JP2008251480A - Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous secondary battery using it - Google Patents

Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous secondary battery using it Download PDF

Info

Publication number
JP2008251480A
JP2008251480A JP2007094496A JP2007094496A JP2008251480A JP 2008251480 A JP2008251480 A JP 2008251480A JP 2007094496 A JP2007094496 A JP 2007094496A JP 2007094496 A JP2007094496 A JP 2007094496A JP 2008251480 A JP2008251480 A JP 2008251480A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
composite oxide
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007094496A
Other languages
Japanese (ja)
Other versions
JP5276795B2 (en
Inventor
Kensuke Nagura
健祐 名倉
Masayuki Takashima
正之 高島
Susumu Yonezawa
晋 米沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Fukui NUC
Panasonic Holdings Corp
Original Assignee
University of Fukui NUC
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Fukui NUC, Matsushita Electric Industrial Co Ltd filed Critical University of Fukui NUC
Priority to JP2007094496A priority Critical patent/JP5276795B2/en
Publication of JP2008251480A publication Critical patent/JP2008251480A/en
Application granted granted Critical
Publication of JP5276795B2 publication Critical patent/JP5276795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery with thermal stability of a lithium-nickel composite oxide enhanced, with high capacity and excellent in reliability and safety at high temperature preservation. <P>SOLUTION: The anode active material for a nonaqueous electrolyte secondary battery includes a lithium-containing composite oxide and a coating layer coating at least a part of a surface of the lithium-containing composite oxide. The lithium-containing composite oxide contains Ni, the coating layer contains a metal element M and a halogen element, and the metal element M contains at least one kind selected from a group of Al, Ta, W, Zr, Nb, Sn and B. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池に関し、特に高温保存時の信頼性と安全性の向上に関する。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same, and more particularly to improvement of reliability and safety at high temperature storage.

近年、電話、パソコン、ビデオカメラなどの民生用電子機器のポータブル化、コードレス化が急速に進んでいる。これらの機器の駆動用電源として、小型、軽量であり、かつ高エネルギー密度を有する二次電池への要望が高まっている。なかでも、正極活物質としてリチウム含有複合酸化物を含む非水電解質二次電池の開発が盛んである。パソコンや携帯電話等で大容量のデータをやり取りする機会が増えたため、これらの電子機器の電源として用いられる非水電解質二次電池の容量をより高くすることが望まれている。   In recent years, consumer electronic devices such as telephones, personal computers, and video cameras are rapidly becoming portable and cordless. As a power source for driving these devices, there is an increasing demand for a secondary battery that is small and lightweight and has a high energy density. In particular, development of non-aqueous electrolyte secondary batteries that include a lithium-containing composite oxide as a positive electrode active material is active. Since opportunities for exchanging large volumes of data with personal computers and mobile phones have increased, it is desirable to increase the capacity of non-aqueous electrolyte secondary batteries used as power sources for these electronic devices.

非水電解質二次電池の負極材料としては、一般的に、リチウムイオンを吸蔵および放出可能な材料を用いる。例えば、炭素材料、シリコン化合物、スズ化合物等が用いられている。
正極と負極との間に介在するセパレータとしては、一般的に、ポリエチレン、ポリプロピレン等を含む微多孔膜等が用いられている。
非水電解質としては、一般的に、LiBF4、LIPF6等のリチウム塩を溶解させた非プロトン性の有機溶媒等が用いられている。
As a negative electrode material for a non-aqueous electrolyte secondary battery, a material capable of inserting and extracting lithium ions is generally used. For example, carbon materials, silicon compounds, tin compounds, etc. are used.
As a separator interposed between the positive electrode and the negative electrode, a microporous film containing polyethylene, polypropylene, or the like is generally used.
As the non-aqueous electrolyte, an aprotic organic solvent in which a lithium salt such as LiBF 4 or LIPF 6 is dissolved is generally used.

従来、非水電解質二次電池の正極活物質には、リチウムコバルト複合酸化物等が用いられてきたが、容量の向上には限界がある。そこで、最近では、単位重量当たりの電池容量が大きいことから、リチウムニッケル複合酸化物が注目されている。しかし、リチウムニッケル複合酸化物は、熱安定性の向上という課題を有している。リチウムニッケル複合酸化物を正極活物質として用いた電池を高温環境下で使用した場合、熱分解した正極活物質が非水電解質と反応してガスを発生させる。よって、電池特性が低下する場合がある。   Conventionally, lithium cobalt composite oxide or the like has been used as a positive electrode active material of a non-aqueous electrolyte secondary battery, but there is a limit in improving the capacity. Therefore, recently, lithium nickel composite oxide has attracted attention because of its large battery capacity per unit weight. However, the lithium nickel composite oxide has a problem of improving thermal stability. When a battery using lithium nickel composite oxide as a positive electrode active material is used in a high temperature environment, the pyrolyzed positive electrode active material reacts with the nonaqueous electrolyte to generate gas. Therefore, battery characteristics may be deteriorated.

特許文献1および2は、ハロゲン元素を固溶した正極活物質の表面を、ある種の金属ハロゲン化物で被覆することを提案している。
特許文献3および4は、正極活物質の表面をフッ素処理して、ある種のフッ化物の被膜を形成することを提案している。
特許文献5および6は、正極活物質の表面を、金属酸化物で被覆することを提案している。
特開2000−128539号公報 特開2000−203842号公報 特開平08−264183号公報 特開2004−192896号公報 特開2003−123750号公報 特開2003−173775号公報
Patent Documents 1 and 2 propose that the surface of a positive electrode active material in which a halogen element is dissolved is coated with a certain kind of metal halide.
Patent Documents 3 and 4 propose that the surface of the positive electrode active material is treated with fluorine to form a certain fluoride film.
Patent Documents 5 and 6 propose to coat the surface of the positive electrode active material with a metal oxide.
JP 2000-128539 A JP 2000-203842 A Japanese Patent Laid-Open No. 08-264183 JP 2004-192896 A JP 2003-123750 A JP 2003-173775 A

特許文献1および2が開示する金属ハロゲン化物と活物質との組み合わせでは、十分な熱安定性が得られない。
特許文献3および4においては、フッ素と正極活物質中の金属との反応で被膜が形成される。よって、活物質表面の結晶構造が損なわれると考えられる。
特許文献5および6においては、正極活物質を金属酸化物で被覆しているため、被膜に酸化物イオン導電性が生じる。そのため、高温では、正極活物質内部から酸素原子が溶出して、電解質と反応する。よって、十分な熱安定性が得られない。
In the combination of the metal halide and the active material disclosed in Patent Documents 1 and 2, sufficient thermal stability cannot be obtained.
In Patent Documents 3 and 4, a film is formed by a reaction between fluorine and a metal in the positive electrode active material. Therefore, it is considered that the crystal structure on the surface of the active material is impaired.
In Patent Documents 5 and 6, since the positive electrode active material is coated with a metal oxide, oxide ion conductivity is generated in the coating. Therefore, at a high temperature, oxygen atoms are eluted from the positive electrode active material and react with the electrolyte. Therefore, sufficient thermal stability cannot be obtained.

上記のように、リチウムニッケル複合酸化物は、熱安定性に課題を有する。そこで、本発明は、リチウムニッケル複合酸化物の熱安定性をより高くし、高容量で、高温保存時の信頼性と安全性に優れた非水電解質二次電池を提供することを目的とする。   As described above, the lithium nickel composite oxide has a problem in thermal stability. Accordingly, an object of the present invention is to provide a non-aqueous electrolyte secondary battery having higher thermal stability of lithium nickel composite oxide, high capacity, and excellent reliability and safety during high-temperature storage. .

本発明は、リチウム含有複合酸化物と、リチウム含有複合酸化物の表面の少なくとも一部を被覆する被覆層とを有し、リチウム含有複合酸化物が、Niを含み、被覆層が、金属元素Mと、ハロゲン元素とを含み、金属元素Mが、Al、Ta、W、Zr、Nb、Sn、およびBよりなる群から選択される少なくとも1種を含む、非水電解質二次電池用正極活物質に関する。   The present invention has a lithium-containing composite oxide and a coating layer that covers at least a part of the surface of the lithium-containing composite oxide, the lithium-containing composite oxide contains Ni, and the coating layer contains the metal element M. And a halogen element, and the metal element M includes at least one selected from the group consisting of Al, Ta, W, Zr, Nb, Sn, and B, and a positive electrode active material for a non-aqueous electrolyte secondary battery About.

