JP2008236968A - Noncontact power transmitter - Google Patents

Noncontact power transmitter Download PDF

Info

Publication number
JP2008236968A
JP2008236968A JP2007076143A JP2007076143A JP2008236968A JP 2008236968 A JP2008236968 A JP 2008236968A JP 2007076143 A JP2007076143 A JP 2007076143A JP 2007076143 A JP2007076143 A JP 2007076143A JP 2008236968 A JP2008236968 A JP 2008236968A
Authority
JP
Japan
Prior art keywords
power
current
primary coil
power transmission
transmission device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007076143A
Other languages
Japanese (ja)
Inventor
Haruhiko Sogabe
治彦 曽我部
Kanki Jin
幹基 神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007076143A priority Critical patent/JP2008236968A/en
Publication of JP2008236968A publication Critical patent/JP2008236968A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact power transmitter minimizing the burden of a receiver upon recharging a secondary battery after being fully charged. <P>SOLUTION: This noncontact power transmitter constructed from a transmitter 1 and the receiver 2, transmits power from the transmitter 1 to the receiver 2 by electromagnetically connecting a primary coil 16 with a secondary coil 21. When the secondary battery 26 is recharged after being fully charged, the transmitter 1 drives the primary coil 16 at every predetermined timing and detects current flowing in the primary coil 16 after a lapse of the predetermined timing from the drive starting of the primary coil 16, and performs a following driving operation on the primary coil 16, based on the detected current. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電磁誘導を利用して、1次側の送電装置から2次側の受電装置に非接触で電力を伝送する非接触電力伝送装置に関するものである。   The present invention relates to a contactless power transmission device that uses electromagnetic induction to transmit power from a primary power transmission device to a secondary power reception device in a contactless manner.

従来、この種の非接触電力伝送装置としては、例えば特許文献1に記載のものが知られている。
この特許文献1に記載の装置(以下、従来装置)は、電磁誘導によって本体部から負荷部へ電力を伝達供給する電源装置において、2次電池(蓄電池)の満充電を検出して2次コイルの出力負荷を変更させ、この負荷変化を2次コイルを介して1次コイルに現れる電圧変化から電源側で検出し、スイッチング素子の発振動作を停止させるようにしたものである。このため、従来装置は、非接触方式の充電装置であっても、満充電後における電源部の発振動作を確実に停止でき、発熱や電源ロスなどの問題がなくなる。
特開平6−339232号公報
Conventionally, as this type of non-contact power transmission device, for example, the one described in Patent Document 1 is known.
The device described in Patent Document 1 (hereinafter referred to as a conventional device) detects a full charge of a secondary battery (storage battery) in a power supply device that supplies electric power from a main body portion to a load portion by electromagnetic induction, and detects a secondary coil. This load change is detected on the power supply side from the voltage change appearing in the primary coil via the secondary coil, and the oscillation operation of the switching element is stopped. For this reason, even if the conventional device is a contactless charging device, the oscillation operation of the power supply unit after full charging can be stopped reliably, and problems such as heat generation and power loss are eliminated.
JP-A-6-339232

ところで、従来装置では、2次電池の満充電後に、その2次電池の再充電を行って充電状態を一定に保持することについて十分な考慮されていない。また、この場合に、受電装置側の負担を極力軽減できることが望まれる。
そこで、本発明の目的は、2次電池の満充電後に再充電動作などの充電を行う場合に、受電装置側の負担を極力軽減できる非接触電力伝送装置を提供することにある。
By the way, in a conventional apparatus, after fully charging a secondary battery, recharging of the secondary battery is performed, and sufficient consideration is not given about keeping a charging state constant. In this case, it is desirable that the load on the power receiving apparatus side can be reduced as much as possible.
Accordingly, an object of the present invention is to provide a non-contact power transmission device that can reduce the load on the power receiving device as much as possible when charging such as a recharging operation after the secondary battery is fully charged.

上記の課題を解決し本発明の目的を達成するために、各発明は、以下のような構成からなる。
第1の発明は、1次コイルを含む送電装置と、2次コイルを含む受電装置とからなり、前記1次コイルと前記2次コイルとを電磁的に結合させて、前記送電装置が前記受電装置に対して電力の伝送を行うようになっている非接触電力伝送装置であって、前記送電装置は、前記1次コイルに給電する給電手段と、前記1次コイルに流れる電流を検出する電流検出手段と、前記受電装置の2次電池の満充電後に再充電動作させる際に、所定のタイミングで前記給電手段の給電動作を開始させ、その給電動作の開始後に前記電流検出手段の検出電流を取り込み、この取り込んだ検出電流に基づいて前記給電手段の以後の所定動作を制御する制御手段と、を備えている。
In order to solve the above problems and achieve the object of the present invention, each invention has the following configuration.
1st invention consists of the power transmission apparatus containing a primary coil and the power receiving apparatus containing a secondary coil, and the said power transmission apparatus electromagnetically couples the said primary coil and the said secondary coil, and the said power transmission apparatus receives the said power reception. A non-contact power transmission device configured to transmit power to a device, wherein the power transmission device includes a power feeding unit that feeds power to the primary coil, and a current that detects a current flowing through the primary coil. When the recharging operation is performed after the detection device and the secondary battery of the power receiving device are fully charged, the power supply operation of the power supply device is started at a predetermined timing, and the detection current of the current detection device is detected after the start of the power supply operation. And a control means for controlling a predetermined operation of the power feeding means based on the detected current thus taken in.

