08-31 Taisei Corp Integrated management system for structure
JP2005326301A (en) * 2004-05-14 2005-11-24 Hitachi Ltd Reactor power measuring apparatus
JP2007155361A (en) * 2005-11-30 2007-06-21 Continuum Dynamics Inc System and method for determining fluctuating pressure load on component of reactor steam dome
JP2007232430A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Monitoring method of boiling water reactor and its monitoring program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169612A (en) * 2010-02-16 2011-09-01 Hitachi-Ge Nuclear Energy Ltd Pressure pulsation measuring method of main steam pipework
CN102538662A (en) * 2010-09-07 2012-07-04 克洛纳测量技术有限公司 Deflection measuring device according to the interferometer principle
WO2012063705A1 (en) 2010-11-08 2012-05-18 株式会社エヌ・ティ・ティ・ドコモ Mobile communication system
JP2016217792A (en) * 2015-05-16 2016-12-22 株式会社大林組 Evaluation method for striking number of hydraulic hammer and investigation method for front natural ground using the same, and investigation system for front natural ground

Similar Documents

Publication Publication Date Title
CN111678629B (en) Ultrasonic monitoring probe for internal service stress of ocean structural member
US4640121A (en) Method for finding a leak in pressure-carrying vessels and apparatus for carrying out the method
JP2008256681A (en) System for monitoring pressure fluctuations in nuclear power plant
US10854941B2 (en) Broadband waveguide
KR101674603B1 (en) Apparatus for monitoring galvanic corrosion
KR100764092B1 (en) System and method for monitoring condition of check valve using acoustic emission sensor
CN108613644B (en) Ultrasonic probe for wall thickness reduction measurement in extreme environment
JP5902980B2 (en) Ultrasonic plate thickness measuring apparatus and ultrasonic plate thickness measuring method
US4570489A (en) Apparatus for detecting the evolution of an acoustic signal
JP2006250840A (en) Optical fiber vibration sensor
WO2021057288A1 (en) Pipe creep measurement system and method
US11150221B2 (en) Sensor system
US20130182811A1 (en) Method of Monitoring Reactor Bottom Area, Reactor Bottom Area Monitoring Apparatus and Nuclear Reactor
JP2016527470A (en) Anti-vibration bar for steam generator mounted on equipment
CN110596245B (en) Active guided wave array sensor for inhaul cable defects and detection method
CN214948285U (en) Nuclear power pipeline and nuclear power pipeline leakage monitoring system
RU120276U1 (en) ACOUSTIC CONTROL SYSTEM FOR NPP PIPELINES
Bertoncini et al. An online monitoring technique for long-term operation using guided waves propagating in steel pipe
Gopal et al. Experiences with diagnostic instrumentation in nuclear power plants
Melnikov et al. Waveguide ultrasonic liquid level transducer for nuclear power plant steam generator
JP5784793B2 (en) Material deterioration diagnosis device
JP2013072735A (en) Material deterioration diagnostic device and method thereof
KR102528608B1 (en) Apparatus for diagnosing internal defects of curved structures usning flexible electromagnetic acoustic transducer
Zakharov et al. Acoustic emission signal attenuation in the waveguides used in underwater AE testing
Morozov et al. Development of an acoustic leak monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100310

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508