リチウム含有複合酸化物は、一般式(1):LiaNibMec2(ただし、0<a≦2、0<b≦1、c=1−b、MeはAl、Ti、V、Mn、Co、Fe、Cr、Cu、ZnおよびMgよりなる群から選択される少なくとも1種)で表される化合物を含むことが好ましい。
リチウム含有複合酸化物が上記の一般式(1)で表される場合、金属元素Mは、Ta、W、Zr、Nb、SnおよびBよりなる群から選択される少なくとも1種を含むことが好ましい。
The lithium-containing composite oxide has the general formula (1): Li a Ni b Me c O 2 (where 0 <a ≦ 2, 0 <b ≦ 1, c = 1−b, Me is Al, Ti, V, It is preferable to include a compound represented by at least one selected from the group consisting of Mn, Co, Fe, Cr, Cu, Zn, and Mg.
When the lithium-containing composite oxide is represented by the general formula (1), the metal element M preferably includes at least one selected from the group consisting of Ta, W, Zr, Nb, Sn, and B. .

被覆層は、金属元素Mのハロゲン化物を含むことが好ましい。
被覆層の厚みは、1〜100nmであることが好ましく、2〜5nmであることが更に好ましい。
The coating layer preferably contains a halide of the metal element M.
The thickness of the coating layer is preferably 1 to 100 nm, and more preferably 2 to 5 nm.

金属元素Mが、Al、Ta、Zr、SnおよびBよりなる群から選択される少なくとも1種を含む場合、ハロゲン元素は、FおよびClのうちの少なくとも一方を含むことが好ましい。
金属元素Mが、WおよびNbのうちの少なくとも一方を含む場合、ハロゲン元素は、Clを含むことが好ましい。
When the metal element M contains at least one selected from the group consisting of Al, Ta, Zr, Sn and B, the halogen element preferably contains at least one of F and Cl.
When the metal element M contains at least one of W and Nb, the halogen element preferably contains Cl.

また、本発明は、正極、リチウムイオンを吸蔵および放出可能な負極、正極と負極との間に介在するセパレータおよび非水電解質を具備し、正極が、上記のいずれかに記載の非水電解質二次電池用正極活物質を含む、非水電解質二次電池に関する。   The present invention further includes a positive electrode, a negative electrode capable of inserting and extracting lithium ions, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte. The present invention relates to a non-aqueous electrolyte secondary battery including a positive electrode active material for a secondary battery.

更に本発明は、ガス状の金属ハロゲン化物と、リチウム含有複合酸化物とを接触させて、リチウム含有複合酸化物の表面の少なくとも一部を被覆する被覆層を形成する、非水電解質二次電池用正極活物質の製造方法に関する。   Furthermore, the present invention provides a nonaqueous electrolyte secondary battery in which a gaseous metal halide is brought into contact with a lithium-containing composite oxide to form a coating layer that covers at least a part of the surface of the lithium-containing composite oxide. The present invention relates to a method for producing a positive electrode active material.

本発明によれば、熱安定性の高いNiを含む非水電解質二次電池用正極活物質および高温保存時の信頼性と安全性に優れた高容量の非水電解質二次電池を提供することができる。   According to the present invention, a positive electrode active material for a non-aqueous electrolyte secondary battery containing Ni having high thermal stability and a high-capacity non-aqueous electrolyte secondary battery excellent in reliability and safety during high-temperature storage are provided. Can do.

本発明では、Niを含むリチウム含有複合酸化物(以下、リチウムニッケル複合酸化物とも称する)に、金属元素Mとハロゲン元素とを含む被覆層を形成する。これにより、リチウムニッケル複合酸化物の熱安定性を高めることができ、高温保存時の信頼性および安全性に優れた非水電解質二次電池が得られる。   In the present invention, a coating layer containing a metal element M and a halogen element is formed on a lithium-containing composite oxide containing Ni (hereinafter also referred to as lithium nickel composite oxide). Thereby, the thermal stability of the lithium nickel composite oxide can be enhanced, and a nonaqueous electrolyte secondary battery excellent in reliability and safety during high-temperature storage can be obtained.

被覆層は、数分子層程度の均一な厚みを有することが好ましい。これにより、被覆層によるリチウムイオン伝導性の低下を最小限に抑えることができる。また、数分子層程度の厚みであれば、正極活物質表面を不活性化して、高温での正極活物質の溶出や正極活物質表面での非水電解質の分解を抑えることができる。   The coating layer preferably has a uniform thickness of about several molecular layers. Thereby, the fall of lithium ion conductivity by a coating layer can be suppressed to the minimum. In addition, when the thickness is about several molecular layers, the surface of the positive electrode active material can be inactivated, and elution of the positive electrode active material at a high temperature and decomposition of the nonaqueous electrolyte on the surface of the positive electrode active material can be suppressed.

被覆層について説明する。被覆層は、リチウムニッケル複合酸化物の表面の少なくとも一部を被覆する。被覆層は、金属元素Mと、ハロゲン元素とを含む。
金属元素Mは、リチウムニッケル複合酸化物の表層部の熱力学的安定性を向上させる観点から、Al、Ta、W、Zr、Nb、SnおよびBよりなる群から選択される少なくとも1種を含む。金属元素Mは、1種のみ単独で被覆層に含まれていてもよく、2種以上が含まれていてもよい。
ハロゲン元素は、特に限定されないが、耐電圧の観点から、FまたはClを含むことが好ましい。ハロゲン元素は、1種のみ単独で被覆層に含まれていてもよく、2種以上が含まれていてもよい。
The coating layer will be described. The coating layer covers at least a part of the surface of the lithium nickel composite oxide. The coating layer includes a metal element M and a halogen element.
The metal element M includes at least one selected from the group consisting of Al, Ta, W, Zr, Nb, Sn, and B from the viewpoint of improving the thermodynamic stability of the surface layer portion of the lithium nickel composite oxide. . Only one type of metal element M may be included in the coating layer alone, or two or more types may be included.
The halogen element is not particularly limited, but preferably contains F or Cl from the viewpoint of withstand voltage. Only one kind of halogen element may be contained in the coating layer, or two or more kinds may be contained.

金属元素Mとハロゲン元素とは、被覆層の安定性をより向上させる観点から、金属ハロゲン化物を形成していることが好ましい。被覆層が酸化物を含む場合、被覆層に酸化物イオン導電性が生じる。そのため、高温では、正極活物質内部から酸素原子が溶出して、非水電解質と反応する。一方、ハロゲン化物は、酸化物よりもイオン導電性が小さい点で有利である。金属ハロゲン化物としては、フッ化物、塩化物、臭化物、ヨウ化物のいずれも用いることができるが、フッ化物、塩化物を用いることが好ましい。金属ハロゲン化物は、1種のみ単独で被覆層に含まれていてもよく、2種以上が含まれていてもよい。フッ化物としては、例えば、WF6、NbF5等が挙げられる。
塩化物としては、例えば、AlCl3、TaCl3、ZrCl4、SnCl4、BCl3等が挙げられる。
The metal element M and the halogen element preferably form a metal halide from the viewpoint of further improving the stability of the coating layer. When the coating layer contains an oxide, oxide ion conductivity is generated in the coating layer. Therefore, at a high temperature, oxygen atoms are eluted from the inside of the positive electrode active material and react with the nonaqueous electrolyte. On the other hand, halides are advantageous in that they have lower ionic conductivity than oxides. As the metal halide, any of fluoride, chloride, bromide and iodide can be used, but fluoride and chloride are preferably used. Only one type of metal halide may be included in the coating layer alone, or two or more types may be included. Examples of the fluoride include WF 6 and NbF 5 .
Examples of the chloride include AlCl 3 , TaCl 3 , ZrCl 4 , SnCl 4 , and BCl 3 .