第2の発明は、1次コイルを含む送電装置と、2次コイルを含む受電装置とからなり、前記1次コイルと前記2次コイルとを電磁的に結合させて、前記送電装置が前記受電装置に対して電力の伝送を行うようになっている非接触電力伝送装置であって、前記送電装置は、前記1次コイルに給電する給電手段と、前記1次コイルに流れる電流を検出する電流検出手段と、前記受電装置の2次電池の満充電後に再充電動作させる際に、所定のタイミングごとに前記給電手段の給電動作を開始させ、その動作開始から所定時間経過後に前記電流検出手段の検出電流を取り込み、この取り込んだ検出電流に基づいて前記給電手段の以後の所定動作を制御する制御手段と、を備えている。   A second invention comprises a power transmission device including a primary coil and a power reception device including a secondary coil, and the power transmission device electromagnetically couples the primary coil and the secondary coil so that the power transmission device receives the power reception. A non-contact power transmission device configured to transmit power to a device, wherein the power transmission device includes a power feeding unit that feeds power to the primary coil, and a current that detects a current flowing through the primary coil. When the recharging operation is performed after the detection device and the secondary battery of the power receiving device are fully charged, the power supply operation of the power supply device is started at every predetermined timing, and the current detection device Control means for taking in a detection current and controlling a predetermined operation of the power feeding means thereafter based on the taken-in detection current.

第3の発明は、第1または第2の発明において、前記制御手段は、前記検出電流を所定値と比較し、前記検出電流が所定値以下の場合には前記給電手段の給電動作を停止させ、前記検出電流が所定値以上の場合には前記給電手段の給電動作を継続させる。
第4の発明は、1次コイルを含む送電装置を備えた非接触電力伝送装置であって、前記送電装置は、前記1次コイルに給電する給電手段と、前記1次コイルに流れる電流を検出する電流検出手段と、前記給電手段の給電を制御する制御手段と、を備え、前記制御手段は、前記給電手段の給電開始後に、前記電流検出手段の検出電流に基づいて前記給電手段の所定の給電制御を行うようになっている。
According to a third invention, in the first or second invention, the control means compares the detection current with a predetermined value, and stops the power supply operation of the power supply means when the detection current is less than or equal to a predetermined value. When the detected current is equal to or greater than a predetermined value, the power feeding operation of the power feeding means is continued.
A fourth aspect of the invention is a non-contact power transmission device including a power transmission device including a primary coil, the power transmission device detecting a current flowing in the primary coil and power supply means for supplying power to the primary coil. Current detecting means for controlling the power supply means, and control means for controlling the power supply of the power supply means, the control means after the start of power supply of the power supply means based on the detection current of the current detection means Power supply control is performed.

第5の発明は、第4の発明において、前記制御手段による所定の給電制御は、前記電流検出手段の検出電流に基づいて前記送電装置に対応する受電装置からの電流要求を間接的に判断し、この判断に従って前記受電装置に対して行う所定の給電制御である。
このような本発明によれば、2次電池の満充電後に再充電動作を行う場合に、受電装置側の負担を極力軽減できる。
According to a fifth aspect based on the fourth aspect, the predetermined power supply control by the control means indirectly determines a current request from a power receiving apparatus corresponding to the power transmission apparatus based on a detection current of the current detection means. The predetermined power supply control is performed on the power receiving device according to this determination.
According to the present invention, when the recharge operation is performed after the secondary battery is fully charged, the load on the power receiving device side can be reduced as much as possible.

また、本発明によれば、制御手段は、電流検出手段の検出電流に基づいて給電制御を行うので、受電装置側からの積極的(能動的)な給電要求がなくても送電装置側が能動的に給電制御を行うことができる。
さらに、本発明によれば、2次電池の満充電後の再充電制御のみならず、受電装置側の急な電流要求に対して柔軟に対応することができ、これによって送電装置はその電流要求に対して適切な送電ができ、消費電流量を軽減できる。
Further, according to the present invention, the control unit performs power supply control based on the detection current of the current detection unit, so that the power transmission device side is active even if there is no positive (active) power supply request from the power reception device side. It is possible to perform power supply control.
Furthermore, according to the present invention, not only the recharge control after the secondary battery is fully charged, but also a sudden current request on the power receiving device side can be flexibly dealt with. Therefore, it is possible to transmit power appropriately and reduce current consumption.