被覆層の厚みは、1〜100nmであることが好ましい。厚みが1nm未満であると、正極活物質表面を十分に不活性化することができず、高温で十分な熱安定性が得られない場合がある。一方、厚みが100nmをこえると、正極活物質のリチウムイオン伝導性が低下する場合がある。被覆層の厚みは、リチウムイオン伝導性と、熱安定性とをバランスよく両立する観点から、2〜5nmであることが更に好ましい。   The thickness of the coating layer is preferably 1 to 100 nm. If the thickness is less than 1 nm, the surface of the positive electrode active material cannot be sufficiently inactivated and sufficient thermal stability may not be obtained at high temperatures. On the other hand, when the thickness exceeds 100 nm, the lithium ion conductivity of the positive electrode active material may decrease. The thickness of the coating layer is more preferably 2 to 5 nm from the viewpoint of balancing lithium ion conductivity and thermal stability in a balanced manner.

被覆層の形成方法について説明する。本発明では、金属元素Mを含むハロゲン化物ガスと、リチウムニッケル複合酸化物とを接触させる。これにより、高温保存時のガス発生の元となる正極活物質表面の炭酸リチウムを除去するとともに、リチウムニッケル複合酸化物の表面に、数分子層程度の薄い金属ハロゲン化物を含む被覆層を形成することができる。   A method for forming the coating layer will be described. In the present invention, a halide gas containing the metal element M is brought into contact with the lithium nickel composite oxide. This removes lithium carbonate on the surface of the positive electrode active material, which is a source of gas generation during high-temperature storage, and forms a coating layer containing a thin metal halide of about several molecular layers on the surface of the lithium nickel composite oxide. be able to.

正極活物質表面の炭酸リチウムが除去される詳細なメカニズムは不明であるが、ハロゲン化物が炭酸リチウムと反応し、炭酸リチウムが分解されると考えられる。このとき、リチウムのハロゲン化物が生成し、CO2やO2が脱離していると考えられる。 Although the detailed mechanism by which lithium carbonate on the surface of the positive electrode active material is removed is unknown, it is considered that the halide reacts with lithium carbonate and the lithium carbonate is decomposed. At this time, it is considered that lithium halide is generated and CO 2 and O 2 are eliminated.

ガス状の金属ハロゲン化物とリチウムニッケル複合酸化物とを接触させる方法は特に限定されない。例えば、ガス状の金属ハロゲン化物と、リチウムニッケル複合酸化物とを撹拌し、混合する。これにより、リチウムニッケル複合酸化物の表面に、金属ハロゲン化物を含む被覆層を形成することができる。
常温でガス状である金属ハロゲン化物を用いる場合、撹拌時の温度は特に限定されない。このような金属ハロゲン化物としては、WF6、BCl3等が挙げられる。
The method for bringing the gaseous metal halide into contact with the lithium nickel composite oxide is not particularly limited. For example, gaseous metal halide and lithium nickel composite oxide are stirred and mixed. Thereby, the coating layer containing a metal halide can be formed on the surface of the lithium nickel composite oxide.
When using a metal halide that is gaseous at room temperature, the temperature during stirring is not particularly limited. Examples of such metal halides include WF 6 and BCl 3 .

常温で固体である金属ハロゲン化物を用いる場合、金属ハロゲン化物をガス化させる。例えば、金属ハロゲン化物を加熱しながら、リチウムニッケル複合酸化物と撹拌することで、ガス状の金属ハロゲン化物と、リチウムニッケル複合酸化物とを接触させる。撹拌時の温度は、金属ハロゲン化物によって異なるが、20〜450℃であることが好ましい。
ガス状の金属ハロゲン化物のガス圧は、10〜100Torrが好ましい。
When using a metal halide that is solid at room temperature, the metal halide is gasified. For example, the gaseous metal halide is brought into contact with the lithium nickel composite oxide by stirring with the lithium nickel composite oxide while heating the metal halide. Although the temperature at the time of stirring changes with metal halides, it is preferable that it is 20-450 degreeC.
The gas pressure of the gaseous metal halide is preferably 10 to 100 Torr.

正極活物質について説明する。
本発明で用いられるリチウムニッケル複合酸化物は、LiaNiO2(ただし、0<a≦2)で表される層状のニッケル酸リチウムであってもよく、ニッケルの一部が他の原子Meで置換されたニッケル酸リチウムであってもよい。例えば、一般式(1):LiaNibMec2(ただし、0<a≦2、0<b≦1、c=1−b、MeはAl、Ti、V、Mn、Co、Fe、Cr、Cu、ZnおよびMgよりなる群から選択される少なくとも1種)で表されるリチウムニッケル複合酸化物が好ましい。リチウムニッケル複合酸化物の高容量の利点を十分に得る観点から、0.45≦b≦0.99であることが更に好ましい。
The positive electrode active material will be described.
The lithium nickel composite oxide used in the present invention may be a layered lithium nickelate represented by Li a NiO 2 (where 0 <a ≦ 2), and a part of nickel is composed of other atoms Me. It may be a substituted lithium nickelate. For example, the general formula (1): Li a Ni b Me c O 2 (where 0 <a ≦ 2, 0 <b ≦ 1, c = 1−b, Me is Al, Ti, V, Mn, Co, Fe , At least one selected from the group consisting of Cr, Cu, Zn and Mg). From the viewpoint of sufficiently obtaining the advantage of high capacity of the lithium nickel composite oxide, it is more preferable that 0.45 ≦ b ≦ 0.99.

一般式(1)において、Meは、MnおよびCoのうちの少なくとも一方を含むことが好ましい。Mnを含む場合、例えば、一般式LiaNibMnc2(ただし、0<a≦2、0.45≦b≦0.99、0.01≦c≦0.55である)で表されるリチウムニッケル複合酸化物が好ましい。
Coを含む場合、例えば、一般式LiaNibCoc2(ただし、0<a≦2、0.45≦b≦0.99、0.01≦c≦0.55である)で表されるリチウムニッケル複合酸化物が好ましい。
In the general formula (1), Me preferably contains at least one of Mn and Co. When Mn is contained, for example, it is represented by the general formula Li a Ni b Mn c O 2 (where 0 <a ≦ 2, 0.45 ≦ b ≦ 0.99, 0.01 ≦ c ≦ 0.55). Lithium nickel composite oxide is preferred.
When Co is contained, for example, it is represented by the general formula Li a Ni b Co c O 2 (where 0 <a ≦ 2, 0.45 ≦ b ≦ 0.99, 0.01 ≦ c ≦ 0.55). Lithium nickel composite oxide is preferred.

一般式(1)において、Meは、MnおよびCoを両方含んでいてもよい。例えば、一般式LiaNibMncCod2(ただし、0<a≦2、0.25≦b≦0.99、0.01≦c≦0.65、0.01≦d≦0.65である)で表されるリチウムニッケル複合酸化物が好ましい。
正極活物質は、1種のみ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In the general formula (1), Me may contain both Mn and Co. For example, the general formula Li a Ni b Mn C Co d O 2 (where 0 <a ≦ 2, 0.25 ≦ b ≦ 0.99, 0.01 ≦ c ≦ 0.65, 0.01 ≦ d ≦ 0) .65) is preferable.
A positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.

リチウムニッケル複合酸化物を調製する方法は、特に限定されない。例えば、ニッケル化合物と、リチウム化合物とを所望の組成に応じて粉砕、混合し、混合物を焼成する方法が挙げられる。焼成温度は、ニッケル化合物と、リチウム化合物との混合物の少なくとも一部が分解もしくは溶融する温度であることが好ましい。例えば、250℃〜1500℃であればよい。混合物の焼成時間は1〜80時間であることが好ましい。   The method for preparing the lithium nickel composite oxide is not particularly limited. For example, a method in which a nickel compound and a lithium compound are pulverized and mixed according to a desired composition, and the mixture is fired. The firing temperature is preferably a temperature at which at least a part of the mixture of the nickel compound and the lithium compound is decomposed or melted. For example, it may be 250 ° C to 1500 ° C. The firing time of the mixture is preferably 1 to 80 hours.

焼成時の雰囲気ガスは、酸化雰囲気であればよく、例えば空気中で焼成を行えばよい。焼成後の混合物を粉砕し、所定の粒度に調整することで、リチウムニッケル複合酸化物が得られる。
ニッケル化合物は、特に限定されない。例えば、水酸化ニッケル、酸化ニッケル、硫酸ニッケル、炭酸ニッケルが挙げられる。リチウム化合物も、特に限定されない。例えば、炭酸リチウム、水酸化リチウム、硝酸リチウム、硫酸リチウム、酸化リチウムが挙げられる。
The atmosphere gas at the time of firing may be an oxidizing atmosphere, for example, firing in air. The mixture after firing is pulverized and adjusted to a predetermined particle size to obtain a lithium nickel composite oxide.
The nickel compound is not particularly limited. Examples thereof include nickel hydroxide, nickel oxide, nickel sulfate, and nickel carbonate. The lithium compound is not particularly limited. Examples thereof include lithium carbonate, lithium hydroxide, lithium nitrate, lithium sulfate, and lithium oxide.

リチウム含有複合酸化物が上記の一般式(1)で表される場合、金属元素Mは、Ta、W、Zr、Nb、SnおよびBよりなる群から選択される少なくとも1種を含むことが好ましい。これらの金属元素は、リチウム含有複合酸化物に固溶しにくいため、被覆層の厚みを制御しやすいと考えられる。
金属元素Mが、Al、Ta、Zr、SnおよびBよりなる群から選択される少なくとも1種を含む場合、耐電圧の観点から、ハロゲン元素は、FおよびClのうちの少なくとも一方を含むことが好ましい。
金属元素Mが、WおよびNbのうちの少なくとも一方を含む場合、ハロゲン元素は、Clを含むことが好ましい。
When the lithium-containing composite oxide is represented by the general formula (1), the metal element M preferably includes at least one selected from the group consisting of Ta, W, Zr, Nb, Sn, and B. . Since these metal elements are hardly dissolved in the lithium-containing composite oxide, it is considered that the thickness of the coating layer can be easily controlled.
When the metal element M includes at least one selected from the group consisting of Al, Ta, Zr, Sn, and B, the halogen element may include at least one of F and Cl from the viewpoint of withstand voltage. preferable.
When the metal element M contains at least one of W and Nb, the halogen element preferably contains Cl.

次に、上記で説明した正極活物質を含む非水電解質二次電池について説明する。
非水電解質二次電池は、正極、リチウムイオンを吸蔵および放出可能な負極、正極と負極との間に介在するセパレータならびに非水電解質を具備する。正極は、上記の正極活物質を含む。
Next, the nonaqueous electrolyte secondary battery including the positive electrode active material described above will be described.
The non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode capable of inserting and extracting lithium ions, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte. A positive electrode contains said positive electrode active material.

正極について説明する。
正極は、正極集電体と、正極集電体に担持される正極合剤層とを有する。正極合剤層は、一般に正極活物質と、正極用結着剤と、導電剤とを含む。正極の作製方法は、特に限定されない。以下、正極の作製方法の一例について説明する。
まず、正極活物質と、正極用結着剤と、導電剤と、分散媒とを混合して、正極合剤ペーストを調製する。正極合剤ペーストを正極集電体の両面に塗布して、乾燥後に圧延することによって、正極が得られる。正極集電体は特に限定されない。例えば、アルミニウム、ステンレス鋼等を含む金属箔を用いるが、アルミニウム箔が好ましい。
The positive electrode will be described.
The positive electrode has a positive electrode current collector and a positive electrode mixture layer carried on the positive electrode current collector. The positive electrode mixture layer generally includes a positive electrode active material, a positive electrode binder, and a conductive agent. The method for producing the positive electrode is not particularly limited. Hereinafter, an example of a method for manufacturing the positive electrode will be described.
First, a positive electrode mixture paste is prepared by mixing a positive electrode active material, a positive electrode binder, a conductive agent, and a dispersion medium. A positive electrode mixture paste is applied to both surfaces of a positive electrode current collector, and after drying, rolling is performed to obtain a positive electrode. The positive electrode current collector is not particularly limited. For example, a metal foil containing aluminum, stainless steel or the like is used, but an aluminum foil is preferable.

正極用結着剤は特に限定されない。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等を使用することができる。   The binder for positive electrodes is not particularly limited. For example, polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose and the like can be used.

導電剤も特に限定されない。例えば、天然黒鉛、人造黒鉛、アセチレンブラック等を使用することができる。
正極用の分散媒も特に限定されない。例えば、N−メチル−2−ピロリドン、テトラヒドロフラン、ジメチルホルムアミド等を使用することができる。
The conductive agent is not particularly limited. For example, natural graphite, artificial graphite, acetylene black and the like can be used.
The dispersion medium for the positive electrode is not particularly limited. For example, N-methyl-2-pyrrolidone, tetrahydrofuran, dimethylformamide and the like can be used.

負極について説明する。
負極は、負極集電体と、負極集電体に担持される負極合剤層とを有する。負極合剤層は、一般に負極活物質と、負極用結着剤とを含む。負極活物質は、特に限定されない。例えば、リチウム金属、リチウム合金などの合金の他、リチウムイオンを吸蔵および放出することができる金属間化合物、炭素材料、有機化合物、無機化合物、金属錯体、有機高分子化合物等が挙げられる。これらは1種のみ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The negative electrode will be described.
The negative electrode has a negative electrode current collector and a negative electrode mixture layer carried on the negative electrode current collector. The negative electrode mixture layer generally includes a negative electrode active material and a negative electrode binder. The negative electrode active material is not particularly limited. For example, in addition to alloys such as lithium metal and lithium alloy, intermetallic compounds capable of inserting and extracting lithium ions, carbon materials, organic compounds, inorganic compounds, metal complexes, organic polymer compounds, and the like can be given. These may be used alone or in combination of two or more.

なかでも、負極活物質は、炭素材料であることが特に好ましい。炭素材料が粉末状のものである場合、その平均粒径は、例えば0.1〜60μmであることが好ましく、0.5〜30μmであることが更に好ましい。炭素材料の比表面積は1〜10m2/gであることが好ましい。炭素材料としては、黒鉛が好ましく、炭素六角平面の間隔(d002)が3.35から3.40Åであり、c軸方向の結晶子の大きさ(Lc)が100Å以上である黒鉛が更に好ましい。 Among these, the negative electrode active material is particularly preferably a carbon material. When the carbon material is in a powder form, the average particle size is preferably, for example, 0.1 to 60 μm, and more preferably 0.5 to 30 μm. The specific surface area of the carbon material is preferably 1 to 10 m 2 / g. As the carbon material, graphite is preferable, and graphite having a carbon hexagonal plane spacing (d 002 ) of 3.35 to 3.40 mm and a crystallite size (L c ) in the c-axis direction of 100 mm or more is further included. preferable.

負極の作製方法も、特に限定されない。以下、負極の作製方法の一例について説明する。
まず、負極活物質と、負極用結着剤と、分散媒とを混合して、負極合剤ペーストを調製する。負極合剤ペーストを負極集電体の両面に塗布して、乾燥後に圧延することによって、負極が得られる。負極集電体は特に限定されないが、例えば、銅箔を用いる。
The method for producing the negative electrode is not particularly limited. Hereinafter, an example of a method for manufacturing a negative electrode will be described.
First, a negative electrode active material, a negative electrode binder, and a dispersion medium are mixed to prepare a negative electrode mixture paste. The negative electrode is obtained by applying the negative electrode mixture paste on both surfaces of the negative electrode current collector and rolling it after drying. Although the negative electrode current collector is not particularly limited, for example, a copper foil is used.

非水電解質について説明する。
非水電解質は、例えば非水溶媒およびそれに溶解するリチウム塩を含む。非水溶媒は、特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネートなどの環状炭酸エステル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状炭酸エステル、γ―ブチロラクトン、γ―バレロラクトンなどの環状カルボン酸エステルなどが挙げられる。これらは1種のみ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
リチウム塩も、特に限定されない。例えば、LiPF6、LiBF4等が挙げられる。これらは1種のみ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The nonaqueous electrolyte will be described.
The nonaqueous electrolyte includes, for example, a nonaqueous solvent and a lithium salt dissolved therein. The non-aqueous solvent is not particularly limited. Examples thereof include cyclic carbonates such as ethylene carbonate and propylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, and cyclic carboxylic acid esters such as γ-butyrolactone and γ-valerolactone. These may be used alone or in combination of two or more.
The lithium salt is not particularly limited. Examples thereof include LiPF 6 and LiBF 4 . These may be used alone or in combination of two or more.