以下、本発明の実施形態について、図面を参照して説明する。
本発明の非接触電力伝送装置の実施形態の構成について、図1を参照して説明する。
この実施形態に係る発明は、例えば携帯電話などに搭載(適用)され、図1に示すように、電磁誘導を利用して、1次側の送電装置1から2次側の受電装置2に対して非接触で電力を伝送して、2次電池26を充電できるようにしたものである。
また、この実施形態に係る発明は、送電装置1が、受電装置2の2次電池26の満充電後に再充電動作を行う場合に、所定のタイミングで送電動作(1次コイル16に対する給電動作)を開始し、この送電動作の開始後に1次コイル16に流れる電流を検出し、この検出電流に基づいて以後の送電制御を行うようにした。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The configuration of an embodiment of the non-contact power transmission apparatus of the present invention will be described with reference to FIG.
The invention according to this embodiment is mounted (applied) to, for example, a mobile phone, and uses electromagnetic induction to transmit power from a primary power transmission device 1 to a secondary power reception device 2 as shown in FIG. Thus, the secondary battery 26 can be charged by transmitting electric power in a non-contact manner.
In the invention according to this embodiment, when the power transmission device 1 performs a recharging operation after the secondary battery 26 of the power receiving device 2 is fully charged, the power transmission operation (power feeding operation to the primary coil 16) is performed at a predetermined timing. The current flowing through the primary coil 16 is detected after the power transmission operation is started, and the subsequent power transmission control is performed based on the detected current.

次に、この実施形態の具体的な構成について説明する。
送電装置1は、図1に示すように、発振回路11と、駆動クロック生成回路12と、ドライバ制御回路13と、ドライバ回路14a、14bと、キャパシタ(コンデンサ)15a、15bと、1次コイル16と、電流検出回路17と、制御回路18と、を備えている。
Next, a specific configuration of this embodiment will be described.
As shown in FIG. 1, the power transmission device 1 includes an oscillation circuit 11, a drive clock generation circuit 12, a driver control circuit 13, driver circuits 14 a and 14 b, capacitors (capacitors) 15 a and 15 b, and a primary coil 16. And a current detection circuit 17 and a control circuit 18.

ここで、発振回路11、駆動クロック生成回路12、ドライバ制御回路13、およびドライバ回路14a、14bなどが、1次コイル16に所定の電力を供給する給電手段を構成する。また、制御回路18が、その給電手段の給電を制御する。
発振回路11は、例えば、所望の周波数からなるパルスを発生する回路である。この発振回路11の発振動作の制御は、制御回路18が行うようになっている。
Here, the oscillation circuit 11, the drive clock generation circuit 12, the driver control circuit 13, the driver circuits 14 a and 14 b, etc. constitute power supply means for supplying predetermined power to the primary coil 16. Further, the control circuit 18 controls the power supply of the power supply means.
The oscillation circuit 11 is a circuit that generates a pulse having a desired frequency, for example. The control of the oscillation operation of the oscillation circuit 11 is performed by the control circuit 18.

駆動クロック生成回路12は、発振回路11の出力に基づいて所定の周波数の駆動クロックを生成する回路であり、その周波数の制御は制御回路が行うようになっている。
ドライバ制御回路13は、駆動クロック生成回路12が生成する駆動クロックに基づいてドライバ回路14a、14bを動作する信号を生成し、この生成信号をドライバ回路14a、14bに出力する。ドライバ回路14a、14bは、キャパシタ15a、15bと1次コイル16とからなる直列共振回路を駆動する回路である。
The drive clock generation circuit 12 is a circuit that generates a drive clock having a predetermined frequency based on the output of the oscillation circuit 11, and the control of the frequency is performed by the control circuit.
The driver control circuit 13 generates signals for operating the driver circuits 14a and 14b based on the drive clock generated by the drive clock generation circuit 12, and outputs the generated signals to the driver circuits 14a and 14b. The driver circuits 14 a and 14 b are circuits that drive a series resonance circuit including the capacitors 15 a and 15 b and the primary coil 16.

1次コイル16は、受電装置2側の2次コイル21と電磁結合し、電磁誘導作用によって1次コイル16側から2次コイル21側に向けて電力を伝送できるようになっている。すなわち、1次コイル16と2次コイル21とは、物理的に分離自在なトランスを構成するようになっている。
電流検出回路17は、1次コイル16に流れる電流を検出する回路である。この検出電流は、制御回路18に入力される。制御回路18は、電流検出回路17の検出電流に基づいて、後述のように各部の制御によって所定の給電制御を行う回路である。
The primary coil 16 is electromagnetically coupled to the secondary coil 21 on the power receiving device 2 side, and can transmit power from the primary coil 16 side to the secondary coil 21 side by electromagnetic induction. That is, the primary coil 16 and the secondary coil 21 constitute a physically separable transformer.
The current detection circuit 17 is a circuit that detects a current flowing through the primary coil 16. This detected current is input to the control circuit 18. The control circuit 18 is a circuit that performs predetermined power supply control by controlling each unit, as will be described later, based on the detected current of the current detection circuit 17.