正極と負極との間には、セパレータが介在する。セパレータとして用いる材料も、特に限定されない。例えば、ポリエチレン等のポリオレフィン製の微多孔膜が用いられる。   A separator is interposed between the positive electrode and the negative electrode. The material used as the separator is not particularly limited. For example, a microporous membrane made of polyolefin such as polyethylene is used.

なお、電池の形態は特に限定されない。例えば、円筒形、偏平形、角形等が挙げられる。電池は誤動作時にも安全を確保できるように、例えば、内圧作動型の安全弁、電流遮断型安全弁等を備えることが好ましい。   The form of the battery is not particularly limited. For example, a cylindrical shape, a flat shape, a square shape, etc. are mentioned. The battery preferably includes, for example, an internal pressure-operated safety valve, a current cutoff safety valve, or the like so that safety can be ensured even in the case of malfunction.

以下、実施例を用いて本発明をさらに詳しく説明する。なお、本発明の内容は、これらの実施例に限定されるものではない。
《実施例1》
リチウムニッケル複合酸化物の表面に、金属元素MとしてWを含み、ハロゲン元素としてFを含む被覆層を形成した。
Hereinafter, the present invention will be described in more detail with reference to examples. The content of the present invention is not limited to these examples.
Example 1
A coating layer containing W as the metal element M and F as the halogen element was formed on the surface of the lithium nickel composite oxide.

(1)正極の作製
炭酸リチウムの粉末(平均粒径2μm)と炭酸ニッケルの粉末(平均粒径10μm)とを、リチウムとニッケルの原子数の比が1.05:1.00になるように混合した。混合物を、空気中、750℃で5時間焼成して、ニッケル酸リチウムを得た。
(1) Fabrication of positive electrode Lithium carbonate powder (average particle size 2 μm) and nickel carbonate powder (average particle size 10 μm) so that the atomic ratio of lithium and nickel is 1.05: 1.00 Mixed. The mixture was calcined in air at 750 ° C. for 5 hours to obtain lithium nickelate.

ニッケル酸リチウム1kgを、雰囲気制御型ロータリーキルン炉(キルン回転数:4rpm)に入れ、被覆材料であるWF6を25℃、流量1L/minの条件で20分間炉内に導入した。これにより、リチウムニッケル複合酸化物の表面にWF6を接触させて、WF6を含む被覆層を均一に形成した。被覆層の厚みをXPSを用いて測定したところ、2nmであった。 1 kg of lithium nickelate was placed in an atmosphere-controlled rotary kiln furnace (kiln rotation speed: 4 rpm), and WF 6 as a coating material was introduced into the furnace at 25 ° C. and a flow rate of 1 L / min for 20 minutes. Thus, by contacting the WF 6 to the surface of the lithium nickel composite oxide, to form a uniform coating layer containing WF 6. It was 2 nm when the thickness of the coating layer was measured using XPS.

被覆層を有するリチウムニッケル複合酸化物100重量部と、導電剤であるアセチレンブラック3重量部と、結着剤であるポリフッ化ビニリデン3重量部とを混合して、正極合剤を得た。正極合剤を分散媒であるN−メチルー2−ピロリドンに分散させて、スラリー状の正極合剤ペーストを調製した。正極合剤ペーストを、乾燥後に所定の重量になるように、正極集電体(厚み20μmのアルミニウム箔)の両面に塗布して乾燥後、圧延した。その後、所定の寸法に裁断して、厚み170μmの正極を得た。なお、正極の厚みとは、正極合剤層と正極集電体との合計の厚みである。   100 parts by weight of a lithium nickel composite oxide having a coating layer, 3 parts by weight of acetylene black as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed to obtain a positive electrode mixture. The positive electrode mixture was dispersed in N-methyl-2-pyrrolidone as a dispersion medium to prepare a slurry-like positive electrode mixture paste. The positive electrode mixture paste was applied to both surfaces of a positive electrode current collector (aluminum foil having a thickness of 20 μm) so as to have a predetermined weight after drying, dried and rolled. Then, it cut | judged to the predetermined dimension and obtained the positive electrode of thickness 170 micrometers. In addition, the thickness of the positive electrode is the total thickness of the positive electrode mixture layer and the positive electrode current collector.

(2)負極の作製
負極活物質には、平均粒子径が約20μmになるように粉砕・分級した鱗片状黒鉛を用いた。鱗片状黒鉛100重量部と、結着剤であるスチレン/ブタジエンゴム3重量部と、分散媒である、カルボキシメチルセルロースを1重量%含む水溶液100重量部とを混合して、スラリー状の負極合剤ペーストを得た。負極合剤ペーストを、乾燥後に所定の重量になるように、負極集電体(厚み15μmの銅箔)の両面に塗布して乾燥後、圧延した。その後、所定の寸法に裁断して、厚み165μmの負極を得た。なお、負極の厚みとは、負極合剤層と負極集電体との合計の厚みである。
(2) Production of negative electrode As the negative electrode active material, flaky graphite ground and classified so as to have an average particle diameter of about 20 μm was used. A slurry-like negative electrode mixture is prepared by mixing 100 parts by weight of flaky graphite, 3 parts by weight of styrene / butadiene rubber as a binder, and 100 parts by weight of an aqueous solution containing 1% by weight of carboxymethyl cellulose as a dispersion medium. A paste was obtained. The negative electrode mixture paste was applied to both sides of a negative electrode current collector (copper foil having a thickness of 15 μm) so as to have a predetermined weight after drying, dried and rolled. Then, it cut | judged to the predetermined dimension and obtained the negative electrode of thickness 165 micrometers. The negative electrode thickness is the total thickness of the negative electrode mixture layer and the negative electrode current collector.

(3)非水電解質の調製
まず、エチレンカーボネートとエチルメチルカーボネートとの体積比1:3の混合溶媒100重量部と、ビニレンカーボネート2重量部とを混合した。得られた混合物に対して、1.0mol/Lの濃度になるようにLiPF6を溶解したものを非水電解質として用いた。
(3) Preparation of non-aqueous electrolyte First, 100 parts by weight of a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 3 and 2 parts by weight of vinylene carbonate were mixed. To the resulting mixture, was used LiPF 6 was dissolved to a concentration of 1.0 mol / L as the non-aqueous electrolyte.

(4)電池の組立
円筒形の非水電解質二次電池(直径18mm、高さ65mm)を組み立てた。図1に、本実施例で作製した円筒形電池の縦断面図を示す。上記電池は以下のようにして組み立てた。
(4) Battery assembly A cylindrical nonaqueous electrolyte secondary battery (diameter 18 mm, height 65 mm) was assembled. FIG. 1 shows a longitudinal sectional view of a cylindrical battery produced in this example. The battery was assembled as follows.

まず、正極集電体に、アルミニウム製である正極リード4を取り付けた。負極集電体には、ニッケル製である負極リード5を取り付けた。正極1と負極2とを、セパレータ3を介して捲回し、ジェリーロール型の電極群を構成した。セパレータ3には、厚さ20μmであるポリエチレン製の微多孔膜を用いた。   First, the positive electrode lead 4 made of aluminum was attached to the positive electrode current collector. A negative electrode lead 5 made of nickel was attached to the negative electrode current collector. The positive electrode 1 and the negative electrode 2 were wound through a separator 3 to constitute a jelly roll type electrode group. As the separator 3, a polyethylene microporous film having a thickness of 20 μm was used.

電極群の上部と下部には、ポリプロピレン製の絶縁板6、7を配した。負極リード5は、ニッケルメッキした鉄製の電池ケース8に溶接した。また、正極リード4は、内圧作動型の安全弁を有する封口板10に溶接した。そして、電極群を電池ケース8の内部に収納した。その後、電池ケース8の内部に、非水電解質を減圧方式により注入した。最後に、電池ケースの開口端部を、ガスケット9を介して封口板10にかしめることにより電池を完成させた。   Insulating plates 6 and 7 made of polypropylene were disposed on the upper and lower portions of the electrode group. The negative electrode lead 5 was welded to a nickel-plated iron battery case 8. The positive electrode lead 4 was welded to a sealing plate 10 having an internal pressure actuated safety valve. The electrode group was housed inside the battery case 8. Thereafter, a nonaqueous electrolyte was injected into the battery case 8 by a reduced pressure method. Finally, the battery case was completed by caulking the opening end of the battery case to the sealing plate 10 via the gasket 9.

(5)容量維持率の測定
環境温度20℃で、非水電解質二次電池の充放電を行った。充電は、400mAの電流で、充電終止電位を4.2Vとして2時間行った。放電は、1400mAの電流で放電終止電位を3.0Vとして行った。10サイクル目の電池容量を、電池の初期容量とした。
その後さらに電池を充電し、充電状態の電池を100℃で2時間保存した。次いで、保存後の電池を上記と同条件で放電し、保存後の容量を求めた。得られた保存後の容量の初期容量に対する割合を百分率で求めて、容量維持率とした。
《実施例2》
(5) Measurement of capacity retention rate The nonaqueous electrolyte secondary battery was charged and discharged at an environmental temperature of 20 ° C. Charging was performed for 2 hours at a current of 400 mA with a charge end potential of 4.2 V. The discharge was performed at a current of 1400 mA and a discharge end potential of 3.0V. The battery capacity at the 10th cycle was defined as the initial capacity of the battery.
Thereafter, the battery was further charged, and the charged battery was stored at 100 ° C. for 2 hours. Next, the battery after storage was discharged under the same conditions as described above, and the capacity after storage was determined. The ratio of the obtained capacity after storage to the initial capacity was obtained as a percentage and used as the capacity maintenance ratio.
Example 2

実施例1と同様に調製したリチウムニッケル複合酸化物の表面に、金属元素MとしてAlを含み、ハロゲン元素としてClを含む被覆層を形成した。   A coating layer containing Al as the metal element M and Cl as the halogen element was formed on the surface of the lithium nickel composite oxide prepared in the same manner as in Example 1.

リチウムニッケル複合酸化物1kgを、雰囲気制御型ロータリーキルン炉(キルン回転数:4rpm)に入れ、昇温速度5℃/minで200℃まで昇温し、その温度で保持した。被覆材料であるAlCl3を、200℃でガス化させて、流量1L/minの条件で20分間炉内に導入した。その後、AlCl3の導入を止め、5℃/minで25℃まで降温した。これにより、リチウムニッケル複合酸化物の表面にAlCl3を接触させて、AlCl3を含む被覆層を均一に形成した。被覆層の厚みは2nmであった。
上記の被覆層を有するリチウムニッケル複合酸化物を用いたこと以外、実施例1と同様にして電池を組み立て、容量維持率の測定を行った。
《実施例3》
1 kg of lithium nickel composite oxide was placed in an atmosphere-controlled rotary kiln furnace (kiln rotation speed: 4 rpm), heated to 200 ° C. at a heating rate of 5 ° C./min, and held at that temperature. The coating material AlCl 3 was gasified at 200 ° C. and introduced into the furnace for 20 minutes under the condition of a flow rate of 1 L / min. Thereafter, the introduction of AlCl 3 was stopped, and the temperature was lowered to 25 ° C. at 5 ° C./min. As a result, AlCl 3 was brought into contact with the surface of the lithium nickel composite oxide to uniformly form a coating layer containing AlCl 3 . The thickness of the coating layer was 2 nm.
A battery was assembled in the same manner as in Example 1 except that the lithium nickel composite oxide having the above coating layer was used, and the capacity retention rate was measured.
Example 3

実施例1と同様に調製したリチウムニッケル複合酸化物の表面に、金属元素MとしてNbを含み、ハロゲン元素としてFを含む被覆層を形成した。   A coating layer containing Nb as the metal element M and F as the halogen element was formed on the surface of the lithium nickel composite oxide prepared in the same manner as in Example 1.

リチウムニッケル複合酸化物1kgを、雰囲気制御型ロータリーキルン炉(キルン回転数:4rpm)に入れ、昇温速度5℃/minで300℃まで昇温し、その温度で保持した。被覆材料であるNbF5を、300℃でガス化させて、流量1L/minの条件で20分間炉内に導入した。その後、NbF5の導入を止め、5℃/minで25℃まで降温した。これにより、リチウムニッケル複合酸化物の表面にNbF5を接触させて、NbF5を含む被覆層を均一に形成した。被覆層の厚みは4nmであった。
上記の被覆層を有するリチウムニッケル複合酸化物を用いたこと以外、実施例1と同様にして電池を組み立て、容量維持率の測定を行った。
《実施例4》
1 kg of lithium nickel composite oxide was placed in an atmosphere controlled rotary kiln furnace (kiln rotation speed: 4 rpm), heated to 300 ° C. at a temperature rising rate of 5 ° C./min, and held at that temperature. The coating material NbF 5 was gasified at 300 ° C. and introduced into the furnace at a flow rate of 1 L / min for 20 minutes. Thereafter, the introduction of NbF 5 was stopped and the temperature was lowered to 25 ° C. at 5 ° C./min. Thus, by contacting the NbF 5 on the surface of the lithium nickel composite oxide, to form a uniform coating layer containing a NbF 5. The thickness of the coating layer was 4 nm.
A battery was assembled in the same manner as in Example 1 except that the lithium nickel composite oxide having the above coating layer was used, and the capacity retention rate was measured.
Example 4

実施例1と同様に調製したリチウムニッケル複合酸化物の表面に、金属元素MとしてTaを含み、ハロゲン元素としてClを含む被覆層を形成した。   A coating layer containing Ta as the metal element M and Cl as the halogen element was formed on the surface of the lithium nickel composite oxide prepared in the same manner as in Example 1.

リチウムニッケル複合酸化物1kgを、雰囲気制御型ロータリーキルン炉(キルン回転数:4rpm)に入れ、昇温速度5℃/minで300℃まで昇温し、その温度で保持した。TaCl5を、300℃でガス化させて、流量1L/minの条件で20分間炉内に導入した。その後、TaCl5の導入を止め、5℃/minで25℃まで降温した。これにより、リチウムニッケル複合酸化物の表面にTaCl5を接触させて、TaCl5を含む被覆層を均一に形成した。被覆層の厚みは4nmであった。
上記の被覆層を有するリチウムニッケル複合酸化物を用いたこと以外、実施例1と同様にして電池を組み立て、容量維持率の測定を行った。
《実施例5》
1 kg of lithium nickel composite oxide was placed in an atmosphere controlled rotary kiln furnace (kiln rotation speed: 4 rpm), heated to 300 ° C. at a temperature rising rate of 5 ° C./min, and held at that temperature. TaCl 5 was gasified at 300 ° C. and introduced into the furnace at a flow rate of 1 L / min for 20 minutes. Thereafter, the introduction of TaCl 5 was stopped, and the temperature was lowered to 25 ° C. at 5 ° C./min. Thereby, TaCl 5 was brought into contact with the surface of the lithium nickel composite oxide, and a coating layer containing TaCl 5 was uniformly formed. The thickness of the coating layer was 4 nm.
A battery was assembled in the same manner as in Example 1 except that the lithium nickel composite oxide having the above coating layer was used, and the capacity retention rate was measured.
Example 5

実施例1と同様に調製したリチウムニッケル複合酸化物の表面に、金属元素MとしてZrを含み、ハロゲン元素としてClを含む被覆層を形成した。   A coating layer containing Zr as the metal element M and Cl as the halogen element was formed on the surface of the lithium nickel composite oxide prepared in the same manner as in Example 1.