受電装置2は、送電装置1から送出される電力を受け取り、その電力で2次電池26を充電する装置である。
このために、受電装置2は、図1に示すように、2次コイル21と、整流回路22と、平滑用コンデンサ23と、レギュレータ24と、モニタ回路25と、2次電池26と、を備えている。
The power receiving device 2 is a device that receives power transmitted from the power transmitting device 1 and charges the secondary battery 26 with the power.
For this purpose, the power receiving device 2 includes a secondary coil 21, a rectifier circuit 22, a smoothing capacitor 23, a regulator 24, a monitor circuit 25, and a secondary battery 26, as shown in FIG. ing.

2次コイル21は、送電装置1側の1次コイル16と電磁結合して電圧を誘起するようになっている。1次コイル16と2次コイル21とは、いずれも、同一の平面内で巻線を巻き状に巻いた平面状の平面コイルからなり、その平面同士を対向して接近させて電磁誘導作用を起こすようになっている。
整流回路22は、2次コイル21の誘起電圧を整流する。平滑用コンデンサ23は、整流回路22からの出力電圧を平滑化する。その平滑化電圧は、レギュレータ24に供給されるようになっている。
The secondary coil 21 is electromagnetically coupled to the primary coil 16 on the power transmission device 1 side to induce a voltage. The primary coil 16 and the secondary coil 21 are each composed of a planar planar coil in which a winding is wound in the same plane, and the planes face each other and approach each other for electromagnetic induction. It is supposed to wake up.
The rectifier circuit 22 rectifies the induced voltage of the secondary coil 21. The smoothing capacitor 23 smoothes the output voltage from the rectifier circuit 22. The smoothed voltage is supplied to the regulator 24.

レギュレータ24は、上記の平滑化電圧に基づいて、所望の安定化された電圧を生成し、この生成電圧はモニタ回路25および2次電池26にそれぞれ供給される。2次電池26には、負荷27が接続されるようになっている。
モニタ回路25は、レギュレータ24からの出力電圧によって動作し、2次電池26の電圧や電流を監視するようになっている。
The regulator 24 generates a desired stabilized voltage based on the smoothed voltage, and the generated voltage is supplied to the monitor circuit 25 and the secondary battery 26, respectively. A load 27 is connected to the secondary battery 26.
The monitor circuit 25 operates according to the output voltage from the regulator 24 and monitors the voltage and current of the secondary battery 26.

次に、このような構成からなる実施形態の動作例について、図1および図2を参照して説明する。
まず、受電装置1の2次電池26を満充電する場合について説明する。
この場合には、送電装置1の1次コイル16と受電装置2の2次コイル21とを接近させる。これにより、受電装置2側にある程度の電力が供給されると、モニタ回路25が動作するとともに、2次電池26の充電が開始される。その充電期間中は、モニタ回路25は、2次電池26の充電電圧と充電電流をそれぞれ監視する。その後、モニタ回路25は、2次電池26の充電電圧と充電電流がそれぞれ所定値になると、2次電池26が満充電であると判断し、その旨を表示器(図示せず)などによってユーザに通知する。
Next, an operation example of the embodiment having such a configuration will be described with reference to FIGS. 1 and 2.
First, a case where the secondary battery 26 of the power receiving device 1 is fully charged will be described.
In this case, the primary coil 16 of the power transmission device 1 and the secondary coil 21 of the power reception device 2 are brought close to each other. Thus, when a certain amount of power is supplied to the power receiving device 2 side, the monitor circuit 25 operates and charging of the secondary battery 26 is started. During the charging period, the monitor circuit 25 monitors the charging voltage and charging current of the secondary battery 26. Thereafter, when the charging voltage and charging current of the secondary battery 26 reach predetermined values, the monitor circuit 25 determines that the secondary battery 26 is fully charged, and this is indicated by a display (not shown) or the like to the user. Notify

一方、送電装置1側では、送電中に、電流検出回路17が検出する1次コイル16に流れる電流が制御回路18に取り込まれる。その電流検出回路17の検出電流は、受電装置2が2次電池26を充電中には所定値以上となり、2次電池26の満充電後は所定値以下となる。そこで、制御回路18は、その電流検出回路17の検出電流が所定値以下、つまり、2次電池26が満充電になったときに、送電装置1の送電動作(1次コイル16に対する給電動作)を停止させる。このように、2次電池26が満充電になると、送電装置1は送電動作を停止する。   On the other hand, on the power transmission device 1 side, the current flowing through the primary coil 16 detected by the current detection circuit 17 is taken into the control circuit 18 during power transmission. The detection current of the current detection circuit 17 is equal to or greater than a predetermined value while the power receiving device 2 is charging the secondary battery 26, and is equal to or less than a predetermined value after the secondary battery 26 is fully charged. Therefore, the control circuit 18 performs the power transmission operation of the power transmission device 1 (power feeding operation to the primary coil 16) when the detected current of the current detection circuit 17 is equal to or less than a predetermined value, that is, the secondary battery 26 is fully charged. Stop. Thus, when the secondary battery 26 is fully charged, the power transmission device 1 stops the power transmission operation.

次に、2次電池26の満充電後において、2次電池26を再充電する場合の再充電動作について、その概要を説明する。
この場合には、送電装置1は、受電装置2の2次電池26の満充電後に、所定のタイミングごとに送電動作を開始し、その動作開始から所定時間経過後に1次コイル16に流れる電流を検出する。そして、その検出電流を所定値と比較し、検出電流が所定値以下の場合には再充電が不要と判断して送電動作を停止し、検出電流が所定値以上の場合には再充電が必要と判断して送電動作を継続させる。
Next, an outline of the recharging operation when the secondary battery 26 is recharged after the secondary battery 26 is fully charged will be described.
In this case, the power transmission device 1 starts the power transmission operation at every predetermined timing after the secondary battery 26 of the power reception device 2 is fully charged, and the current flowing through the primary coil 16 after a predetermined time has elapsed from the start of the operation. To detect. The detected current is compared with a predetermined value. If the detected current is lower than the predetermined value, it is determined that recharging is not necessary and the power transmission operation is stopped. If the detected current is higher than the predetermined value, recharging is required. It is determined that the power transmission operation is continued.

次に、上記の再充電制御について、図2のフローチャートを参照して詳述する。
制御回路18は、1次コイル16の駆動を開始させ(ステップS1)、その駆動から一定時間を経過すると(ステップS2)、電流検出回路17の検出電流を取り込む(ステップS3)。
ここで、1次コイル16に一定時間にわたって給電するのは、1次コイル16に2次コイル21が接近している場合に、受電装置2に一定の電力を供給してモニタ回路25などの動作を一定時間、確保するためである。
Next, the recharging control will be described in detail with reference to the flowchart of FIG.
The control circuit 18 starts driving the primary coil 16 (step S1), and when a certain time has elapsed from the driving (step S2), takes in the detection current of the current detection circuit 17 (step S3).
Here, power is supplied to the primary coil 16 for a certain period of time when the secondary coil 21 is approaching the primary coil 16 and the power is supplied to the power receiving device 2 to operate the monitor circuit 25 and the like. This is for securing a certain period of time.

制御回路18は、その検出電流が所定値以下であるか否かを判定する(ステップS4)。この判定の結果、その検出電流が所定値以下で肯定判定の場合には、1次コイル16の駆動を停止する(ステップS5)。これは、受電装置2側の吸い込み電流が小さくて2次電池26の再充電が不要で、送電が不要のためである。この場合には、所定時間の経過後に(ステップS6)、ステップS1に戻る。   The control circuit 18 determines whether or not the detected current is not more than a predetermined value (step S4). If the result of this determination is that the detected current is a predetermined value or less and an affirmative determination is made, driving of the primary coil 16 is stopped (step S5). This is because the sink current on the power receiving device 2 side is small and recharging of the secondary battery 26 is unnecessary, and power transmission is unnecessary. In this case, after a predetermined time has elapsed (step S6), the process returns to step S1.

一方、その検出電流が所定値以下ではなく否定判定の場合には、1次コイル16の駆動を継続して再充電を開始する(ステップS7)。これは、受電装置2側の吸い込み電流が大きくて2次電池26の再充電が必要で、送電が必要のためである。この場合には、制御回路18は、電流検出回路17の検出電流を取り込み、この取り込んだ検出電流に基づいて満充電か否かを判定する(ステップS8)。
その後、2次電池26が満充電になると、1次コイル16の駆動が停止される(ステップS9)。そして、所定時間の経過後に(ステップS6)、ステップS1に戻る。
On the other hand, if the detected current is not less than the predetermined value and the determination is negative, the primary coil 16 is continuously driven to start recharging (step S7). This is because the sink current on the power receiving device 2 side is large and the secondary battery 26 needs to be recharged and power transmission is necessary. In this case, the control circuit 18 captures the detection current of the current detection circuit 17, and determines whether or not the battery is fully charged based on the captured detection current (step S8).
Thereafter, when the secondary battery 26 is fully charged, the driving of the primary coil 16 is stopped (step S9). And after progress of predetermined time (step S6), it returns to step S1.