リチウムニッケル複合酸化物1kgを、雰囲気制御型ロータリーキルン炉(キルン回転数:4rpm)に入れ、昇温速度5℃/minで400℃まで昇温し、その温度で保持した。ZrCl4を、400℃でガス化させて、流量1L/minの条件で20分間炉内に導入した。その後、ZrCl4の導入を止め、5℃/minで25℃まで降温した。これにより、リチウムニッケル複合酸化物の表面にZrCl4を接触させて、ZrCl4を含む被覆層を均一に形成した。被覆層の厚みは5nmであった。
上記の被覆層を有するリチウムニッケル複合酸化物を用いたこと以外、実施例1と同様にして電池を組み立て、容量維持率の測定を行った。
《実施例6》
1 kg of lithium nickel composite oxide was placed in an atmosphere-controlled rotary kiln furnace (kiln rotation speed: 4 rpm), heated to 400 ° C. at a heating rate of 5 ° C./min, and held at that temperature. ZrCl 4 was gasified at 400 ° C. and introduced into the furnace at a flow rate of 1 L / min for 20 minutes. Thereafter, introduction of ZrCl 4 was stopped and the temperature was lowered to 25 ° C. at 5 ° C./min. As a result, ZrCl 4 was brought into contact with the surface of the lithium nickel composite oxide to uniformly form a coating layer containing ZrCl 4 . The thickness of the coating layer was 5 nm.
A battery was assembled in the same manner as in Example 1 except that the lithium nickel composite oxide having the above coating layer was used, and the capacity retention rate was measured.
Example 6

実施例1と同様に調製したリチウムニッケル複合酸化物の表面に、金属元素MとしてSnを含み、ハロゲン元素としてClを含む被覆層を形成した。   A covering layer containing Sn as the metal element M and Cl as the halogen element was formed on the surface of the lithium nickel composite oxide prepared in the same manner as in Example 1.

リチウムニッケル複合酸化物1kgを、雰囲気制御型ロータリーキルン炉(キルン回転数:4rpm)に入れ、昇温速度5℃/minで200℃まで昇温し、その温度で保持した。SnCl4を、200℃でガス化させて、流量1L/minの条件で20分間炉内に導入した。その後、SnCl4の導入を止め、5℃/minで25℃まで降温した。これにより、リチウムニッケル複合酸化物の表面にSnCl4を接触させて、SnCl4を含む被覆層を均一に形成した。被覆層の厚みは5nmであった。
上記の被覆層を有するリチウムニッケル酸化物を用いたこと以外、実施例1と同様にして電池を組み立て、容量維持率の測定を行った。
《実施例7》
1 kg of lithium nickel composite oxide was placed in an atmosphere-controlled rotary kiln furnace (kiln rotation speed: 4 rpm), heated to 200 ° C. at a heating rate of 5 ° C./min, and held at that temperature. SnCl 4 was gasified at 200 ° C. and introduced into the furnace at a flow rate of 1 L / min for 20 minutes. Thereafter, the introduction of SnCl 4 was stopped and the temperature was lowered to 25 ° C. at 5 ° C./min. Thus, SnCl 4 was brought into contact with the surface of the lithium nickel composite oxide to uniformly form a coating layer containing SnCl 4 . The thickness of the coating layer was 5 nm.
A battery was assembled in the same manner as in Example 1 except that lithium nickel oxide having the above coating layer was used, and the capacity retention rate was measured.
Example 7

実施例1と同様に調製したリチウムニッケル複合酸化物の表面に、金属元素MとしてBを含み、ハロゲン元素としてClを含む被覆層を形成した。   A coating layer containing B as the metal element M and Cl as the halogen element was formed on the surface of the lithium nickel composite oxide prepared in the same manner as in Example 1.

リチウムニッケル複合酸化物1kgを、雰囲気制御型ロータリーキルン炉(キルン回転数:4rpm)に入れ、BCl3を、25℃、流量1L/minの条件で20分間炉内に導入した。これにより、リチウムニッケル複合酸化物の表面にBCl3を接触させて、BCl3を含む被覆層を均一に形成した。被覆層の厚みは2nmであった。
上記の被覆層を有するリチウムニッケル複合酸化物を用いたこと以外、実施例1と同様にして電池を組み立て、容量維持率の測定を行った。
《比較例1》
1 kg of lithium nickel composite oxide was placed in an atmosphere-controlled rotary kiln furnace (kiln rotation speed: 4 rpm), and BCl 3 was introduced into the furnace at 25 ° C. and a flow rate of 1 L / min for 20 minutes. As a result, BCl 3 was brought into contact with the surface of the lithium nickel composite oxide to uniformly form a coating layer containing BCl 3 . The thickness of the coating layer was 2 nm.
A battery was assembled in the same manner as in Example 1 except that the lithium nickel composite oxide having the above coating layer was used, and the capacity retention rate was measured.
<< Comparative Example 1 >>

リチウムニッケル複合酸化物の表面に被覆層を形成しなかったこと以外、実施例1と同様にして電池を組み立て、容量維持率の測定を行った。
実施例1〜7および比較例1について、結果を表1に示す。
A battery was assembled in the same manner as in Example 1 except that the coating layer was not formed on the surface of the lithium nickel composite oxide, and the capacity retention rate was measured.
The results are shown in Table 1 for Examples 1 to 7 and Comparative Example 1.

Figure 2008251480
Figure 2008251480

被覆層を有するリチウムニッケル複合酸化物を正極活物質とした電池は、高温保存後も容量の低下が小さかった。これは、金属ハロゲン化物を含む被覆層によって、正極活物質表面が不活性化され、高温での正極活物質の溶出や正極表面での非水電解質の分解が抑制される。そのため、電池特性の劣化が抑制されたと考えられる。   A battery using a lithium nickel composite oxide having a coating layer as a positive electrode active material had a small decrease in capacity even after high-temperature storage. This is because the surface of the positive electrode active material is inactivated by the coating layer containing the metal halide, and the elution of the positive electrode active material at a high temperature and the decomposition of the nonaqueous electrolyte on the surface of the positive electrode are suppressed. For this reason, it is considered that deterioration of battery characteristics is suppressed.

また、上記以外の金属元素Mとハロゲン元素とを含む被覆層を用いた場合においても、本発明の効果が得られることが確認できた。   In addition, it was confirmed that the effects of the present invention can be obtained even when a coating layer containing a metal element M and a halogen element other than those described above is used.

本発明のリチウムニッケル複合酸化物を含む正極活物質を用いることで、高温保存時や、過充電状態においても、電池の信頼性と安全性が向上する。   By using the positive electrode active material containing the lithium nickel composite oxide of the present invention, the reliability and safety of the battery are improved even during high-temperature storage or in an overcharged state.

本発明の一実施形態に係る、円筒形の非水電解質二次電池の縦断面図である。It is a longitudinal cross-sectional view of the cylindrical nonaqueous electrolyte secondary battery based on one Embodiment of this invention.

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
4 正極リード
5 負極リード
6 上部絶縁板
7 下部絶縁板
8 電池ケース
9 ガスケット
10 封口板
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode lead 5 Negative electrode lead 6 Upper insulating plate 7 Lower insulating plate 8 Battery case 9 Gasket 10 Sealing plate

Claims (10)