以上のように、この実施形態では、受電装置2の2次電池26の満充電後に行う再充電動作において、所定のタイミング毎に送電動作を開始し、この送電動作の開始後に1次コイル16に流れる電流を検出し、この検出電流に基づいて以後の送電制御を行うようにした。
このため、この実施形態によれば、受電装置2側の再充電動作時の負担を極力軽減することができる。また、この実施形態によれば、特に、2次電池26の満充電後に、1次コイル16と2次コイル21とを接近して使用する場合に、その2次電池26の再充電を適切に行って充電状態を一定に保持できる。
As described above, in this embodiment, in the recharging operation performed after the secondary battery 26 of the power receiving device 2 is fully charged, the power transmission operation is started at every predetermined timing, and the primary coil 16 is started after the power transmission operation is started. The flowing current is detected, and the subsequent power transmission control is performed based on the detected current.
For this reason, according to this embodiment, the burden at the time of the recharging operation | movement by the side of the power receiving apparatus 2 can be reduced as much as possible. Further, according to this embodiment, particularly when the primary coil 16 and the secondary coil 21 are used in close proximity after the secondary battery 26 is fully charged, the secondary battery 26 is appropriately recharged. The charge state can be kept constant.

上記の実施形態では、受電装置2の2次電池26の満充電後に制御回路18が行う再充電制御について説明した。しかし、制御回路18は、そのような再充電制御のみならず、給電開始後に、電流検出回路17の検出電流に基づいて所定の給電制御を行うことも可能である。
ここで、制御回路18が行う所定の給電制御とは、給電開始後に、電流検出回路17の検出電流に基づいて受電装置2からの電流要求を間接的に判断し、この判断に従って受電装置に2に対して行う所定の給電制御である。
In the above embodiment, the recharge control performed by the control circuit 18 after the secondary battery 26 of the power receiving device 2 is fully charged has been described. However, the control circuit 18 can perform not only such recharge control but also predetermined power supply control based on the detected current of the current detection circuit 17 after the start of power supply.
Here, the predetermined power supply control performed by the control circuit 18 is to indirectly determine the current request from the power receiving device 2 based on the detected current of the current detection circuit 17 after the start of power supply, and to the power receiving device according to this determination. Is a predetermined power supply control to be performed.

このような制御によれば、受電装置2側の急な電流要求に対して柔軟に対応することができ、これによって送電装置1の制御回路18はその電流要求に対して適切な送電ができ、消費電流量を軽減できる。
また、これまでに述べた実施形態では、制御回路18が電流検出回路17の検出電流に基づいて給電制御を行うので、受電装置2側からの積極的(能動的)な給電要求がなくても送電装置1側が能動的に給電制御を行うことができる。
According to such control, it is possible to flexibly respond to a sudden current request on the power receiving device 2 side, whereby the control circuit 18 of the power transmission device 1 can appropriately transmit power to the current request, Current consumption can be reduced.
In the embodiments described so far, since the control circuit 18 performs power supply control based on the detection current of the current detection circuit 17, even if there is no positive (active) power supply request from the power receiving device 2 side. The power transmission device 1 side can actively perform power feeding control.

本発明の実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of embodiment of this invention. その実施形態の動作例を説明するフローチャートである。It is a flowchart explaining the operation example of the embodiment.

符号の説明Explanation of symbols

1、・・・送電装置、2・・・受電装置、11・・・発振回路、12・・・駆動クロック生成回路、13・・・ドライバ制御回路、14a、14b・・・ドライバ回路、15a、15b・・・キャパシタ、16・・・1次コイル、17・・・電流検出回路、18・・・制御回路、26・・・2次電池   DESCRIPTION OF SYMBOLS 1, ... Power transmission apparatus, 2 ... Power receiving apparatus, 11 ... Oscillation circuit, 12 ... Drive clock generation circuit, 13 ... Driver control circuit, 14a, 14b ... Driver circuit, 15a, 15b: capacitor, 16 ... primary coil, 17 ... current detection circuit, 18 ... control circuit, 26 ... secondary battery

Claims (5)

1次コイルを含む送電装置と、2次コイルを含む受電装置とからなり、前記1次コイルと前記2次コイルとを電磁的に結合させて、前記送電装置が前記受電装置に対して電力の伝送を行うようになっている非接触電力伝送装置であって、
前記送電装置は、
前記1次コイルに給電する給電手段と、
前記1次コイルに流れる電流を検出する電流検出手段と、
前記受電装置の2次電池の満充電後に再充電動作させる際に、所定のタイミングで前記給電手段の給電動作を開始させ、その給電動作の開始後に前記電流検出手段の検出電流を取り込み、この取り込んだ検出電流に基づいて前記給電手段の以後の所定動作を制御する制御手段と、
を備えていることを特徴とする非接触電力伝送装置。
The power transmission device includes a primary coil and a power reception device including a secondary coil. The primary coil and the secondary coil are electromagnetically coupled, and the power transmission device transmits power to the power reception device. A non-contact power transmission device adapted to perform transmission,
The power transmission device is:
Power supply means for supplying power to the primary coil;
Current detecting means for detecting a current flowing through the primary coil;
When the recharging operation is performed after the secondary battery of the power receiving device is fully charged, the power feeding operation of the power feeding unit is started at a predetermined timing, and the current detected by the current detecting unit is captured after the power feeding operation is started. Control means for controlling the subsequent predetermined operation of the power supply means based on the detected current;
A non-contact power transmission device comprising:
1次コイルを含む送電装置と、2次コイルを含む受電装置とからなり、前記1次コイルと前記2次コイルとを電磁的に結合させて、前記送電装置が前記受電装置に対して電力の伝送を行うようになっている非接触電力伝送装置であって、
前記送電装置は、
前記1次コイルに給電する給電手段と、
前記1次コイルに流れる電流を検出する電流検出手段と、
前記受電装置の2次電池の満充電後に再充電動作させる際に、所定のタイミングごとに前記給電手段の給電動作を開始させ、その動作開始から所定時間経過後に前記電流検出手段の検出電流を取り込み、この取り込んだ検出電流に基づいて前記給電手段の以後の所定動作を制御する制御手段と、
を備えていることを特徴とする非接触電力伝送装置。
The power transmission device includes a primary coil and a power reception device including a secondary coil. The primary coil and the secondary coil are electromagnetically coupled, and the power transmission device transmits power to the power reception device. A non-contact power transmission device adapted to perform transmission,
The power transmission device is:
Power supply means for supplying power to the primary coil;
Current detecting means for detecting a current flowing through the primary coil;
When the recharging operation is performed after the secondary battery of the power receiving device is fully charged, the feeding operation of the feeding unit is started at every predetermined timing, and the detection current of the current detecting unit is taken in after a predetermined time has elapsed from the start of the operation. Control means for controlling a predetermined operation of the power supply means based on the detected detection current;
A non-contact power transmission device comprising:
前記制御手段は、前記検出電流を所定値と比較し、前記検出電流が所定値以下の場合には前記給電手段の給電動作を停止させ、前記検出電流が所定値以上の場合には前記給電手段の給電動作を継続させることを特徴とする請求項1または請求項2に記載の非接触電力伝送装置。   The control means compares the detected current with a predetermined value, and stops the power supply operation of the power supply means when the detected current is less than a predetermined value, and the power supply means when the detected current is greater than a predetermined value. The non-contact power transmission device according to claim 1, wherein the power feeding operation is continued. 1次コイルを含む送電装置を備えた非接触電力伝送装置であって、
前記送電装置は、
前記1次コイルに給電する給電手段と、
前記1次コイルに流れる電流を検出する電流検出手段と、
前記給電手段の給電を制御する制御手段と、を備え、
前記制御手段は、前記給電手段の給電開始後に、前記電流検出手段の検出電流に基づいて前記給電手段の所定の給電制御を行うことを特徴とする非接触電力伝送装置。
A non-contact power transmission device including a power transmission device including a primary coil,
The power transmission device is:
Power supply means for supplying power to the primary coil;
Current detecting means for detecting a current flowing through the primary coil;
Control means for controlling power feeding of the power feeding means,
The non-contact power transmission apparatus according to claim 1, wherein the control unit performs predetermined power supply control of the power supply unit based on a detection current of the current detection unit after starting the power supply of the power supply unit.
前記制御手段による所定の給電制御は、前記電流検出手段の検出電流に基づいて前記送電装置に対応する受電装置からの電流要求を間接的に判断し、この判断に従って前記受電装置に対して行う所定の給電制御であることを特徴とする請求項4に記載の非接触電力伝送装置。   The predetermined power supply control by the control unit is based on the current detected by the current detection unit, indirectly determining a current request from the power receiving device corresponding to the power transmission device, and performing the predetermined power control on the power reception device according to this determination. The contactless power transmission apparatus according to claim 4, wherein the power supply control is performed.
JP2007076143A 2007-03-23 2007-03-23 Noncontact power transmitter Pending JP2008236968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007076143A JP2008236968A (en) 2007-03-23 2007-03-23 Noncontact power transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007076143A JP2008236968A (en) 2007-03-23 2007-03-23 Noncontact power transmitter

Publications (1)

Publication Number Publication Date
JP2008236968A true JP2008236968A (en) 2008-10-02

Family

ID=39909076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007076143A Pending JP2008236968A (en) 2007-03-23 2007-03-23 Noncontact power transmitter

Country Status (1)