リチウム含有複合酸化物と、前記リチウム含有複合酸化物の表面の少なくとも一部を被覆する被覆層とを有し、
前記リチウム含有複合酸化物が、Niを含み、
前記被覆層が、金属元素Mと、ハロゲン元素とを含み、
前記金属元素Mが、Al、Ta、W、Zr、Nb、SnおよびBよりなる群から選択される少なくとも1種を含む、非水電解質二次電池用正極活物質。
A lithium-containing composite oxide, and a coating layer covering at least a part of the surface of the lithium-containing composite oxide,
The lithium-containing composite oxide contains Ni;
The coating layer includes a metal element M and a halogen element;
A positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the metal element M includes at least one selected from the group consisting of Al, Ta, W, Zr, Nb, Sn, and B.
前記リチウム含有複合酸化物が、一般式LiaNibMec2(ただし、0<a≦2、0<b≦1、c=1−b、MeはAl、Ti、V、Mn、Co、Fe、Cr、Cu、ZnおよびMgよりなる群から選択される少なくとも1種)で表される化合物を含む、請求項1記載の非水電解質二次電池用正極活物質。 The lithium-containing composite oxide has the general formula Li a Ni b Me c O 2 (where 0 <a ≦ 2, 0 <b ≦ 1, c = 1−b, Me is Al, Ti, V, Mn, Co 2. A positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, comprising a compound represented by at least one selected from the group consisting of Fe, Cr, Cu, Zn and Mg. 前記金属元素Mが、Ta、W、Zr、Nb、SnおよびBよりなる群から選択される少なくとも1種を含む、請求項2記載の非水電解質二次電池用正極活物質。   The positive electrode active material for a nonaqueous electrolyte secondary battery according to claim 2, wherein the metal element M includes at least one selected from the group consisting of Ta, W, Zr, Nb, Sn, and B. 前記被覆層が、前記金属元素Mのハロゲン化物を含む、請求項1記載の非水電解質二次電池用正極活物質。   The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the coating layer includes a halide of the metal element M. 前記被覆層の厚みが1〜100nmである、請求項1または2記載の非水電解質二次電池用正極活物質。   The positive electrode active material for a nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the coating layer has a thickness of 1 to 100 nm. 前記被覆層の厚みが2〜5nmである、請求項1または2記載の非水電解質二次電池用正極活物質。   The positive electrode active material for a nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the coating layer has a thickness of 2 to 5 nm. 前記金属元素Mが、Al、Ta、Zr、SnおよびBよりなる群から選択される少なくとも1種を含み、前記ハロゲン元素が、FおよびClのうちの少なくとも一方を含む、請求項1記載の非水電解質二次電池用正極活物質。   The non-metallic element according to claim 1, wherein the metal element M includes at least one selected from the group consisting of Al, Ta, Zr, Sn, and B, and the halogen element includes at least one of F and Cl. Positive electrode active material for water electrolyte secondary battery. 前記金属元素Mが、WおよびNbのうちの少なくとも一方を含み、前記ハロゲン元素が、Clを含む、請求項1記載の非水電解質二次電池用正極活物質。   The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the metal element M includes at least one of W and Nb, and the halogen element includes Cl. 正極、リチウムイオンを吸蔵および放出可能な負極、前記正極と前記負極との間に介在するセパレータおよび非水電解質を具備し、
前記正極が、請求項1〜8のいずれかに記載の非水電解質二次電池用正極活物質を含む、非水電解質二次電池。
Comprising a positive electrode, a negative electrode capable of inserting and extracting lithium ions, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte;
The non-aqueous electrolyte secondary battery in which the said positive electrode contains the positive electrode active material for non-aqueous electrolyte secondary batteries in any one of Claims 1-8.
ガス状の金属ハロゲン化物と、リチウム含有複合酸化物とを接触させて、前記リチウム含有複合酸化物の表面の少なくとも一部を金属ハロゲン化物で被覆する、請求項1記載の非水電解質二次電池用正極活物質の製造方法。   The nonaqueous electrolyte secondary battery according to claim 1, wherein a gaseous metal halide is brought into contact with the lithium-containing composite oxide to coat at least a part of the surface of the lithium-containing composite oxide with the metal halide. For producing a positive electrode active material for use.
JP2007094496A 2007-03-30 2007-03-30 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same Active JP5276795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007094496A JP5276795B2 (en) 2007-03-30 2007-03-30 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007094496A JP5276795B2 (en) 2007-03-30 2007-03-30 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2008251480A true JP2008251480A (en) 2008-10-16
JP5276795B2 JP5276795B2 (en) 2013-08-28

Family

ID=39976168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007094496A Active JP5276795B2 (en) 2007-03-30 2007-03-30 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5276795B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110952A (en) * 2007-10-11 2009-05-21 Univ Of Fukui Cathode material for nonaqueous electrolyte secondary battery
WO2011016553A1 (en) * 2009-08-07 2011-02-10 三洋電機株式会社 Non-aqueous electrolyte secondary battery
WO2011067898A1 (en) * 2009-12-01 2011-06-09 パナソニック株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same
WO2012039893A2 (en) 2010-09-22 2012-03-29 Envia Systems, Inc. Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
CN102598372A (en) * 2009-11-11 2012-07-18 安维亚系统公司 Coated positive electrode materials for lithium ion batteries
US8535832B2 (en) 2009-08-27 2013-09-17 Envia Systems, Inc. Metal oxide coated positive electrode materials for lithium-based batteries
JP2013542905A (en) * 2010-09-21 2013-11-28 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing modified mixed transition metal oxides
WO2016017092A1 (en) * 2014-07-30 2016-02-04 三洋電機株式会社 Non-aqueous electrolyte secondary battery
US10115962B2 (en) 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
US10193135B2 (en) 2015-01-15 2019-01-29 Zenlabs Energy, Inc. Positive electrode active materials with composite coatings for high energy density secondary batteries and corresponding processes
CN115004415A (en) * 2020-01-31 2022-09-02 三洋电机株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145740A (en) * 1997-07-28 1999-02-16 Yuasa Corp Non-aqueous electrolytic battery
WO2006109930A1 (en) * 2005-04-15 2006-10-19 Daejung Chemicals & Metals Co., Ltd. Cathode active material coated with fluorine compound for lithium secondary batteries and method for preparing the same
JP2007103119A (en) * 2005-10-03 2007-04-19 Sony Corp Positive electrode material, positive electrode and battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145740A (en) * 1997-07-28 1999-02-16 Yuasa Corp Non-aqueous electrolytic battery
WO2006109930A1 (en) * 2005-04-15 2006-10-19 Daejung Chemicals & Metals Co., Ltd. Cathode active material coated with fluorine compound for lithium secondary batteries and method for preparing the same
JP2007103119A (en) * 2005-10-03 2007-04-19 Sony Corp Positive electrode material, positive electrode and battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110952A (en) * 2007-10-11 2009-05-21 Univ Of Fukui Cathode material for nonaqueous electrolyte secondary battery
WO2011016553A1 (en) * 2009-08-07 2011-02-10 三洋電機株式会社 Non-aqueous electrolyte secondary battery
US8535832B2 (en) 2009-08-27 2013-09-17 Envia Systems, Inc. Metal oxide coated positive electrode materials for lithium-based batteries
US9843041B2 (en) 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
CN102598372A (en) * 2009-11-11 2012-07-18 安维亚系统公司 Coated positive electrode materials for lithium ion batteries
JP2013511129A (en) * 2009-11-11 2013-03-28 エンビア・システムズ・インコーポレイテッド Cathode material with coating for lithium-ion battery
WO2011067898A1 (en) * 2009-12-01 2011-06-09 パナソニック株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same
JP2013542905A (en) * 2010-09-21 2013-11-28 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing modified mixed transition metal oxides
WO2012039893A3 (en) * 2010-09-22 2012-06-14 Envia Systems, Inc. Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
CN103140962A (en) * 2010-09-22 2013-06-05 安维亚系统公司 Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
US8663849B2 (en) 2010-09-22 2014-03-04 Envia Systems, Inc. Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
WO2012039893A2 (en) 2010-09-22 2012-03-29 Envia Systems, Inc. Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
EP3285315A1 (en) * 2010-09-22 2018-02-21 Zenlabs Energy, Inc. Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
US10115962B2 (en) 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
WO2016017092A1 (en) * 2014-07-30 2016-02-04 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JPWO2016017092A1 (en) * 2014-07-30 2017-04-27 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US10193135B2 (en) 2015-01-15 2019-01-29 Zenlabs Energy, Inc. Positive electrode active materials with composite coatings for high energy density secondary batteries and corresponding processes
USRE49980E1 (en) 2015-01-15 2024-05-21 Ionblox, Inc. Positive electrode active materials with composite coatings for high energy density secondary batteries and corresponding processes
CN115004415A (en) * 2020-01-31 2022-09-02 三洋电机株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5276795B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5276795B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US10090557B2 (en) Solid-state multi-layer electrolyte, electrochemical cell and battery including the electrolyte, and method of forming same
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP4868786B2 (en) Lithium secondary battery
JP2008270175A (en) Cathode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2007007542A1 (en) Lithium ion secondary battery
JP2008226605A (en) Nonaqueous electrolyte secondary battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP2009193745A (en) Method for manufacturing positive electrode active material
JP2020077611A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP2009076383A (en) Non-aqueous secondary battery and its manufacturing method
JP2017139168A (en) Positive electrode for nonaqueous electrolyte secondary battery
JP2014075183A (en) Nonaqueous electrolyte secondary battery
JP6477152B2 (en) Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2007052935A (en) Nonaqueous electrolyte battery
JP2003007342A (en) Manufacturing method of secondary nonaqueous battery
JP2005332629A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method
JP3996554B2 (en) Lithium secondary battery
WO2014103755A1 (en) Nonaqueous electrolyte secondary battery
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
JP2008016244A (en) Cathode active material, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2007207461A (en) Nonaqueous electrolyte secondary battery
JP2007220455A (en) Nonaqueous electrolyte secondary battery
JP2013137939A (en) Nonaqueous secondary battery
JPH11111293A (en) Organic electrolyte secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5276795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250