Country Link
JP (1) JP2008236968A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139089A (en) * 2010-12-10 2012-07-19 Nichicon Corp Charging control device
WO2013015207A1 (en) * 2011-07-28 2013-01-31 三洋電機株式会社 Battery pack and battery pack charging method
JP2014502132A (en) * 2010-11-01 2014-01-23 クアルコム,インコーポレイテッド Wireless charging of devices
WO2014034523A1 (en) 2012-09-03 2014-03-06 日立マクセル株式会社 Contactless charging system
JP2014168377A (en) * 2011-11-24 2014-09-11 Murata Mfg Co Ltd Power transmission device and power transmission method
JP2014233197A (en) * 2013-05-28 2014-12-11 フリボ ゲラーテバウ ゲーエムベーハー Inductive power transmission device
US8987941B2 (en) 2010-08-10 2015-03-24 Murata Manufacturing Co., Ltd. Power transmission system
US9093857B2 (en) 2011-12-20 2015-07-28 Sony Corporation Mobile device and charging apparatus
CN105186703A (en) * 2014-05-30 2015-12-23 苹果公司 Reducing the impact of an inductive energy transfer system on a touch sensing device
JP2016136800A (en) * 2015-01-23 2016-07-28 Necトーキン株式会社 Power transmission device, power reception device, non-contact power transmission system, information terminal, coordinate input device and coordinate input system
KR101947980B1 (en) 2012-09-12 2019-02-14 삼성전자주식회사 Method and apparatus for wireless power transmission and wireless power reception apparatus
US10496218B2 (en) 2017-02-08 2019-12-03 Apple Inc. Display stack with integrated force input sensor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8987941B2 (en) 2010-08-10 2015-03-24 Murata Manufacturing Co., Ltd. Power transmission system
JP2014502132A (en) * 2010-11-01 2014-01-23 クアルコム,インコーポレイテッド Wireless charging of devices
US9219378B2 (en) 2010-11-01 2015-12-22 Qualcomm Incorporated Wireless charging of devices
JP2012139089A (en) * 2010-12-10 2012-07-19 Nichicon Corp Charging control device
WO2013015207A1 (en) * 2011-07-28 2013-01-31 三洋電機株式会社 Battery pack and battery pack charging method
JPWO2013015207A1 (en) * 2011-07-28 2015-02-23 三洋電機株式会社 Battery pack and battery pack charging method
JP2014168377A (en) * 2011-11-24 2014-09-11 Murata Mfg Co Ltd Power transmission device and power transmission method
US9093857B2 (en) 2011-12-20 2015-07-28 Sony Corporation Mobile device and charging apparatus
WO2014034523A1 (en) 2012-09-03 2014-03-06 日立マクセル株式会社 Contactless charging system
KR101947980B1 (en) 2012-09-12 2019-02-14 삼성전자주식회사 Method and apparatus for wireless power transmission and wireless power reception apparatus
JP2014233197A (en) * 2013-05-28 2014-12-11 フリボ ゲラーテバウ ゲーエムベーハー Inductive power transmission device
US10116167B2 (en) 2013-05-28 2018-10-30 Friwo Gerätebau Gmbh Inductive power transmission device
CN105186703A (en) * 2014-05-30 2015-12-23 苹果公司 Reducing the impact of an inductive energy transfer system on a touch sensing device
US10027185B2 (en) 2014-05-30 2018-07-17 Apple Inc. Reducing the impact of an inductive energy transfer system on a touch sensing device
JP2016136800A (en) * 2015-01-23 2016-07-28 Necトーキン株式会社 Power transmission device, power reception device, non-contact power transmission system, information terminal, coordinate input device and coordinate input system
US10496218B2 (en) 2017-02-08 2019-12-03 Apple Inc. Display stack with integrated force input sensor

Similar Documents

Publication Publication Date Title
JP2008236968A (en) Noncontact power transmitter
US11063635B2 (en) Device and system for power transmission
US10944284B2 (en) Feed unit, feed system, and electronic device for increasing power supplied to a battery based on a device state and/or a control of a charging current
US7923870B2 (en) Noncontact power transmission system and power transmitting device
KR102026605B1 (en) System and method for bidirectional wireless power transfer
JP5417907B2 (en) Power transmission control device, power transmission device, power reception control device, power reception device, electronic device, and contactless power transmission system
JP6004122B2 (en) Power receiving device and power transmission system
US20080174267A1 (en) Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device and electronic instrument
US20090174264A1 (en) Power transmission control device, power transmitting device, non-contact power transmission system, electronic instrument, and power transmission control method
JP2008236917A (en) Non-contact power transmission apparatus
EP2509203A1 (en) Power supply device and method for controlling same
JP6696008B2 (en) Device and method for wireless power charging of subsequent receivers
EP2701297B1 (en) Electronic apparatus and power controlling method thereof
JP2010119251A (en) Contactless power transmission system
WO2009123077A1 (en) Communication device and control method therefor
CN103988387B (en) Feeder equipment, feed system and electronic equipment
US20160126747A1 (en) Non-contact power transmission apparatus and power transmission device
TWI553995B (en) Bidirectional wireless charging device and bidirectional wireless charging system
JP2007336788A (en) Contactless power supply system, power supply device, and power receiving device
EP2600483A2 (en) Mobile device, power supply platform, and power supply method for mobile device
US20150084581A1 (en) Charging device configured to reduce power consumption during non-charging period
JP6555848B2 (en) Charged device, its control method, control program, and non-contact charging system
JP2010148210A (en) Contactless power supply circuit and induction type power supply circuit
JP2007336787A (en) Contactless power supply system, power supply device, and power receiving device
JP2015144538A (en) Power transmission method and power transmission system